Title: Role of ecological interactions in saltmarsh geomorphic processes

1 2 3

Running title: Ecological interactions and saltmarsh geomorphic processes

4 5

6

Authors: Bethany L. Williams*^{1,2} & David S. Johnson¹

¹Virginia Institute of Marine Science, William & Mary, Gloucester Point, Virginia 23062 USA

²CSS Inc., Fairfax, Virginia 22030 USA

7 8 9

*Contact: bethanywilliams256@gmail.com

10 11

ABSTRACT

Accelerated sea-level rise poses a significant threat to coastal habitats, such as salt marshes, 12 13 which provide critical ecosystem services. Persistence of salt marshes with rising sea levels 14 relies, in part, on vertical accretion. Ecogeomorphic models emphasize the role of plant 15 production in vertical accretion via sediment trapping and belowground organic matter 16 contribution. Thus, changes in plant production can influence saltmarsh persistence with sea-17 level rise. However, models of marsh accretion do not consider animal-mediated changes in 18 plant production. We tested how two marsh crabs, Minuca pugnax and Sesarma reticulatum, 19 which have contrasting effects (facilitation vs. herbivory) on Spartina alterniflora production, 20 may indirectly influence sediment deposition and belowground production, through 21 observational surveys and field manipulation. Minuca facilitated Spartina biomass in some 22 marshes, but not sediment deposition, and had no effect on belowground organic matter 23 contribution, suggesting that in isolation, Minuca has little indirect impact on saltmarsh 24 geomorphic processes. Sesarma reduced Spartina biomass; however, sediment deposition 25 increased, contrary to ecogeomorphic models, likely due to sediment resuspension by Minuca. 26 When *Minuca* and *Sesarma* co-occur, the effect on *Spartina* production and sediment deposition 27 depended on the amount of grazing. When Sesarma grazing is low, Minuca facilitates Spartina 28 growth and mitigates the effect of grazing. However, when Sesarma grazing is high and 29 vegetation is removed, Minuca can resuspend sediment through bioturbation, suggesting the net 30 effect of these species may depend on their relative abundance. This study demonstrates the 31 effects of plant-animal interactions on marsh resilience against sea level rises, are context 32 dependent.

33 34

Key words: salt marsh, sea-level rise, ecogeomorphology, fiddler crab, purple marsh crab,

35 vertical accretion, sediment deposition, *Uca pugnax*

Williams, B.L., and D.S. Johnson. 2021. Role of ecological interactions in saltmarsh geomorphic processes. Marine Ecology Progress Series 658: 149-161. doi: https://doi.org/10.3354/meps13554

1. INTRODUCTION

1

2 Salt marshes are among the most productive ecosystems in the world (Mendelssohn & Morris 3 2002) and provide important ecosystem services such as storm protection, carbon storage, food 4 production, and tourism (Barbier et al. 2011, Lefcheck et al. 2019). Habitat loss due to 5 accelerated sea-level rise is a major concern for salt marshes, especially in regions where 6 accelerations of sea-level rise rates are higher than the global average like Atlantic coast of the 7 United States. Here, the rate sea-level rise is increasing 3-4 times faster than the global average 8 (Sallenger et al. 2012). Salt marsh persistence in the face of sea-level rise relies on landward 9 migration and vertical accretion (Morris et al. 2002, Kirwan et al. 2016). Landward migration 10 however, is often inhibited by anthropogenic structures such as roads, sea walls, and houses, 11 causing coastal squeeze (Pontee 2013). Since 14% of the United States shoreline has been 12 hardened (Gittman et al. 2015), understanding the factors that influence accretion is critical to 13 predicting the vulnerability of salt marshes to accelerated sea-level rise. 14 15 For vertical accretion, current ecogeomorphic models stress the importance of sediment trapping by marsh grass (i.e. smooth cordgrass Spartina alterniflora) and the contribution of organic 16 17 matter via belowground production (Morris et al. 2002, Fagherazzi et al. 2013a, Morris et al. 18 2013). Marsh plants slow the flow velocity of water, allowing sediment particles to settle out of 19 the water column onto the marsh surface (Friedrichs & Perry 2001). As marsh grass stem density 20 and biomass increase, sediment deposition is enhanced (Friedrichs & Perry 2001, Morris et al. 21 2002, Fagherazzi et al. 2013a). Therefore, changes in primary production can influence accretion 22 rates. Ecogeomorphic models focus on plant-environment interactions that affect autochthonous 23 and allochthonous deposition, but plant-animal interactions may also be important (Vu et al.

1 2017). Animals can influence saltmarsh plant production, for example mussels (Geukensia 2 demissa) facilitate the growth of Spartina (Hughes et al. 2014), while in contrast periwinkles (Littoraria irrorata) graze directly on Spartina stems (Bertness 1985, Silliman et al. 2005, 3 4 Coverdale et al. 2012, Failon et al. 2020). Therefore, these ecological interactions merit 5 consideration in studies of marsh accretion. For instance, facilitation of aboveground plant 6 biomass could enhance marsh accretion via increased sediment trapping. Alternatively, herbivory 7 can significantly reduce the abundance and biomass of marsh plants (Silliman & Zieman 2001, 8 Holdredge et al. 2009, Coverdale et al. 2012), and may inhibit vertical accretion. To date, very 9 little research has tested how plant-animal interactions affect physical processes that influence 10 marsh accretion, such as sediment trapping (Elschot et al. 2013, Pages et al. 2018). 11 12 In salt marshes along the Atlantic coast of the United States, the Atlantic mud fiddler crab, 13 Minuca pugnax (hereafter referred to as Minuca) and the purple marsh crab, Sesarma reticulatum 14 (hereafter referred to as Sesarma) co-occur in the same tidal zone (Seiple 1979, Grimes et al. 15 1989, Johnson 2014, Wasson et al. 2019). Their direct effects on saltmarsh physical structure 16 have been well studied (e.g., their burrowing activities; Seiple & Salmon 1982, Bertness 1985, 17 McCraith et al. 2003, Hughes et al. 2009, Vu et al. 2017). Minuca can increase aboveground 18 biomass of the cordgrass, Spartina alterniflora (hereafter referred to as Spartina), via nutrient 19 regeneration, biodeposition, and oxygenation of marsh soils (Bertness 1985, Gittman & Keller 20 2013, Hughes et al. 2014). As a result, *Minuca* may indirectly facilitate sediment trapping by 21 increasing Spartina biomass through burrowing activities, and hence increase the aboveground 22 component of marsh accretion. However, burrowing activity by Minuca also reduces

belowground production and increases decomposition rates at higher densities (Thomas & Blum

1 2010, Gittman & Keller 2013). Minuca activity may therefore have contrasting effects on the 2 above- and belowground components of vertical marsh accretion. 3 4 In contrast to the potentially facilitative effects of *Minuca* on aboveground biomass of *Spartina*, 5 Sesarma reduces Spartina biomass through herbivory on both above- and belowground plant 6 biomass (Seiple & Salmon 1982, Coverdale et al. 2012). While Sesarma is also a burrowing 7 species that could facilitate Spartina growth similar to Minuca, Sesarma grazing offsets any 8 positive effects of burrowing, sometimes resulting in major die-backs of Spartina (Holdredge et 9 al. 2009, Coverdale et al. 2012). Through the negative effect of Sesarma grazing on Spartina 10 biomass, this crab could indirectly decrease aboveground sedimentation rates, in addition to 11 preventing contribution of belowground organic matter accumulation, thus indirectly and 12 strongly inhibiting vertical accretion. 13 14 The negative effects of Sesarma on plants may be offset by positive effects of other species such 15 as Minuca (Gittman & Keller 2013). For instance, in some U.S. Atlantic marshes, overgrazing by 16 Sesarma can denude the marsh edge and may lead to marsh loss (Holdredge et al. 2009, Altieri et 17 al 2012, Vu et al. 2017). Given the large geographic distribution of Sesarma (Seiple 1979), this 18 crab-driven loss should be widespread in Atlantic salt marshes, but it is not (Wasson et al. 2019). 19 Factors such as Sesarma density (Angelini et al. 2018, Wasson et al. 2019) and facilitation of 20 Spartina by other species (Gittman & Keller 2013) may prevent Spartina die-offs via Sesarma

herbivory along much of the Atlantic coast.

21

1 The overarching goal of this study was to determine how plant-animal interactions may 2 indirectly influence saltmarsh vertical accretion, using sediment deposition and organic matter contribution as proxies for this process. Specifically, we hypothesize that 1) Minuca will 3 4 positively influence vertical accretion by facilitating aboveground Spartina biomass and 5 sedimentation, 2) in contrast, Sesarma will impede vertical accretion by grazing above- and 6 belowground biomass of Spartina, and 3) Minuca will ameliorate the negative effects of Sesarma 7 on Spartina biomass and ultimately vertical accretion. 8 9 2. METHODS 10 To study the effects of *Minuca* and *Sesarma* on *Spartina* production, aboveground sediment 11 deposition, and belowground organic matter contribution, we conducted two studies: 1) a field 12 survey and 2) a manipulative experiment. The field survey allowed for measurement of 13 responses across a wide range of marshes, with varying hydroperiods and sediment availabilities, 14 to determine if relationships between crab activity, Spartina biomass, and sedimentation are 15 consistent across marshes. A caging experiment was used to control confounding factors and to 16 measure process rates (e.g. production, decomposition). 17 18 2.1 Effect of *Minuca* on *Spartina* production and sediment deposition 19 We conducted a field survey of five salt marshes, spanning from Virginia, USA to Massachusetts

20 USA: 1) Goodwin Island (Seaford, Virginia), 2) Boxtree Marsh (Machipongo, Virginia), 3) Phillips Creek (Nassawadox, Virginia), 4) Nag Marsh (Prudence Island, Rhode Island; hereafter 22 referred to as Prudence Island) and 5) Gut Marsh (Wellfleet, Massachusetts; hereafter referred to 23 as Wellfleet) from July-August 2016 (Figure 1). These marshes are dominated by Spartina

1 alterniflora along low elevations, with a band of S. patens at slightly higher elevations. The S. 2 alterniflora zones are flooded twice daily with the high tides. Differences between sites, such as suspended sediment concentrations and hydroperiod, can be found in the supplementary material 3 (Tables S1, S2, & S3). Along a 100-m span of each marsh, eight 0.0625 m² plots were set up in 4 5 areas with and without Minuca burrows each. Because sediment concentration in water decreases 6 with increasing distance from the marsh edge (Friedrichs & Perry 2001, Coleman et al. 2020) 7 each plot was sampled at similar distances from the marsh edge along the channel or creek 8 (Table S2). In each plot, sedimentation, S. alterniflora biomass, and soil strength were measured. 9 Minuca burrows were also counted. 10 11 Sedimentation was measured by deploying two sediment plates, constructed of a pre-weighed 90 12 mm fiberglass filter secured to a Plexiglas plate staked flush with the marsh surface, in each plot 13 for one week (LeMay 2007). Upon collection, fiberglass filters were dried at 60 °C to a constant 14 mass, weighed, then combusted at 550 °C for two hours and weighed. Plant production was 15 measured, using standing stock biomass as a proxy, by collecting all plants within the plot above 16 the marsh surface. Live and dead stems were washed, separated, counted, then dried at 60 °C to a 17 constant mass and weighed. Soil strength was measured in each plot using a shear vane. 18 19 2.2 Effect of Sesarma on sediment deposition 20 To study the effect of Sesarma on sedimentation through their grazing of Spartina, another set of 0.0625 m² plots were set up at the same five sites (Figure 1, Table S1), in three areas, 21

representing a range of grazing intensities: denuded of vegetation (completely grazed; Figure 2),

significant grazing (few stems, with shredded and clipped edges, Crichton 1960), and no grazing

22

- 1 (n=8 per area) (Table S3 & S4). Because the negative impacts of increased Sesarma densities,
- and therefore grazing intensity, on *Spartina* are well established (Holdredge et al. 2009, Altieri et
- al. 2012, Coverdale et al. 2012), we targeted these areas experiencing different levels of grazing
- 4 intensity, rather than across specific Sesarma densities. However, Sesarma densities across these
- 5 plots can be found in Table S4. In each plot, sedimentation, *Spartina* biomass, and soil strength
- 6 were measured following the same methods described above. *Minuca* burrows were also
- 7 counted.

9

2.3 Effects of Minuca and Sesarma on above and belowground components of vertical

10 accretion

- 11 To determine the effect of *Minuca and Sesarma* on above and belowground components of
- vertical accretion, a caging experiment was conducted at Cushman's Landing, Cape Charles,
- 13 Virginia USA (Figure 1). This experiment employed a fully factorial design with four treatments:
- 14 Minuca only, Sesarma only, Minuca and Sesarma, and no crabs, with five replicates per
- 15 treatment. Uncaged reference plots were also created to test the effect of the cage structure on
- various responses. Cages (0.25 m²) were constructed of PVC poles and vinyl-coated wire mesh
- 17 (0.635 cm) in the intermediate *Spartina* zone and dug 15 cm into the sediment. To prevent crab
- 18 escape or entrance, the top 10 cm of cages were lined with aluminum flashing, which crabs are
- 19 not able to pass (Silliman & Zieman 2001, Holdredge et al. 2010, Gittman & Keller 2013). Cages
- were arranged in a blocked design with five blocks, with one cage of each treatment placed at
- 21 least 1 m apart from each other and at the same distance from the creek edge. Densities and sex
- 22 ratio of crabs for treatments were determined using population estimates at the site,
- corresponding to 80 crabs m⁻². For the *Minuca* only treatment, 15 adult male and 5 adult female

1 Minuca were added to the cages. For the Sesarma only treatment we simulated a moderate 2 density, with 2 adult Sesarma added to the cages, which corresponds to a density of 8 crabs m⁻² 3 (Holdredge et al. 2009; Table S4). A moderate Sesarma density was selected because it 4 represented densities observed at our survey sites (Table S4) and at a high density, crabs could 5 graze all the vegetation in the plot before the end of the experiment and be unable to forage for 6 more beyond the cage. For the Minuca and Sesarma treatment, 14 adult male Minuca, 5 adult 7 female Minuca, and 1 Sesarma were added to the cages. For control cages, a pit trap (7.5 cm 8 diameter, 21 cm deep) was deployed in each to capture any crabs that were not removed upon 9 cage setup (Thomas & Blum 2010). Crabs were caged for 3 months (03 May 2017 – 29 July 10 2017). 11 12 In each cage, aboveground Spartina biomass, sedimentation, and soil strength were measured 13 following the same methods as the *Minuca* and *Sesarma* surveys. Sedimentation plates (2 plates 14 per cage) were deployed for nine days, after cage structures were removed. Additional 15 measurements in this experiment included: aboveground production, decomposition, 16 belowground biomass, and sediment characteristics. Aboveground production was measured by comparing final live plant biomass to estimated initial live plant biomass within a 0.0625 m² sub-17 18 section of the caged area. Initial live plant biomass was estimated using an allometric equation of 19 shoot height vs. biomass. 20 21 Decomposition was measured by deploying a 5 µm nitex mesh bag filled with 2.5 g of dried 22 Spartina roots and rhizomes 5 cm beneath the marsh surface, in each cage at the beginning of the 23 experiment. At the end of the experiment, bags were pulled from the ground and remaining

1 contents were rinsed through a 500 μm sieve, dried at 60 °C to a constant mass, and weighed.

2 Decomposition was calculated as the percent of mass lost over the course of the experiment.

3 Belowground *Spartina* biomass was measured by taking a 7.62 cm diameter core to a depth of 30

cm around a single shoot of the biomass sub-section of each cage. Cores were sectioned into the

following increments: 0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm, to create a depth profile. A smaller

core (2.5 cm wide, 5 cm long) was taken from each depth section to measure sediment

characteristics. The remainder of the cores were rinsed through stacked sieves (6 mm, 1 mm) to

remove any dirt. Roots and rhizomes were separated live, from dead then dried at 60 °C to a

constant mass and weighed.

10

11

12

13

14

4

5

6

7

8

9

The following soil characteristics were measured, using the smaller cores removed from the

belowground biomass core: water content, bulk density, and loss on ignition (LOI). Small cores

were removed from the larger core and weighed wet, dried at 60 °C to a constant mass and

weighed, then combusted in a muffle furnace at 550 °C for 16 hours.

15

16

17

18

19

20

21

22

23

2.4 Statistical Analyses

All statistical analyses were conducted in R Version 3.3.2. (R Core Team, 2016). Data were examined for normality and homoscedasticity. Data that did not meet assumptions of linear models were transformed to meet assumptions. For the *Minuca* field survey, multiple linear regressions were conducted to determine the effect of *Minuca* burrow density, site, and their interaction on *Spartina* biomass (natural log transformed), sedimentation rates (natural log transformed), and soil strength (natural log transformed). For the *Sesarma* field survey, fixed effects analysis of variance tests (ANOVAs) were used to determine the effect of *Sesarma*

- 1 grazing intensity, site, and their interaction on sedimentation (natural log transformed), soil
- 2 strength (natural log transformed), and *Minuca* burrow density. The 'Ismeans' function in the
- 3 'Ismeans' package (Lenth 2016), and a Tukey correction for p-values was used as a post-hoc test
- 4 to determine where differences occurred among treatments and among sites. For the cage
- 5 experiment, mixed effects ANOVAs, using the 'nlme' package (Pinheiro et al. 2017) were
- 6 performed to determine the effect of treatment, with block as a random effect, on live
- 7 aboveground biomass, aboveground production, sedimentation (natural log transformed),
- 8 decomposition, and soil strength (natural log transformed). The 'multcomp' package (Hothorn et
- 9 al. 2008), was used for post-hoc analysis. Responses that were measured across depth
- 10 (belowground biomass, soil characteristics) were analyzed with mixed effects ANOVAs with
- 11 treatment and depth as fixed effects, and block as a random effect. The following responses were
- measured across depth: live belowground biomass (natural log + 0.01 transformed), percent
- water of soil (arcsine square root transformed) and percent organic of soil (arcsine square root
- transformed). Two cages were excluded from all analyses, due to lack of cage effectiveness.

16 **3. RESULTS**

15

17

3.1 Effect of *Minuca* on *Spartina* production and sediment deposition

- Minuca density and site interacted to affect Spartina biomass (P = 0.006, Figure 3A), indicating
- 19 that there is a site-specific response to *Minuca* burrows. At Goodwin Island and Phillips Creek,
- 20 plant biomass (natural log transformed) increased linearly with *Minuca* burrows (Goodwin
- Island: slope = 0.0082, P = 0.01; Phillips Creek: slope = 0.0049, P = 0.025; Figure 3A). At
- Boxtree and Wellfleet, there was no relationship between plant biomass and *Minuca* burrow
- 23 density (Boxtree: slope = 0.0014, P = 0.56; Wellfleet: slope = 0.0011, P = 0.54; Figure 3A).

- Finally, at Prudence Island, *Spartina* biomass decreased linearly with *Minuca* burrow density
- 2 (slope = -0.0056, P = 0.024, Figure 3A).

- 4 There was no relationship between *Minuca* density and sedimentation rates (P = 0.98, Figure
- 5 3B), even at sites where plant biomass increased with *Minuca* density (Goodwin Island and
- 6 Phillips Creek). Site significantly affected sedimentation rates (P << 0.001; Figure 3B). There
- 7 was no relationship between *Minuca* density and soil strength (P = 0.32, Figure 3B), but a
- 8 significant effect of site ($P \ll 0.001$, Figure 3C).

9

10

3.2 Effect of Sesarma on sediment deposition

- We found a significant interaction between grazing intensity and site on sedimentation (P <<
- 12 0.001). This interaction indicates that the difference in sedimentation rates between grazing
- intensities, depends on the site. Based on results of post-hoc analysis, mean sedimentation rates
- 14 at Phillips Creek and Wellfleet were higher in completely grazed areas than areas with no
- grazing (Figure 4A). Prudence Island showed a similar, but non-significant trend, while Boxtree
- Marsh and Goodwin Island, showed no difference in mean sedimentation rates within the
- 17 respective site (Figure 4A).

- 19 Sesarma grazing intensity also interacted with site to influence belowground soil strength (P =
- 20 0.0018; Figure 4B). At Phillips Creek and Prudence Island, mean soil strength was lower in areas
- completely grazed than in areas with no grazing (Figure 4B). A similar, non-significant, trend
- 22 exits at Wellfleet (Figure 4B). However, at Boxtree Marsh, grazing intensity had no effect on

1 mean soil strength (Figure 4B). Due to logistical constraints, soil strength measurements were 2 not collected at Goodwin Island. 3 4 Mean *Minuca* burrow density was significantly affected by *Sesarma* grazing intensity (P = 0.044; 5 Figure 4C) and site ($P \ll 0.001$; Figure 4D), while their interaction had no effect (P = 0.59). 6 Mean burrow densities were higher in areas denuded of vegetation than areas with no grazing (P 7 = 0.034, Figure 4C). 8 9 3.3 Effects of Minuca and Sesarma on above and belowground components of vertical 10 accretion 11 Across all responses, there was no difference between control and reference cages, indicating no 12 significant effect of a cage structure on measured responses. There was a significant effect of 13 crab treatment on live aboveground *Spartina* production (P = 0.003, Figure 5A). Using a Tukey's 14 Honest Significant Difference Test, live aboveground Spartina production was lower in the 15 Sesarma only treatment, than all other treatments (Figure 5A). Additionally, aboveground 16 Spartina biomass was reduced in the Sesarma only treatment, compared to other treatments (P = 17 0.002, data not shown). 18 19 Nine sediment plates were removed from analysis due to missing >50% of the original filter area 20 through tidal action. Although aboveground biomass and production was affected by treatment, 21 there was no effect on sedimentation rates (P > 0.05, Figure 5B). Additionally, treatment had no

effect on soil strength (P > 0.05, Figure 5C) or decomposition (P > 0.05, data not shown).

22

- 1 There was a significant effect of treatment (P = 0.01) and depth (P < 0.0001) on live
- 2 belowground biomass such that the Sesarma only treatment had lower live Spartina
- 3 belowground biomass than the *Minuca* only and reference treatments (Figure 6). However, crab
- 4 treatment did not affect soil characteristics: water content (P > 0.05), bulk density (P > 0.05), or
- 5 percent organic content (P > 0.05).

7

4. DISCUSSION

- 8 Ecogeomorphic theory emphasizes the importance of plants in promoting marsh persistence as
- 9 sea level rises through vertical accretion (Friedrichs & Perry 2001, Morris et al. 2002, Fagherazzi
- et al. 2013a). In this study, we demonstrate that animals can impact components of vertical
- accretion, and in turn, may influence the ability of salt marshes to keep pace with accelerated
- sea-level rise through their interactions with plants. At some sites, *Minuca* promoted *Spartina*
- growth, but not enough to enhance sedimentation rates. *Minuca* had no effect on belowground
- 14 components of vertical accretion (e.g. decomposition, organic matter contribution). Sesarma
- grazing of Spartina increased Minuca burrowing and decreased soil strength and belowground
- organic matter contribution. *Minuca* ameliorated the negative impacts of *Sesarma* on
- aboveground plant biomass, but only at low rates of Sesarma grazing. When Sesarma grazing
- intensity was high, *Minuca* burrow density (a proxy for bioturbation) was high, likely increasing
- susceptibility of the marsh to erosion. These results suggest that Sesarma and Minuca have a
- density-dependent impact on components of vertical accretion, and thus their relative abundance
- 21 may influence the ability of salt marshes to keep pace with sea-level rise.

22

23

4.1 Effects of *Minuca*

1 Minuca alone did not significantly impact the above- and belowground components of salt marsh 2 vertical accretion, based on results of both the field survey and caging study. Minuca can 3 facilitate (Bertness 1985, Thomas & Blum 2010, Gittman & Keller 2013), hinder (Derksen-4 Hooiberg et al. 2018) or not impact aboveground Spartina biomass. Similarly, we found a site-5 specific response of Spartina to Minuca burrows, as significant changes in plant production were 6 detected in two of the five sites in the field survey. This indicates that site characteristics may 7 mediate the response of plants to *Minuca* burrowing. For example, the presence of mussels 8 (Geukensia demissa), which also facilitate Spartina production (Hughes et al. 2014) in zero or 9 low count Minuca plots could have prevented a detectable difference in Spartina production. At 10 field survey sites where Minuca facilitated Spartina growth, there was no change in sediment 11 deposition. These results appear to contradict the predictions of marsh ecogeomorphic models, as 12 sediment deposition should increase with plant biomass. Morris et al. 2002 found that a 320% 13 increase in Spartina biomass enhanced vertical accretion by 156%. In our experiment, Spartina 14 biomass was 230% and 173% higher with Minuca burrows at two sites, but there was no change 15 in sediment deposition. This lack of influence on sediment deposition rates could be due to 16 measuring sedimentation for a short period of time, which can be highly variable in the short-17 term. Morris et al. (2002) measured accretion and sediment deposition after 1.5 years with 18 surface elevation tables, but in the present study sedimentation was only measured after one 19 week with sediment plates. Alternatively, the relationship between plant biomass and sediment 20 deposition or trapping may be site specific (Moskalski & Sommerfield 2012, Reef et al. 2018). 21 For instance, Moskalski & Sommerfield (2012) found that sediment deposition and trapping was 22 not related to plant stem density in a Delaware salt marsh; distance from the creek was more

1 important and therefore, changes in plant biomass, even within similar distances from the creek,

may not have a significant effect on sedimentation.

3

5

6

7

8

9

10

11

12

13

14

15

16

17

2

4 In addition to having no significant impacts on the aboveground component of vertical accretion

(i.e. sediment deposition), Minuca had no effect on belowground components of vertical

accretion, based on our caging study. Belowground organic matter is critical to maintaining

elevation. Minuca burrowing can accelerate decomposition of belowground organic matter as

burrows can oxygenate the marsh soil (Thomas & Blum 2010). In the current study, Minuca had

no effect on decomposition. While burrows may increase oxygen penetration belowground, this

change is extremely localized, occurring only within 2 mm of burrows (Michaels & Zieman

2013). Additionally, although other researchers have found a negative relationship between

Minuca and belowground biomass through increased nutrient access and shifting plant allocation

of resources aboveground (Bertness 1985, Holdredge et al 2010, Thomas & Blum 2010),

belowground root biomass was not influenced by *Minuca* in this experiment. Because *Minuca*

had no significant impacts on above- or belowground components of vertical accretion, this

study indicates that they alone may not have a significant impact on vertical accretion, at least in

the short term.

18

19

20

21

22

23

4.2 Effect of Sesarma

Sesarma grazing drastically reduced aboveground plant biomass in the caging study (Figure 5A),

as observed by previous researchers (Holdredge et al. 2009; Angelini et al. 2018). Although we

expected a decrease in sediment deposition, we found the opposite. In areas completely grazed

by Sesarma in the field survey, sedimentation rates were higher than anywhere else measured

1 (Figure 4A). This is counter to the predictions of ecogeomorphic models of saltmarsh accretion, 2 which demonstrate a positive relationship between plant biomass and sedimentation (Friedrichs 3 & Perry 2001, Morris et al. 2002, Fagherazzi et al. 2013a). One explanation for this trend may be 4 that a portion of the inorganic sediment deposited in these areas is resuspended from the marsh 5 surface, not delivered by the tides. In areas denuded of vegetation, soil strength was much 6 weaker than vegetated areas (Figure 4B), suggesting greater potential for surface sediments to be 7 resuspended by tidal scour and deposited onto the plates used to measure sedimentation 8 (Fagherazzi et al. 2013b, Reef et al. 2018, Mariotti 2018). 9 10 Another potential explanation for these counter-intuitive results is bioturbation by *Minuca*. 11 Sesarma grazing, which can result in large areas denuded of vegetation (Figure 2), facilitates 12 high densities of *Minuca* within unvegetated areas (Smith 2015, Figure 4C). Without vegetation, 13 the soil is weaker, making it easier for *Minuca* to burrow (Bertness & Miller 1984) and creating 14 preferable habitat for Minuca (Smith 2015). Across the field survey sites, Minuca burrow 15 densities were higher in the areas denuded of vegetation (Figure 4C), which is similar to the 16 results of other studies (Seliskar & Gallagher 2014, Raposa et al. 2018). When Minuca digs or 17 maintains its burrows, it places loose, unconsolidated sediment on the surface, which can be 18 resuspended during tides (Smith & Green 2015, Farron et al. 2020). We hypothesize that the high 19 rates of sedimentation that we measured in unvegetated plots was due to resuspended sediments 20 in the plots and not sediments delivered from the tidal creeks by the tide. Therefore, in areas of high Sesarma grazing and complete vegetation loss, Minuca may have an erosional effect on 21

22

23

sediments.

1 Based on the field survey, *Sesarma* also reduced soil strength, which poses a threat to marsh

2 stability. Edge erosion is a major source of marsh loss and contraction (Mariotti & Fagherazzi

3 2010, Tonelli et al. 2010, Fagherazzi et al. 2013b). At four of the five survey sites, the areas

4 denuded of vegetation existed at the marsh edge, spanning a distance up to 3 m wide (Figure 2).

With low soil strength in these areas via Sesarma grazing belowground, surface sediments are

more susceptible to lateral erosion (van Eerdt 1985, Fagherazzi et al. 2013b, Vu et al. 2017).

7 Erodibility is further enhanced with high densities of *Minuca* burrows, which further weaken

marsh soils through bioturbation and resuspension (Farron et al. 2020), and can ultimately lead to

elevation loss (Escapa et al. 2008, Smith & Green 2015). The results of this study suggest

Sesarma grazing can negatively impact marsh persistence in the face of sea-level rise by

promoting edge erosion, and reducing above- and belowground *Spartina* biomass (Vu et al.

12 2017).

13

14

15

16

17

18

19

20

21

22

23

5

6

8

9

10

11

4.3 Combined effects of Minuca and Sesarma

The combined effects of *Sesarma* and *Minuca* depend on the relative level of activity of each species (e.g. high vs. low grazing by *Sesarma*, high vs. low bioturbation by *Minuca*). Based on the field survey, when *Sesarma* grazing intensity is high and vegetation is absent, the positive effects of *Minuca* on plant production is lost. In these large denuded areas, *Minuca* burrow densities were the highest suggesting that fiddler crabs are moving into these habitats. High densities of *Minuca* can prevent *Spartina* seedling establishment, and ultimately hinder plant recolonization of denuded areas (Smith & Tyrell 2012). Thus, high levels of *Sesarma* grazing that lead to complete loss of vegetation combined with *Minuca* burrowing, may have prolonged negative effects on salt marsh persistence with sea-level rise, by removing vegetation and

1 indirectly preventing its recolonization. Therefore, positive effects of *Minuca* on aboveground

Spartina biomass are masked when a cascade of events via intense Sesarma grazing occurs,

shifting the functional role of *Minuca* from facilitative to erosional.

4

8

9

10

11

12

13

2

3

5 However, when *Minuca* occurs where *Sesarma* grazing intensity is low and vegetation is present,

6 as in our caging study, Minuca can ameliorate the negative impacts of Sesarma grazing by

7 facilitating aboveground *Spartina* growth. In the caging experiment, aboveground plant biomass

was higher when Minuca and Sesarma were caged together than when Sesarma was by itself

(Figure 5A), suggesting that the facilitative effects of *Minuca* may mitigate the negative impacts

of Sesarma grazing aboveground. Minuca ameliorates the stress of other Spartina grazers

(Gittman & Keller 2013), and the results of this study suggest they may do the same with

Sesarma. Therefore, marshes with low Sesarma grazing intensity and fiddler crabs, may be better

equipped to respond positively to sea-level rise than marshes with high Sesarma grazing

14 intensity.

15

16

18

19

20

21

22

23

4.4 Conclusions

17 The continued provision of ecosystem services by salt marshes relies on their ability to keep pace

with accelerated sea-level rise through vertical and lateral movements (Barbier et al. 2011,

Kirwan & Megonigal 2013, Weston 2014, Kirwan et al. 2016). While the importance of marsh

plants, such as Spartina, in promoting marsh stability and accretion have long been demonstrated

(Friedrichs & Perry 2001, Morris et al. 2002, Fagherazzi et al. 2013a, Fagherazzi et al. 2013b),

we show that animals may indirectly influence geomorphic processes, through their interactions

with marsh plants. While facilitation of plant production by Minuca may not be enough to cause

1 geomorphic change, based on the results of this study, herbivory by Sesarma can increase

erosion susceptibility. However, *Minuca* may counter the negative impacts of *Sesarma*, when

3 Sesarma grazing is low. When Sesarma grazing is high and plants are absent, Minuca

abundances increase and their burrowing may accelerate Sesarma-driven elevation loss (Smith &

Green 2015) and erosion (Escapa et al. 2008, Fagherazzi et al. 2013b).

The influence of animals on the resilience of coastal wetlands in the face of global change has largely been ignored until recently (He & Silliman 2016, Angelini et al. 2018). Our work highlights that animal-plant and animal-animal interactions may be important to the resilience of coastal wetlands. In instances where overgrazing or other factors leads to plant loss and bare substrate, bioturbators like *Minuca* may increase erosion directly by reworking the sediment and indirectly by preventing recolonization of plants (Smith & Tyrell 2012). For instance, in the Netherlands, the lugworm (*Arenicola marina*) prevents *Spartina anglica* from establishing in bare mudflats (van Wesenbeeck et al. 2007).

Inclusion of animal effects in ecosystem function and resilience also means consideration not only of their presence or absence, but of their abundances. *Sesarma* densities along the U.S. Atlantic coast these can vary from 0 to 170 burrows m⁻² (Holdredge et al. 2009, Coverdale et al. 2012). *Sesarma* has been observed to convert marsh to mudflat at only the highest burrow (100 burrow m⁻²; Coverdale et al. 2012) or stocked crab densities (32 crabs m⁻²; Angelini et al. 2018). These high *Sesarma* densities are not widespread (Wasson et al. 2019, Table S4 this study). In our caging experiment, we used *Sesarma* densities within the range of those observed in our field survey (4-8 crabs m⁻²; Table S4). At this representative density for *Sesarma*, the presence of *Minuca* prevented *Sesarma* from converting marsh to mudflat. In this way, *Minuca* may prevent erosion and maintain sediment trapping and belowground-biomass contributions by plants that

- would be otherwise lost due to *Sesarma* overgrazing. As the relationships between *Minuca* and
- 2 Sesarma depend heavily on the density of each species, knowledge of their densities may be
- 3 useful for policy makers when considering saltmarsh resilience. While the direct effects of
- 4 animals may shape an ecosystem (Naiman et al. 1988, Jones et al. 1994, Butler 1995, Vu et al.
- 5 2017), we demonstrate that their indirect effects may also be important.

ACKNOWLEDGEMENTS

- 8 We thank our funding sources: Virginia Sea Grant, VIMS Office of Academic Studies, the
- 9 Garden Club of America, National Science Foundation grant (DEB-1832221 to the Virginia
- 10 Coast Reserve Long Term Ecological Research project). Special thanks to Dan Coleman, Dan
- 11 Crear, Cynthia Crowley, Danielle Doucette, Caroline Failon, Lauren Huey, Henry Lane,
- 12 Katherine Longmire, Manisha Pant, William Schuebert, Serina Wittyngham, and Viola Yu for
- 13 help in the field and lab. Additional thanks to Drs. Matt Kirwan, Mark Brush, and Rochelle Seitz
- 14 for thoughtful comments on experimental design and conclusions. Finally, we thank the
- 15 following sites for allowing us to sample their marshes for this work: Chesapeake Bay National
- 16 Estuarine Research Reserve, Virginia Coast Reserve Long-Term Ecological Research Site,
- 17 Narragansett Bay National Estuarine Research Reserve, and Cape Cod National Seashore. This is
- 18 contribution XXXX from the Virginia Institute of Marine Science.

19 20

24

25

26

27

28

29

30

31

32

LITERATURE CITED

- Altieri AH, Bertness MD, Coverdale TC, Herrmann NC, Angelini C (2012) A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 93:1402-1410
 - Angelini C, van Montfrans SG, Hensel MJ, He Q, Silliman BR (2018) The importance of an underestimated grazer under climate change: how crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia 187:205-217
 - Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169-193
 - Bertness MD, Miller T (1984) The distribution and dynamics of *Uca pugnax* (Smith) burrows in a New England salt marsh. J Exp Mar Biol Ecol 83:211-237
 - Bertness MD (1895) Fiddler crab regulation of *Spartina alterniflora* production on a New England salt marsh. Ecology 66:1042-1055
- Butler DR (1995) Zoogeomorphology: animals as geomorphic agents. Cambridge University
 Press New York, NY
- Coleman, DJ Ganju NK, Kirwan ML (2020) Sediment delivery to a tidal marsh platform is
 minimized by source decoupling and flux convergence. J Geophys Res Earth Surface
 125:e2020JF005558
- Coverdale TC, Altieri AH, Bertness MD (2012) Belowground herbivory increases vulnerability of New England salt marshes to die-off. Ecology 93:2085-2094

- 1 Crichton OW (1960) Marsh crab: intertidal tunnel-maker and grass-eater. Estuarine Bulletin 5:3-2
- 3 Derksen-Hooiberg M, van der Heide T, Lamers LPM, Borst A, Smolders A, Govers 4 LL, Hoogveld J, Angelini C (2019) Burrowing crabs weaken mutualism between foundation species. Ecosystems 22:767-780 5

7

8

9

10 11

12

13

14

15

16

17

18

19

20

21

23

24

25

26

27

28

29 30

31 32

33

34

35

36

39

- Elschot K, Bouma TJ, Temmerman S, Bakker JP (2013) Effects of long-term grazing on sediment deposition and salt-marsh accretion rates. Est Coast Shelf Sci 133:109-115.
- Escapa M, Perillo GM, Iribarne O (2008) Sediment dynamics modulated by burrowing crab activities in contrasting SW Atlantic intertidal habitats. Estuar Coast Shelf Sci 80:365-
- Fagherazzi S, FitzGerald DM, Fulweiler RW, Hughes Z, Wiberg PL, McGlathery, Morris JT, Tolhurts TJ, Deegan LA, Johnson DS (2013a) Ecogeomorphology of Salt Marshes. Treatise on Geomorphology 12:182-200
 - Fagherazzi SG, Mariotti G, Wiberg PI, McGlathery KJ (2013b) Marsh collapse does not require sea level rise. Oceanography 26:70-77
 - Failon CM, Wittyngham SS, Johnson DS (2020) Ecological associations of Littoraria irrorata with Spartina cynosuroides and Spartina alterniflora. Wetlands 40:1317-1325
 - Farron SJ, Hughes ZJ, FitzGerald DM, Strom KB (2020) The impacts of bioturbation by common marsh crabs on sediment erodibility: A laboratory flume investigation. Estuar Coast Shelf Sci 238:106710
- Friedrichs CT, Perry JE (2001) Tidal salt marsh morphodynamics: A synthesis. J Coast Res 27:7-22
 - Gittman RK, Keller DA (2013) Fiddler crabs facilitate Spartina alterniflora growth, mitigating periwinkle overgrazing of marsh habitat. Ecology 94:2709-2718
 - Gittman RK, Fodrie FJ, Popowich AM, Keller DA, Bruno JF, Currin CA, Peterson CH, Piehler MF (2015) Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front Ecol Environ13:301-307
 - Grimes BH, Huish MT, Kerby JH (1989) Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (mid-Atlantic): Atlantic marsh fiddler. U.S. Fish and Wildlife Service Biological Report 82:11.114
 - He Q, Silliman BR (2016) Consumer control as a common driver of coastal vegetation worldwide. Ecol Mono 86:278-29
 - Holdredge C, Bertness MD, Altieri AH (2009) Role of crab herbivory in die-off of New England salt marshes. Conserv Biol 23:672-279
 - Holdredge C, Bertness MD, Herrmann NC, Gedan KB (2010) Fiddler crab control of cordgrass primary production in sandy sediments. Mar Ecol Prog Ser 399:253-259
- 37 Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in General Parametric Models. 38 Biom J 50:346-363
- Hughes ZJ, FitzGerald DM, Wilson CA, Pennings SC, Wieski K, Mahadevan A (2009) Rapid 40 headward erosion of marsh creeks in response to relative sea level rise. Geophys Res Lett 36:L03602
- 42 Hughes AR, Moore AFP, Piehler MF (2014) Independent and interactive effects of two 43 facilitators on their habitat-providing host plant, Spartina alterniflora. Oikos 123:488-44 499
- 45 Johnson DS (2014) Fiddler on the roof: a northern range extension for the marsh fiddler crab 46 Minuca pugnax. J Crustae Biol 34:671-673

- Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386
- 2 Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sealevel rise. Nature 504:53-60
- 4 Kirwan ML, Temmerman S, Skeehan E, Guntenspergen GR, Fagherazzi S (2016)

8

15

16

20

21

22

23

24

25

26

27

28

29

30

31

- Overestimation of marsh vulnerability to sea level rise. Nat Clim Change 6:253-260 Lefcheck JS, Hughes BB, Johnson AJ, Pfirrmann B, Rasher DB, Smyth AR, Williams BL, I
 - Lefcheck JS, Hughes BB, Johnson AJ, Pfirrmann B, Rasher DB, Smyth AR, Williams BL, Beck ML, Orth RJ (2019) Are coastal habitats important nurseries? A meta-analysis. Conserv Lett 12:e12645
- LeMay L (2007) The impact of drainage ditches on salt marsh flow patterns, sedimentation and
 morphology: Rowley River, Massachusetts. Master's Thesis, Virginia Institute of Marine
 Science, Gloucester Point, VA
- 12 Lenth RV (2016) Least-Squares Means: The R Package Ismeans. J Stat Softw 69:1-33
- Mariotti G, Fagherazzi S (2010) A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J Geophys Res, Earth Surf 115:F01004
 - Mariotti G (2016) Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss? J. Geo. Res. Earth Surf. 121:1391-1407
- McCraith BJ, Gardner LR, Wethey DS, Moore WS (2003) The effect of fiddler crab burrowing on sediment mixing and radionuclide profiles along a topographic gradient in a southeastern salt marsh. J Mar Res 61:359-390
 - Mendelssohn IA, Morris JT (2002) Eco-Physiological Controls on the Productivity of *Spartina Alterniflora* Loisel. In: Weinstein MP, Kreeger DA (eds) Concepts and Controversies in Tidal Marsh Ecology. Springer, Dordrecht, p 59-80
 - Michaels RE, Zieman JC (2013) Fiddler crab (*Uca* spp.) burrows have little effect on surrounding sediment oxygen concentrations. J Exp Mar Biol Ecol 448:104-113
 - Moskalski SM, Sommerfield CK (2012) Suspended sediment deposition and trapping efficiency in a Delaware salt marsh. Geomorphology 139:195-204
 - Morris JT, Sundareshwar PV, Nietch CT, Kjerfve B, Cahoon DR (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869-2877
 - Morris JT, Sundberg K, Hopkinson CS (2013) Salt marsh primary production and its responses to relative sea level and nutrients in estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography 26:78-84
- Naiman RJ, Johnston CA, Kelley JC (1988) Alteration of North American streams by beaver.
 BioScience 38:753–762
- Pages JF, Jenkins SR, Bouma TJ, Sharps E, Skob MW (2018) Opposing indirect effects of domestic herbivores on saltmarsh erosion. Ecosystems 22:1055-1068
- Pinheiro J, Bates D, Debroy S, Sarkar D, R Core Team (2017) _nlme: Linear and Nonlinear
 Mixed Effects Models _. R package version 3.1-131
 - Pontee N (2013) Defining coastal squeeze: A discussion. Ocean Coast Manage 84:204-207
- Raposa KB, McKinner RA, Wigand C, Hollister JW, Lovall C, Szura K, Gurak JA, McNamee J,
 Raithel C, Watson EB (2018) Top-down and bottom-up controls on southern New
 England salt marsh crab populations. PeerJ 6:e4876
- 42 R Core Team (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria
- 44 Reef R, Schuerch M, Christie EK, Moller I, Spencer T (2018) The effect of vegetation height and 45 biomass on the sediment budget of a European saltmarsh. Estuar Coast Shelf Sci 46 202:125-133

- Sallenger AH, Doran KS, Howd PD (2012) Hotspot of accelerated sea-level rise on the Atlantic
 coast of North America. Nat Clim Change 2:884-888
 Seiple W (1979) Distribution, habitat preferences and breeding periods in the crustaceans
 - Seiple W (1979) Distribution, habitat preferences and breeding periods in the crustaceans Sesarma cinereum and S. reticulatum (Brachyura: Decapoda: Grapsidae). Mar Biol 52:77-86
 - Seiple W, Salmon M (1982) Comparative social behavior of two grapsid crabs, *Sesarma reticulatum* (Say) and *S. cinereum* (Bosc.). J Exp Mar Biol Ecol 62:1-24
 - Seliskar DM, Gallagher JL (2014) Macrophyte disturbance alters aquatic surface microlayer structure, metabolistm, and fate. Oecologia 174:1007-1020
 - Silliman BR, Zieman JC (2001) Top-down control of *Spartina alterniflora* production by periwinkle grazing in a Virginia salt marsh. Ecology 82:2830–2845
 - Silliman BR, van de Koppel J, Bertness MD, Stanton LE, Mendelssohn IA (2005) Drought, snails, and large-scale die-off of southern US salt marshes. Science 310:1803-1806
 - Smith SM (2015) Does loss of salt marsh vegetation caused by a native grapsid crab improve habitat suitability for the Atlantic mud fiddler (*Uca pugnax*)? J Crustac Biol 35:616-621
 - Smith SM, Green CW (2015) Sediment suspension and elevation loss triggered by Atlantic mud fiddler crab (*Uca pugnax*) bioturbation in salt marsh dieback areas of southern New England. J Coast Res 31:88-94
 - Smith SM, Tyrell MC (2012) Effects of mud fiddler crabs (*Uca pugnax*) on the recruitment of halophyte seedlings in salt marsh dieback areas of Cape Cod (Massachusetts, USA). Ecol Res 27:233-237
- Thomas CR, Blum LK (2010) Importance of the fiddler crab *Minuca pugnax* to salt marsh soil organic matter accumulation. Mar Ecol Prog Ser 414:167-177
 - Tonelli M, Fagherazzi S, Petti M (2010) Modeling wave impact on salt marsh boundaries. J Geophys Res 115:C09028
 - van Eerdt MM (1985) The influence of vegetation on erosion and accretion in salt marshes of the Oosterschelde, the Netherlands. Ecology of Coastal Vegetation 62:367-373
 - van Wesenbeeck BK, van de Koppel J, Herman PMJ, Bakker JP, Bouma TJ (2007) Biomechanical warefare in ecology: negative interactions between species by habitat modification. Oikos 116:742-750
- Vu HD, Wieski K, Pennings SC (2017) Ecosystem engineers drive creek formation in salt
 marshes. Ecology 98:162-174
- Weston NB (2014) Declining sediments and rising seas: an unfortunate convergence for tidal wetlands. Estuar Coasts 37:1-23
- Wasson K, Raposa K, Almeida M, Beheshti K, Crooks JA, Deck A, Dix N, Garvey C, Goldstein
 J, Johnson DS, Lerberg S, Marcum P, Peter C, Pucket B, Schmitt J, Smith E, St. Laurent
 K, Swanson K, Tyrrell M, Guy R (2019) Pattern and scale: evaluating generalities in crab
 distributions and marsh dynamics from small plots to a national scale. Ecology
- 39 100:e02813

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

24

25

26

27

28

29

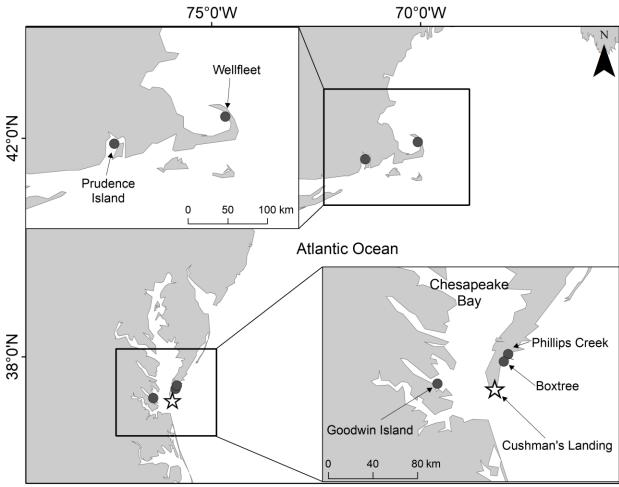


Figure 1: Map of survey and caging experiment sites. Caging experiment site denoted by a star.

Figure 2: A) Zone of marsh denuded of vegetation via *Sesarma* grazing, B) male *Minuca pugnax*, and C) *Sesarma reticulatum*.

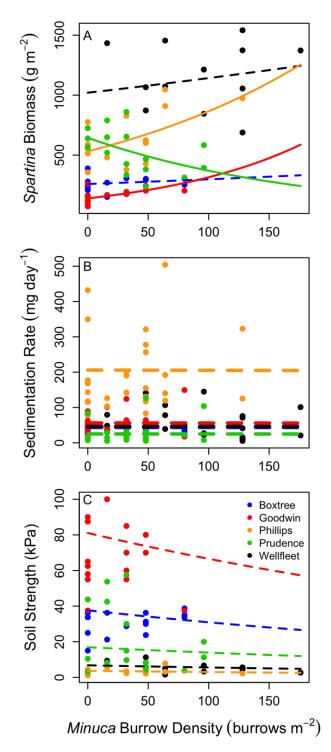


Figure 3: Relationship between *Minuca* burrow density and **A)** *Spartina* biomass, **B)** sedimentation, and **C)** soil strength, across sites. Solid lines indicate significant linear relationship (P < 0.05); dashed lines indicate non-significant relationships (P > 0.05) based on multiple linear regression on log-transformed data. Trend lines have been back-calculated into normal space for ease of interpretation.

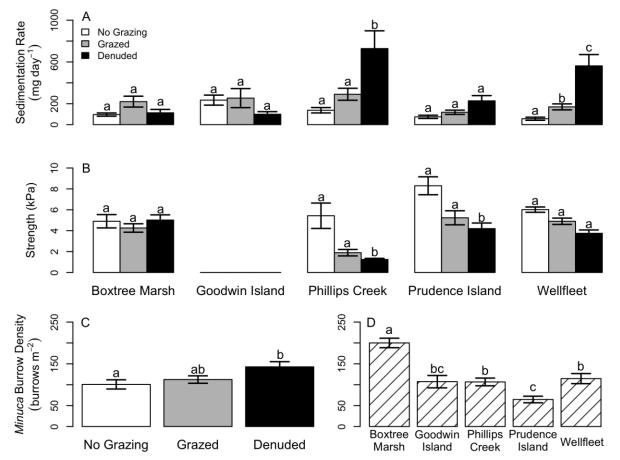


Figure 4: Mean A) sedimentation rates, B) soil strength, and *Minuca* burrow density across C) *Sesarma* grazing intensity and D) sites. In A and B, bars that share a letter within a site, indicate no statistical difference. In C and D, bars that share a letter indicate no statistical difference. Hashed bars indicate values are averaged across treatments. Error bars represent standard error. Due to logistical constraints, soil strength was not measured at Goodwin Island.

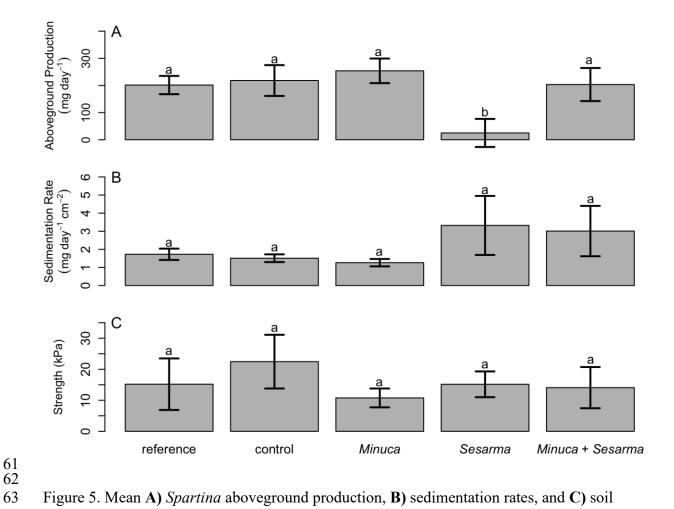


Figure 5. Mean **A)** Spartina aboveground production, **B)** sedimentation rates, and **C)** soil strength across cage treatments. Error bars represent standard error. Bars that share letter indicate no statistical difference based on linear mixed effects models.

Figure 6: Mean live below ground biomass (natural $\log + 0.01$ transformed). Treatments that share letter in the legend indicate no statistical difference based on linear mixed effects model. Error bars represent standard error

SUPPLEMENTAL MATERIAL

Table S1: Sites selected for surveys and field manipulation. * indicates site used for cage manipulation.

City, State	Location	Marsh Name	Latitude, Longitude	Notes
Wellfleet, Massachusetts	Cape Cod National Seashore	Gut Marsh	41.930871 N -70.068266 W	National Park
Prudence Island,	Narragansett Bay	Nag	41.625476 N	National Estuarine
Rhode Island		Marsh	-71.326034 W	Research Reserve
Nassawadox,	Eastern Shore of	Phillips	37.453680 N	Long-Term Ecological
Virginia	Virginia	Creek	-75.835666 W	Research Site
Machipongo,	Eastern Shore of	Boxtree	37.394436 N	Long-Term Ecological
Virginia	Virginia	Marsh	-75.870237 W	Research Site
Seaford, Virginia	Goodwin Island		37.215953 N -76.404900 W	National Estuarine Research Reserve
Cape Charles,	Cushman's		37.174337 N	Long-Term Ecological
Virginia*	Landing		-75.942386 W	Research Site

Table S2: Site-level characteristics. Mean \pm standard error (n in parentheses) salinity, fixed suspended solids concentrations, and relative tidal heights (as a proxy for hydroperiod) across sites in survey and field manipulation. Relative tidal heights were measured as the difference from the marsh surface to the high water line. * indicates site used for cage manipulation.

Site	Salinity (ppt)	Suspended Solids	Relative tidal heights	<i>Minuca</i> plots	Sesarma plots
		Concentration	(cm)	distance	distance
		(mg L ⁻¹)	, ,	from marsh	from marsh
				edge (m)	edge
Wellfleet	33.8±11.3 (9)	4.48±0.4 (9)	49.7±2.0	16.4±0.6	15.3±0.6
			(37)	(13)	(24)
Prudence	33.9±7.4 (21)	3.50±0.4 (21)	40.0±1.0	3.7±0.2 (16)	2.2±0.1
Island			(39)		(24)
Phillips	35.4±8.4 (18)	15.19±1.1 (18)	19.8±1.1	8.8±0.1 (16)	3.0±0.1
Creek			(15)		(24)
Boxtree	37.3±10.8	36.34±1.2 (12)	38.1±0.7	38.8±0.1	8.4±0.0
	(12)		(40)	(16)	(24)
Goodwin	20.9±7.0 (9)	15.95±2.0 (9)	13.5±0.8	9.0±0.2 (16)	0.83±0.4
Island			(40)		(24)
Cushman's		102.4±32.2			
Landing*		(15)			

Table S3: Mean± standard error (*n* in parentheses) *Spartina* biomass (g m⁻²) across *Sesarma* grazing intensity.

Site	Denude d	Grazed	No Grazing
Boxtree	0±0 (8)	190.5±29.7 (7)	737.8±59.0 (8)
Goodwin Island	0±0 (8)	274.1±38.8 (8)	714.3±76.8 (8)
Phillips Creek	0±0 (8)	332.2±35.4 (8)	620.0±44.1 (8)
Prudence Island	0±0 (8)	140.6±15.3 (8)	405.7±29.2 (8)
Wellfleet	0±0 (8)	274.5±43.0 (8)	921.3±129.1 (8)

Table S4: Mean± standard error (*n* in parentheses) *Sesarma* burrow density (burrows m⁻²) across *Sesarma* grazing intensity and sites. Site densities were calculated from haphazard burrow counts.

Site	Denude d	Grazed	No Grazing	Site
Boxtree	12±5 (8)	0±0 (8)	0±0 (8)	17.6±5.6(10)
Goodwin Island	16±4 (8)	2±2 (8)	6±4 (8)	4.8±2.4 (10)
Phillips Creek	2±2 (8)	0±0 (8)	0±0 (8)	0±0 (10)
Prudence Island	0±0 (8)	2±2 (8)	4±3 (8)	1.6±1.6 (10)
Wellfleet	2±2 (8)	10±3 (8)	0±0 (8)	3.2±2.1 (10)