

1    **Climate change drives increased directional movement of landscape ecotones**

2

3    Alexander Smith,<sup>1</sup> Emily M. Goetz<sup>1</sup>

4

5    <sup>1</sup>Virginia Institute of Marine Science, William & Mary, 1375 Greate Rd., Gloucester Point, VA

6    23062, USA

7

8    Corresponding author: Alexander Smith, [ajsmith@vims.edu](mailto:ajsmith@vims.edu), 804-684-7209, ORCID ID: 0000-  
9    0002-9966-8726

10

11

12    **ACKNOWLEDGEMENTS**

13    The authors would like to thank Dr. David Johnson for encouraging this review and for his  
14    comments on several iterations of this manuscript. We would also like to thank the three  
15    anonymous reviewers, whose comments helped improve the clarity, precision, and relevance of  
16    this manuscript. This work was supported by funding from the Virginia Institute of Marine  
17    Science and the National Science Foundation (grant # 1832221). This paper is contribution  
18    #4037 from the Virginia Institute of Marine Science.

Smith, A.J., and E.M. Goetz. 2021. Climate change drives increased directional movement of landscape ecotones. *Landscape Ecology*. doi: <https://doi.org/10.1007/s10980-021-01314-7>

19 **ABSTRACT**

20 **Context**

21 Ecotones are boundary zones formed where overlap between neighboring ecosystems creates an  
22 intermediate ecosystem with unique ecological characteristics. Dynamic ecotones change  
23 position along a boundary over time and can be further categorized as either shifting, where the  
24 adjacent ecosystems alternatively drive movement of the ecotone but maintain the same relative  
25 location over time, or directional, where one system encroaches into the other and the ecotone  
26 moves laterally.

27 **Objectives**

28 The purpose of this work was to examine how climate change alters movement dynamics of both  
29 directional and shifting ecotones.

30 **Methods**

31 In three ecosystem case studies, we examine the effects of climate change on landscape-scale  
32 ecotone movement across the marine, terrestrial, and interfacing environments.

33 **Results**

34 Shifts in local and global climate drive changes in ecotone patterns, increasing directional  
35 ecotone movement at both shifting and directional ecotones. Specifically, unidirectional changes  
36 in climate patterns disrupt dynamic equilibria at shifting ecosystem boundaries, thereby  
37 facilitating unidirectional movement at the previously shifting boundaries. Climate changes  
38 additionally accelerate pre-existing directional migration of ecotones through changes to abiotic  
39 gradients.

40 **Conclusion**

41 Directional climate change increases directional movement in multiple types of ecotone. Future  
42 work should consider the rate and feedback mechanisms of ecotone movement and function at  
43 additional ecotones.

44 **Keywords**

45 Ecosystem boundary, ecotone function, desertification, marsh migration, deep chlorophyll  
46 maximum, climate change

47 **DECLARATIONS**

48 Funding: This work was supported by the Virginia Institute of Marine Science and the National  
49 Science Foundation (grant # 1832221).

50 Conflicts of interest/competing interests: The authors have no conflicts of interest to declare that  
51 are relevant to the content of this article.

52 Ethics approval: Not applicable

53 Consent to participate: Not applicable

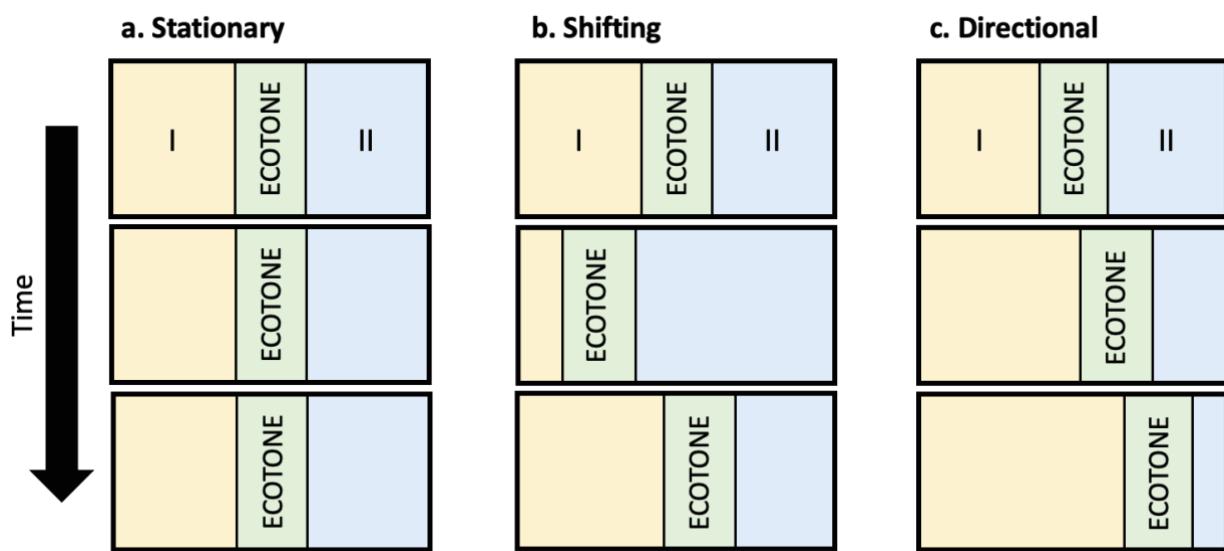
54 Consent for publication: Both authors consent to the submission of this article for publication.

55 Availability of data and material: Not applicable

56 Code availability: Not applicable

57 Authors' contributions: Authors contributed equally to all aspects of this paper.

58 **INTRODUCTION**


59 Ecotones, confined transitional boundaries between two distinct ecosystems whose  
60 overlap results in a unique ecological community, are relatively dynamic and unstable zones  
61 compared to their neighboring ecosystems and are frequently characterized by a change in  
62 abiotic stressors (Longhurst 2006; Wasson et al. 2013; Wang et al. 2019). Relatively high stress  
63 at the ecotone reduces the competitive dominance of species from the less-stressed adjacent  
64 ecosystem and forces the establishment of a community comprised of species from both adjacent  
65 ecosystems as well as unique species that are competitively dominant under increased stress  
66 (Lloyd et al. 2000) or facilitated by novel species interaction (Maher et al. 2005). The littoral  
67 zone of a lake serves as a model ecotone (van der Maarel 1990). The boundary between dry and  
68 submerged benthos at the littoral zone changes seasonally: high water levels in winter months  
69 inundate the area, and low water levels in summer months expose the area to both oxygen and  
70 heat. These seasonal changes create drastically different environmental conditions in the  
71 intertidal than in either of the adjacent ecosystems, leading to the establishment of a unique  
72 biological community and a distinct ecosystem. Although ecotones exist at a variety of spatial  
73 scales, from biomes to soil-plant interactions (Gosz 1993), here we focus on ecotones at the  
74 landscape scale (~1-100m) because of the climatic factors that drive landscape dynamics.

75 Like its biological community, an ecotone's structure and function are derived from the  
76 adjacent systems but remain unique from either ecosystem. The unique combination of habitat  
77 features may create a larger diversity of niches and, consequently, higher species richness than in  
78 the adjacent ecosystems (Horváth et al. 2001; Ribalet et al. 2010); however, this is not universal  
79 (Delcourt and Delcourt 1992; Risser 1995; Senft 2009) and may be limited to large ecotones  
80 (Smith et al. 1997). Similarly, ecosystem functions may be enhanced within some ecotones, as

81 seen with the increased sedimentation and organic matter preservation in wetlands (Kolasa and  
82 Zalewski 1995). Conversely, ecotones may limit the movement of species, materials, or drivers  
83 (e.g., wind) from crossing to an adjacent ecosystem (Naiman et al. 1989; Johnston 1991; Forman  
84 and Moore 1992). The movement, or lack thereof, of species or material across the ecotone may  
85 contribute to feedback loops that either shift or maintain the position of the ecotone and adjacent  
86 ecosystems (Kolasa and Zalewski 1995), leading to dynamism and variation in ecosystem  
87 function across the ecotone transition.

88 Ecotones can be classified based on their long-term stability and direction of movement  
89 as stationary, shifting, or directional (Peters et al. 2006). Stationary ecotones occur where abiotic  
90 controls over an ecotone's location are inherent, reinforced by strong biotic feedbacks, and,  
91 consequently, stable over time, as seen in ecosystem transitions at abrupt elevation or  
92 geomorphological gradients (Körner 1998; Peters et al. 2006; Figure 1a). Shifting ecotones are  
93 more dynamic and, while they maintain a relatively constant location over time, they exist in an  
94 unstable equilibrium and periodically move laterally into adjacent ecosystems (Figure 1b).  
95 Shifting ecotones occur where varying environmental conditions allow for dominance by either  
96 ecosystem to shift at the boundary. For example, at the grassland-shrubland ecotone, increased  
97 drought or winter precipitation may cause the ecotone boundary to shift farther into grassland  
98 (i.e., grassland converts to shrubland), whereas, during a rainy period, movement of the ecotone  
99 may reverse direction and migrate into adjacent shrubland (Peters 2002; Shiponeni et al. 2011;  
100 Moreno-de las Heras et al. 2016). Short-term assessments of ecotone position may indicate that  
101 the ecotone is moving unidirectionally; however, the net movement of a shifting ecotone's  
102 position over many years is minimal because of the periodic reversals in movement and overall  
103 bidirectionality of ecotone movement. Conversely, directional ecotones move unidirectionally

104 over time (Figure 1c). Typically, positive feedbacks on the leading end of the directional ecotone  
105 stabilize the encroaching ecotone and spur advancement into the adjacent ecosystem (in Figure  
106 1c, ecosystem II). The trailing edge of the ecotone is then converted into the adjacent  
107 encroaching ecosystem (in Figure 1c, ecosystem I), leading to net movement of the ecotone over  
108 time. This is seen at the boundary between salt marsh and forest, where sea-level rise causes  
109 forest dieback and marsh encroachment, and the marsh-upland ecotone moves inland (Smith  
110 2013; Wasson et al. 2013; Schieder et al. 2018).



111  
112 **Fig. 1** Schematic of (a) stationary, (b) shifting, and (c) directional ecotone movement over time  
113 where I and II are the ecosystems adjacent to the ecotone

114  
115 While the effects of directional climate change on individual species and populations  
116 have been studied extensively (Goldblum and Rigg 2005; Caputi et al. 2013; Martínez-Soto and  
117 Johnson 2020), the effects of climate change on the directional movement of ecotones at the  
118 ecosystem scale is a developing field of research (Deaton et al. 2017; Theuerkauf and Rodriguez  
119 2017; Smith and Kirwan 2021), despite the longstanding theory that ecotones are reactive to and  
120 indicative of climate change (Noble 1993; Wasson et al. 2013; Saintilan et al. 2014). Previous  
121 work has demonstrated that ecotones may be especially sensitive to changing conditions because

122 species therein are nearing abiotic limits (Goldblum and Rigg 2005; Wasson et al. 2013) and that  
123 ecotones are useful study systems because they can be readily tracked over time (Kupfer and  
124 Cairns 1996). Thus, observing changes in ecotone dynamics may provide insight into climate  
125 change impacts on both ecotones and their adjacent ecosystems. Past ecotone studies have  
126 focused on the movement patterns of a single ecotone type, especially the acceleration of  
127 directional ecotone movement (Kupfer and Cairns 1996; Schieder and Kirwan 2019) and the  
128 latitudinal migration of biomes (Gonzalez et al. 2010; Coldren et al. 2018). We uniquely propose  
129 that climate-driven changes in ecotone movement may extend beyond existing directional  
130 ecotones to include changes in the movement patterns and classification of previously shifting  
131 ecotones. In this review, we present three landscape ecotone case studies in marine, terrestrial,  
132 and the interfacing environments to demonstrate how climate change is impacting historically  
133 shifting and directional ecotones. We further discuss how changes in ecotone dynamics may  
134 affect ecotone function and call for future work documenting changes in ecotone dynamics.

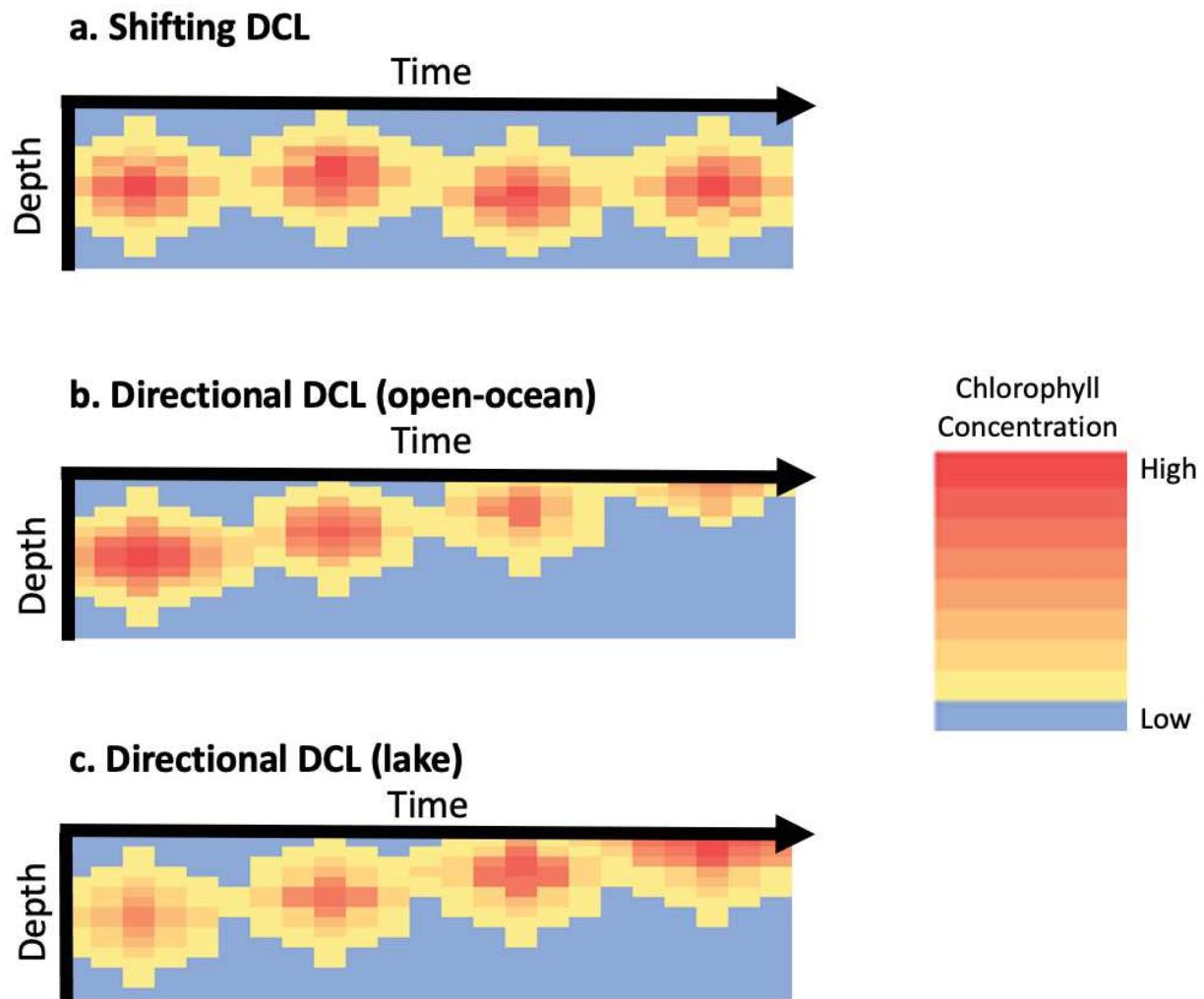
## 135 **LANDSCAPE ECOTONE CASE STUDIES**

### 136 Shifting Ecotone: deep chlorophyll layer (DCL) ecotone

137 Formation of the deep chlorophyll layer (DCL), the subsurface depth layer in both  
138 freshwater and marine aquatic systems that contains the maximum concentration of chlorophyll,  
139 is dependent on light attenuation depth and the nutricline (Fee 1976; Abbott et al. 1984). While  
140 light is abundant in surface waters, low nutrient availability limits the amount of primary  
141 production. Deeper in the water column, attenuation reduces the availability of light, but nutrient  
142 availability increases. These inverse environmental gradients establish the DCL at the  
143 overlapping zone between lit, nutrient-depleted surface waters and dark, nutrient-rich deep  
144 waters (Cullen 1982). While community composition of the DCL varies geographically, the DCL

145 tends to have more flagellated planktons, pennate diatoms, and cryptophytes compared to the  
146 centric diatom-dominated surface communities (Kmor et al. 1987; Barbiero and Tuchman  
147 2004). The DCL supports a unique community of species adapted to low-light conditions  
148 through development of accessory pigments or vertical migration to surface waters (Pollehne et  
149 al. 1993; Cullen 2015). This unique assemblage of species establishes the DCL as an ecotone.

150 The concentration of chlorophyll at depth has multiple important functions for the aquatic  
151 ecosystem. Because of the relatively high concentration of planktonic organisms, there is an  
152 increased presence of both mixotrophic and heterotrophic protozoans at the DCL (Bird and Kalff  
153 1989). The rate of energy movement and grazing velocity is higher at the DCL, as is secondary  
154 organic matter export through sloppy heterotrophic feeding and sinking fecal pellets (Pollehne et  
155 al. 1993; Macías et al. 2014). Compared to adjacent ecosystems, bacteria biomass is ten times  
156 greater at the DCL, and microbial diversity is similarly found to be higher (Auer and Powell  
157 2004; Junior et al. 2015). The DCL creates an environment with enhanced ecological functioning  
158 and biodiversity compared to the light-rich, nutrient-poor surface waters and the light-poor,  
159 nutrient-rich deep waters that border the system on either side.


160 *Directional movement of the DCL ecotone*

161 Oscillations in phytoplankton concentrations at the DCL are driven by the balance  
162 between vertical mixing and nutrient sinking (Huisman et al. 2006), where seasonal variation in  
163 nutrient availability, as controlled by the upwelling of deep, nutrient-rich waters, determines  
164 primary production throughout the year. Therefore, the location of the DCL varies based on  
165 short-term environmental conditions and weather, but its overall position remains relatively  
166 unmoved on a longer time scale, which is characteristic of a shifting ecotone (Estrada et al. 1993;  
167 Letelier et al. 2004; Figure 2a). Prior research indicates that the DCL, despite its interannual

168 variations in depth, is relatively stable in the water column over the course of years to decades  
169 (Cullen 1982; Estrada et al. 1993). Developments in phytoplankton modeling and observation,  
170 however, challenge this notion and indicate that phytoplankton communities in DCLs can have  
171 sustained fluctuations in population density over long-term timescales (Letelier et al. 2004;  
172 Huisman et al. 2006). As global temperatures rise and surface ocean waters are heated, vertical  
173 stratification increases and, consequently, vertical mixing decreases (Bopp et al. 2001), limiting  
174 nutrient availability to phytoplankton. As a result, low phytoplankton densities at the DCL  
175 become more frequent and long lasting (Huisman et al. 2006). Sustained shifts to a warmer  
176 climate have led to increased stratification and, consequently, the depletion of the DCL and the  
177 overall directional movement of the DCL ecotone into shallower water depths in non-polar  
178 regions (Figure 2b).

179 DCLs in lakes similarly indicate climate-induced directional ecotone movement, but,  
180 instead of decreasing densities corresponding with warmer waters and shallower depths, DCL  
181 chlorophyll concentrations in lakes are increasing as surface temperatures increase (Barbiero and  
182 Tuchman 2004; Reinl et al. 2020). While open-ocean DCLs are limited by decreased nutrient  
183 concentrations from decreased vertical mixing, increased temperatures in lakes are associated  
184 with increased productivity and higher phytoplankton concentrations at the DCL (Reinl et al.  
185 2020). As waters continue to warm, the DCL in lakes may also become shallower as the  
186 increased concentration of smaller phytoplankton cells increases the scattering of light and  
187 decreases light attenuation (Yvon-Durocher et al. 2011). From this, warming waters in lakes may  
188 lead to higher chlorophyll concentrations in DCLs at shallower depths, as opposed to the reduced  
189 chlorophyll concentrations seen in open-ocean DCLs (Figure 2c). Although lake and open-ocean  
190 DCLs have similar directional movements—both are shoaling—climate changes induce opposite

191 effects on chlorophyll concentration and ecosystem function in these systems, indicating that,  
192 while climate change is driving ecotone migration, local conditions and ecosystem type can  
193 influence ecotone function (Figure 2b, 2c).



195 **Fig. 2** Conceptual diagram depicting (a) shifting ecotone movement of the DCL where depth is  
196 relatively maintained over time despite seasonal variation (b) directional shoaling and decreasing  
197 chlorophyll concentrations in open-ocean systems, and (c) directional shoaling and increasing  
198 chlorophyll concentrations in lake systems

199  
200 Shifting Ecotone: grassland-shrubland ecotone

201 Grassland and shrubland ecosystems, located throughout the world in arid and semi-arid  
202 biomes, are characterized by frequent drought intervals, fires, and livestock grazing—

203 disturbances that create heterogeneous habitat patches and form the highly dynamic grassland-  
204 shrubland ecotone (Anderson 2006; Fuhlendorf et al. 2006; McGranahan et al. 2012; Connell et  
205 al. 2018). This heterogeneity in vegetation structure influences biodiversity and habitat use  
206 among ecotone residents (Connell et al. 2018). Spatial patches in the ecotone may act as habitat  
207 islands for species supported by the adjacent ecosystems (Sanchez and Parmenter 2002;  
208 Schooley et al. 2018), but the ecotone also supports species distinct from those occupying  
209 adjacent ecosystems (Jorgensen et al. 2000). The mosaic of grass and shrub patches at the  
210 ecotone thus forms a distinct ecosystem that supports a unique community.

211 Terrestrial ecotones are typically identified by changes in vegetation communities at the  
212 landscape scale (Risser 1995), which are determined by abiotic characteristics, disturbance, and  
213 species-environment feedback (D'Odorico et al. 2010; Porensky et al. 2016; Archer et al. 2017).  
214 Grassland and shrubland ecosystems are alternative stable states, meaning that either unique  
215 ecosystem can exist in the same area, with the same climate (Vetter 2009; Ratajczak et al. 2014).  
216 Because grassland and shrubland species coexist and compete for dominance at the ecotone, the  
217 biotic and abiotic factors that determine competitive advantage between these systems determine  
218 the position and movement of the ecotone (Peters 2002; Peters et al. 2006). Changes in  
219 environmental conditions can lead to abrupt lateral movement in the shifting ecotone and  
220 transformation of an area from one state into the alternate state (Vetter 2009).

221 Grass and shrub species possess competitive advantages under different precipitation  
222 patterns: grasses outcompete shrubs with frequent summer rains, and shrubs have a competitive  
223 advantage during prolonged drought and winter rain (Peters 2002; Shiponeni et al. 2011). Shrubs  
224 may act as “resource islands” that limit water accessibility to grasses and make it difficult for  
225 them to grow back after die-off (Duniway et al. 2010; Pockman and Small 2010). Additionally,

226 shrubs may perpetuate their own survival and expansion by warming surface air temperatures in  
227 winter, preventing lethal freezes that are typically followed by grassland encroachment  
228 (D'Odorico et al. 2010), and by providing habitat for grass-grazing herbivores at the ecotone  
229 (Bestelmeyer et al. 2007). Conversely, grass species may outcompete shrubs during years with  
230 frequent summer rains or regular fire disturbance, due to their deeper root structure and regrowth  
231 (Novellie and Bezuidenhout 1994; Peters 2002; Shiponeni et al. 2011). These differences in  
232 competitive advantage contribute to their coexistence in a shifting ecotone under fluctuating and  
233 seasonal climatic conditions.

234 *Directional movement of the grassland-shrubland ecotone*

235 While grassland-shrubland boundaries are theoretically shifting ecotones, global patterns  
236 of shrub encroachment over the past century (Naito and Cairns 2011; Archer et al. 2017) indicate  
237 that the grassland-shrubland boundary has become a directional ecotone (but see Masubelele et  
238 al. 2014). This pattern of movement, also called “desertification”, is driven by a suite of  
239 interacting biotic and abiotic factors that favor shrubland over grassland, including livestock  
240 grazing (increased consumption of grasses), fire suppression (reduced shrub disturbance), and  
241 prolonged drought (decreased grass growth), the last of which is predicted to increase with future  
242 climate change (Roux 1966; Vetter 2009; Rutherford et al. 2012). Drought is the primary  
243 climactic driver of shrub encroachment (Novellie and Bezuidennour 1994; O'Connor and Roux  
244 1995) and also amplifies the effects of secondary impacts, such as livestock grazing, on  
245 grassland to shrubland conversion (Vetter 2009). Ultimately, unidirectional changes in climate  
246 may thus disrupt the oscillating equilibrium previously held at the shifting grassland-shrubland  
247 ecotone, leading to dominance of shrubland within the ecotone and continued directional  
248 encroachment of shrubland into grassland.

249 Directional Ecotone: salt marsh-upland ecotone

250 In marshes, the transition between salt marsh and coastal forest forms a unique ecotone,

251 sometimes referred to as the “ghost forest”, defined by a rapid change in species composition

252 across an elevation and salinity gradient (Wasson et al. 2013; Santelmann et al. 2019).

253 Vegetation composition varies across the transition from marsh to forest based on differences in

254 inundation, soil salinity, moisture, and competition (Pennings and Callaway 1992). Germination

255 of the upland species in the marsh-upland ecotone tends to be limited by salinity, such that the

256 lower limit of upland vegetation zones is determined by abiotic constraints (Muñoz-Rodriguez et

257 al. 2017). The upper limit of marsh vegetation zones, however, is determined by competition,

258 where marsh species are outcompeted by more freshwater-reliant, terrestrial species, such as

259 *Myrica cerifera* (wax myrtle) or *Phragmites australis* (common reed) (Veldkornet et al. 2015).

260 This distinct zonation enables the ecotone to support high levels of vegetative complexity and

261 biodiversity niches within a relatively small area (Traut 2005).

262 *Accelerated directional movement of the marsh-upland ecotone*

263 Shifting environmental gradients drive the lateral movement of the marsh-upland ecotone

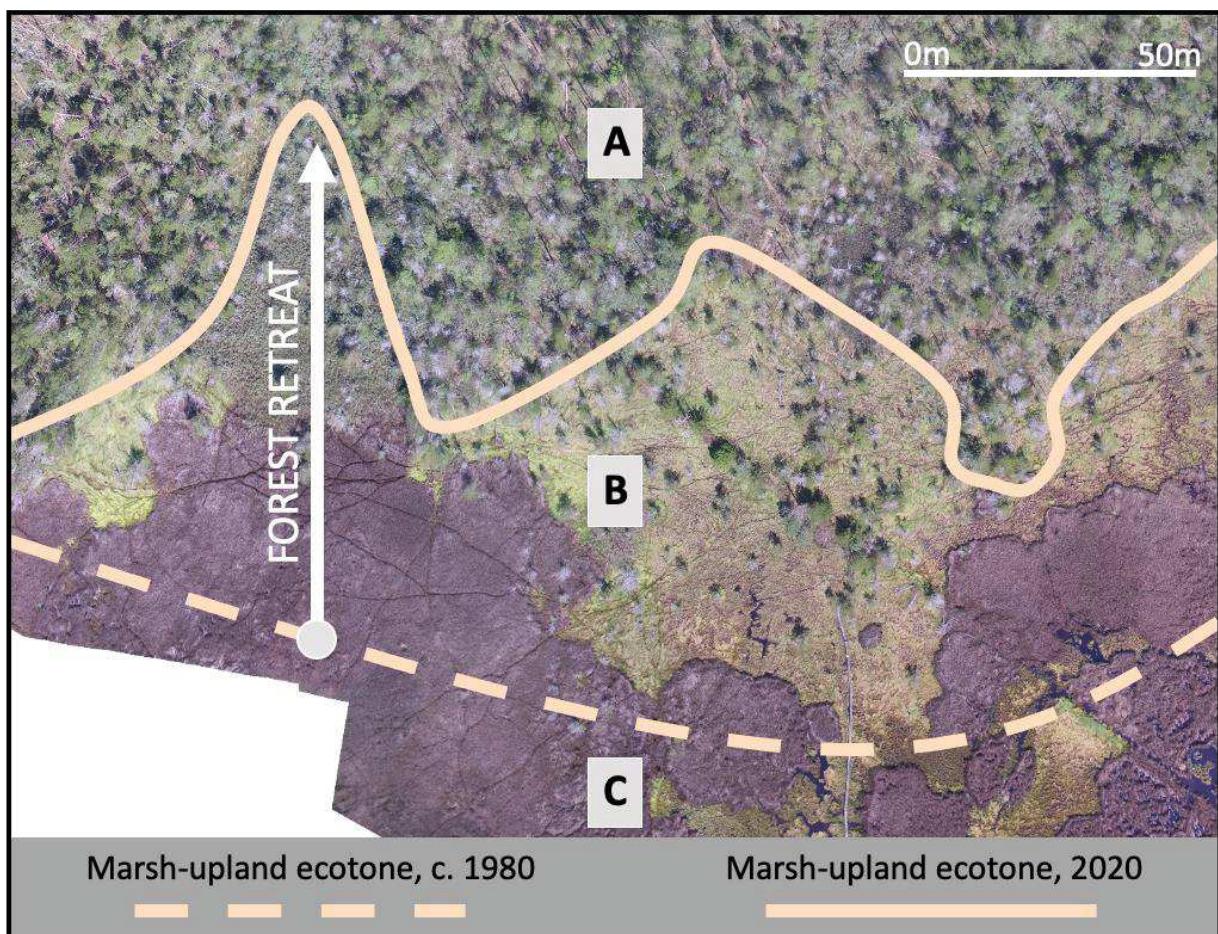
264 while maintaining species composition within the ecotone (Smith 2013; Figure 3). Where sea

265 levels are rising, the marsh-upland ecotone exhibits directional migration into upland systems

266 (Smith 2013; Schieder et al. 2018). The chronic press of saline intrusion into forests limits forest

267 regeneration, and acute storm pulses kill mature, salinity-resistant trees (Fagherazzi et al. 2019).

268 Together, these processes facilitate the inland migration of marsh vegetation, a process often


269 referred to as marsh migration. With this unidirectional ecotone movement, vegetative structure

270 is preserved within the directional ecotone as persistent zones of marsh and ecotone habitat

271 encroach into upland forests concurrently (Wasson et al. 2013). The ecotone itself is typically

272 dominated by snags left over from the retreating upland forest and grass species from the  
273 encroaching salt marsh, along with ecotone-specific species (Kirwan and Gedan 2019).

274 Although the directional movement of the marsh-upland ecotone has been a naturally  
275 occurring process throughout the Holocene (Horton et al. 2018), anthropogenic climate change  
276 processes have intensified the drivers of ecotone movement (Donnelly and Bertness 2001). As  
277 the global rate of sea-level rise and the frequency of storms has increased, the directional  
278 movement of the marsh-upland ecotone has also accelerated, where possible (Schieder and  
279 Kirwan 2019).



280  
281 **Fig. 3** Aerial, true-color image from Brownsville Preserve (Virginia, USA) showing upland  
282 movement of the directional marsh-upland ecotone as tidal marsh migrates into space previously  
283 occupied by coastal forest. The tan lines represent the approximate locations of the marsh-upland  
284 ecotone in 1980 (dashed) and 2020 (solid), while the white line shows the direction and extent of

285 forest retreat between 1980 and 2020. Letters represent zones of (A) forest, (B) new marsh  
286 formed since 1980, and (C) marsh older than 40 years. Data from Smith and Kirwan (2021)

287

## 288 **DISCUSSION**

289 *Climate change and ecotone dynamics*

290 In the case studies reviewed, we see the manifestation of global changes in ecotone  
291 dynamics on the ecosystem level. From these examples, we find evidence that changing climates  
292 at both the local and global scales can propel directional ecotones by manipulating the abiotic  
293 conditions that determine the width and position of shifting ecotones (deep chlorophyll layer),  
294 limiting reversals in shifting ecotones (grassland-shrubland), and directly accelerating the drivers  
295 of directional ecotones (marsh-upland). Local and global climate changes have caused ecotone  
296 dynamics to change in a variety of landscapes, but we find evidence for a general shift toward  
297 directional ecotone movement as abiotic gradients are modified by changes in global climate  
298 drivers.

299 In the deep chlorophyll layer (DCL) case study, shifts in environmental conditions caused  
300 by global climate changes—specifically warming-induced stratification—disrupt the previously  
301 shifting ecotone. In response to warming, the DCL reaches a shallower depth and either increases  
302 or decreases its chlorophyll concentration depending on the local conditions of the system.  
303 Warming surface waters in lakes increase phytoplankton productivity, albeit at shallower depths,  
304 whereas increased ocean stratification and reduced vertical mixing diminish productivity and  
305 shrink the DCL in open-ocean ecosystems (Bopp et al. 2001; Huisman et al. 2006; Reinal et al.  
306 2020). These differences emphasize that local conditions interact with climate to determine the  
307 effect of directional ecotone movement on ecosystem function.

308 The grassland-shrubland and salt marsh-upland ecotone case studies demonstrate more  
309 uniform directional movement of ecotones, driven by a changing climate in two distinct ways.

310 The grassland-shrubland ecotone typically acts as a shifting ecotone under stable or equally  
311 oscillating climate conditions (Peters et al. 2006; Shiponeni et al. 2011). Due to directional  
312 changes in climate, however, the shifting ecotone dynamics driven by variable abiotic and biotic  
313 conditions (e.g., precipitation patterns, grazing intensity) are suppressed, and the resulting  
314 climate conditions favor shrubland dominance (Duniway et al. 2010; Pockman and Small 2010).  
315 As grassland and shrubland ecosystems endure more prolonged droughts, conditions become  
316 more favorable for shrubland species, thereby disrupting the equilibrium of the shifting ecotone,  
317 amplifying the effects of disturbance at the transition, and promoting directional movement of  
318 the ecotone into grasslands. Here, directional movement is not directly spurred by a shifting  
319 abiotic gradient, such as salinity or light. Instead, reduced variations in climate disrupt the  
320 equilibrium inherent to a shifting ecotone and prevent the expected reversals that maintain the  
321 long-term position of the ecotone.

322 Conversely, rising sea levels caused by global climate changes drive the accelerating  
323 migration of salt marshes into upland ecosystems (Schieder et al. 2018). As saltwater rises and  
324 moves inland, the salinity gradient that spans from salt marsh to coastal forest also shifts inland,  
325 creating an environment favorable for migration of salt marsh species into the forest (Smith  
326 2013; Muñoz-Rodriguez et al. 2017). As opposed to the grassland-shrubland and deep  
327 chlorophyll layer case studies, where an equilibrium is disturbed, the accelerated directional  
328 movement of the marsh-upland ecotone results from the acceleration of a preexisting pattern of  
329 movement within an existing environmental gradient.

330 Ecotones occur over a broad spectrum of temporal and spatial scales and are therefore  
331 subject to scale-dependent constraints and drivers. Although constraints at multiple scales are  
332 simultaneously driving ecotone dynamics (Gosz 1993), ecotone dynamics at broad spatial scales

333 (biome and landscape ecotone) are dominated by changes in climate and topography, as  
334 compared to smaller spatial scale ecotones (population and plant-soil ecotones), which are  
335 controlled by interspecies interactions and soil chemistry. Therefore, the strongest  
336 representations of climate change's influence on ecotone dynamics will be observed at the  
337 landscape scale and above. Temporally, changes in climate—especially anthropogenic  
338 changes—manifest over the decadal to centennial scale (Magnuson 1990). Meaningful  
339 examinations of the effects of climate on ecotone movement, and ecotone dynamics more  
340 generally, therefore necessitate a broad spatial scale and a multi-decadal or centennial temporal  
341 scale. Smaller-scale observations may exhibit patterns that are not representative of the long-  
342 term impacts of climate changes on ecotone movement. For example, short-term observations of  
343 variable ecotone position may indicate shifting movement at an ecotone that is actually moving  
344 directionally when examined over the decadal time scale. From this, it is evident that spatial and  
345 temporal scales of ecotone observation must align with the questions being asked and the drivers  
346 and constraints of ecotone dynamics being examined.

347 *Ecotone and adjacent ecosystem function*

348 In the presented case studies, changes in ecotone dynamics have the potential to reduce  
349 overall ecosystem function, though the mechanism of this reduction varies. As shifting ecotones  
350 become directional, the direction and rate of their movement, the encroaching ecosystem  
351 functionality, and the retreating ecosystem functionality will determine the change in ecosystem  
352 function at the landscape scale. The DCL case study emphasizes that, as ecotones become more  
353 variable in both ecotone area and presence, ecosystem functions—namely primary production—  
354 within these zones can diminish (Huisman et al. 2006).

355           The ecosystem function of a directional, migrating ecotone is likely to decrease as a  
356   mature system is replaced with a young ecosystem, which may require time for process rates to  
357   increase to those seen in mature systems (Greiner et al. 2013; Smith and Kirwan 2021).  
358   Additionally, directional ecotone movement can cause an overall reduction of functionality at the  
359   landscape scale when a low-functioning system replaces a high-functioning system, such as  
360   when seagrasses are replaced by bare sediment (Trevathan-Tackett et al. 2018). The transition  
361   from a low- to high-carbon burial system seen during directional mangrove encroachment  
362   emphasizes that net ecosystem functionality under novel landscape changes is dependent on both  
363   of the ecotones' adjacent ecosystems (Yando et al. 2016).

364           Because directional ecotones are constantly migrating and being displaced, the unique  
365   ecotone system must continually re-establish. The rate of migration thus determines the ability of  
366   the new ecotone to mature and reach its previous functionality. A slowly migrating ecotone is  
367   afforded time to mature, whereas rapid ecotone movement provides limited time to reach  
368   maturity before conversion to the adjacent ecosystem. Therefore, with accelerating rates of  
369   directional movement, such as those seen at the marsh-upland ecotone, mature ecotone  
370   functionality may never be reached before the ecotone is again displaced (Smith and Kirwan  
371   2021).

372           Directional ecotone migration also differs based on the structure, community  
373   composition, and land use of the retreating ecosystem on which it is encroaching. Ecotones with  
374   developed boundaries on one side, such as armored shorelines in the case of the marsh-upland  
375   ecotone, tend to be truncated or absent, with minimal opportunity for ecotone migration (Wasson  
376   et al. 2013; Gehman et al. 2018). For ecotones without anthropogenic or morphological  
377   boundaries, land use in the adjacent ecosystem still affects community composition of the

378 resulting ecotone (Anisfeld et al. 2017; Gedan and Fernandez-Pascual 2019). Because movement  
379 on the encroaching side of a directional ecotone is persistent, the upland boundary of the ecotone  
380 may influence areal extent and community composition as the ecotone migrates, possibly  
381 resulting in reductions in ecotone area or connectivity between adjacent ecosystems over time.  
382 Furthermore, invasive species, which often benefit from disturbance (Minchinton and Bertness  
383 2003; Smith 2013), may prevent an ecotone from maintaining its structure and functionality as it  
384 migrates.

385 *Suggestions for future research*

386 As shown in the case studies explored in this paper, ecotones are unique environments  
387 that rely on controlling factors imposed by both neighboring ecosystems and global changes.  
388 Because ecotones are unique environments distinct from the surrounding, adjacent ecosystems,  
389 they warrant their own assessments and exploration of ecosystem functions, especially in  
390 dynamic ecotones where climate changes alter movement patterns. The deep chlorophyll layer  
391 and grassland-shrubland case studies exemplify the increased net ecotone movement and local  
392 changes in ecotone function that may result from climate change. Likewise, the marsh-upland  
393 case study demonstrates the potential for faster directional ecotone movement with climate  
394 change. If the demonstrated effects of climate change on ecotone movement extend beyond the  
395 included case studies to more ecotones, it will be important to consider functions within all  
396 ecosystems involved—including not only the adjacent ecosystems, but changes at the ecotone  
397 itself. Additionally, ecotone shifts due to climate changes call for future studies to consider  
398 interactive effects between traditional ecotone disturbances, local conditions, and broader  
399 controlling factors, such as global climate, as well as influences of the secondary effects of  
400 climate change (e.g., changing wind patterns, seed dispersal, and animal migration).

401           In response to directional climate change (e.g., sea-level rise or precipitation changes),  
402   ecotone movement patterns may change, although this response is not uniform for all ecotones  
403   (Neilson 1993; Noble 1993). When environmental conditions fall out of equilibrium and one  
404   adjacent ecosystem outcompetes the other, shifting ecotones may become directional ecotones.  
405   Further, shifts in environmental gradients may cause directional ecotones to exhibit accelerated  
406   landscape-scale migration (Allen and Breshears 1998; Wasson et al. 2013; Gedan and  
407   Fernandez-Pascual 2019; Kirwan and Gedan 2019). Observing changes in ecotone dynamics  
408   may thus provide insight into the extent of climate change impacts on both ecotones and their  
409   adjacent ecosystems.

## 410   **CONCLUSION**

411           In the ecotone literature, studies in multiple environments—including aquatic, terrestrial,  
412   and ecosystems at the marine-terrestrial interface—show developing changes in ecotone  
413   movement at the landscape scale. Patterns of movement within the deep chlorophyll layer,  
414   grassland-shrubland, and salt marsh-upland ecotones suggest that climate change may drive  
415   changes in the movement patterns of ecotones, specifically shifting ecotone dynamics toward  
416   greater and more directional movement. This may occur through increases in climate variability  
417   (e.g., greater annual temperature variation) that change the seasonal dynamics of ecotones,  
418   unidirectional climate shifts (e.g., prolonged drought) that reduce reversals in shifting ecotone  
419   movement, or directional movement of abiotic gradients (e.g., salinity) that propagates  
420   accelerated directional ecotone movement. Future studies should consider this pattern in  
421   additional ecotones and as caused by additional climate drivers not discussed here. Future work  
422   should also examine ecosystem function in ecotones and their adjacent ecosystems, as increased

423 directional movement may lead to changes in function, and predicted climate changes will likely  
424 accelerate ecotone displacement.

425 REFERENCES:

426

427 Abbott MR, Denman KL, Powell TM, Richerson PJ, Richards RC, Goldman CR (1984) Mixing  
428 and the dynamics of the deep chlorophyll maximum in Lake Tahoe. *Limnol Oceanogr*  
429 29:862-878. <https://doi.org/10.4319/lo.1984.29.4.0862>

430

431 Allen CD, Breshears DD (1998) Drought-induced shift of a forest–woodland ecotone: rapid  
432 landscape response to climate variation. *Proc Natl Acad Sci* 95:14839-14842.  
433 <https://doi.org/10.1073/pnas.95.25.14839>

434

435 Anderson RC (2006) Evolution and origin of the central grassland of North America: climate,  
436 fire, and mammalian grazers. *J Torrey Bot Soc* 133:626-647.  
437 [https://doi.org/10.3159/1095-5674\(2006\)133\[626:EAOOTC\]2.0.CO;2](https://doi.org/10.3159/1095-5674(2006)133[626:EAOOTC]2.0.CO;2)

438

439 Anisfeld S, Cooper K, Kemp A (2017) Upslope development of a tidal marsh as a function of  
440 upland land use. *Glob Chang Biol* 23:755-766. <https://doi.org/10.1111/gcb.13398>

441

442 Archer SR, Anderson EM, Predick KI, Schwinnig S, Steidl RJ, Woods SR (2017) Woody plant  
443 encroachment: causes and consequences. In: Briske D (ed) *Rangeland systems*, Springer,  
444 Cham, pp 25-84. [https://doi.org/10.1007/978-3-319-46709-2\\_2](https://doi.org/10.1007/978-3-319-46709-2_2)

445

446 Auer MT, Powell KD (2004) Heterotrophic bacterioplankton dynamics at a site off the southern  
447 shore of Lake Superior. *J Great Lakes Res* 30:214-229. [https://doi.org/10.1016/S0380-1330\(04\)70387-1](https://doi.org/10.1016/S0380-1330(04)70387-1)

449

450 Barbiero RP, Tuchman ML (2004) The deep chlorophyll maximum in Lake Superior. *J Great  
451 Lakes Res* 30:256-268.

452

453 Bestelmeyer BT, Khalil NI, Peters DP (2007) Does shrub invasion indirectly limit grass  
454 establishment via seedling herbivory? A test at grassland-shrubland ecotones. *J Veg Sci*  
455 18:363-371. <https://doi.org/10.1111/j.1654-1103.2007.tb02548.x>

456

457 Bird DF, Kalff J (1989) Phagotrophic sustenance of a metalimnetic phytoplankton peak. *Limnol  
458 Oceanogr* 34:155-162. <https://doi.org/10.4319/lo.1989.34.1.0155>

459

460 Bopp L, Monfray P, Aumont O, Dufresne JL, Le Treut H, Madec G, Terray L, Orr JC (2001)  
461 Potential impact of climate change on marine export production. *Global Biogeochem  
462 Cycles* 15:81-99. <https://doi.org/10.1029/1999GB001256>

463

464 Caputi N, De Lestang S, Frusher S, Wahle RA (2013) The impact of climate change on exploited  
465 lobster stocks. In: Phillips BF (ed) *Lobsters: biology, management, aquaculture and  
466 fisheries*. pp 84-112. <https://doi.org/10.1002/9781118517444.ch4>

467

468 Coldren GA, Langley JA, Feller IC, Chapman SK (2018) Warming accelerates mangrove  
469 expansion and surface elevation in a subtropical wetland. *J Ecol* 107:79-90.  
470 <http://doi.org/10.1111/1365-2745.13049>

471  
472 Connell LC, Scasta JD, Porensky LM (2018) Prairie dogs and wildfires shape vegetation  
473 structure in a sagebrush grassland more than does rest from ungulate grazing. *Ecosphere*  
474 9:e02390. <https://doi.org/10.1002/ecs2.2390>

475  
476 Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a.  
477 *Can J Fish Aquat Sci* 39:791-803. <https://doi.org/10.1139/f82-108>

478  
479 Cullen JJ (2015) Subsurface chlorophyll maximum layers: enduring enigma or mystery solved?  
480 *Ann Rev Mar Sci* 7:207-239. <https://doi.org/10.1146/annurev-marine-010213-135111>

481  
482 D'Odorico P, Fuentes JD, Pockman WT, Collins SL, He Y, Medeiros JS, DeWekker S, Litvak  
483 ME (2010) Positive feedback between microclimate and shrub encroachment in the  
484 northern Chihuahuan desert. *Ecosphere* 1:1-11. <https://doi.org/10.1890/ES10-00073.1>

485  
486 Deaton CD, Hein CJ, Kirwan ML (2017) Barrier island migration dominates ecogeomorphic  
487 feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. *Geology*  
488 45:123-126. <https://doi.org/10.1130/G38459.1>

489  
490 Delcourt PA, Delcourt HR (1992) Ecotone dynamics in space and time. In: Hansen AJ, di Castri  
491 F (eds) *Landscape boundaries*. Springer, New York, pp 19-54.  
492 [https://doi.org/10.1007/978-1-4612-2804-2\\_2](https://doi.org/10.1007/978-1-4612-2804-2_2)

493  
494 Donnelly JP, Bertness MD (2001) Rapid shoreward encroachment of salt marsh cordgrass in  
495 response to accelerated sea-level rise. *Proc Natl Acad Sci* 98:14218-14223  
496 <https://doi.org/10.1073/pnas.251209298>

497  
498 Duniway MC, Snyder KA, Herrick JE (2010) Spatial and temporal patterns of water availability  
499 in a grass–shrub ecotone and implications for grassland recovery in arid  
500 environments. *Ecohydrology* 3:55-67 <https://doi.org/10.1002/eco.94>

501  
502 Epstein PR, Diaz HF, Elias S, Grabherr G, Graham NE, Martens WJM, Mosley-Thompson E,  
503 Susskind J (1998) Biological and physical signs of climate change: focus on mosquito-  
504 borne diseases. *Bull Am Meteorol Soc* 79:409-418. [https://doi.org/10.1175/1520-0477\(1998\)079<0409:BAPSOC>2.0.CO;2](https://doi.org/10.1175/1520-0477(1998)079<0409:BAPSOC>2.0.CO;2)

506  
507 Estrada M, Marrasé C, Latasa M, Berdalet E, Delgado M, Riera T (1993) Variability of deep  
508 chlorophyll maximum characteristics in the Northwestern Mediterranean. *Mar Ecol Prog Ser*  
509 92:289-300. <https://doi.org/10.3354/meps092289>

510  
511 Fagherazzi S, Anisfeld SC, Blum LK, Long EV, Feagin RA, Fernandes A, Kearney WS,  
512 Williams K (2019) Sea level rise and the dynamics of the marsh-upland boundary. *Front Environ Sci* 7:1-18. <https://doi.org/10.3389/fenvs.2019.00025>

514

515 Fee EJ (1976) The vertical and seasonal distribution of chlorophyll in lakes of the Experimental  
516 Lakes Area, northwestern Ontario: Implications for primary production estimates. *Limnol*  
517 *Oceanogr* 21:767-783. <https://doi.org/10.4319/lo.1976.21.6.0767>

518

519 Forman RT, Moore PN (1992) Theoretical foundations for understanding boundaries in  
520 landscape mosaics. In: Hansen AJ, di Castri F (eds) *Landscape boundaries*. (pp. 236-  
521 258). Springer, New York, pp 236-258. [https://doi.org/10.1007/978-1-4612-2804-2\\_11](https://doi.org/10.1007/978-1-4612-2804-2_11)

522

523 Fuhlendorf SD, Harrell WC, Engle DM, Hamilton RG (2006) Should heterogeneity be the basis  
524 for conservation? Grassland bird response to fire and grazing. *Ecol Appl* 16:1706-1716.  
525 [https://doi.org/10.1890/1051-0761\(2006\)016\[1706:SHBTBF\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2006)016[1706:SHBTBF]2.0.CO;2)

526

527 Gedan K, Fernández-Pascual E (2019) Salt marsh migration into salinized agricultural fields: a  
528 novel assembly of plant communities. *J Veg Sci* 30: 1007-1016.  
529 <https://doi.org/10.1111/jvs.12774>

530

531 Gehman AM, McLenaghan NA, Byers JE, Alexander CR, Pennings SC, Alber M (2018) Effects  
532 of small-scale armoring and residential development on the salt marsh-upland ecotone.  
533 *Estuaries Coast* 41:S54-S67. <https://doi.org/10.1007/s12237-017-0300-8>

534

535 Goldblum D, Rigg LS (2005). Tree growth response to climate change at the deciduous boreal  
536 forest ecotone, Ontario, Canada. *Can J For Res* 35:2709-2718. <https://doi.org/10.1139/x05-185>

538

539 Gonzalez P, Neilson RP, Lenihan JM, Drapek RJ (2010) Global patterns in the vulnerability of  
540 ecosystems to vegetation shifts due to climate change. *Glob Ecol Biogeogr* 19:755-768.  
541 <https://doi.org/10.1111/j.1466-8238.2010.00558.x>

542

543 Gosz JR (1993) Ecological hierarchies. *Ecol Appl* 3:369-376. <https://doi.org/10.2307/1941905>

544

545 Greiner JT, McGlathery KJ, Gunnell J, McKee BA (2013) Seagrass restoration enhances “blue  
546 carbon” sequestration in coastal waters. *PLoS One* 8:e72469.  
547 <https://doi.org/10.1371/journal.pone.0072469>

548

549 Horton BP, Shennan I, Bradley SL, Cahill N, Kirwan M, Kopp RE, Shaw TA (2018) Predicting  
550 marsh vulnerability to sea-level rise using Holocene relative sea-level data. *Nat Commun*  
551 9:1-7. <https://doi.org/10.1038/s41467-018-05080-0>

552

553 Horváth A, March IJ, Wolf JH (2001) Rodent diversity and land use in Montebello, Chiapas,  
554 Mexico. *Stud Neotrop Fauna Environ* 36:169-176. <https://doi.org/10.1076/snfe.36.3.169.2130>

556

557 Huisman J, Pham Thi NN, Karl DM, Sommeijer B (2006) Reduced mixing generates oscillations  
558 and chaos in the oceanic deep chlorophyll maximum. *Nature* 439:322-325.  
559 <https://doi.org/10.1038/nature04245>

560

561 Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface  
562 water quality. *Crit Rev Environ Sci Technol* 21:491-565.  
563 <https://doi.org/10.1080/10643389109388425>

564

565 Jorgensen EE, Demarais S, Monasmith T (2000) Rodent habitats in a Chihuahuan Desert/desert  
566 plains grassland ecotone. *Tex J Sci* 52:303-312.

567

568 Junior NA, Meirelles PM, de Oliveira Santos E, Dutilh B, Silva GG, Paranhos R, Kruger, RH  
569 (2015) Microbial community diversity and physical-chemical features of the  
570 Southwestern Atlantic Ocean. *Arch Microbiol* 197:165-179.  
571 <https://doi.org/10.1007/s00203-014-1035-6>

572

573 Kimor B, Berman T, Schneller A (1987) Phytoplankton assemblages in the deep chlorophyll  
574 maximum layers off the Mediterranean coast of Israel. *J Plankton Res* 9:433-443.  
575 <https://doi.org/10.1093/plankt/9.3.433>

576

577 Kirwan ML, Gedan KB (2019) Sea-level driven land conversion and the formation of ghost  
578 forests. *Nat Clim Chang* 9:450-457. <https://doi.org/10.1038/s41558-019-0488-7>

579

580 Kolasa J, Zalewski M (1995) Notes on ecotone attributes and functions. *Hydrobiologia* 303:1-7.  
581 <https://doi.org/10.1007/BF00034039>

582

583 Körner C (1998) A re-assessment of high elevation treeline positions and their explanation.  
584 *Oecologia* 115:445-459. <https://doi.org/10.1007/s004420050540>

585

586 Kupfer JA, Cairns DM (1996) The suitability of montane ecotones as indicators of global  
587 climatic change. *Prog Phys Geogr* 20:253-272.  
588 <https://doi.org/10.1177/030913339602000301>

589

590 Letelier RM, Karl DM, Abbott MR, Bidigare RR (2004) Light driven seasonal patterns of  
591 chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical  
592 Gyre. *Limnol Oceanogr* 49:508-519. <https://doi.org/10.4319/lo.2004.49.2.0508>

593

594 Lloyd KM, McQueen AA, Lee BJ, Wilson RC, Walker S, Wilson JB (2000) Evidence on  
595 ecotone concepts from switch, environmental and anthropogenic ecotones. *J Veg Sci*  
596 11:903-910. <https://doi.org/10.2307/3236560>

597

598 Longhurst A (2006) Ecological geography of the sea, 2nd ed. Elsevier Science Publishers, New  
599 York.

600

601 Macías D, Stips A, Garcia-Gorriz E (2014) The relevance of deep chlorophyll maximum in the  
602 open Mediterranean Sea evaluated through 3D hydrodynamic-biogeochemical coupled  
603 simulations. *Ecol Modell* 281:26-37. <https://doi.org/10.1016/j.ecolmodel.2014.03.002>

604

605 Maher EL, Germino MJ, Hasselquist NJ (2005) Interactive effects of tree and herb cover on  
606 survivorship, physiology, and microclimate of conifer seedlings at the alpine tree-line  
607 ecotone. *Can J For Res* 35:567-574. <https://doi.org/10.1139/X04-201>

608

609 Martínez-Soto KS, Johnson DS (2020) The density of the Atlantic marsh fiddler crab (*Minuca*  
610 *pugnax*, Smith, 1870)(Decapoda: Brachyura: Ocypodidae) in its expanded range in the  
611 Gulf of Maine, USA. *J Crustac Biol* 40:544-548. <https://doi.org/10.1093/jcobiol/ruaa049>

612

613 Masubelele ML, Hoffman MT, Bond WJ, Gambiza J (2014) A 50 year study shows grass cover  
614 has increased in shrublands of semi-arid South Africa. *J Arid Environ* 104:43-  
615 51. <https://doi.org/10.1016/j.jaridenv.2014.01.011>

616

617 McGranahan DA, Engle DM, Fuhlendorf SD, Winter SJ, Miller JR, Debinski DM (2012) Spatial  
618 heterogeneity across five rangelands managed with pyric-herbivory. *J Appl Ecol* 49:903-  
619 910. <https://doi.org/10.1111/j.1365-2664.2012.02168.x>

620

621 Minchinton TE, Bertness, MD (2003) Disturbance-mediated competition and the spread of  
622 *Phragmites australis* in a coastal marsh. *Ecol Appl* 13:1400-  
623 1416. <https://doi.org/10.1890/02-5136>

624

625 Moreno-de las Heras M, Turnbull L, Wainwright J (2016) Seed-bank structure and plant-  
626 recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan  
627 ecotone. *Ecology* 97:2303-2318. <https://doi.org/10.1002/ecy.1446>

628

629 Muñoz-Rodríguez AF, Sanjosé I, Márquez-García B, Infante-Izquierdo MD, Polo-Ávila A,  
630 Nieva FJJ, Castillo JM (2017) Germination syndromes in response to salinity of  
631 Chenopodiaceae halophytes along the intertidal gradient. *Aquat Bot* 139:48-56.  
632 <https://doi.org/10.1016/j.aquabot.2017.02.003>

633

634 Naiman RJ, Décamps H, Pastor J, Johnston CA (1988) The potential importance of boundaries  
635 of fluvial ecosystems. *J North Am Benthol Soc* 7:289-306.  
636 <https://doi.org/10.2307/1467295>

637

638 Naito AT, Cairns DM (2011) Patterns and processes of global shrub expansion. *Prog Phys Geogr*  
639 35:423-442. <https://doi.org/10.1177/0309133311403538>

640

641 Neilson RP (1993) Transient ecotone response to climatic change: some conceptual and  
642 modelling approaches. *Ecol Appl* 3:385-395. <https://doi.org/10.2307/1941907>

643

644 Noble IR (1993) A model of the responses of ecotones to climate change. *Ecol Appl* 3:396-403.  
645 <https://doi.org/10.2307/1941908>

646

647 Novellie PA, Bezuidenhout H (1994) The influence of rainfall and grazing on vegetation changes  
648 in the Mountain Zebra National Park. *Afr J Wildl Res* 24:60-71.

649

650 O'Connor TG, Roux PW (1995) Vegetation changes (1949-71) in a semi-arid, grassy dwarf  
651 shrubland in the Karoo, South Africa: influence of rainfall variability and grazing by  
652 sheep. *J Appl Ecol* 32:612-626. <https://doi.org/10.2307/2404657>

653

654 Pennings S, Callaway R (1992) Salt marsh plant zonation: the relative importance of competition  
655 and physical factors. *Ecology* 73:681-690. <https://doi.org/10.2307/1940774>

656

657 Peters DPC (2002) Plant species dominance at a grassland-shrubland ecotone: an individual-  
658 based gap dynamics model of herbaceous and woody species. *Ecol Modell* 152:5-32.  
659 [https://doi.org/10.1016/S0304-3800\(01\)00460-4](https://doi.org/10.1016/S0304-3800(01)00460-4)

660

661 Peters DPC, Gosz J, Pockman WT, Small EE, Parmenter RR, Collins SL, Muldavin E (2006)  
662 Integrating patch and boundary dynamics to understand and predict biotic transitions at  
663 multiple scales. *Landsc Ecol* 21:19-33. <https://doi.org/10.1007/s10980-005-1063-3>

664

665 Pockman WT, Small EE (2010) The influence of spatial patterns of soil moisture on the grass  
666 and shrub responses to a summer rainstorm in a Chihuahuan Desert ecotone. *Ecosystems*  
667 13:511-525. <https://doi.org/10.1007/s10021-010-9337-2>

668

669 Pollehn F, Klein B, Zeitzschel, B (1993) Low light adaptation and export production in the deep  
670 chlorophyll maximum layer in the northern Indian Ocean. *Deep Sea Res 2 Top Stud  
671 Oceanogr* 40:737-752. [https://doi.org/10.1016/0967-0645\(93\)90055-R](https://doi.org/10.1016/0967-0645(93)90055-R)

672

673 Porensky LM, Mueller KE, Augustine DJ, Derner JD (2016) Thresholds and gradients in a semi-  
674 arid grassland: long-term grazing treatments induce slow, continuous and reversible  
675 vegetation change. *J Appl Ecol* 53:1013-1022. <https://doi.org/10.1111/1365-2664.12630>

676

677 Ratajczak Z, Nippert JB, Briggs JM, Blair JM (2014) Fire dynamics distinguish grasslands,  
678 shrublands and woodlands as alternative attractors in the Central Great Plains of North  
679 America. *J Ecol* 102:1374-1385. <https://doi.org/10.1111/1365-2745.12311>

680

681 Reinal KL, Sterner RW, Austin JA (2020) Seasonality and physical drivers of deep chlorophyll  
682 layers in Lake Superior, with implications for a rapidly warming lake. *J Great Lakes Res*  
683 46:1615-1624. <https://doi.org/10.1016/j.jglr.2020.09.008>

684

685 Ribalet F, Marchetti A, Hubbard KA, Brown K, Durkin CA, Morales R, Robert M, Swalwell JE,  
686 Tortell PD, Armbrust EV (2010) Unveiling a phytoplankton hotspot at a narrow  
687 boundary between coastal and offshore waters. *Proc Natl Acad Sci* 107:16571-16576.  
688 <https://doi.org/10.1073/pnas.1005638107>

689

690 Risser PG (1995) The status of the science examining ecotones: a dynamic aspect of landscape is  
691 the area of steep gradients between more homogeneous vegetation associations.  
692 *BioScience* 45:318-325. <https://doi.org/10.2307/1312492>

693

694 Roux PW (1966) The effects of seasonal rainfall and grazing on mixed Karoo veld. *Afr J Range  
695 Forage Sci* 1:103-110.

696  
697 Rutherford MC, Powrie LW, Husted LB (2012) Plant diversity consequences of a herbivore-  
698 driven biome switch from Grassland to shrub steppe in South Africa. *Appl Veg  
699 Sci* 15:14-25. <https://doi.org/10.1111/j.1654-109X.2011.01160.x>

700  
701 Saintilan N, Wilson NC, Rogers K, Rajkaran A, Krauss KW (2014) Mangrove expansion and  
702 salt marsh decline at mangrove poleward limits. *Glob Chang Biol* 20:147-157.  
703 <https://doi.org/10.1111/gcb.12341>

704  
705 Sanchez B, Parmenter R (2002) Patterns of shrub-dwelling arthropod diversity across a desert  
706 shrubland-grassland ecotone: a test of island biogeographic theory. *J Arid Environ  
707* 50:247-265. <https://doi.org/10.1006/jare.2001.0920>

708  
709 Santelmann MV, Boisjolie BA, Flitcroft R, Gomez M (2019) Relationships between salt marsh  
710 vegetation and surface elevation in Coos Bay Estuary, Oregon. *Northwest Sci* 93:137-  
711 154. <https://doi.org/10.3955/046.093.0205>

712  
713 Schieder NW, Kirwan ML (2019) Sea-level driven acceleration in coastal forest retreat. *Geology*  
714 47:1151-1155. <https://doi.org/10.1130/G46607.1>

715  
716 Schieder NW, Walters DC, Kirwan ML (2018) Massive upland to wetland conversion  
717 compensated for historical marsh loss in Chesapeake Bay, USA. *Estuaries Coast* 41:940-  
718 951. <https://doi.org/10.1007/s12237-017-0336-9>

719  
720 Schooley RL, Bestelmeyer BT, Campanella A (2018) Shrub encroachment, productivity pulses,  
721 and core-transient dynamics of Chihuahuan Desert rodents. *Ecosphere*  
722 9:e02330. <https://doi.org/10.1002/ecs2.2330>

723  
724 Senft AR (2009) Species diversity patterns at ecotones. <https://doi.org/10.17615/20k5-yb32>

725  
726 Shiponeni N, Allsopp N, Carrick PJ, Hoffman MT (2011) Competitive interactions between  
727 grass and succulent shrubs at the ecotone between an arid grassland and succulent  
728 shrubland in the Karoo. *Plant Ecol* 212:795-808. <https://doi.org/10.1007/s11258-010-9864-0>

729  
730 Smith JAM (2013) The role of *Phragmites australis* in mediating inland salt marsh migration in a  
731 mid-Atlantic estuary. *PLoS ONE* 8:e65091. <https://doi.org/10.1371/journal.pone.0065091>

732  
733 Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating  
734 rainforest biodiversity. *Science* 276:1855-1857.  
735 <https://doi.org/10.1126/science.276.5320.1855>

736  
737 Smith AJ, Kiwan ML (2021) Sea-level driven marsh migration results in rapid net loss of carbon.  
738 *Geophys Res Lett.* <https://doi.org/10.1029/2021GL092420>

739  
740  
741

742 Theuerkauf EJ, Rodriguez AB (2017) Placing barrier-island transgression in a blue-carbon  
743 context. *Earth's Future* 5:789-810. <https://doi.org/10.1002/2017EF000568>

744

745 Traut B (2005) The role of coastal ecotones: a case study of the salt marsh/upland transition zone  
746 in California. *J Ecol* 93:279-290. <https://doi.org/10.1111/j.1365-2745.2005.00969.x>

747

748 Trevathan-Tackett SM, Wessel C, Cebrián J, Ralph PJ, Masqué P, & Macreadie PI (2018)  
749 Effects of small-scale, shading-induced seagrass loss on blue carbon storage: implications  
750 for management of degraded seagrass ecosystems. *J Appl Ecol* 55:1351-1359.  
751 <https://doi.org/10.1111/1365-2664.13081>

752

753 van der Maarel E (1990) Ecotones and ecoclines are different. *J Veg Sci* 1:135–138.  
754 <https://doi.org/10.2307/3236065>

755

756 Veldkornet DA, Adams JB, Potts AJ (2015) Where do you draw the line? Determining the  
757 transition thresholds between estuarine salt marshes and terrestrial vegetation. *S Afr J Bot*  
758 101:153-159. <https://doi.org/10.1016/j.sajb.2015.05.003>

759

760 Vetter S (2009) Drought, change and resilience in South Africa's arid and semi-arid rangelands.  
761 *S Afr J Sci* 105:29-33. <https://doi.org/10.4102/sajs.v105i1/2.35>

762

763 Wang H, Cai Y, Yang Q, Gong Y, Lv G (2019) Factors that alter the relative importance of  
764 abiotic and biotic drivers on the fertile island in a desert-oasis ecotone. *Sci Total  
765 Environ* 697:134096. <https://doi.org/10.1016/j.scitotenv.2019.134096>

766

767 Wasson K, Woolfolk A, Fresquez C (2013) Ecotones as indicators of changing environmental  
768 conditions: rapid migration of salt marsh-upland boundaries. *Estuaries Coast* 36:654-664.  
769 <https://doi.org/10.1007/s12237-013-9601-8>

770

771 Yando ES, Osland MJ, Willis JM, Day RH, Krauss KW, Hester MW (2016) Salt marsh-  
772 mangrove ecotones: using structural gradients to investigate the effects of woody plant  
773 encroachment on plant-soil interactions and ecosystem carbon pools. *J Ecol* 10:1020-  
774 1031. <https://doi.org/10.1111/1365-2745.12571>

775

776 Yvon-Durocher G, Montoya JM, Trimmer M, Woodward G (2011) Warming alters the size  
777 spectrum and shifts the distribution of biomass in freshwater ecosystems. *Glob Chang  
778 Biol* 17:1681-1694. <https://doi.org/10.1111/j.1365-2486.2010.02321.x>