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Abstract—The need for higher energy efficiency has resulted
in the proliferation of accelerators across platforms, with custom
and reconfigurable accelerators adopted in both edge devices
and cloud servers. However, existing solutions fall short in
providing accelerators with low-latency, high-bandwidth access
to the working set and suffer from the high latency and
energy cost of data transfers. Such costs can severely limit
the smallest granularity of the tasks that can be accelerated
and thus the applicability of the accelerators. In this work, we
present FReaC Cache, a novel architecture that natively supports
reconfigurable computing in the last level cache (LLC), thereby
giving energy-efficient accelerators low-latency, high-bandwidth
access to the working set. By leveraging the cache’s existing
dense memory arrays, buses, and logic folding, we construct a
reconfigurable fabric in the LLC with minimal changes to the
system, processor, cache, and memory architecture. FReaC Cache
is a low-latency, low-cost, and low-power alternative to off-die/off-
chip accelerators, and a flexible, and low-cost alternative to fixed
function accelerators. We demonstrate an average speedup of 3X
and Perf/W improvements of 6.1X over an edge-class multi-core
CPU, and add 3.5% to 15.3% area overhead per cache slice.

Index Terms—Reconfigurable Computing, Near Memory Ac-
celeration, In Cache Computing, Logic Folding

I. INTRODUCTION

The end of Dennard scaling [1]-[4] has prompted a paradigm
shift in processor design, with architects increasingly looking to
specialized accelerators for improved performance and energy
efficiency [5]-[13]. The use of off-die, and off-chip accelerators,
in both data centers and edge devices [10], [14], [15], continues
to grow, as exemplified by the increasing adoption of GPUs,
FPGAs, and ASICs. However, where to place these accelerators
and how to deliver data to them remain as research questions.
For example, PCle-attached accelerators access data in the
system memory at limited bandwidth, e.g. 16GB/s in PCle
3.0 x16, and PCle system drivers incur tens of thousands of
instructions per accelerator transaction [16], translating into
longer latency and lost bandwidth. As a result, each DMA
transfer can cost between lus and 160us [17]. Furthermore,
PCle-attached cards draw additional power, with a recent study
noting that a PCle-attached FPGA drew 12 W when idle [18].
In edge computing scenarios, working set sizes can be small
enough that the time and energy spent shuttling data back and
forth render off-chip and off-die accelerators undesirable for
many applications.

The widening gap between on-chip and off-chip memories
is another important factor. For example, fetching data from

off-chip DRAM takes 56ns [19] and consumes 28 to 45 pJ/bit
(40nm). In contrast, reading 16bits from an on-chip 32K-word
SRAM array costs 11pJ [20]. The widening gap has prompted
the exploration of placing accelerators closer to memory
[21]-[26]. However, these near memory accelerators (NMA)
have traditionally faced many challenges, including: DRAM
technology process limits, program transparency, flexibility and
sheer design complexity.

When we consider the fast evolving nature of workloads, and
the rising design, engineering and verification costs that often
make custom ASIC/SoC with on-chip accelerators undesirable,
we see that there is a need for a fast, energy-efficient, and
programmable reconfigurable computing architecture.

To address these challenges, we seek to provide a middle
ground between energy efficiency, cost, and performance, in a
manner that introduces limited changes to existing system,
processor, and memory architectures. We present FReaC
Cache (Folded-logic Reconfigurable Computing in Cache), a
reconfigurable computing architecture that leverages existing
structures in the last-level cache to build accelerators, thereby
bringing flexible, configurable, cheap, and energy-efficient
computation closer to memory. FReaC Cache partitions the
last level cache (LLC) and uses a portion of the LLC’s dense
memory arrays to build reconfigurable logic in the form of
look-up tables (LUTs). Along with limited logic structures,
FReaC Cache uses the LUT arrays with logic folding [27] to
implement several micro compute clusters, each of which is a
very small, but dense, computational unit. In doing so, FReaC
Cache is able to provide on-demand reconfigurable accelerators,
with access to the large bandwidth available at the LLC, yet
without the need to move data and configuration off-chip. Thus
FReaC Cache is able to provide better end-to-end performance
and power, at much lower cost, when compared to off-chip
accelerators. FReaC Cache partitions are flexible, allowing the
user to choose how much of LLC to use for computation, with
the rest remaining as a cache.

In this work, we focus on introducing the ideas and principles
of FReaC Cache by incorporating it into the LLC of existing
processor architectures, without significant modifications to
other parts of the processor, and propose its use for edge
devices that require low-cost and low-power acceleration for
fine-grained tasks across a diverse group of applications. Our
goal is to offload small but important kernels that would benefit
from customized accelerator logic, and the high throughput
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and high bandwidth of FReaC Cache. FReaC Cache can be
incorporated into existing or new processor architectures and is
not limited to any particular core micro-architecture, instruction
set, or application domain.

In contrast to processing in memory (PIM) and NMA, FReaC
Cache provides a less invasive solution, while still having ample
bandwidth available at the LLC. Where PIM architectures
attempt to perform in-situ processing of data in memory [22]-
[26], [28], [29] by either adding additional computational units
or manipulating data within the memory arrays, FReaC Cache
uses SRAM structures in the LLC to build computational units,
without modifying the memory arrays. Thus, FReaC Cache
preserves the density and timing of the existing memory arrays,
and also limits design costs. In contrast to NMA systems
that seek to place computation adjacent to DRAM banks,
chips or even in the DRAM controller, FReaC Cache sits
farther away from main memory. However, most NMA and
PIM approaches require some change to the host processor in
order to communicate with the added accelerator via custom
instructions in the ISA [21], [23], [24], [30]. ISA changes
are not trivial, and changes to the core frontend are often
accompanied by a large amount of design verification effort. In
FReaC Cache we avoid the addition of any custom instructions
or ISA modifications. Rather, we only use loads and stores
to reserved address ranges to communicate with the in-cache
accelerator. This style of communication is possible due to the
core’s proximity and relatively low latency access to the LLC.

The need for flexible, low-cost, low-power, and high-
performance accelerators is further exacerbated by growing
demands for processing at the edge,' and the evolving nature of
workloads makes programmability of prime importance. While
many accelerator solutions are programmable [21]-[23], [31],
most of them are still domain specific [8], [24], [30], [32].
Such accelerators cannot be modified easily to adapt to the
fast-evolving algorithms. Take, for example, computer vision.
The winning team of ImageNet 2010 [33] used SIFT (Scale-
invariant feature transform) and LBP (local binary patterns),
whereas the introduction of AlexNet [34] in 2012 prompted
a dramatic shift in the domain towards deep neural networks.
However, within the sub-domain of deep neural networks,
we observe a constant evolution in the algorithms and their
requirements. Thus, we submit that in this environment of
changing algorithms, a reconfigurable accelerator fabric is
ideal, and FReaC Cache strives to provide this flexible fabric.

We position FReaC Cache as a low-cost, low-latency, and
low-power alternative to off-die/off-chip accelerators, and a
flexible and low-cost alternative to on-chip fixed function
accelerators. We use cheap structures to provide acceleration
on-demand, and focus on cost and energy sensitive scenarios
such as edge-computing.

'While FReac Cache is highly energy-efficient, we do not consider ultra-low
power devices, such as wearables, in this work. Rather, we focus on processors
such as the Samsung Exynos 9810, Apple A12X, Nvidia Tegra Xavier, and
Intel desktop/mobile SoCs, with 4 to 8 cores, operating at clock frequencies
of 2 to 4GHz, and running machine learning, data processing, and security
apps at the edge.

Fig. 1. Cache slice architecture. Data arrays (DA) shown in green, and
Tag/State arrays shown in yellow.
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Fig. 2. Sub-array (SA) organization

Our key contributions are:

« We introduce a cache-based reconfigurable computing
architecture, FReaC Cache.

We describe the circuit and architectural components
needed to build look-up tables (LUTSs) using the existing
memory arrays in the LLC.

Our architecture provides very high logic density, when
compared to modern FPGAs, and is capable of high-speed
dynamic reconfiguration.

We demonstrate that FReaC Cache achieves average
speedups of 3X, and average Perf/W improvements of
6.1X, when compared to a modern CPUs, and adds only
3.5% to 15.3% of area overhead to the LLC slice.

Our paper begins with a background discussion in Sec. II.
We then present FReaC Cache in Sec. III and 1V, after
which we present our evaluation in Sec. V. Sec. VI provides
additional insight, before we discuss related work in Sec. VII,
and conclude in Sec. VIIL

II. BACKGROUND

Last Level Cache Design: Modern last level caches are
designed for very large capacities. Hence, most modern chip
multi-processors use a distributed LLC NUCA (Non-Uniform
Cache Architecture) design [35], with the cache being split into
many slices, one per-core or per-core-cluster. These slices are
organized around a central interconnect that provides high
bandwidth between the cores and all the slices [36]-[38].
Memory addresses are interleaved across slices, and cores
may access any slice. However, cores may experience non-
uniform latency depending on the slice’s distance, due to the
use of interconnects, such as ring busses [36]. Over the last
few generations, LLC architecture has not changed much [36],
[38], [39], maintaining its distributed slice architecture, from
older bulk designs [40]. We demonstrate our design using the
sliced LLC architecture described by Huang et al. [36].

Fig. 1 illustrates the organization of a 20-way associative
2.5MB cache slice [36]. The slice is comprised of multiple data
arrays, organized in a tiled fashion in four quadrants. Each way
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Fig. 3. (a) FPGA architecture. (b) CLB design. (c) SRAM based 3-LUT.

is comprised of a single data array (DA) from each quadrant;
i.e. each way is comprised of four data arrays (DA), along
with a Tag/State and CV(valid)/LRU array. A control box unit
sits in the middle of the cache slice, and is responsible for
all control operations, coherence and interconnect interfacing.
Each 32KB data array is comprised of two 16KB sub-arrays,
each with a 32bit port. Fig. 2 presents the micro-architecture of
the sub-array (SA). For simplicity, we do not show redundant
rows and columns. The sub-array is comprised of 32 biz-slices,
each of which contributes 1 bit to the subarray output, and is
comprised of two chunks. While the sliced LLC architecture
described by Huang et al. [36] was presented in the context
of a Xeon ES5 server processor, the sliced LLC design style
is widely used in low-power, edge-class processors such as
Samsung Exynos SoCs. That is, the ideas presented in this
work lend themselves to any modern LLC architecture that
uses a slice-based design, and are not restricted to server-class
processors. In this work, we consider an architecture, with
sub-arrays of 8KB, for a total slice capacity of 1.25MB.

With this architecture in mind we present four observations.
(1) the organization of the sub-arrays, makes introducing any
new logic inside the cache data arrays very expensive. (2)
Sub-arrays in a way operate in lock-step, accessing their cells
in parallel. (3) Since cache lines are not interleaved between
data arrays of multiple ways, individual ways can be accessed,
modified, and even powered down independently. (4) While
cache accesses can take several cycles, individual data array
operations are only 1 to 2 cycles, and bit line sensing is 1
cycle long [36]. Data arrays in a way share a data bus, thus
serializing cache line reads and writes.

Reconfigurable Architectures: Field programmable gate
arrays (FPGAs) are virtually synonymous with reconfigurable
computing, and can be implemented in several ways. Typically,
an FPGA is comprised of an array of logic blocks, i.e. Con-
figurable Logic Blocks (CLBs), organized in an island layout
with programmable routing structures, such as switch boxes
(SB) and connection boxes (CB), providing the interconnect
between each tile, as shown in Fig. 3. The CLBs are comprised
of several basic logic elements (BLEs), each of which includes
a look-up table (LUT) and a flip-flop. Modern FPGAs include
special IO (input/output), DSP, and memory blocks as well.
FPGA LUTs are comprised of a multiplexer tree or mux tree,
and SRAM configuration memory that stores the configuration
bits for the Boolean function implemented by the LUT. Thus
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Fig. 4. (a) Logic folding. (b) Compute sub-arrays.

a K-input LUT or a K-LUT would need 2% SRAM cells to
store its function. Fig. 3c illustrates a 3-LUT. FReaC Cache
builds on this idea to deploy dense LUT arrays, as we shall
describe in the next section. Global routing structures that
connect CLBs, such as switch boxes and interconnect wires,
are responsible for the bulk of the delay in FPGAs, and can
occupy nearly 80% of the area [41]. Thus, in this work, we
limit the use of global routing structures.

Logic Folding: Logic folding leverages dynamic recon-
figuration to allow large circuits to be implemented with
limited logical resources by folding the circuit over time and
sharing the available logic resource across time, i.e. temporal
pipelining [27], [42]. Thus, relatively large circuits can be
implemented in a smaller area, albeit with a longer latency.
In Fig. 4a, each node in the graph is a look-up table (LUT)
in a combinational circuit. By partitioning the graph into four
levels, we can now implement each level as a state of the
temporal pipeline, thereby requiring only three LUTSs rather
than ten, but increasing the latency to four timesteps. At each
timestep, the three LUTs must be reconfigured to implement
the next level’s operations. Thus, the circuit can be realized
in 4 cycles if we can reconfigure every cycle. Dependencies
between levels are handled by latching outputs.

III. FREAC CACHE

FReaC Cache partitions the last level cache (LLC), and
uses a portion of it to build reconfigurable logic. In order
to do so, FReaC Cache builds on two key ideas: (1) Dense
reconfigurable logic can be realized by leveraging the LLC’s
SRAMs for LUT configuration memory, and by minimizing
complex global routing. (2) Logic Folding, as described in
Sec. II, and illustrated in Fig. 4a, allows us to trade latency
(clock cycles) for reduced resource requirement per cycle
in order to map circuits. The high frequency offsets latency
penalties incurred during the folding process.

In this section we describe the individual components of
FReaC Cache, and the steps involved in transforming and
running accelerators in the LLC. Fig. 5 presents a high-level
overview of the end-to-end operation of FReaC Cache in
six steps, for a single LLC slice. (D: In order to leverage
FReac Cache as an accelerator, a portion of the LLC must
be selected to operate as an accelerator. ): Since the entire
way is consumed to form compute logic, dirty lines in the
selected ways must be flushed. 3): Next, the selected ways
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Fig. 5. End-to-end operation of accelerators in FReaC Cache, in a single LLC slice.

are locked for compute mode. Note that in order to flush and
lock cache ways, we leverage the existing cache control box
by introducing our own compute cluster controller (CC Ctrl).
The host interacts with the CC Ctrl unit via native load and
store (LD/ST) instructions only. @: With the ways ready for
compute mode, we write the accelerator configuration bits.
We will discuss the mapping of accelerators and generating
logic folding schedules in more detail in Sec. IV. &: The
host can fill scratchpads and configure any offsets if needed
before beginning computation. @): Finally, the host issues a run
command, via LD/STs to the CC Ctrl unit, and waits for the
operations to complete. Once the accelerators have completed,
a new set of accelerators can be programmed or new data can
be provided to the existing set of accelerators by repeating
steps @ and (3.

In FReaC Cache, we transform the slice’s existing sub-arrays
into Dense Compute Sub-Arrays and then group the compute
sub-arrays with additional logic structures into Micro Compute
Clusters. We call this slice a Reconfigurable Compute Slice
Fig. 6a,b and Fig. 4b illustrate these components, and we will
now discuss them in detail.

A. Dense Compute Sub-Arrays

As described in Sec. II, a look-up table (LUT) is comprised
of configuration memory and a mux-tree, and a LLC sub-array
is capable of providing a fixed number of bits on each access.
Thus, each row of the sub-array can hold the configuration bits
of one or more LUTSs, and by cycling through the rows of the
sub-array, one by one, we can implement a different LUT(s),
and hence a different logical operation, on each access. That
is, each row of a sub-array can implement a temporal pipeline
stage in logic folding. In order to realize this the sub-array
is paired with a mux tree, via a memory latch, as shown in
Fig. 4b. The memory latch, in conjunction with the mux tree,
has thus formed a single look-up table. Note that the inputs
to the mux tree are the LUT inputs. Upon reading a new row,
the LUT is reconfigured to perform a new operation. Since the
sub-array is relatively small, each access can take place in one
cycle [36]. Thus, we can dynamically reconfigure the LUT on
every cycle. Since a single LUT may not be enough to realize
a Boolean circuit, the output of the LUT may be stored in the
state latch, to be fed back into the input of another LUT at
a later time step. Crucially, the mux trees, latches, and other
extra logic are external to the sub-array, and do not disturb the
existing memory design.
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In Fig. 4b we show a single mux tree. This pairing would
result in a single 5-input LUT for each row of the sub-array,
since each sub-array in a slice is capable of providing 32 bits
per access (Sec. II). However, several smaller mux trees can
be used to create two 4-input LUTs, or four 3-input LUTs,
and so on. The size of LUTSs is a well studied topic, and LUT
sizes of 4 to 6 are considered the most optimal [43], and used
in commercial FPGAs [44], [45].

B. Micro Compute Clusters

A single compute sub-array may require a large number of
folding cycles in order to realize a logic folded circuit. Thus, we
propose organizing the compute sub-arrays into micro compute
clusters (MCC) by grouping every two adjacent data arrays.
i.e., four sub-arrays, into a micro compute cluster, as shown
in Fig. 6b. Within a micro compute cluster, each sub-array
activates one or more LUTs per cycle, with the help of the
latch and the mux-tree placed outside the sub-arrays. In order
for the LUTSs realized by each compute sub-array to operate
together, we add an operand crossbar, similar to the kind found
in the CLB of an FPGA (Sec. II), in the cluster as well. Next,
we provide a small bank of registers to store intermediate states
from the folded circuit and implement sequential logic in the
original design. Finally, since arithmetic operations such as
multiplication are expensive to implement with LUTs, we add
a dedicated integer multiply-accumulate (MAC) unit as well.
The additional logic structures introduced are placed outside
the sub-arrays, and are spaced between the two data arrays.
Thus, we do not affect the area or timing of the memories.

Operation: A logic folded circuit can now be realized
within a micro compute cluster by implementing each level
of the circuit, cycle by cycle, by loading a new configuration
from each sub-array. In order to simplify this, we store the
configuration bits of each level in sequential addresses in the
sub-arrays, and reuse the existing address busses to step through
addresses. The number of steps (folding levels) is determined by
the logic folding schedule (Sec. IV). The schedule is executed
and managed by a micro compute cluster controller (CC Ctrl)
unit that we add to the cache’s control box. Next, at each
time step, an operand may be buffered in a register or LUT
or fetched from the bus. This movement is facilitated by the
operand crossbar, which must be configured for each time
step, as determined by the schedule. Hence, the crossbar
requires configuration bits as well, which are stored in the
way’s Tag/State arrays, which are not in use while the way
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Fig. 6. (a) Reconfigurable compute slice. (b) Micro Compute Cluster (MCC) architecture. (c) Large MCCs and scratchpads.

is being used for compute. Thus, we eliminate the need for
additional configuration memory.

Physical Design Considerations: We chose data arrays
in adjacent ways, rather than neighboring data arrays, when
creating micro compute clusters, for two reasons: First, data
arrays are laid out in quadrants (Sec. II) running across all ways.
Thus, arrays in the same quadrant are easier to group, without
crossing any layout boundaries. Second, interconnecting data
arrays within a way would require longer wires, increasing
power and latency. Next, we introduce a latch between the data
bus and the mux tree. This prevents a long timing path between
the sub array output, through the mux and to the crossbar, and
does not require the sense amplifiers to be redesigned. The
crossbar outputs that drive the data bus are buffered as well.
Note that we have chosen to group 2 data arrays into a micro
compute cluster because it lends itself easily to the baseline
slice architecture [36].

To further minimize overheads, we reuse the existing data
busses from both ways. As shown in Fig. 6b, we dedicate
one data bus for external operand movement, and the other for
moving crossbar configuration data. During compute operations,
LUT configurations are read from their respective sub-arrays,
while the CC Ctrl unit fetches the crossbar configuration from
tag arrays and broadcasts it to clusters, prior to the scheduled
time step. The CC Ctrl unit also loads configurations into the
arrays via the existing data busses through simple memory
store operations.

C. Reconfigurable Compute Slices Operation

Fig. 6a illustrates the LLC slice with micro compute clusters.
For illustrative purposes, we present eight CC tiles, and five
tiles are shown with all of their logical components - two
data arrays and the cluster logic (CL). Cluster logic includes
the latches, mux trees, MAC units, registers and crossbar, as
in Fig. 6b. Note that since micro compute clusters are built
using data arrays across two ways, two ways are completely
consumed at a time, such that four compute cluster (MCC) tiles
are formed in their place. For maximum flexibility, we add
cluster logic to all data array pairs. This allows us to consume
an entire cache slice or just a fraction of the slice on-demand,
effectively partitioning and reconfiguring the slice on the fly
in order to enable computational logic. We also introduce a
compute cluster controller (CC Ctrl) unit to the slice’s control
box to assist with locking and flushing ways, and the control
and coordination of clusters. The CC Ctrl leverages the cache
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controller’s existing features and mechanisms to accomplish
its tasks. Incoming requests from the cores are serviced by the
LLC controller, and the CC Ctrl Unit does not interfere even if
a portion of the cache is being used for compute. If the entire
LLC is consumed for compute, then core requests are treated
as misses, and forwarded to memory.

Host Interface: FReaC Cache does not require custom
instructions. The host interacts with the accelerators and CC
Ctrl unit via load and store (LD/ST) operations. A range of
addresses per slice is reserved for FReaC Cache operations,
such that control registers for the CC Ctrl unit are exposed
to the host core. The host sets up the LLC slice for compute
by writing to control registers in the CC Ctrl units. This setup
includes selecting, flushing, and locking ways for compute
(Steps D, @), and @), in Fig. 5). In order to configure the
accelerator, the host writes micro compute cluster configuration
data to a specified address in CC Ctrl Unit, which in turn
writes the configuration data to the cluster sub-arrays (Step
@). The host can then fill scratchpad buffers (to be discussed
later), and set up accelerator address offsets, by writing to
another range of addresses (Step 3). Again, the CC Ctrl unit
is responsible for forwarding the data into the corresponding
sub-arrays. Finally, a run register is allocated as well (Step
®). These control and data registers are unique to a cache
slice, and the setup and configuration must be performed once
per slice. The address space and the control registers can be
exposed to user code via limited OS support. With the help of a
kernel driver, the physical address range can be assigned virtual
addresses (1oremap () operations), and then exposed to user
space via a character device driver, which can be accessed
from the user program via an mmap () operation.

Setup and Configuration: Steps D, @), and @), in Fig. 5
outline how an LLC slice is set up for compute. First, ways
must be selected and flushed, and then locked for compute
mode. The mechanisms for enabling this are already available
in modern LLCs, and are leveraged by the CC Ctrl unit. As
described in Sec. II, ways in the cache are independent of
each other, and thus it is possible to instruct the cache control
logic to ignore a group of ways. LLCs already include sleep
logic [40] [36] to save power, as well as fuse bits to turn off
ways in case of poor yield or manufacturing defects. Existing
LLCs can also exclusively allocate cache ways to individual
cores, thereby modifying the effective LLC seen by the other
cores [46]. However, prior to configuring the ways as compute,
the ways must be flushed of dirty cache lines. The overhead
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of flushing out the ways depends on several factors, including:
inclusion policies, cache hierarchy, memory bandwidth, and
how many lines are dirty. In the worst case, if all lines in the
LLC must be flushed, then flush speed is limited by off-chip
memory bandwidth. For a 10MB LLC, this can be in the order
of hundreds of microseconds®. Once the ways are flushed and
locked into compute mode, they do not participate in caching.
The remaining ways continue to operate as a part of the LLC.
The host can then write configuration bits (Step @ in Fig. 5)
into the micro compute clusters, via the CC Ctrl unit in the
slice. Once configuration bits for an accelerator have been
loaded, they needn’t be fetched again unless the configurations
are evicted or overwritten.

D. Accelerator Operation

FReaC Cache is a tiled architecture, wherein each micro
compute cluster (CC) can operate an independent computation
unit (accelerator tile) of its own, by mapping accelerator circuits
to it, as shown in Fig. 5. In order to do so, the accelerator
circuit is folded and scheduled, with each time step being
mapped to LUTs, MACs, and flip-flops (Sec. IV). On each
time step the cluster can access up to four 5-LUTSs or eight
4-LUTs, one MAC, and one bus operation.

Micro compute clusters in a way share an address bus, and
thus operate in lock-step. To further simplify the design, and
reuse as many structures as possible, we tie the address lines of
all clusters. Since all clusters run the same accelerator and have
the same schedules, all accelerator tiles operate in lock-step. As
discussed earlier, the CC Ctrl unit is responsible for stepping
through the schedule and broadcasting the next address for the
clusters on the address bus.

Operand Movement: In order to provide access to external
operands, we propose using one of the data busses as the
operand datapath (Fig 6b). The cluster first places the address
of the operand on the bus, which delivers the address to the
CC Ctrl Unit. The CC Ctrl unit processes the address, applies
any offsets if needed, and hands it over to the cache controller
to be serviced. If the cache slice registers a hit locally, the
operand is forwarded back to the clusters via the same data
bus. A similar process is followed for write requests. Since
the clusters operate in lock-step, multiple requests may be
received at once, and the clusters will stall till all requests
are serviced. Unlike the CPU core, the clusters wait for the
writebacks to complete. In both read and write cases, the cache
is responsible for coalescing requests, if it has the capability.
Since data arrays share a bus, requests and responses may need
to be serialized across multiple cycles.

FReaC Cache Scratchpads: To fully exploit the capabil-
ities of FReaC Cache, we introduce support for scratchpads.
By locking-out ways in the cache, we allow the CC Ctrl to
route accelerator loads and stores to the sub-arrays in the
ways reserved for the scratchpad. Using the existing cache line
mapping, a total of 32 bytes may be loaded at a time from each
way. However, due to the shared data bus between sub-arrays

2 Assumes four channels of DDR4.
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and the narrow datapath in the cache’s control box, delivery
of words is serialized. We use the processor core to fill the
scratchpads, and thus enable the cores to initialize data directly
into the scratchpads. In doing so, we avoid the need to flush
data out of upper level caches, and the overhead of copying
data into the scratchpads (Step 3 in Fig. 5). Scratchpads are
not necessary for FReaC Cache, but most accelerators use local
scratchpads for improved performance and power. In addition,
scratchpads help address the LLC’s inability to access the TLB,
which can add overheads. Without scratchpads or access to the
TLB, FReaC Cache would require: (1) Working set is flushed
out of upper level caches, (2) Cores do not touch the data while
the accelerator is operating, (3) Core provides the physical
address, and (4) Data is contiguous and pages are pinned in
the host memory.

E. Large Micro Compute Clusters and Multi-Cores

Enabling Larger Compute Clusters: By restricting accel-
erators to a single micro compute cluster, we limit them to four
to eight LUTSs per cycle (assuming 5-input or 4-input LUTS).
For control or logic heavy applications, that may have large
LUT-based circuits, this may result in a large number of fold
steps and hurt performance. Thus, we propose the addition of
lightweight FPGA-styled switch boxes, where each switch box
performs static routing, with segments connecting neighboring
micro compute clusters. We can now group 4, 8, 16, or up
to 32 compute clusters to form a single large accelerator tile,
with more LUTs available per cycle. Fig. 6¢c presents the final
slice overview, and illustrates an example where an accelerator
tile is formed by using four MCC, and two ways are used to
form a scratchpad.

Due to the density of the compute clusters, the limited
number of LUTs per cluster, and the short distances between
clusters, supporting such global routing structures is not as
expensive as on traditional FPGAs. Moreover, a single cache
slice is significantly smaller than an FPGA, making routing bits
from one end to another possible within a single clock cycle.
We explore overheads and timing in more detail in Section V.

FReaC Cache in Multi-Core Systems: In FReaC Cache,
accelerators implemented in each slice operate independently of
each other. Communication between accelerators is performed
via the global address space, as in other data-parallel architec-
tures like GPUs. In the case of large compute requirements,
the problem can be broken down into smaller independent
problems, which are worked on by each slice’s accelerator(s).
Thus, FReaC Cache is very amenable to data-parallel problems.
Note that the switching infrastructure that interconnects com-
pute clusters is limited to a single slice as well. Thus, the size
of an accelerator tile is limited by the size and associativity
of an LLC slice. Overall performance is determined by the
associativity, number of LLC slices, and the total number of
MAC units in some cases.

IV. MAPPING ACCELERATORS

FReaC Cache is a flexible architecture; a portion of the LLC
slice can be used for computation, while the rest can be used
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as cache, as illustrated in Fig. 7a. Assuming 8KB sub-arrays,
the slice provides: a 256KB cache, a 512KB scratchpad, and
16 MCC tiles which can be used to implement one or more
accelerator tiles per slice. Using multiple slices will increase
the number of accelerators and scratchpads.

Logic Folding: In order to map the accelerator to a slice, we
must construct a folding schedule. Scheduling and mapping for
logic folding has been explored in previous work for FPGA
styled designs [42], [47]-[49]. In order to study the efficacy of
FReaC Cache’s architecture, we created a mapping flow, based
on previous work, that provides a schedule that describes how
many cycles the circuit is spread over, as well as the resources
used in each cycle within a cluster. Recall that the schedule is
common to all compute cluster tiles used to form an accelerator.
Fig. 7(b) illustrates our proposed flow.

We begin with an RTL design of the accelerator. In this
work we use high-level synthesis (HLS), but we are agnostic to
the source of the RTL. As with any new acceleration paradigm,
accelerators in FReaC Cache must be tuned for the architecture.
Since logic folding already performs temporal pipelining,
traditional performance optimizations, such as pipelining, may
result in longer folding schedules and hurt performance. In
addition, micro compute clusters only have one operand path,
the data bus, and scratchpad buffers are outside the clusters.
Thus, an accelerator tile should be designed with a single
memory port, and no internal memory buffers. Note that
multiple tiles are instantiated to leverage all the available
internal bandwidth in the LLC slice. Once we have the
accelerator RTL, we use the open-source VTR toolchain [50]
to perform logic synthesis and technology mapping, in order
to map the circuit into a netlist of look-up tables, flip-flops,
adders, and multipliers. The synthesized circuit, or netlist, is
a directed graph (DAG), where the primary inputs (PI) and
primary outputs (PO) of the DAG are the accelerator module’s
ports - memory, enable, start, done. Next, our folding algorithm
begins by performing a topological sort of the input DAG,
which is then used to produce a leveled graph, as shown in
Fig. 4a. The leveled graph is a re-organization of the input
DAG into levels, where each level consists of nodes (vertices)
with no dependence on each other, but with incoming edges
(dependencies) from nodes in a higher level [42], [47]-[49].
Next, we partition the DAG based on resource constraints
derived from how many micro compute clusters are used per
accelerator tile. A graph partition is formed by grouping one
or more levels together until a resource constraint is violated.

We then perform logic folding within the partition to ensure all
constraints are met. Since logic folding is performing temporal
pipelining, each schedule step realizes a combinational logic
path [49]. The final schedule is then the sequence of each
partition’s schedule®. The schedule determines the number of
times the circuit is folded (folding cycles or steps), which
in turn determines the effective clock rate of the circuit. A
circuit folded N times would require N cache clock cycles to
implement the entire circuit, making the effective clock rate of
the circuit as CacheClock/N. Hence, minimizing the number
of logic folding steps improves performance.

V. EVALUATION

Our evaluation makes use of the gem5 [51] simulator. We
have implemented a cycle-accurate timing model within gem5
to model FReaC Cache’s performance by accounting for: the
folding schedule of each benchmark accelerator’ synthesized
circuit, the contention on the cache buses when moving
operands from scratchpad to clusters, cluster IO bandwidths,
and loading of operands to the accelerator tiles. For each
benchmark accelerator, we perform an RTL simulation to
generate traces of memory accesses used, and the exact number
of cycles it runs for. The system we simulate is an 8-core ARM
micro-architecture, similar to the A15s in an Exynos-5 SoC,
and is described in Table I. We use McPat [52] and Cacti 6.5
[35] to generate the size, power, and latency of the memory
arrays (Table II). For our simulation, we consider the latency
and power of reading a word from a subarray, not the latency of
fetching an entire cache line from the L3. Thus, we see that the
latency of reading a single word from a subarray allows us to
perform one read per cycle, thereby allowing us to reconfigure
our subarray every cycle as well. Similarly, movement of data
from subarrays in one way to another requires movement
along a shared databus within the cache control box and is also
serialized. We estimate the total leakage power of the LLC is
1.125W via McPat.

For our evaluation, we selected a mix of benchmarks
from MachSuite [53], and a few handwritten, that were well
suited for FReaC Cache’s intended use case, and represented
compute, memory, and logic (LUT) bound apps. We excluded
benchmarks such as n-body molecular dynamics (KNN, GRID)
and DNN training (backprop), as we targeted edge processing
in this paper. FReaC Cache is capable of accelerating small
but important kernels that would benefit from the low-latency,
high-throughput, and high-bandwidth data access of FReaC
Cache. Hence we focus on kernels, rather than large multi-
phase applications. Since the original benchmark datasets were
very small, we scaled the problem by a factor of 256X in a
batched fashion. Work is divided evenly across all available
accelerator tiles/CPU threads in a data parallel fashion.

3The small size of the CC tiles allows us to design the crossbars and
switches such that data and configuration bits can move to LUTs and MACs
in the time it takes to reconfigure the next level (1 cycle). Thus, our folding
solution does not need to create multi-cycle paths.
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TABLE I
SYSTEM SIMULATION PARAMETERS

Parameter Value
ISA/Num Cores ARMY/S8 cores
Fetch/Decode Width 3/3
Dispatch/Issue/Commit Width 6/8/8

Clock 4GHz

L1D Cache Size/Ways/Latency
L2D Cache Size/Ways/Latency
L3D Cache Size/Ways/Latency
L3D Cache Slice Number/Size
Memory Controller

32KB/2-way/2cycle
256KB/8-way/10cycle
10MB/20-way/27cycle
8/1.25MB

4 channels, DDR4-2400

TABLE 11
MEMORY PARAMETERS (32NM)

SRAM Subarray
Size | Dimensions AccessTime | AccessEnergy
8KB | 0.136 X 0.096mm | 0.12ns 0.00369nJ
L3 Cache Slice
Size Height Width Data Subarrays
1.25MB | 1.63mm | 1.92mm | 160

A. Evaluating Area and Timing Overheads

In order to evaluate the overheads involved in FReaC Cache,
we use Cacti [35], McPat [52], DSENT [54], and RTL synthesis
with a 45nm library that is scaled to 32nm. FreaC Cache adds
the following components to form a micro compute cluster
(MCC): Mux Trees, Operand XBars, Intermediate Registers,
and MACs. The organization and functionality of MCCs are
far less complex than those of a processor, and we take special
consideration to minimize impact on cache timing: (1) By
adding buffers, we avoid loading existing buses. (2) We do not
modify the memory arrays themselves. (3) The majority of the
key components are wire heavy but localized to a cluster, and
modern process nodes have high wire density. (4) As we shall
demonstrate, the new components have negligible area, thus
their addition doesn’t significantly impact critical wire paths.

We take a conservative approach to our area and delay
modeling, and consider the worst case. Since we add new
wires in short segments, we can reasonably estimate these via
Cacti and DSENT, as in [55]. In particular, Cacti version 6+ was
developed to be cognizant of wire delays in large caches [56].
First, we consider micro compute clusters. Four components
have been added: an operand xbar, mux-trees, intermediate
registers, and a MAC unit. We use RTL models to estimate the
cost of a 32bit MAC unit and 256 intermediate value holding
flip-flops to be 1011 pm? and 1086 um? respectively. Next,
we use DSENT to estimate the cost of a 32X1 Mux tree to
be 45um? and the operand crossbar to be 1239 um?. Thus,
the total area added per cluster is 0.0034 mm?. If we enable
32 clusters in the slice, using 16 ways, the total overhead is
0.109 mm?2, which is just 3.5% of the total area of the LLC
slice described in Table II. This enables the basic FReaC Cache
mode of 32 independent accelerator tiles per slice.

However, as we described in Sec. III-E, there is a potential
benefit in enabling larger clusters. In order to do so, we consider
FPGA-style island routing as shown in Fig. 3. To do so, we
place a switch box in-between groups of four micro compute
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clusters, and an additional switch box to cross the tag arrays
and control box, to enable X-Y routing. Hence, we have a
total of 28 (7X4) switch boxes, placed across 16 ways of
the cache, creating an interconnect fabric between the 8X4
micro compute cluster tiles. Note that FPGA routing structures
and interconnects can be designed to be placed on top of
buffers and logic [57]. Hence, once we determined the area
of logic blocks, we could determine the lengths of wires and
interconnects. We then swept the frequency of our model with
DSent and CACTI until timing wasn’t violated in the worst
case, and thus settled on 3GHz for large compute clusters, and
4GHz for small compute clusters. The longest path possible
is the Manhattan distance between two switches at opposite
corners of the slice. We found this to be 2.864 mm, based on
the geometry of the cache slice and subarrays, which must
be completed over 10 links between the switches, and must
meet a delay of 0.3 ns to complete within a cycle. We consider
32 bit links, and compute the total area of global routing and
links to be 3469 um?2. Finally, the switch boxes will require
configurations as well, and we add a wide output 8KB memory
for every four micro compute cluster. This adds a total overhead
of 0.35mm?. Note that this is only necessary if we need to
operate very large accelerator tiles at 3GHz. Thus, we add a
total of 0.48 mm? or 15.3% overhead to the slice. This is a
conservative estimate as we opted for short links and more
switch boxes, and hence added more configuration memory
for the switches.

B. Accelerator Design Space

We begin by exploring the design space of accelerators being
mapped to FReaC Cache. We synthesized the benchmarks
using Xilinx Vivado HLS. First, we explore the impact on the
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number of compute cluster tiles used to realize an accelerator
tile. The more MCCs that are available per accelerator, the
more resources can be allocated per folding step, and thus
fewer folding cycles. We present the number of folding cycles
for each of the benchmarks in Fig. 8 across different tile
sizes. While allocating more MCCs per accelerator tile reduces
the number of folds, there is a trade-off with the number of
concurrent accelerator tiles per slice.

Thus, there is trade-off between the latency of an accelerator
tile and net throughput. This trade-off also requires considering
the impact of working set proximity. In order to maximize
the performance and efficiency, the working set must be
made available in the scratchpad buffers. Thus, the number
of concurrent accelerator tiles is also limited by the working
set of each accelerator tile. To illustrate this, we consider
different ratios of the LLC being partitioned to compute and
memory. We start with 16 ways for compute and 4 for memory,
creating 32 MCCs and a 256KB scratchpad, and sweep down
to 2 ways for compute and 18 for memory, creating 4 MCCs
and a 1.1MB scratchpad. Fig. 9 presents the max number of
accelerator tiles, of tile size 1 (1 MCC per tile), that can be
fit in a single slice. Accelerators with smaller working sets,
such as AES and dot product engines, are able to fill all 32
MCC tiles with accelerators. However, both computational and
memory-bound kernels such as GEMM, KMP, Sorting, and
Stencil reach maximum number of tiles (and hence, throughput)
by allocating more of the LLC to scratchpads. Note that this
is a function of the accelerator’s working set and the number
of slices available. Overall, we observe that an organization of
32 MCC and 256KB scratchpad, and 16 MCCs with 768KB
scratchpad, allow for the most accelerator tiles to be instantiated
in a single slice.

C. FReaC Cache Performance and Efficiency

We compare FReaC Cache to its base system’s eight ARM
cores, a large PCle-attached FPGA, Xilinx ZCU102 FPGA,
and a standalone Ultra 96 SoC FPGA system as well. We
use OpenMP to parallelize the baseline benchmarks, in a data-
parallel fashion, across all available physical cores. We modeled
the power of the ARM cores via McPat [52] with a 32nm
low-power library. To evaluate the FPGA, we synthesized the
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benchmark circuits with all optimization directives enabled.
Next, we attempt to instantiate 256 copies of the benchmark
IPs, to reflect maximum data parallelism. If all copies do not
fit, then we batch the workloads, and scale latency accordingly.
We include a 160ps latency for DMA and configuration
overheads [17], and also include the cost of transferring data
to the FPGA via PClIe3.0 x16 for the ZCU102, and cost of
transferring over AXI busses in the Ultra 96 (U96). We then
use the Xilinx Power Estimator (XPE) [58] to estimate power,
and account for the board idle and leakage power as 12W [18]
for the ZCU102. The latency of benchmarks on FReaC Cache
was provided by our Gem5 simulator. To provide the best
performance, and consistency with our FPGA comparison, we
move data into the scratchpad buffers. We measure the latency
of the kernel’s operation in FReaC Cache accelerators, and
the latency to transfer the datasets to the scratchpad buffers.
When loading data into the buffers, we load LLC slices in
parallel, thereby making full use of the LLC’s bandwidth.
Kernel latency also includes the time to write the configuration
data. We estimate the power of FReaC Cache by accounting for
the number of reads from the compute clusters and scratchpads.
We also assume the links between the switch boxes run at 100%
load and consume about 9mW per link, and we add leakage
power. We present all data relative to a single thread of the
A15 host.

In order to better understand FReaC Cache, we first examine
a single cache slice and the impact of accelerator tile sizing.
We consider a slice with a 32MCC-256KB partitioning, thus
consuming all 20 ways of the slice. We then sweep across
accelerator tile sizes, allocating 1, 8, and 16 MCCs per
accelerator, and measure the speedup of kernel execution over
a single host core (A15). We also constrain our exploration
with the max number of accelerators per slice, as shown in
Fig. 9. In Fig. 10, with the exception of AES, we see that
increasing tile size improves performance. However, we see
a reduction in performance with tile size 16, since tiles of
16 or more MCCs require a reduction in clock speed. As we
can see in Fig. 8 and Fig. 9, AES has a very high folding
overhead but can fit several copies in a single slice. Thus, it
is better suited for multiple tiles per slice, with few MCCs
per tile. As we noted earlier, there is a trade-off between
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allocating the LLC to memory versus compute. We examine
this more closely in Fig. 11. We present the best performance
possible, across all accelerator tile sizes, for two different
compute-to-memory partitions in a single slice. Once again,
we find that AES strongly prefers more compute clusters over
buffer memory, along with other computational kernels such
as dot product engines, fully connected layers, and GEMM.
Note however that we are restricted to a single slice here. The
optimal compute-to-memory tradeoff is a function of the total
number of slices as well, and we observed that the 16MCC-
768KB split proved to be more useful with increasing number
of slices participating in the acceleration.

Next, we consider the end-to-end performance of FReaC
Cache in our evaluation system. Consuming the entire LLC
may not be feasible in practice, thus we reserve two ways,
128KB, per slice as cache. This leaves 10%, or 1MB, of
the LLC in place, while allocating the remaining 18 ways
for compute and scratchpad. We consider a 16MCC-640KB
compute-scratchpad split per slice, and sweep across all
possible accelerator tile sizes and cache slices. For the sake
of brevity, we report the best performance (speedup) possible
for a given number of slices, and also report the corresponding
performance per watt (throughput per watt), and power. We
present our data in Fig. 12 on a log scale. Speedup is measured
over the end-to-end latency of the application, and we use
a single A15 thread as the baseline. The end-to-end latency
includes the cost of initializing arrays, moving them into the
scratchpad buffers, and back to the core. For comparison, we
include the fully-parallelized eight thread A15 implementation,
along with the ZCU102 and the Ultra96 (U96) FPGAs. For
the FGPAs, we also include the cost of moving data into their
buffers.

As we can see, with increasing number of cache slices,
FReaC Cache’s end-to-end performance increases. Across
benchmarks, FReaC Cache outperforms the ARM cores at
a fraction of power. On average, when using all eight slices,
FReaC Cache is 8.2X and 3X faster than the single and multi-
threaded implementations, respectively. Additionally, FReaC
Cache is 6.1X more efficient (Perf/Watt) than the multi-core
CPU, on average. FReaC Cache proves to be especially
good with memory-bound and computational kernels such as
convolutions, dot products, vector add/mults, fully-connected
layers, and GEMMs, showing up to 14.5X speedup over single-
thread implementations. Logic-heavy apps like AES and sorting
(SRT) suffer a higher penalty due to folding. Thus, while
they are faster than a single CPU thread, the multi-threaded
implementation outpaces them, but at nearly twice the power.
However, the large ZCU102 FPGA outperforms FReaC Cache,
the A15, and the U96 on most benchmarks. This comes at
the cost of a massive increase in power, and we note that the
ZCU102 chip is much larger than the LLC as well as the entire
A15 chip. The edge-centric lower-power Ultra 96 is bested
by FReaC Cache in both computational and memory-sensitive
benchmarks. FReaC Cache also proves to be more energy
efficient than both FPGA solutions as well. Thus, FReaC Cache
proves itself to be highly performant, flexible, and efficient,
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across benchmarks and domains.

Finally, moving data to and from accelerators can cost time
and energy. In the case of NMA and PIM, this may also require
additional mechanisms in the core and host OS. To mitigate the
cost of copying data to and from buffers, improve performance,
and avoid pinning pages to physical addresses, FReaC Cache
uses the cores to initialize data directly into the scratchpad
buffers. This effectively eliminates a copy operation, but still
costs time to do so. In our evaluation in Fig. 12 we considered
the end-to-end latency of the application, including the cost
of initializing and copy data. In Fig. 13 we present the end-
to-end speedup versus the speedup of the kernel only, on a
log scale. For reference, we also provide the multi-threaded
implementation as well. We observe that depending on the
benchmark, copying and initialization can have negligible to
60% overhead. Thus, in some cases, our end-to-end speedup
is a fraction of the peak kernel speedup. This is in part due to
the size of the working sets, and even the CPU suffers from
reduced end-to-end performance due to it. FReaC Cache still
manages to outperform the CPU and even the FPGAs. Note that
despite the massive bandwidth of the LLC and initializing data
directly in the buffers, we are affected by memory initialization
delays. However, off-chip accelerators like the ZCU102 and
the U96 require a full copy over much slower channels, after
initialization is completed, adding even more overhead. Thus,
FReaC Cache provides cost-effective, energy-efficient, and
flexible acceleration, with a high-bandwidth and low-latency
path to the user’s working sets, which places FReaC Cache in
a highly unique position.

VI. DISCUSSION

In this section we present a discussion to clarify FReaC
Cache’s motivation, positioning, and potential limitations.
Portability: In this work, we illustrate the ideas and principles
of FreaC Cache by incorporating it into an existing architecture.
While we use the detailed description of the Intel Xeon LLC
provided by Huang et al. [36] as the base of the example
FReac Cache design, FReaC Cache is not limited to Intel LLC
architectures, and does not rely on any special Intel enterprise
features. Instead, our focus is on processors for edge computing
in this work. Changing the underlying cache slice architecture
may affect the number of effective LUTSs per cycle, the size
of the micro compute cluster, number of clusters, and number
of clusters grouped across ways, etc. For example, if a cache
way is comprised of twice as many subarrays, we can have
twice as many micro compute clusters, or the same number
of clusters, with twice as many LUTs available per cycle. For
consistency, we used the architecture described by Huang et
al. [36] throughout this paper. Total memory capacity only
limits scratchpads sizes and the number of configurations we
can store, but not performance.

FPGA-Based Architectures: FReaC Cache is not a new
FPGA architecture. Rather, it is a highly cost-effective and
power-efficient solution for edge scenarios, where small
throughput or memory-bandwidth intensive kernels can be
occasionally offloaded. Rather than re-designing reconfigurable
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computing logic, our focus is on the best way to reconfigure
the LLC and convert it into a customized accelerator that
can leveraging near-memory computing. It is not designed to
handle general-purpose reconfigurable computing or provide
glue logic as typically targeted by generic FPGA devices. While
we do use LUTs, like an FPGA, our design and organization
is very different from an FPGA, and we do not consider
many features of generic FPGAs, including embedded BRAM,
rich FF-based control logic, high I/O capabilities, multi-clock
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domains, etc. Thus, FReaC Cache is not the perfect solution
for every application. Where the application is well understood
and mission-critical, an FPGA might be a better choice. For
example, circuits with large and complex control circuits would
be better suited to FPGAs, where the immediate access to
thousands of LUTs is more critical. However, FReaC Cache
has a significant area advantage over FPGAs as: (1) LLC
subarrays occupy the majority of the area, and the additional
logic has area fractional overheads, and (2) 80% of FPGA
area is spent on routing structures and their configuration
bits [41], which FReaC cache avoids. Also, FPGAs have
a limited configuration bandwidth of just 400MB/s*. FReaC
Cache configuration is limited by LLC-DRAM bandwidth and
the LLC’s internal bandwidth (10s to 100s of GB/s).
Alternative Near and In-Cache computing approaches:
We first consider Compute Caches [21], in which the authors
propose leveraging bit-line computing to achieve vector com-
putation. Due to the nature of the computation, this approach
is limited by the pitch of the sub-arrays, and hence the authors
are limited to a simple set of bit operations— AND, OR,

432bit CAP port and 200MHz on Xilinx Ultrascale+ FPGAs [59].
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XOR, copy, and compares— which are effective for the data
manipulation domain that the authors target, such as string
matching, bitmap indexing etc. Crucially, this approach requires
significant redesign of the cache and sub-arrays and adds new
ISA instructions, which add significant design and verification
costs. Also, operands must be placed for sufficient locality
in order to perform in-situ processing. The esoteric nature of
computation, ISA, benchmarks, and simulation infrastructure in
Compute Cache makes it hard to perform an apples-to-apples
comparison with FReaC Cache. However, we note that FReaC
Cache is much less intrusive. All new logic is placed outside
the sub-arrays, existing busses are re-used, and no custom ISAs
are used. Thus, we minimize the impact on area, timing, energy,
and design of the LLC and the cores. Most importantly, we
are not limited to bit-level operations or a restricted domain
of applications. While FReaC Cache is general purpose, it is
best suited for when the host needs acceleration of memory-
bound computational kernels. Where Compute Cache offers
average speedups of 1.9X on data-manipulation workloads,
FReaC Cache demonstrated an average speedup of 3X across
diverse workloads.

Next, we consider near-cache computation, such as
BSSync [60], that places computation near the cache, rather
than inside the arrays. Instead of placing ALUs in the LLC and
adding new ISA instructions, we consider placing lightweight
embedded cores (EC), such as an ARM A7, in the LLC. Like
FReaC Cache, this provides similar general-purpose capabilities,
independent operation from the host cores, and communication
between the accelerator cores and host cores can still be done
via LD/STs. Each A7 core has an area of about 0.49 mm? [61],
[62], which is similar to the per-slice overhead of FReaC Cache.
Thus, we consider two scenarios: (1) iso-area, where one EC
is placed per slice, and (2) two ECs per slice. These provide a
total of eight and sixteen cores in the LLC, respectively. For a
fair comparison, we allocate 16 ways of the LLC as scratchpad
for the cores to use. As we can see in Fig.14, the FReaC Cache
based accelerator’s customized circuits and effective memory
bandwidth utilization enable it to significantly outperform the
iso-area 8 EC solution by an average of 4X, and the 16 EC
setup by an average of 2X. Thus, FReaC Cache is significantly
more area and compute efficient than such near-cache solutions.
Note that speedup in Fig.14 is shown relative to a single A15
thread, and the figure includes the performance of all eight
ALlS cores.

Interference with Host Performance: Since a part of the
LLC is dedicated to computation, there is a potential trade-off
between CPU and the accelerator performance in FReaC Cache.
The solution depends on the application, and whether the CPU
and accelerator work cooperatively. The problem, however,
is similar to cache-interference [63]-[69] and performance
isolation problems seen in chip multi-processors, and multi-
tenant cloud scenarios [70]-[72]. In particular, prior work shows
that partitioning the LLC can be an effective solution in such
mixed-workload and multi-application scenarios. Dedicating a
portion of the LLC to accelerators for a process has an effect
on the performance of other running processes similar to that
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Fig. 14. Kernel speedup for 16 and 8 lightweight embedded cores (EC) in
the LLC, versus 8 slices of FReaC Cache accelerators and the 8 cores of the
host A15 core. Data is shown on a log scale.

of dedicating a partition of the LLC to that process. A better
understanding of how much cache to allocate for compute
requires a detailed study to clearly define the level of multi-
tenancy and the interactions among concurrent processes, and
previous work on cache QoS and interference provides a good
foundation for this.

As a first-order analysis, we consider two groups of applica-
tions: {AES, NW, STN2, and STN3} and {CONYV, FC, KMP,
and SRT}. Each group contains applications with a mix of
compute and memory bound kernels, as well as logic/branch
heavy characteristics. We then consider two scenarios - 1IMB
and 4MB of the LLC is retained for caching, while the
remainder is used to accelerate one of the applications in
the group. The remaining three applications are allocated two
CPU threads, each. Fig. 15 presents our analysis, and all data
is normalized to a single threaded baseline, as in the previous
figures. Since three applications, out of the group of four, run
on the CPU complex, each application will run three times in
total®. Thus, we consider an average of the three run times, per
LLC capacity. Our study reveals two key points: First, we note
that the benchmarks do not exhibit sensitivity to the total LLC
capacity. This is primarily due to the fact that the core’s L1
and L2 caches are capable of holding the per-thread working
set. Our benchmarks run in a batched and data-parallel fashion.
So, while the total application working set can be up to 32MB,
which is greater than the LLC capacity, the per-thread working
set (one element of the batch) does not exceed 128KB. Second,
we see that allocating more LLC resources to acceleration
results in improved performance for the accelerator. This is
expected behavior. However, we note that this is largely related
to how many ways can be allocated as scratchpad space, in
order for the accelerators to function. Thus, we observe that
for our given set of benchmarks, allocating up to 90% of
the LLC (9MB) to computation/scratchpad to accelerate one
application does not hurt the performance of the remaining
three applications, as the remaining 1MB is sufficient to back
up the per-thread working sets in the L1 and L2 caches. Here,
we see that the FReaC Cache based accelerator can provide
between 1.8X and 9X of speedup over its CPU run. Note

SFor example, CONV runs in the following grouping: {CONV, FC, KMP},
{CONYV, FC, SRT}, {CONV, KMP, SRT}.

Authorized licensed use limited to: University of lllinois. Downloaded on September 29,2021 at 19:25:32 UTC from IEEE Xplore. Restrictions apply.



Il 2Cores+1MB Shared LLC
l2Cores+4MB Shared LLC

[CIAccelerator +1MB Shared LLC
[ IAccelerator +4MB Shared LLC
10"l
10° R S P T N G BRI -JRAN
& > NS < N Q-
oS &S & 5

Fig. 15. Cache interference study. Speedup over a single thread under varying
shared LLC capacity with concurrently running applications. Data is presented
for application running either on 2 CPU cores or an accelerator, with either
IMB or 4MB of the LLC retained. Data is shown on a log scale.

that, whereas in Fig. 12, 13, and 14 we considered up to eight
threads of the host CPU per application, here each application
is restricted to only two threads while the accelerators leverage
all eight slices of the LLC.

Thus, in such a scenario, offloading computational or
memory limited applications to the LLC would provide the
best overall performance, and would have limited impact on
the CPU cores. Should one or more applications be sensitive
to LLC capacity, then the user would need to scale back
the LLC allocation devoted to computation and/or consider
partitioning and allocating the LLC to specific applications [64]—
[68]. As our results show, FReaC Cache is still able to deliver
acceleration with just 60% of the LLC (6MB). Reducing the
amount of LLC allocated for computation, would provide
proportional reduction in acceleration. Thus, when possible,
FReaC Cache transforms surplus LLC capacity into compute,
providing energy-efficient, customized, and cheap acceleration.

VII. RELATED WORK

There have been several recent attempts at Processing in
Memory (PIM) [22]-[26], [28], [29]. One strategy towards
PIM is to modify the DRAM subarray architecture to enable
computation or acceleration within the memory array [24],
[25]. Seshadri et al. [25] [24] proposed modifications to the
DRAM subarray architectures to enable data copy and bitwise
AND and OR operations. Such architectures take advantage of
the high bandwidth and low data transfer cost provided by the
through silicon vias (TSVs), and do not affect DRAM densities.
However, these systems run the risk of breaking coherence,
and are expensive. In contrast, FReaC Cache is cost-effective,
and the LLC is already the point of coherence in modern
multi-core CPUs. In addition, the reconfigurable fabric is not
limited to any subset of operations. Li et al. [22] proposed a
reconfigurable accelerator architecture by modifying the sense
amplifiers in DRAM to support Boolean algebra acceleration.
This approach is flexible but requires several changes in the
DRAM architecture.

In DRAF [31], the authors explored the idea of a recon-
figurable architecture that uses DRAM for implementing an

FPGA, in order to provide higher density and lower power.
They leverage the large DRAM capacity to support multiple
configurations, and the focus is not on providing in-cache
or near-memory computing. In contrast, FReaC Cache is not
looking to build a new FPGA architecture. Rather, we focus
on utilizing logic folding to pack a large amount of logic
into existing SRAM arrays in the LLC. This enables us to
aggressively reconfigure the compute clusters to achieve the
illusion of a larger FPGA and thus provide cheap and easy
processing near data. Another similar direction for building
reconfigurable architectures in memory leverages CGRA-like
architectures [26], [28]. Gao et al. [26] proposed Heterogeneous
Reconfigurable Logic (HRL) that resembles both FPGA and
CGRA. While this approach targets PIM/NMA, it is a more
specialized solution, looking at CGRAs stacked with DRAMs.

Finally, FReaC Cache and Piperench [73] have some
similarities in that they try to leverage reconfiguration to cope
with limited resources. In FReaC Cache, we perform fine-
grained reconfiguration at a gate (LUT) level and focus on
realizing any circuit in a limited area. In contrast, Piperench
uses a PE-based architecture, and is focused on more pipelined
and compute styled workloads. FReaC Cache is more tightly
integrated into the memory hierarchy and more area-efficient.

VIII. CONCLUSION

In this work we presented a novel architecture, FReaC
Cache, that leverages the existing subarrays of the LLC
and that, without changing the sub-arrays, is able to create
dense reconfigurable computing clusters. FReaC Cache can
be implemented with minimal overheads of 3.5% to 15.3% in
area, and shows average speedups of 3X, and average Perf/W
improvements of 6.1X over an edge-class multi-core processor
when 90% of the LLC is consumed for acceleration. We
also demonstrated FReaC Cache’s competitive advantage over
modern FPGAs, where FReaC Cache is much more area and
power efficient. Finally, we acknowledge that using the LLC
for computation can degrade cache performance, but certain
applications do not use up the entire LLC. By converting the
LLC for computation, we achieve two goals: (1) avoidance of
wasted LLC capacity, and (2) near data computation. Hence
FReaC Cache provides a cost- and power-efficient solution for
acceleration in edge devices.
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