
Overcomplete Deep Subspace Clustering Networks

Jeya Maria Jose Valanarasu Vishal M. Patel

Department of Electrical and Computer Engineering,

Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA

{jvalana1, vpatel36}@jhu.edu

Abstract

Deep Subspace Clustering Networks (DSC) provide an

efficient solution to the problem of unsupervised subspace

clustering by using an undercomplete deep auto-encoder

with a fully-connected layer to exploit the self expressive-

ness property. This method uses undercomplete represen-

tations of the input data which makes it not so robust and

more dependent on pre-training. To overcome this, we pro-

pose a simple yet efficient alternative method - Overcom-

plete Deep Subspace Clustering Networks (ODSC) where

we use overcomplete representations for subspace cluster-

ing. In our proposed method, we fuse the features from

both undercomplete and overcomplete auto-encoder net-

works before passing them through the self-expressive layer

thus enabling us to extract a more meaningful and robust

representation of the input data for clustering. Experimen-

tal results on four benchmark datasets show the effective-

ness of the proposed method over DSC and other cluster-

ing methods in terms of clustering error. Our method is

also not as dependent as DSC is on where pre-training

should be stopped to get the best performance and is also

more robust to noise. Code - https://github.com/jeya-maria-

jose/Overcomplete-Deep-Subspace-Clustering

1. Introduction

Subspace Clustering [44] is a learning paradigm which

involves grouping a set of similar data points in an unsu-

pervised way. Let X ∈ R
D×N be a matrix such that its

columns are chosen from a union of k subspaces of R
D,

∪k
i=1{Si} of dimensions di where di << min{D,N},

then the task of subspace clustering is to categorize the

columns of X into their corresponding subspaces. Subspace

clustering is widely popular for its use in image clustering

[9, 50], image segmentation [49, 31], motion segmentation

[10, 18], face clustering [14] and various other computer

vision tasks. As most of the data in real-world are high di-

mensional, there exists a requirement to convert the high

dimensional data into meaningful subspace representations

before clustering. A union of multiple subspaces can then

be clustered together into a single category. The use of mul-

tiple subspaces is what differentiates subspace clustering

from principal component analysis (PCA) related methods

where it is assumed that data is drawn from a single low-

dimensional subspace.

Several methods have been proposed in the literature

for solving the problem of subspace clustering using con-

ventional methods [10, 53, 28, 54, 11, 29, 30, 37, 3, 6].

The first deep learning-based solution to the problem of

subspace clustering, called Deep Subspace Clustering Net-

works (DSC), was introduced in [17]. DSC achieved a

huge boost in performance when compared to previous con-

ventional methods. DSC uses a convolutional autoencoder

to learn a non-linear representation of the data. The net-

work has an undercomplete (“encoder-decoder”) architec-

ture where the encoder gets trained to learn an abstract low-

dimensional representation of the input image while the de-

coder learns to reconstruct the original image from those

representations. This deep representation learned by the en-

coder explicitly performs a non-linear mapping of the data

which helps in performing better subspace clustering. Al-

though DSC performs very well and has a huge margin

of improvement in terms of performance over the previous

methods, there exists two main issues with the method. This

method is not so robust and its performance drops consid-

erably when there are potential degradations (i.e. noise) in

the data leading to noisy representations [61]. Another ma-

jor issue with DSC is that it depends a lot on where pre-

training is stopped. Even if the pre-training is stopped some

epochs before or after the correct epoch where clear recon-

structions start to appear, the clustering becomes unstable

and the performance drops significantly.

In this paper, we propose an alternative solution which

improves the performance while being able to obtain a ro-

bust representation and a stable training. We propose Over-

complete Deep Subspace Clustering Networks (ODSC)

where we make use of overcomplete representations which

has greater robustness in the presence of noise and has a

flexibility to match structures in the data. We induce over-

746

https://github.com/jeya-maria-jose/Overcomplete-Deep-Subspace-Clustering
https://github.com/jeya-maria-jose/Overcomplete-Deep-Subspace-Clustering

complete representations here by introducing an overcom-

plete convolutional autoencoder which is trained in paral-

lel to the undercomplete autoencoder as in DSC. We then

combine both the representations and use a self-expressive

layer to learn pairwise affinities between the data points.

This simple trick of fusing both overcomplete and under-

complete representations make the training stable and not

be over-dependent on pre-training. We extensively ana-

lyze this issue by conducting various experiments. The pre-

trained ODSC autoencoder is also able to obtain far bet-

ter reconstructions compared to the pre-trained DSC au-

toencoder which only shows that better representations are

learned by the overcomplete network. Even while main-

taining the number of parameters to be the same as that of

DSC, we get a good improvement over the performance of

DSC with added advantages of more robustness and stable

training. We evaluate our method on four different bench-

mark datasets: MNIST [21], COIL20 [33], ORL [40] and

Extended Yale B [22]. Our experiments demonstrate that

ODSC significantly outperforms DSC and other conven-

tional subspace clustering methods by a large margin.

2. Related Work

Subspace clustering was initially solved by methods

which relied on linear methods. These methods first con-

struct an affinity matrix by measuring the affinity for ev-

ery pair of data points. Then methods like NCut (normal-

ized cuts) [41] or spectral clustering [34] were used on the

affinity matrix. These two problems are either solved se-

quentially [9, 11, 28, 29, 30] or in multiple passes in an

alternate manner [12, 13, 24, 25, 56]. An affinity matrix

can be built by exploiting the self-expressiveness property

of data [9, 12, 24, 28, 30, 15], using factorization meth-

ods [8, 16, 18, 32, 46] or by using high-order model-based

methods [7, 35, 39]. Out of these, self-expressiveness

property-based methods are more robust to corruption by

noise. The property of self-expressiveness corresponds to

the ability to represent data points as a linear combination

of other points in the same subspace. Self-expressiveness

can be formulated as follows: Given a set of data points

{xi}i=1,...,N which are taken from a collection of linear

subspaces {Si}i=1,...,N , define a matrix X whose columns

are stacked up with xi. The self-expressiveness property

can then be represented as X = XC, where C is the self-

representation matrix. It has been shown that if the sub-

spaces are independent, then C is guaranteed to have a

block diagonal structure [15]. This means that if points xi

and xj lie in the same subspace then the corresponding co-

efficient cij in matrix C cannot be zero. To build an affinity

matrix for spectral clustering, matrix C can be used. This

idea can be mathematically represented as an optimization

problem as follows:

min
C

‖C‖p +
λ

2
‖X −XC‖2F s.t. (diag(C) = 0), (1)

where p = 0, 1 or nuclear norm. The diagonal constraint

here avoids trivial solutions for sparsity inducing norms.

A major drawback of this clustering approach is that this

holds true only for linear subspaces. For solving cases

where data points do not lie in the linear subspace, sev-

eral non-linear kernel-based methods have also been pro-

posed [36, 38, 48, 52, 37] which require a pre-defined ker-

nel. However, these predefined kernels cannot be assured

to provide feature spaces that are well suited for subspace

clustering.

Following the popularity of deep learning methods in

various tasks of computer vision and machine learning

like image segmentation, image restoration, medical im-

age analysis, etc., deep learning was explored for sub-

space clustering in DSC [17]. DSC also introduced a

novel self-expressive layer for deep autoencoders so as to

train an autoencoder such that its latent representation is

well-suited for subspace clustering. This idea of harness-

ing the self-expressiveness property using a deep autoen-

coder resulted in a huge boost in performance when com-

pared to other conventional methods [2]. Based on this

work, several extensions were proposed very recently ex-

ploring adversarial learning [61, 4], multimodal inputs [5],

multi-level representations [19], and self-supervised learn-

ing [55] for subspace clustering. Other spectral cluster-

ing free techniques like distribution preserving DSC [60]

and [57] have also been proposed. More recently, works

like Deep Latent Low-Rank Fusion Network [59], Block-

diagonal Adaptive representation [58], Multilayer Collabo-

rative Low-Rank Coding Network [26] have also been pro-

posed for subspace clustering. In contrast to these methods,

we focus completely on DSC and show how it can be easily

made very efficient and robust using overcomplete repre-

sentations.

3. Overcomplete Deep Subspace Clustering

Networks (ODSC)

The proposed approach makes use of overcomplete rep-

resentations to improve the clustering performance. In this

section, we first briefly describe the concept of overcom-

plete representations before explaining our proposed net-

work architecture, clustering method and training strategy.

3.1. Overcomplete Representations

Overcomplete Representations [23] were first introduced

as an alternative and a more general method for signal repre-

sentation. It involved using overcomplete bases (overcom-

plete dictionaries) so that the number of basis functions is

747

more than the number of input signal samples. This en-

ables a higher flexibility for capturing structure in data and

thus it is shown to be more robust. From [47], we can see

that overcomplete auto-encoders acted as better feature ex-

tractors for denoising. Interestingly, the idea of overcom-

plete representations have been very much under-explored

in deep learning. All the major architectures widely used in

deep learning use a generic “encoder-decoder” architecture

in which the encoder tries to extract an abstract version of

the input data and the decoder learns to take the latent low-

dimensional representation back to a high-dimensional out-

put depending on the task at hand. This generic “encoder-

decoder” model is an example of undercomplete represen-

tations as the number of spatial dimensions is less in the

latent space when compared to the input data. This is ac-

complished in a deep convolutional undercomplete auto-

encoder where the convolutional layers are followed by

max-pooling layers in the encoder and by upsampling layer

in the decoder. Max-pooling reduces the spatial dimension-

ality of the feature maps while upsampling does the oppo-

site. Note that this arrangement of an undercomplete net-

work’s encoder is what forces the initial layers of a deep

network to learn low-level features and the deep layers to

learn high-level features. This happens because the recep-

tive field of the filters increases after every max-pooling

layer. With an increased receptive field, the filters in the

deep layers have access to more pixels in the initial image

thus enabling them to learn high-level features. Recently,

overcomplete representations have been explored for medi-

cal image segmentation [43, 42] and image-deraining [51].

In this work, we propose using an overcomplete deep au-

toencoder, where the encoder takes the input data to a higher

spatial dimension. This is achieved by using an upsampling

layer after every convolutional layer in the encoder. Note

that, the dimensionality of the latent representations for any

convolutional network depends on the number of filters and

the feature map size used in a network. In [47], an overcom-

plete fully-connected network is defined as a network which

has more number of neurons for representation in its hidden

layers than in the initial layers. Similarly in this paper, we

define an overcomplete CNN as a network that takes the in-

put to a higher dimension in its deeper layers (spatially).

Replacing max-pooling layers with upsampling layers in

the encoder causes the receptive field size to be constrained

in the deeper layers making the deeper layers learn more

fine details than the initial layers as seen in Fig 1. To under-

stand this further, let I be the input image, F1 and F2 be the

feature maps extracted from the conv layers 1 and 2, respec-

tively. The max-pooling layer present in these conv layers

of the undercomplete architecture (as seen in Fig 1(a)) is the

main reason why the receptive field is large in the succes-

sive layers. Let the initial receptive field of the conv filter be

k × k on the image. The receptive field size change due to

(a) (b)
Figure 1. Explanation of how receptive field changes in an (a) un-

dercomplete network architecture, and in an (b) overcomplete net-

work architecture.

max-pooling layer is dependent on two variables- pooling

coefficient and stride of the pooling filter. For convenience,

the pooling coefficient and stride is both set as 2 (as in most

of the networks). Considering this configuration, the recep-

tive field of conv layer 2 (to which F1 is forwarded) on the

input image would be 2 × k × 2 × k. Similarly, the recep-

tive field of conv layer 3 (to which F2 is forwarded) would

be 4 × k × 4 × k. This increase in receptive field can be

generalized for the ith layer in an undercomplete network

as follows:

RF (w.r.t I) = 22∗(i−1) × k × k.

For the proposed overcomplete network, we have up-

sampling layer of coefficient 2 replacing the max-pooling

layer. As the upsampling layer actually works exactly oppo-

site to that of max-pooling layer, the receptive field of conv

layer 2 on the input image now would be 1
2 × k × 1

2 × k.

Similarly, the receptive field of conv layer 3 now would be
1
4×k× 1

4×k. This increase in receptive field can be general-

ized for the ith layer in the overcomplete branch as follows:

RF (w.r.t I) =

(

1

2

)2∗(i−1)

× k × k.

This helps in the overcomplete network learn more low-

level information like edges and other finer details better. In

Figure 2, we visualize some of the feature maps learned

by the undercomplete and overcomplete networks while

trained on the MNIST dataset. We can observe that the

learned features in the overcomplete network are more de-

tailed and capture the edges perfectly when compared to the

features extracted from the undercomplete network. Also,

we can see that the features in the deep layers of an under-

complete network are more coarse when compared to over-

complete network. In fact the feature maps in the deep lay-

ers of an overcomplete network are more fine detailed due

to the large feature size. These differences show the superi-

ority of overcomplete representations from a convolutional

neural network perspective.

748

(a) (b)
Figure 2. Feature maps captured using (a) Undercomplete network architecture. (b) Overcomplete network architecture. The rows represent

the layer from which the feature maps were taken. Row 1 corresponds to layer 1, Row 2 corresponds to layer 2 and Row 3 corresponds to

layer 3.

3.2. Network Architecture

Now that we have established how an overcomplete deep

network can be made to learn overcomplete latent represen-

tations of the data, we discuss how it can be designed to

solve subspace clustering.

In ODSC, we propose using two encoders which get

trained in parallel. One is a generic encoder which has max-

pooling layers after every convolution layer. Another is an

overcomplete encoder where we have an upsampling layer

after every convolution layer. For upsampling, after explor-

ing both learned convolution and using a bilinear interpo-

lation method, we found that both the methods resulted in

equal performance. So, we chose to use bilinear interpola-

tion for upsampling in our architecture for simplicity. In the

latent space, we fuse both the latent representations before

passing them to the self-expressive layer. The latent over-

complete representations are passed through a max-pooling

layer before being fused with the latent representations of

the undercomplete encoder. The reason behind this fusion

approach is that even though overcomplete representations

are better and more meaningful for clustering when com-

pared to the undercomplete representations, they are rela-

tively larger in the spatial sense and so we would need more

parameters in our self-expressive layer to accomodate them.

This makes the training of the network difficult as when we

have more number of parameters we need a lot of data to

prevent overfitting. So, using fusion we are able to main-

tain less number of parameters in the self-expressive layer

as in DSC while also being able to take the advantages of

overcomplete representations. We pass this latent space rep-

resentation to the self-expressive layer.

The self-expressive layer is a fully-connected linear layer

where the weights of it correspond to the coefficients in the

self-expression representation matrix C. This layer learns

the affinity matrix directly. For the decoder part, we have a

common decoder that consists of convolutional layers fol-

lowed by upsampling layers. We do not choose to use an

overcomplete decoder here because it leads to more param-

eters and does not contribute much in the performance as

the latent representations are what matters more for self-

expressive layer. The number of convolutional layers we

use in both the encoder and decoder varies with respect to

the dataset. We decide on that based on the total number

of data available in each dataset. Using the affinity matrix

learned, we perform spectral clustering to get the clusters.

Figure 3 illustrates the proposed network architecture and

the ODSC method.

3.3. Training Details

The autoencoder part of our network is initially trained

separately for the task of reconstruction in an unsupervised

way. It is trained with a reconstruction loss which is just

the mean squared error (MSE) calculated between the re-

construction by the autoencoder X̂ and the input image X .

The reconstruction loss Lr is formulated as follows:

Lr = ‖X − X̂‖2F . (2)

We use Adam optimizer [20] with a learning rate of 0.001

to train the reconstruction network for all the experiments.

Note that the self-expressive layer is not trained in this

part. For subspace clustering, we start by loading these

pre-trained weights into the network. Then, we fine-tune

the network by using the self-expressive layer and a self-

expressive loss term Lself , which can be formulated as fol-

lows:

Lself (θ, C) = λ2‖C‖p +
λ3

2
‖Zθe − ZθeC‖2F , (3)

where θ represents the parameters of the network and

θe specifically represents the parameters of the encoder.

Z represents the latent representations found in the self-

expressive layer of the network and C represents the self-

representation coefficient matrix. We use L2 regularization

on C (p = 2). For training the network in the fine-tuning

749

Pooling

+

Spectral Clustering

Affinity Matrix

Input Reconstruction

Decoder

Self-Expressive
Layer

Overcomplete Branch

Undercomplete Branch

Encoder

Figure 3. Overall approach for the proposed ODSC method.

stage, we optimize the loss using Adam optimizer on the

combination of both of these losses. The final loss LTotal

is defined as follows:

LTotal =
λ1

2
Lr + Lself

LTotal =
λ1

2
‖X − X̂‖2F + λ2‖C‖p +

λ3

2
‖Zθe −ZθeC‖2F ,

(4)

where λ1, λ2 and λ3 are the hyperparameters that control

the amount of effect each separate loss term can have over

the total loss. These hyperparameter settings are discussed

in the next section separately for each dataset. The whole

training process is unsupervised as we do not make use of

any labels. We make use of only the input data and latent

representations derived from the input for training our net-

work. After fine-tuning, we use the parameters of the self-

expressive layer to construct the affinity matrix for spectral

clustering [34]. We follow the same heuristics used by SSC

[10] for this step.

4. Experiments

We perform all our experiments in Python using

Tensorflow-1.14 [1] and evaluate our method using four

datasets - MNIST [21], COIL20 [33], ORL [40] and Ex-

tended Yale B [22]. Our method is compared with the fol-

lowing baselines: Low Rank Representation (LRR) [27],

Low Rank Subspace Clustering (LRSC) [45], Sparse Sub-

space Clustering (SSC) [10], Kernel Sparse Subspace Clus-

tering (KSSC) [38], SSC by Orthogonal Matching Pur-

suit (SSCOMP) [54], Efficient Dense Subspace Clustering

(EDSC) [15], SSC with the pre-trained convolutional auto-

encoder features (AE+SSC), EDSC with the pre-trained

convolutional auto-encoder features (AE+EDSC) and Deep

Subspace Clustering (DSC) Networks [17]. In the following

sections, we will discuss in detail the hyperparameters we

use for each dataset and the improvements we obtain over

the existing methods. The hyperparameters vary for each

dataset because the number of data in each dataset varies.

Note that for fair comparison, in all the experiments we ei-

ther matched or used less number of parameters in the self-

expressive layer when compared to DSC by lowering the

number of filters used in a layer even though we use two

encoders.

4.1. MNIST Dataset

The MNIST dataset has a collection of hand-written digit

images from 0 to 9. We randomly pick 100 images out of

each class and use this collection of 1000 images for the task

of subspace clustering. The size of the images is 28× 28. It

can be noted that the MNIST dataset accounts for many de-

formations caused by the style of hand-writing even among

a single class making the task of clustering difficult as it is

an unsupervised setting. The network architecture (ODSC)

we use for this dataset has 2 convolutional blocks in the

overcomplete branch of encoder, 3 in the undercomplete

branch of encoder and 3 in the decoder. The details of what

is present in each convolutional block were explained in the

previous section. The kernel size of the convolutional layer

is 5 × 5 in the first layer and 3 × 3 in every other layer in

the encoder and vice- versa in the decoder. The number of

filters is 20, 10 in the overcomplete branch of encoder and

20, 10, 5 in the undercomplete branch in order, respectively.

750

In decoder, the number of filters are 5, 10, 20 in each convo-

lutional block, respectively. We set λ1 = 1.00, λ2 = 20.00
and λ3 = 0.1. The network is fine-tuned for 100 epochs.

The results in terms of clustering error are tabulated in Ta-

ble 8 where it can be seen that our ODSC method achieves

an improvement of 6.2 % when compared to DSC.

4.2. ORL Dataset

The ORL dataset has a collection of face images corre-

sponding to 40 subjects with 10 samples for each person.

The whole collection of 400 images is used in the exper-

iment for subspace clustering. The images are resized to

32 × 32. It can be noted that the ORL dataset consists of

images under different lighting conditions and with differ-

ent facial expressions. Also, this dataset is relatively smaller

with just 400 images. The network architecture (ODSC) we

use for this dataset has 2 convolutional blocks in the over-

complete branch of encoder, 3 in the undercomplete branch

of encoder and 3 in the decoder. The kernel size of the con-

volutional layer is 3 × 3 for all the convolution layers in

both encoder and decoder. The number of filters is 3, 3,

and 6 for each block in encoder and in 6, 3 and 3 for each

block in the decoder in the same order respectively. We

set λ1 = 1.00, λ2 = 2.00 and λ3 = 0.1 . The network is

fine-tuned for 800 epochs. The results in terms of clustering

error are tabulated in Table 2 where it can be seen that our

proposed method ODSC achieves an improvement of 2.00

% compared to DSC.

4.3. COIL20 Dataset

The COIL20 dataset has a collection of different object

images. It consists of 20 classes and 1440 images. The

images are resized to 32 × 32. The main challenge of this

dataset is that different samples of the same object are cap-

tured in different angles which makes even the images of

the same object look very different. The network architec-

ture (ODSC) proposed for this dataset has 1 convolutional

block in both the undercomplete and overcomplete branches

of encoder, 1 convolutional block in the decoder. The kernel

size of the convolutional layer is 3×3 and the number of fil-

ters is 15 for all the convolution layers in both encoder and

decoder. We set λ1 = 1.00, λ2 = 1.00 and λ3 = 15.00.

The network is fine-tuned for 40 epochs. The results in

terms of clustering error for COIL20 are tabulated in Table

3. Our proposed method ODSC achieves an improvement

of 2.64 % over DSC for COIL20 dataset.

4.4. Extended YaleB Dataset

The Extended YaleB Dataset has a collection of face im-

ages which are taken under varying light conditions. It con-

sists of 38 classes with 64 images per class resulting in a

total of 2432 images. The images are resized to 48× 42 for

easy comparison with baselines. The network architecture

(ODSC) we use for this dataset has 2 convolutional blocks

in the overcomplete branch of encoder, 3 in the undercom-

plete branch of encoder and 3 in the decoder. The kernel

size of the convolutional layer is 5× 5 in the first layer and

3 × 3 in every other layer in the encoder and vice-versa in

the decoder. The number of filters is 2 across all the convo-

lutional layers in the dataset. We set λ1 = 1.00, λ2 = 1.00
and λ3 = 6.30. The network is fine-tuned for 800 epochs.

The results in terms of clustering error are tabulated in Table

4. We note here that even though ODSC achieves a better

performance than other methods, this dataset has already

reached saturation in terms of performance so our margin

of improvement here is not as signifiacnt as that of the other

datasets.

5. Discussion

In this section, we first report a detailed ablation study

and then discuss other characteristics of the proposed

method.

Ablation Study

For ablation study, we start with DSC which uses an un-

dercomplete deep auto-encoder. We represent this setup as

DSC-U. Then, we change the deep-autoencoder architec-

ture to overcomplete and represent this setup as DSC-O.

The architectures of DSC-U and DSC-O are visualized in

Figure 4. We then show how our proposed method ODSC

which has a fused encoder architecture of both undercom-

plete and overcomplete encoder fares compared to the other

two. The results for all the four datsets can be found in

Table 5. As can be seen from this table, in general DSC-

O performs better than DSC-U on all datasets. The best

performance is obtained when both DSC-U and DSC-O are

fused (i.e. ODSC). This experiment clearly shows the sig-

nificance of the proposed subspace clustering method.

Input Reconstruction

Encoder

(a)

(b)

Encoder Decoder

Decoder

Figure 4. Architecture for ablation study: (a) DSC - Undercom-

plete (DSC-U). (b) DSC - Overcomplete (DSC-O).

751

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC

Error 54.70 50.17 47.80 66.00 43.50 46.14 48.60 51.60 27.20 25.00 18.80

Table 1. Comparison of clustering error with recent methods for the MNIST dataset.

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC

Error 32.50 24.75 34.25 36.00 27.25 38.25 32.5 26.75 14.25 14.00 12.00

Table 2. Comparison of clustering error with recent methods for the ORL dataset.

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC

Error 14.86 12.40 24.65 45.90 14.86 31.01 31.25 22.08 6.95 5.14 2.5

Table 3. Comparison of clustering error with recent methods for the COIL20 dataset.

Method SSC ENSC KSSC SSC-OMP EDSC LRR LRSC AE+SSC DSC-L1 DSC-L2 ODSC

Error 27.51 12.40 27.75 24.71 11.64 34.81 29.89 25.33 3.33 2.67 2.22

Table 4. Comparison of clustering error with recent methods for the Extended Yale B dataset.

Method DSC (U) DSC (O) ODSC

MNIST 25.00 21.60 18.8

ORL 14.00 12.75 12.00

COIL20 5.14 3.20 2.50

EYaleB 2.67 2.35 2.22

Table 5. Ablation study. The numbers correspond to the error in

terms of percentage.

Reconstruction

In both DSC and ODSC, the networks are first trained for

reconstruction. Only from this process are the latent repre-

sentations learned and are later fed into the self-expressive

layer during fine-tuning. It is evident that better the latent

representations, better the reconstructions. This is because

only if the latent representations are meaningful, the de-

coder will be able to make a good reconstruction. In case

of overcomplete architecture, as we project the images to a

higher dimension, the feature maps learn very fine details.

When visualized, these feature maps have a very good rep-

resentation of the input image (please refer Fig 2). Thus,

for the overcomplete architecture we were able to get far

better reconstruction when compared to undercomplete ar-

chitecture. The reconstructions of both the types of archi-

tectures for the MNIST and COIL20 datasets are visualized

in Figure 5. From this figure, we can see that the overcom-

plete network is able to achieve better reconstructions and

as a result the corresponding latent representations are more

meaningful than undercomplete representations.

Robustness

The performance of DSC significantly depends on the

right place where the pretraining is stopped. The authors of

DSC follow an approach of stopping the pretraining process

when the reconstructions start to look reasonable. Stopping

the training based on the reconstruction quality is not effi-

cient. Moreover, stopping pretraining a few epochs before

or after the desired instant leads to poor results in their case.

A network with high dependence on this would be unstable

and inefficient during real-world implementation. To this

end, we show that overcomplete representations are more

robust and so do not depend much on things like where

pretraining is stopped. Table 9 shows the results for an

experiment we carried out where we stopped the pretrain-

ing at different epochs for both DSC and ODSC for the

MNIST dataset. It can be observed that the change in the

performance for ODSC is minimal when compared to that

of DSC.

In real-world, data is often noisy. Hence we compare the

performance of different mehtods on noisy data. We add

random noise to the MNIST dataset and carry out cluster-

ing with both DSC and ODSC. The random noise is added

in different levels so as to study the increase in error for

the methods with respect to increase in noise. The results

corresponding to this experiment are tabulated in Table 8.

It can be seen that ODSC gives a better performance com-

pared to DSC for all levels of noise. One major observation

is that when the noise level is taken from 0% to 50%, the er-

ror for DSC goes from 25.00 to 28.10, causing an increase

of 3.10% error when the noise level is increased by 50%.

However for the same increase in noise level, the increase

in error for ODSC is just 1.10%. This shows us that ODSC

is more robust to addition of noise when compared to DSC.

752

(a) (b) (c)
Figure 5. (a) Input data. (b) Reconstructions using an undercomplete deep auto-encoder. (c) Reconstructions using an overcomplete deep

auto-encoder.

layer enc-1 enc-2 enc-3 self-expressive dec-1 dec-2 dec-3 Total

kernel size 5× 5 3× 3 3× 3 - 3× 3 3× 3 5× 5 -

channels 5 3 3 - 3 3 5 -

Parameters 130 138 84 160000 84 140 126 160702

Table 6. Details of the DSC network.

layer enc-1 (U) enc-2 (U) enc-3 (U) enc-1 (O) enc-2 (O) self-expressive dec-1 dec-2 dec-3 Total

kernel size 3× 3 3× 3 3× 3 3× 3 3× 3 - 3× 3 3× 3 3× 3 -

channels 3 3 3 3 3 - 3 3 3 -

Parameters 30 84 84 30 84 160000 84 84 30 160510

Table 7. Details of the ODSC network.

Method 0% 10% 20% 30% 40% 50%

DSC 25.00 26.60 27.00 27.20 27.40 28.10

ODSC 18.80 19.60 19.70 20.00 19.90 19.90

Table 8. Comparison of DSC and ODSC in terms of clustering

error percentage for MNIST data when added with different levels

of noise. The first row corresponds to the amount of noise added

to the data.

Pretraining Epoch 50 100 150 Avg

DSC 27.90 26.10 32.5 28.33

ODSC 21.50 18.80 21.80 20.7

Table 9. Comparison of DSC and ODSC in terms of clustering

error percentage while stopping pretraining at different epochs for

MNIST dataset.

Number of Parameters

Since ODSC has feature maps of a larger size when com-

pared to DSC and also has two branches in the encoder,

it will contain more number of parameters if we have the

same number of filters as that of DSC. So, we reduce the

number of filters across each layer in ODSC to match the

number of parameters of DSC. We analyze this in detail for

the architecture we used for ORL dataset as seen in Tables

6 and 7. In Table 7, enc (U) corresponds to the undercom-

plete branch of encoder while enc (O) corresponds to the

overcomplete branch of encoder. It can be seen that the

number of parameters of ODSC is actually less than that

of DSC. From this, we show that ODSC giving better re-

sults is not due to more number of parameters but due to

the better properties of overcomplete representations. Also,

as we make sure that the number of parameters in the self-

expressive layer is the same for DSC and ODSC, so that

the change in parameters is not that different for any exper-

iment. For real-time usage, we note that we can have more

number of parameters for ODSC and might be able to get

even better performance.

6. Conclusion

In this paper, we proposed a new solution to the prob-

lem of subspace clustering using overcomplete represen-

tations. Using a combination of overcomplete and under-

complete networks, we build an affinity matrix and perform

spectral clustering to get the clusters. We performed ex-

tensive experiments on four benchmark datasets where our

proposed method ODSC achieved better results. Also, we

show that the latent representations learned by our method

is more meaningful as we get better reconstructions and is

also more robust to noise. ODSC is also not that dependent

on pre-training as DSC.

Acknowledgment

This work was supported by the NSF grant 1910141.

References

[1] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, Andy

753

Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow:

Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467, 2016.

[2] M. Abavisani, A. Naghizadeh, D. Metaxas, and V. M. Patel.

Deep subspace clustering with data augmentation. In Confer-

ence on Neural Information Processing Systems (NeurIPS),

2020.

[3] M. Abavisani and V. M. Patel. Domain adaptive subspace

clustering. In British Machine Vision Conference, 2016.

[4] M. Abavisani and V. M. Patel. Adversarial domain adaptive

subspace clustering. In IEEE 4th International Conference

on Identity, Security, and Behavior Analysis (ISBA), pages

1–8, 2018.

[5] Mahdi Abavisani and Vishal M Patel. Deep multimodal sub-

space clustering networks. IEEE Journal of Selected Topics

in Signal Processing, 12(6):1601–1614, 2018.

[6] M. Abavisani and V. M. Patel. Multimodal sparse and low-

rank subspace clustering. Information Fusion, 39:168–177,

2018.

[7] Guangliang Chen and Gilad Lerman. Spectral curvature

clustering (scc). International Journal of Computer Vision,

81(3):317–330, 2009.

[8] João Paulo Costeira and Takeo Kanade. A multibody factor-

ization method for independently moving objects. Interna-

tional Journal of Computer Vision, 29(3):159–179, 1998.

[9] Ehsan Elhamifar and René Vidal. Sparse subspace cluster-

ing. In 2009 IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 2790–2797. IEEE, 2009.

[10] Ehsan Elhamifar and Rene Vidal. Sparse subspace cluster-

ing: Algorithm, theory, and applications. IEEE transactions

on pattern analysis and machine intelligence, 35(11):2765–

2781, 2013.

[11] Paolo Favaro, René Vidal, and Avinash Ravichandran. A

closed form solution to robust subspace estimation and clus-

tering. In CVPR 2011, pages 1801–1807. IEEE, 2011.

[12] Jiashi Feng, Zhouchen Lin, Huan Xu, and Shuicheng Yan.

Robust subspace segmentation with block-diagonal prior. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 3818–3825, 2014.

[13] Xiaojie Guo. Robust subspace segmentation by simultane-

ously learning data representations and their affinity matrix.

In Twenty-Fourth International Joint Conference on Artifi-

cial Intelligence, 2015.

[14] Jeffrey Ho, Ming-Husang Yang, Jongwoo Lim, Kuang-Chih

Lee, and David Kriegman. Clustering appearances of ob-

jects under varying illumination conditions. In 2003 IEEE

Computer Society Conference on Computer Vision and Pat-

tern Recognition, 2003. Proceedings., volume 1, pages I–I.

IEEE, 2003.

[15] Pan Ji, Mathieu Salzmann, and Hongdong Li. Efficient dense

subspace clustering. In IEEE Winter Conference on Applica-

tions of Computer Vision, pages 461–468. IEEE, 2014.

[16] Pan Ji, Mathieu Salzmann, and Hongdong Li. Shape interac-

tion matrix revisited and robustified: Efficient subspace clus-

tering with corrupted and incomplete data. In Proceedings

of the IEEE International Conference on computer Vision,

pages 4687–4695, 2015.

[17] Pan Ji, Tong Zhang, Hongdong Li, Mathieu Salzmann, and

Ian Reid. Deep subspace clustering networks. In Advances in

Neural Information Processing Systems, pages 24–33, 2017.

[18] Ken-ichi Kanatani. Motion segmentation by subspace sep-

aration and model selection. In Proceedings Eighth IEEE

International Conference on computer Vision. ICCV 2001,

volume 2, pages 586–591. IEEE, 2001.

[19] Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad

Kamangar. Multi-level representation learning for deep sub-

space clustering. In The IEEE Winter Conference on Appli-

cations of Computer Vision, pages 2039–2048, 2020.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[22] Kuang-Chih Lee, Jeffrey Ho, and David J Kriegman. Ac-

quiring linear subspaces for face recognition under variable

lighting. IEEE Transactions on pattern analysis and machine

intelligence, 27(5):684–698, 2005.

[23] Michael S Lewicki and Terrence J Sejnowski. Learning over-

complete representations. Neural computation, 12(2):337–

365, 2000.

[24] Chun-Guang Li and Rene Vidal. Structured sparse subspace

clustering: A unified optimization framework. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 277–286, 2015.

[25] Chun-Guang Li, Chong You, and René Vidal. Structured

sparse subspace clustering: A joint affinity learning and sub-

space clustering framework. IEEE Transactions on Image

Processing, 26(6):2988–3001, 2017.

[26] Xianzhen Li, Zhao Zhang, Yang Wang, Guangcan Liu,

Shuicheng Yan, and Meng Wang. Multilayer collaborative

low-rank coding network for robust deep subspace discov-

ery. arXiv preprint arXiv:1912.06450, 2019.

[27] Guangcan Liu, Zhouchen Lin, Shuicheng Yan, Ju Sun, Yong

Yu, and Yi Ma. Robust recovery of subspace structures by

low-rank representation. IEEE transactions on pattern anal-

ysis and machine intelligence, 35(1):171–184, 2012.

[28] Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust sub-

space segmentation by low-rank representation. In Proceed-

ings of the 27th international conference on machine learn-

ing (ICML-10), pages 663–670, 2010.

[29] Canyi Lu, Jiashi Feng, Zhouchen Lin, and Shuicheng Yan.

Correlation adaptive subspace segmentation by trace lasso.

In Proceedings of the IEEE International Conference on

Computer Vision, pages 1345–1352, 2013.

[30] Can-Yi Lu, Hai Min, Zhong-Qiu Zhao, Lin Zhu, De-Shuang

Huang, and Shuicheng Yan. Robust and efficient subspace

segmentation via least squares regression. In European con-

ference on computer vision, pages 347–360. Springer, 2012.

[31] Yi Ma, Harm Derksen, Wei Hong, and John Wright. Seg-

mentation of multivariate mixed data via lossy data coding

and compression. IEEE transactions on pattern analysis and

machine intelligence, 29(9):1546–1562, 2007.

754

[32] Quanyi Mo and Bruce A Draper. Semi-nonnegative matrix

factorization for motion segmentation with missing data. In

European Conference on Computer Vision, pages 402–415.

Springer, 2012.

[33] Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al.

Columbia object image library (coil-20). 1996.

[34] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral

clustering: Analysis and an algorithm. In Advances in neural

information processing systems, pages 849–856, 2002.

[35] Peter Ochs and Thomas Brox. Higher order motion models

and spectral clustering. In 2012 IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 614–621. IEEE,

2012.

[36] Vishal M Patel, Hien Van Nguyen, and René Vidal. La-

tent space sparse subspace clustering. In Proceedings of

the IEEE international conference on computer vision, pages

225–232, 2013.

[37] V. M. Patel, H. Van Nguyen, and R. Vidal. Latent space

sparse and low-rank subspace clustering. IEEE Journal of

Selected Topics in Signal Processing, 9(4):691–701, 2015.

[38] Vishal M Patel and René Vidal. Kernel sparse subspace clus-

tering. In 2014 ieee international conference on image pro-

cessing (icip), pages 2849–2853. IEEE, 2014.

[39] Pulak Purkait, Tat-Jun Chin, Alireza Sadri, and David Suter.

Clustering with hypergraphs: the case for large hyperedges.

IEEE transactions on pattern analysis and machine intelli-

gence, 39(9):1697–1711, 2016.

[40] Ferdinando S Samaria and Andy C Harter. Parameterisa-

tion of a stochastic model for human face identification. In

Proceedings of 1994 IEEE workshop on applications of com-

puter vision, pages 138–142. IEEE, 1994.

[41] Jianbo Shi and Jitendra Malik. Normalized cuts and image

segmentation. IEEE Transactions on pattern analysis and

machine intelligence, 22(8):888–905, 2000.

[42] Jeya Maria Jose Valanarasu, Vishwanath A. Sindagi, Ilker

Hacihaliloglu, and Vishal M. Patel. Kiu-net: Overcomplete

convolutional architectures for biomedical image and volu-

metric segmentation. arXiv:2010.01663, 2020.

[43] Jeya Maria Jose Valanarasu, Vishwanath A Sindagi, Ilker

Hacihaliloglu, and Vishal M Patel. Kiu-net: Towards accu-

rate segmentation of biomedical images using over-complete

representations. In Medical Image Computing and Com-

puter Assisted Intervention–MICCAI 2020: 23rd Interna-

tional Conference, Lima, Peru, October 4–8, 2020, Proceed-

ings, Part IV 23, pages 363–373. Springer, 2020.

[44] René Vidal. Subspace clustering. IEEE Signal Processing

Magazine, 28(2):52–68, 2011.

[45] René Vidal and Paolo Favaro. Low rank subspace clustering

(lrsc). Pattern Recognition Letters, 43:47–61, 2014.

[46] René Vidal, Roberto Tron, and Richard Hartley. Multiframe

motion segmentation with missing data using powerfactor-

ization and gpca. International Journal of Computer Vision,

79(1):85–105, 2008.

[47] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and

Pierre-Antoine Manzagol. Extracting and composing robust

features with denoising autoencoders. In Proceedings of the

25th international conference on Machine learning, pages

1096–1103, 2008.

[48] Shijie Xiao, Mingkui Tan, Dong Xu, and Zhao Yang Dong.

Robust kernel low-rank representation. IEEE transactions on

neural networks and learning systems, 27(11):2268–2281,

2015.

[49] Allen Y Yang, John Wright, Yi Ma, and S Shankar Sastry.

Unsupervised segmentation of natural images via lossy data

compression. Computer Vision and Image Understanding,

110(2):212–225, 2008.

[50] Ming-Hsuan Yang and Jeffrey Ho. Clustering appearances of

objects under varying illumination conditions, Sept. 5 2006.

US Patent 7,103,225.

[51] Rajeev Yasarla, Jeya Maria Jose Valanarasu, and Vishal M.

Patel. Exploring overcomplete representations for single im-

age deraining using cnns. arXiv:2010.10661, 2020.

[52] Ming Yin, Yi Guo, Junbin Gao, Zhaoshui He, and Shengli

Xie. Kernel sparse subspace clustering on symmetric pos-

itive definite manifolds. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

5157–5164, 2016.

[53] Chong You, Chun-Guang Li, Daniel P Robinson, and René

Vidal. Oracle based active set algorithm for scalable elastic

net subspace clustering. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

3928–3937, 2016.

[54] Chong You, Daniel Robinson, and René Vidal. Scalable

sparse subspace clustering by orthogonal matching pursuit.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 3918–3927, 2016.

[55] Junjian Zhang, Chun-Guang Li, Chong You, Xianbiao Qi,

Honggang Zhang, Jun Guo, and Zhouchen Lin. Self-

supervised convolutional subspace clustering network. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 5473–5482, 2019.

[56] Junjian Zhang, Chun-Guang Li, Honggang Zhang, and Jun

Guo. Low-rank and structured sparse subspace clustering. In

2016 Visual Communications and Image Processing (VCIP),

pages 1–4. IEEE, 2016.

[57] Tong Zhang, Pan Ji, Mehrtash Harandi, Wenbing Huang,

and Hongdong Li. Neural collaborative subspace clustering.

arXiv preprint arXiv:1904.10596, 2019.

[58] Zhao Zhang, Jiahuan Ren, Sheng Li, Richang Hong,

Zhengjun Zha, and Meng Wang. Robust subspace discovery

by block-diagonal adaptive locality-constrained representa-

tion. In Proceedings of the 27th ACM international confer-

ence on multimedia, pages 1569–1577, 2019.

[59] Zhao Zhang, Jiahuan Ren, Zheng Zhang, and Guangcan Liu.

Deep latent low-rank fusion network for progressive sub-

space discovery. In Proceedings of the International Joint

Conferences on Artificial Intelligence, 2020.

[60] Lei Zhou, Bai Xiao, Xianglong Liu, Jun Zhou, Edwin R Han-

cock, et al. Latent distribution preserving deep subspace

clustering. In 28th International Joint Conference on Arti-

ficial Intelligence. York, 2019.

[61] Pan Zhou, Yunqing Hou, and Jiashi Feng. Deep adversarial

subspace clustering. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1596–

1604, 2018.

755

