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The evolution of a Landau Fermi liquid into a nonmagnetic Mott insulator with 
increasing electronic interactions is one of the most puzzling quantum phase 
transitions in physics 1-6. The vicinity of the transition is believed to host exotic states 
of matter such as quantum spin liquids 4-7, exciton condensates 8 and unconventional 
superconductivity 1. Semiconductor moiré materials realize a highly controllable 
Hubbard model simulator on a triangular lattice 9-22, providing a unique 
opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the 
electronic interactions. Here, by electrically tuning the effective interaction strength 
in MoTe2/WSe2 moiré superlattices, we observe a continuous MIT at a fixed filling 
of one electron per unit cell. The existence of quantum criticality is supported by the 
scaling behavior of the resistance, a continuously vanishing charge-gap as the 
critical point is approached from the insulating side, and a diverging quasiparticle 
effective mass from the metallic side. We also observe a smooth evolution of the low-
temperature magnetic susceptibility across the MIT and find no evidence of long-
range magnetic order down to ~ 5% of the Curie-Weiss temperature. The results 
signal an abundance of low-energy spinful excitations on the insulating side that is 
further corroborated by the presence of the Pomeranchuk effect on the metallic 
side. Our results are consistent with the universal critical theory of a continuous 
MIT from a Landau Fermi liquid to a nonmagnetic Mott insulator in two 
dimensions 4,23. 
 
The interaction induced localization of electrons – the Mott transition – is expected to 
occur in the half-filled Hubbard model 1-3,24,25. The ground state is a metal with a sharply 
defined electronic Fermi surface when the kinetic energy of the electrons – characterized 
by the bandwidth 𝑊– far exceeds their interaction energy – characterized by the on-site 
Coulomb repulsion 𝑈 . Conversely, when 𝑈 ≫𝑊,  the ground state is an electrical 
insulator with a charge-gap. The system undergoes a MIT when 𝑈  and 𝑊  become 
comparable. Although this picture is widely accepted from the seminal works of Mott and 
Hubbard, the nature of the transition remains poorly understood. In most materials, the 
transitions are driven first-order and often accompanied by simultaneous magnetic, 
structural or other forms of ordering 1,3. Continuous MIT, which exhibits no symmetry 
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breaking, an abrupt disappearance of an entire electronic Fermi surface and the 
simultaneous opening of a charge-gap across a quantum critical point, remains one of the 
outstanding problems in condensed matter physics 1-6,26-28. Despite the extensive 
theoretical studies on the topic 1-8, 23-29, experimental candidates remain scarce 1. 
 
Continuous Mott transitions are generally favored by geometric frustration and reduced 
dimensionality, where strong quantum fluctuations can weaken or even quench different 
types of order 3-4,28-31. Moiré heterostructures of two-dimensional (2D) semiconducting 
transition metal dichalcogenides (TMDs), which are believed to realize a triangular lattice 
Hubbard model 9,19,20, provide an ideal testbed of the Mott transition 21,22. The system is 
highly controllable – allowing independent tuning of both the filling factor and the 
effective interaction strength (𝑈/𝑊 ). In particular, the electron density can be 
continuously tuned by gating in a field-effect device structure 10-16. The effective 
interaction strength can be tuned, in principle, by varying the twist angle between the 
TMD layers 9,20, which determines the moiré period and thus the bandwidth. Here we 
demonstrate continuous tuning of 𝑈/𝑊 by an out-of-plane electric field. The electric 
field varies the potential difference between the two TMD layers and subsequently the 
moiré potential, which changes the size of the localized Wannier function and the 
bandwidth predominantly. We investigate the electrical transport and magnetic properties 
of the system at fixed half-band filling as a function of effective interaction.  
 
We choose angle-aligned MoTe2/WSe2 heterobilayers with hole doping. The two TMD 
materials have ~ 7% lattice mismatch. At zero twist angle they form a triangular moiré 
superlattice with period of ~ 5 nm (Fig. 1a), which corresponds to a moiré density of 
~ 5×10!" cm-2. In each TMD monolayer, the band edges are located at the K/K’ points 
of the Brillouin zone with double spin-valley degeneracy. The electronic band structures 
of relaxed zero-degree-aligned MoTe2/WSe2 heterobilayers are characterized from 
density functional theory (DFT) (Methods). They have type-I band alignment with 
valence band offset of ~ 220 meV (both conduction and valence band edges are from 
MoTe2). Figure 1d illustrates the first two hole moiré bands under two values of out-of-
plane displacement field, D. The field is along the direction that reduces the valence band 
offset. The valley degeneracy is lifted by valley pseudospin-orbit coupling in small-
period moiré structures. The displacement field shows a strong effect on band 
dispersions. The bandwidth of the first (valley-split) moiré bands increases rapidly with 
displacement field for sufficiently large fields (Fig. 1e), indicating the feasibility of 
bandwidth-tuned MITs. The large lattice mismatch of the two materials also has several 
practical advantages. The heterostructures are less prone to effects of disorder from angle 
alignment inhomogeneities since the moiré period is not sensitive to twist angle near zero 
degree. The large moiré density, or equivalently, doping density at half filling compared 
to the disorder density (~ 1011 cm-2, Methods) favors purely interaction-driven MITs. 
Finally, the large doping density facilitates the formation of good electrical contacts for 
transport measurements at low temperatures. 
 
We fabricate dual-gate field-effect devices of MoTe2/WSe2 heterobilayers with 
hexagonal boron nitride (hBN) gate dielectrics and graphite gate electrodes (Fig. 1a, b). 
The typical hBN thickness is about 5 and 20-30 nm, respectively, in the top and bottom 
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gates. We pattern the devices into Hall bar geometry and measure the four-point sheet 
resistance down to 300 mK (see Methods for device fabrication and measurements). 
Figure 1c shows square resistance 𝑅☐ of Device 1 at 300 mK as a function of two gate 
voltages. It can be converted to resistance as a function of filling factor 𝑓 and applied out-
of-plane electric field 𝐸 using the known device geometry (Extended Data Fig. 1). The 
two prominent resistance features correspond to 𝑓 = 1 and 2, respectively, where 𝑓 = 1 
denotes one hole per moiré cell, that is, half filling of the first hole moiré band. 
Resistance increases substantially at 𝑓 < 1. The insulating states at 𝑓 = 1 and 2 are the 
known Mott and (trivial) band insulating states, respectively 10-16. At large applied fields 
they both turn metallic. The MIT at 𝑓 = 2 occurs at a smaller field because of the 
increasing bandwidth with fillings 14. It induces no observable effects on the Mott 
insulating state. The result is presented in Extended Data Fig. 2. The applied field here 
closes the gap between the first and second moiré bands and induces a transition from a 
band-insulator to a compensated semi-metal. Such a transition occurs through a 
mechanism that is distinct from the Mott transition at 𝑓 = 1.  
 
Below we focus on the interaction (bandwidth)-driven MIT at 𝑓 = 1 . The sheet 
resistance or conductance (𝐺☐ = 1/𝑅☐) is very sensitive to applied electric field near the 
transition. At the lowest temperature (285 mK), it changes by more than 4 orders of 
magnitude within a narrow range of the critical field 𝐸! ≈ 1.304 V/nm (Fig. 1f). No 
hysteresis is observed for different sweeping directions of the field. 
 
Figure 2a illustrates the temperature dependence of resistance up to 70 K at 
representative electric fields. They show two types of behaviors. Below the critical field, 
the resistance increases as temperature 𝑇 approaches zero. This is characteristic of an 
insulator. The resistance follows a thermal activation dependence (Extended Data Fig. 3). 
We extract the activation gap Δ for charge transport in Fig. 2b. The gap size decreases 
monotonically from tens of meV to a few meV as 𝐸!  is approached from below. It 
follows a power-law dependence Δ ∝ 𝐸 − 𝐸! !" with exponent 𝜈𝑧 ≈ 0.60 ± 0.05 (inset).  
 
Above the critical electric field, the resistance follows a 𝑇! -dependence at low 
temperatures over a temperature range up to ~ 10 K. This is characteristic of a Landau 
Fermi liquid with electron-electron umklapp scattering. We fit the low-temperature 
resistance with 𝑅☐ = 𝑅! + 𝐴𝑇! (Extended Data Fig. 4), where 𝑅! denotes the residual 
resistance and 𝐴!/! is proportional to the quasiparticle effective mass 𝑚∗ according to 
Kadowaki-Woods scaling 32. In Fig. 2c we plot the electric field dependence of 𝐴!/!. The 
data is well described by a power-law divergence 𝐴!/! ∝ 𝑚∗ ∝ 𝐸 − 𝐸! !!.!±!.!  as 
𝐸 approaches 𝐸!  from above. The result suggests the entire electronic Fermi surface 
contributing to transport, with 𝑚∗  diverging at 𝐸!  due to the effects of quantum 
fluctuations near the MIT 2-4,23,24,29. 
 
At higher temperatures, the resistance deviates from the 𝑇!-dependence and reaches a 
maximum at temperature 𝑇∗ , above which the resistance decreases with increasing 
temperature. Upon approaching the MIT, the value of 𝑇∗ decreases (dashed line in Fig. 
3b). The square resistance exceeds the Mott-Ioffe-Regel limit ( !

!!
 with ℎ and 𝑒 denoting, 
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respectively, the Planck’s constant and the elementary charge). It corresponds to a mean 
free path smaller than the moiré period and is suggestive of ‘bad’ metallic behavior 33.  
 
Next we demonstrate quantum critical scaling collapse of the resistance curves near the 
MIT. We first identify the precise value of the critical field following the standard 
procedure that a simple power-law dependence of 𝑅☐(𝑇) is expected only at the critical 
point (Extended Data Fig. 5). We then normalize 𝑅☐(𝑇) by resistance at the critical field 
𝑅!(𝑇) . All resistance curves near the MIT collapse onto two branches after the 
temperatures are scaled by field-dependent 𝑇!’s (Fig. 3a). The top and bottom branches 
represent the insulating and metallic transport behaviors, respectively; they display 
reflection symmetry about 𝑅☐ 𝑅! = 1 in the log-log plot. The scaling parameter 𝑇! 
continuously vanishes as the critical field is approached from both sides (Fig. 2b). Similar 
to the charge-gap, 𝑇! follows a power-law dependence 𝑇! ∝ 𝐸 − 𝐸! !" with practically 
identical exponent 𝜈𝑧 ≈ 0.70 ± 0.05 for both sides.  
 
We also show the field-temperature phase diagram for log !☐

!!
 in Fig. 3b. It reveals the 

‘fan-shape’ structure that is widely observed for quantum criticality 29,30,31. The Widom 
line is close to the vertical blue line stemmed from the critical field (Methods). And	𝑇! 
(dashed line) sets the scale for the finite temperature crossovers near the MIT, that is, the 
boundary of the quantum critical region 27. The 𝑇∗ line is on the metallic side. 
 
Since the ground and low-energy excited states of the Mott insulator are determined by 
magnetic interactions, we examine the magnetic properties near the critical point. A 
magnetic field parallel to the 2D plane couples weakly to spins because of the strong 
Ising spin-orbit interaction in TMDs 34 (Extended Data Fig. 6). We characterize the 
magnetization of holes in TMD moiré heterostructures under an out-of-plane magnetic 
field B by magnetic circular dichroism (MCD), a method that has been demonstrated in a 
recent study 11 (Methods). Figure 4a illustrates the magnetic-field dependence of the 
magnetization for several electric fields at 1.6 K. The magnetization initially increases 
linearly with 𝐵 and then saturates at an electric-field dependent 𝐵∗ (symbols). The values 
of 𝐵∗ agree well with the saturation fields of magnetoresistance measured on the metallic 
side (Fig. 4c). We determine the saturation field as the field at which the transport 
behavior crosses over from metallic to insulating as shown in the inset for one electric-
field example.  
 
Next we obtain the magnetic susceptibility 𝜒 from the slope of MCD around 𝐵 = 0. 
Figure 4b shows the temperature dependence of 𝜒!! at varying electric fields. On the 
metallic side, 𝜒 saturates at low temperatures. Above a temperature ~ 𝑇∗ (marked by 
arrows), the susceptibility is well described by the Curie-Weiss dependence 𝜒!! ∝ 𝑇 − 𝜃 
(dashed lines) with a negative Weiss constant 𝜃  (~ 30-40 K), which reflects the 
antiferromagnetic interaction between the local moments in the Hubbard model 2. The 
magnetic susceptibility shows a smooth dependence on temperature for all electric fields 
(Fig. 4b) and on electric field across the MIT down to 1.6 K (Fig. 4d). 
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The magnetic properties are well correlated with the transport properties in Fig. 2a. At 
low temperatures, the system is a Landau Fermi liquid on the metallic side; 𝜒 is given by 
the Pauli susceptibility of the heavy fermions near the electronic Fermi surface 3. Above 
𝑇∗, the system enters an incoherent regime; local moments emerge; and the susceptibility 
follows the Curie-Weiss dependence. This behavior is reminiscent of the Pomeranchuk 
effect observed in helium-3 (also see Extended Data Fig. 7), where the increasing 
localization and formation of local moments lead to an increase in spin entropy with 
increasing temperature 23,31,35. The coherent quasiparticles can also be destroyed when the 
Zeeman energy at magnetic saturation overcomes the renormalized bandwidth 3 
(𝑔𝜇!𝐵∗ ≳𝑊∗, Methods). This picture is consistent with the magnetoresistance data in 
Fig. 4c and is further supported by the good agreement between 𝑔𝜇!𝐵∗ and the thermal 
excitation energy (𝑘!𝑇∗~𝑊∗) in Fig. 3b. Here 𝑔, 𝜇! and 𝑘! denote the hole Lande g-
factor ( 𝑔 ≈ 11  in TMDs 36), the Bohr magneton, and the Boltzmann constant, 
respectively. In contrast to most 2D electron systems 28,37, the hole Zeeman energy in 
TMD moiré superlattices is substantially larger than the cyclotron energy 38 because of 
the large g-factor and the heavy band mass that is further enhanced by the moiré flat 
bands.  
 
Near the MIT, the magnetic interaction 𝐽 sets the smallest energy scale of the system 
since both U and W are tens of meV. For 𝑇 ≪ 𝜃, we can determine 𝐽~𝑔𝜇!𝐵∗~3 meV 
from the insulating side (last panel of Fig. 4a), the value of which is in good agreement 
with the extracted Weiss constant 𝑘!𝜃~3 meV. The thermal excitation energy at the 
lowest measurement temperature (1.6 K and 300 mK for magnetic and transport 
properties, respectively) is well below this scale. Therefore, the smooth temperature 
dependence of 𝜒 without any sign of spin-gap for all electric fields (Fig. 4b) and the 
smooth evolution of 𝜒 across the MIT (Fig. 4d) show the absence of long-range magnetic 
order on both sides. These observations point to a MIT from a Fermi liquid to a 
nonmagnetic (or 120-degree Néel below 1.6 K) Mott insulator with extensive spin 
entropy at finite temperatures. This is expected for a frustrated lattice 4,23,30,31 and further 
corroborated by the Pomeranchuk effect. Moreover, since 𝑚∗ diverges from the metallic 
side, the smooth evolution of 𝜒 across the MIT implies a diverging Landau-parameter, 
𝐹!!, and similarly, a diverging 𝐹!! as the compressibility must vanish at the MIT 4. 
 
In conclusion, we have demonstrated a continuous Mott transition in MoTe2/WSe2 moiré 
superlattices down to 300 mK and performed scaling analyses on major physical 
quantities near the quantum critical point. In contrast to MITs induced by tuning the 
doping density in conventional 2D electron systems 3,28,37, the carrier density here is fixed 
at half-band filling. The MIT is induced by varying an out-of-plane electric field that 
modifies the moiré potential depth and thus 𝑈/𝑊. Our results point to a clear example of 
a continuous MIT across which the entire electronic Fermi surface disappears abruptly. In 
addition, because the half-band filling density is nearly two orders of magnitude higher 
than the disorder density, disorder only plays a perturbative role in the observed 
interaction-driven MIT. This is in stark contrast to the density-tuned MITs; there both the 
interaction and disorder effects are important (Mott-Anderson transitions 3). Our primary 
observations near the MIT are consistent with the continuous Mott transition from a 
Landau Fermi liquid to a nonmagnetic Mott insulator 4,23, including a continuously 
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vanishing charge-gap, a diverging effective mass, a constant spin susceptibility across the 
MIT, and the Pomeranchuk effect. Future investigations of the transport and magnetic 
properties near the transitions, particularly at lower temperatures, may reveal new exotic 
states of matter such as quantum spin liquids.  
 
 
Methods 
Device fabrication. We fabricated angle-aligned MoTe2/WSe2 devices using the layer-
by-layer dry transfer method 39. The constituent atomically thin flakes were exfoliated 
from bulk crystals onto Si substrates with a 285-nm oxide layer and picked up by a 
polycarbonate (PC) stamp in desired sequence. We first released a stack of graphite/hBN 
layers onto a Si/SiO2 substrate as the bottom gate. Platinum (Pt) contacts were patterned 
into Hall bar geometry on hBN by e-beam lithography and metallization. The second 
stack consisting of a MoTe2/WSe2 bilayer and an hBN/graphite top gate was released 
onto the pre-patterned Pt electrodes. Figure 1a and 1b are a schematic side view and an 
optical micrograph of a typical device, respectively. We used angle-resolved optical 
second-harmonic generation (SHG) spectroscopy 11 to determine the crystal orientations 
of WSe2 and MoTe2 monolayers and the twist angle between them in the bilayer. The 
devices investigated in this study are zero-degree aligned within ± 0.5°. The uncertainty 
is mainly limited by that of the SHG measurements. We used relatively thin hBN layers 
(~ 5 nm) in the top gate. We found that in general thinner hBN layers can sustain a larger 
breakdown electric field.  
 
Several steps were taken to produce high-quality MoTe2/WSe2 devices. First we kept the 
Pt contacts thin (~ 5 nm) to reduce strain on the device. Second, we removed the polymer 
residues on the bottom gate from Pt electrode fabrication using an atomic force 
microscope (AFM) in contact mode. Finally, we handled atomically thin MoTe2 flakes 
inside a nitrogen-filled glovebox with oxygen and water levels below 1 part per million 
(ppm) to minimize degradation of MoTe2. The device spatial inhomogeneity was 
evaluated by probing the transport properties using various source-drain pairs of a multi-
terminal device (Extended Data Fig. 8). We have studied a total of 4 devices. All of them 
show interaction-tuned MIT at 𝑓 = 1 and 2 but they have varying degrees of sample 
inhomogeneity. More homogeneous devices allow scaling analysis closer to the quantum 
critical point. The results for Device 1, which has the best sample homogeneity, are 
presented in the main text. The results of Device 2 are shown in Extended Data Fig. 9. 
 
Electrical measurements. Electrical transport measurements were performed in a 
closed-cycle 4He cryostat (Oxford TeslatronPT) equipped with a superconducting magnet 
and a 3He insert (base temperature ~ 300 mK). Standard low-frequency (< 23 Hz) lock-in 
techniques were used to measure the sample resistance under a bias voltage of 1-2 mV. 
Both the voltage drop at the probe electrode pairs and the source-drain current were 
recorded. Voltage pre-amplifiers with large input impedance (100 MΩ) were used to 
measure sample resistance up to ~ 10 MΩ.  
 
MCD measurements. Magnetic circular dichroism (MCD) was performed in an 
Attocube closed-cycle optical cryostat (attoDry2100) down to 1.6 K and under an out-of-
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plane magnetic field of up to 9 T. The optical beam was focused onto the sample using an 
optical microscope objective (0.8 numerical aperture); the beam diameter was ~ 1 µm on 
the device. The reflected light was collected by the same objective and directed to 
detectors.  
 
We first characterized the MCD spectrum using a broadband tungsten-halogen lamp. A 
combination of a linear polarizer and an achromatic quarter-wave plate was used to 
generate circularly polarized light. The incident power on the device was kept below 
1 nW. The left- or right-handed light reflected from the sample was spectrally resolved 
by a spectrometer coupled to a liquid nitrogen-cooled charge coupled device (CCD). The 
MCD at a given photon energy is defined as MCD ≡ (𝐼! − 𝐼!)/(𝐼! + 𝐼!), where 𝐼! and 𝐼! 
are the intensity of the left and right circularly polarized light, respectively. A sample 
MCD spectrum as a function of out-of-plane electric field is shown in Extended Data Fig. 
10. The MCD is strongly enhanced near the fundamental exciton resonance of WSe2; the 
electric field has a negligible effect on the resonance energy for electric fields near 𝐸! . 
This allows us to probe the MCD response at a fixed wavelength 747.4 nm (Fig. 4). The 
optical excitation was provided by a tunable, continuous-wave Ti-Sapphire laser (M 
Squared SOLSTIS system). We limited the incident light power to about 300 nW on the 
sample to minimize the heating effects. We modulated the light helicity by a photoelastic 
modulator at 50.1 kHz and detected the reflected light by a photodiode. The MCD signal 
is defined as the ratio of the modulated signal (measured by a lock-in amplifier) to the 
total reflected light power (measured by a DC voltmeter). 
 
Band structure calculations. Density functional calculations were performed using 
Perdew-Burke-Ernzerhof generalized gradient approximation 40 with the van der Waals 
correction incorporated by DFT-D3 method with Becke-Jonson damping 41 as 
implemented in the Vienna Ab initio Simulation Package 42. Pseudopotentials were used 
to describe the electron-ion interactions. We first constructed the zero-degree-aligned 
MoTe2/WSe2 heterobilayer with vacuum spacing larger than 20 Å to avoid artificial 
interaction between the periodic images along the out-of-plane direction. The structure 
relaxation was performed with force on each atom less than 0.01 eV/Å. We used Gamma-
point sampling for structure relaxation and self-consistent calculation.  
 
Effects of disorders. Because of sample inhomogeneity, the scaling collapse of 
resistance curves in Fig. 3 fails for 𝐸 − 𝐸! < 0.002 V/nm. We therefore cannot reliably 
obtain 𝑇! ≲ 20 K from scaling. The corresponding energy scale is, however, many times 
smaller than 𝑈~𝑊~70 meV near 𝐸!  (estimated from the Coulomb repulsion energy 
corresponding to the moiré period) so that we are safely in the low-temperature limit. We 
can also estimate the disorder density in Device 1 as ~2𝜀!!"𝜀!× 0.002V/nm ~10!! 
cm-2. Here 𝜀!!" ≈ 3 and 𝜀!  are the out-of-plane dielectric constant of hBN and the 
vacuum permittivity, respectively. The disorder density is about two orders of magnitude 
smaller than the moiré density.  
 
Widom line. We adopted the notion of a generalized Widom line 29 to separate regions of 
metallic and insulating behavior in the experimental electric field-temperature phase 
diagram  (Fig. 3b). In the scaling analysis of resistance (Extended Data Fig. 5), we find a 
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simple power-law dependence of 𝑅☐(𝑇)  at one particular electric field, which are 
identified as the ‘separatrix’ 𝑅!(𝑇) and the critical field 𝐸! . The existence of 𝑅!(𝑇) at a 
constant electric field implies that the Widom line is close to a vertical line stemmed 
from 𝐸!  in the phase diagram. We verified this by finding the inflection points of 
logarithmic resistance as a function of electric field ( !

! !"#!☐

!"!
= 0 ) at different 

temperatures. The log𝑅☐ inflection point line has been shown to well represent the 
Widom line. Extended Data Fig. 5 shows that the inflection points are nearly temperature 
independent, i.e. a vertical Widom line from 𝐸! . 
 
Estimate of the renormalized bandwidth of the heavy Fermi liquid near MIT. Based 
on the data in Fig. 2c, 𝑚∗ is enhanced from the single-particle moiré band mass by at 
least two orders of magnitude near 𝐸! . We therefore expect the renormalized bandwidth 
𝑊∗ of the heavy Fermi liquid to be greatly reduced from the single-particle bandwidth 
𝑊~𝑈~70 meV near 𝐸! . Because 𝑚∗ is only a property of the Fermi surface, however, 
we cannot directly relate 𝑊∗ to 1/𝑚∗. Nevertheless, the significant reduction in the 
bandwidth near 𝐸!  leads to 𝑊∗~𝑔𝜇!𝐵∗~𝑘!𝑇∗ as shown in Fig. 3b. 
 
Quantum oscillations in the magnetoresistance. The magnetoresistance of the 
MoTe2/WSe2 device in Fig. 4c shows Shubnikov-de Hass-like oscillations in addition to 
the metal-insulator transition. These oscillations are associated with formation of Landau 
levels in the top graphite gate under an out-of-plane magnetic field. They vanish above 
~30 K, which is in good agreement with the reported temperature range for Shubnikov-de 
Hass oscillations in graphite 43. They also vanish when we replace graphite by 2D metal 
TaSe2 in the top gate (Extended Data Fig. 11). The coupling between the closely spaced 
MoTe2/WSe2 sample and the top graphite gate (~ 5 nm) is presumably capacitive, i.e. 
through screening 44. The energy gap for charge excitations in a 2D insulator is sensitive 
to its dielectric surroundings 45. When Landau levels are developed in the nearby graphite 
gate under a magnetic field, the oscillations in graphite’s density of states induce 
oscillatory changes in the effective dielectric function that the 2D insulator experiences, 
and consequently, oscillations in the charge-gap and the in-gap resistance (through 
thermal activation) of the sample. The oscillation amplitude is the largest for in-gap 
electrical transport (Extended Data Fig. 11).  
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Figures 
 

 
 
Figure 1 | Bandwidth-tuned metal-insulator transition. a, Top: Schematic side view of 
MoTe2/WSe2 moiré heterobilayer devices with hBN/graphite gates and Pt contact 
electrodes. The two gates allow independent tuning of filling factor and out-of-plane 
electric field. Bottom: The moiré superlattice structure with 5 nm moiré period. b, Optical 
microscope image of multi-terminal Hall bar Device 1. The conduction channel of the 
MoTe2/WSe2 moiré heterobilayer is outlined by black lines. The scale bar represents 10 
𝜇m. c, Square resistance of Device 1 at 300 mK in logarithmic scale as a function of top 
and bottom gate voltages. The gate voltages relate to the hole filling factor f and electric 
field E (field direction is up in a). Electric field-induced MIT is observed at 𝑓 = 1 and 2. 
d, Electronic band structure (first two hole moiré bands) of zero-degree-aligned 
MoTe2/WSe2 heterobilayers from DFT under displacement field D = 0.2 V/nm (top) and 
3.0 V/nm (bottom). e, Band gap between the first and second moiré bands (top) and 
bandwidth of the first moiré bands (bottom) as a function of displacement field from 
DFT. f, Square conductance at 𝑓 = 1 as a function of electric field near the MIT at 285 
mK. No hysteresis is observed under forward and backward scans of the electric field. 
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Figure 2 | Continuous Mott transition. a, Temperature dependence of square resistance 
(symbols) at f = 1 under varying electric fields. The lines are guide to the eye. The 
resistance at 𝐸!  = 1.304 V/nm (open symbols) follows a power-law dependence. The 
horizontal dashed line marks the resistance quantum. b, Continuously vanishing charge-
gap Δ and temperature scaling parameter 𝑇! (multiplied by 𝑘!) as the critical field is 
approached. Both follow a power-law dependence on 𝐸 − 𝐸!  with nearly identical 
exponents (inset). c, Electric-field dependence of 𝐴!/! in a log-log plot, where 𝐴 is the 
fitting parameter for the low-temperature square resistance (𝑅☐ = 𝑅! + 𝐴𝑇!) and the 
error bars are the fitting uncertainty. The dashed line is a power-law fit 𝐴!/! ∝ 𝐸 −
𝐸! !!.!±!.!.  
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Figure 3 | Quantum critical scaling. a, Temperature-dependent square resistance curves 
near the MIT collapse onto two branches. The resistance curves are scaled by that at the 
critical field 𝑅! 𝑇 ; the temperatures are scaled by field-dependent 𝑇!’s. b, Electric field-
temperature phase diagram for log !☐

!!
. White symbols are the temperature scaling 

parameter 𝑇!’s. The lines are guide to the eye; they set the quantum critical regions. The 
dashed line corresponds to the crossover temperature 𝑇∗ . Purple symbols are the 
equivalent temperature for the Zeeman energy at the saturation fields of 
magnetoresistance. 
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Figure 4 | Magnetic properties near the Mott transition. a, MCD as a function of out-
of-plane magnetic field B under varying electric fields at 1.6 K. It increases linearly with 
B for small fields and saturates at 𝐵∗ (symbols). b, Temperature dependence of the 
inverse magnetic susceptibility 𝜒!! determined from the data in a. On the metallic side, 𝜒 
saturates at the lowest temperatures; it follows the Curie-Weiss dependence (dashed 
lines) above the crossover temperatures (denoted by arrows) from a Fermi liquid to an 
incoherent metal. Non-monotonic temperature dependence is observed for 𝜒  on the 
insulating side. c, Magnetoresistance at varying electric fields above the critical electric 
field (1.6 K). Inset: magnetoresistance at varying temperatures for one of the electric 
fields; a magnetic field-induced MIT is observed. The crossover magnetic-field value is 
used to estimate the saturation field 𝐵∗ (symbols) in the main panel. It agrees well with 
the value from the MCD measurement in a. The quantum oscillations observed in 
magnetoresistance are associated with quantum oscillations in the top graphite gate (see 
Methods for details). d, Smooth evolution of magnetic susceptibility at varying 
temperatures through the quantum critical point, demonstrating the absence of magnetic 
phase transition.  
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Extended Data Figures 
 

 
 
Extended Data Figure 1 | Square resistance versus electric field and filling factor. 
2D map of electric field and filling factor dependence of the square resistance (in log 
scale) at 300 mK converted from the data in Fig. 1c. Electric field-induced MITs are seen 
at both 𝑓 = 1 and 𝑓 = 2. 
 
	

 
 
Extended Data Figure 2 | Metal-insulator transition at 𝒇 = 𝟐 . a, Temperature 
dependence of the square resistance at varying electric fields at 𝑓 = 2. A metal-insulator 
transition is observed near 0.978 V/nm. Compared to the 𝑓 = 1 MIT, no clear Landau 
Fermi liquid behavior and no Pomeranchuk effect are observed on the metallic side in the 
studied temperature range. b, Magnetoresistance at varying electric fields at 300 mK. The 
behavior is diametrically different compared to that at 𝑓 = 1. In particular, no magnetic 
field-induced metal-insulator transition is observed.  
 
 



	 17	

 
 
Extended Data Figure 3 | Extraction of activation gap at 𝒇 = 𝟏. Arrhenius plot of the 
square resistance (log scale) at varying electric fields. Thermal activation behavior is seen 
at high temperatures from which the activation gap can be extracted from the slopes of 
the linear fits (dashed lines).  
 
 

 
 
Extended Data Figure 4 | Landau Fermi liquid behavior at low temperatures. 
Dependence of the square resistance on temperature squared at varying electric fields. 
Landau Fermi liquid behavior with linear dependence is seen at low temperatures. The 
slope 𝐴 ∝ 𝑚∗ ! increases substantially near the critical electric field. 
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Extended Data Figure 5 | Resistance scaling at 𝒇 = 𝟏  near critical point. a, 
Dependence of square resistance on temperature at varying electric fields in log-log plot. 
A linear dependence is seen at the critical electric field, demonstrating the power-law 
temperature dependence. b, Electric field dependence of log𝑅☐ at different temperatures. 
The inflection points are marked by the color symbols. The inset shows the temperature 
dependence of the electric field at the inflection point. The data shows that the Widom 
line is nearly a vertical line in Fig. 3b.  
 
 
 

 
 
Extended Data Figure 6 | Absence of in-plane magnetic field dependence. 
Dependence of square resistance on the bottom gate voltage at varying in-plane magnetic 
fields. The bottom gate voltage primarily changes the filling factor 𝑓. The electric field is 
fixed at 0.007 V/nm (from 𝐸!) near 𝑓 = 1. No in-plane magnetic field dependence is 
observed due to the strong Ising spin-orbit coupling in monolayer TMDs.  
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Extended Data Figure 7 | Pomeranchuk effect at 𝒇 = 𝟏. Dependence of square 
resistance on the bottom gate voltage at varying temperatures. The bottom gate voltage 
mainly changes the filling factor 𝑓. The electric field is fixed at 0.007 V/nm (from 𝐸!) 
near 𝑓 = 1 . The 𝑓 = 1  insulating state emerges with increasing temperature, 
demonstrating the Pomeranchuk effect. The result is fully consistent with the results 
presented in the main text, where the filling factor is kept constant at 𝑓 = 1. 
 
 

 
 
Extended Data Figure 8 | Spatial homogeneity of Device 1. Two-point current as a 
function of bottom gate voltage at fixed top gate voltage. The excitation bias voltage is 2 
mV. The insulating states at 𝑓 = 1 and 𝑓 = 2 are seen at different source-drain pairs 
corresponding to the optical image in Fig. 1b. Some degrees of sample inhomogeneity are 
reflected by the slightly different positions of the insulating states. The two-point 
resistance also varies from pair to pair, reflecting the variation in contact/sample 
resistance.  
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Extended Data Figure 9 | Major results for Device 2. a, Temperature dependence of 
the longitudinal resistance at f = 1 under varying electric fields. The critical electric field 
is near 𝐸!  = 1.26 V/nm. An MIT similar to Device 1 is observed. b, Longitudinal 
resistance at 1.6 K in logarithmic scale as a function of top and bottom gate voltages. The 
gate voltages relate to the hole filling factor f and electric field E. Electric field-induced 
MIT is observed at 𝑓 = 1 and 2. Compared to Device 1, there is a higher degree of spatial 
inhomogeneity in Device 2, which prevents reliable scaling analysis near the critical 
point.  
 
 

 
 
Extended Data Figure 10 | MCD spectrum at 3 T perpendicular magnetic field. a, 
Electric field dependence of the MCD spectrum near the WSe2 exciton resonance. A clear 
resonance enhancement near 1.66 eV is observed. The vertical dashed line marks the 
photon energy of the probe laser beam used for the MCD measurements in Fig. 4 and the 
horizontal dashed line marks the MIT critical point. b, MCD spectra at selected electric 
fields illustrating the resonance enhancement near the exciton peak.  
 
 
 



	 21	

 
 
 

 
 
Extended Data Figure 11 | Quantum oscillations in the insulating states. a, 
Dependence of square resistance on the bottom gate voltage at 300 mK. The 𝑓 = 2 
insulating state is labeled. b, Magnetoresistance under a perpendicular magnetic field at 
selected bottom gate voltages marked by the arrows in a. Quantum oscillations due to the 
nearby graphite gate are observed near the insulating state. The oscillations disappear 
away from the 𝑓 = 2 insulating state. c, Two-terminal magnetoresistance at the 𝑓 = 2 
insulating state with a nearby graphite gate that is ~ 5 nm separated from the sample. d, 
The same as c except the nearby graphite gate is replaced by a few-layer metallic TaSe2 
gate that is ~ 3 nm away from the sample. No quantum oscillations are developed in both 
the TaSe2 gate and the sample under the studied magnetic field range. The results confirm 
that the quantum oscillations are originated from the high mobility graphite gate.  
 
 
 


