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Abstract. Reconstructing magnetic resonance (MR) images from under-
sampled data is a challenging problem due to various artifacts introduced
by the under-sampling operation. Recent deep learning-based methods
for MR image reconstruction usually leverage a generic auto-encoder ar-
chitecture which captures low-level features at the initial layers and high-
level features at the deeper layers. Such networks focus much on global
features which may not be optimal to reconstruct the fully-sampled im-
age. In this paper, we propose an Over-and-Under Complete Convolu-
tional Recurrent Neural Network (OUCR), which consists of an overcom-
plete and an undercomplete Convolutional Recurrent Neural Network
(CRNN). The overcomplete branch gives special attention in learning
local structures by restraining the receptive field of the network. Com-
bining it with the undercomplete branch leads to a network which focuses
more on low-level features without losing out on the global structures.
Extensive experiments on two datasets demonstrate that the proposed
method achieves significant improvements over the compressed sensing
and popular deep learning-based methods with less number of trainable
parameters.
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1 Introduction

Magnetic resonance imaging (MRI) is a noninvasive medical imaging approach
that provides various tissue contrast mechanisms for visualizing anatomical struc-
tures and functions. Due to the hardware constraint, one major limitation of
MRI is relatively slow data acquisition process, which subsequently causes higher
imaging cost and patients’ discomfort in many clinical applications [3]. While the
exploitation of advanced hardware and parallel imaging [20] can mitigate such
issue, a common approach is to shorten the image acquisition time by under-
sampling k-space (also known as Compressed Sensing (CS)) [9, 19]. However,
reconstructing an image directly from partial k-space data results in a subop-
timal image with aliasing artifacts. To deal with this issue, nonlinear recovery
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algorithms based on `0, `1 or total variation minimization are often used to re-
cover the image from incomplete k-space data. More advanced CS-based image
reconstruction algorithms have been combined with parallel imaging [15], low-
rank constraint terms [16], and dictionary learning [18]. Unfortunately, though
CS image reconstruction algorithms are able to recover images, they lack noise-
like textures and as a result many physicians find CS reconstructed images as
“artificial”. Moreover, when large errors are not reduced during optimization,
high-frequency oscillatory artifacts cannot be properly removed [23]. Thus, the
acceleration factors of CS-based algorithms are generally limited between 2.5
and 3 for typical MR images [23].

Recent advances in deep neural networks open a new possibility to solve the
inverse problem of MR image reconstruction in an efficient manner [8]. Artificial
neural network-based image reconstruction methods have been shown to provide
much better MR image quality than conventional CS-based methods [1, 2, 4, 7,
12, 14, 21, 25, 31]. Most DL-based methods are convolutional which consist of a
set of convolution and down/up sampling layers for efficient learning. The main
intuition behind this kind of network architecture is that at the initial layers,
the receptive field of the filters is smaller, so low-level features (e.g., edges)
are captured. At deeper layers, the receptive field of the filters is larger, so
high-level features (e.g., the interpretation of input) are captured. Using such
generic architecture for MR image reconstruction might not be optimal, since
low-level vision tasks are mainly concerned with extracting descriptions from
input rather than the interpretation of input [5]. Prior to DL era, overcomplete
representations were explored for dealing with noisy observations in the vision
and image processing tasks [13, 30]. In an overcomplete architecture, the increase
of receptive field is restricted through the network, which forces the filters to
focus on low-level features [32]. Recently, overcomplete representations have been
explored for image segmentation [29] and image restoration [32].

In this paper, a novel Over-and-Under Complete Convolutional Recurrent
Neural Network (OUCR) is proposed that can recover a fully-sampled image
from the under-sampled k-space data for accelerated MR image reconstruction.
To summarize, the following are our key contributions: 1. An over-complete
convolutional RNN architecture is explored for MR image reconstruction. 2. To
recover finer details better, the proposed OUCR consists of two branches that
can leverage the features of both undercomplete and overcomplete CRNN. 3.
Extensive experiments are conducted on two datasets and it is demonstrated
that the proposed method achieves significant improvements over CS-based as
well as popular DL-based methods and is more parameter efficient.

2 Methodology

Overcomplete Networks. Overcomplete representations were first explored
for signal representation where overcomplete bases were used such that the num-
ber of basis functions are more than the input signal samples [13]. This enabled
a high flexibility at expressing the structure of the data. In neural networks,
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Fig. 1. Top row : Explanation for the receptive field change in (a) undercomplete and
(b) overcomplete networks. Conv(3,1,1) represents a convolution layer with kernel size
as 3, stride as 1 and padding as 1. Upsample (2,2) represents a nearest neighbor upsam-
pling layer with upsampling coefficients as (2,2). Maxpool(2,2) represents maxpooling
layer with kernel size as 2 and stride as 2. The red pixels denote receptive field. It can
be noted that the receptive field is constrained in overcomplete network compared to
undercomplete network. Bottom row : Visualization of filter responses (feature maps
from ResBlock) for (c) undercomplete and (d) overcomplete CRNN. By restricting the
size of receptive field, the overcomplete CRNN is able to focus on low-level features.

overcomplete fully connected networks were observed to be better feature ex-
tractors and hence perform well at denoising [30]. Recently, overcomplete con-
volutional networks are noted to be better at extracting local features because
of restraining the receptive field when compared to the generic encoder-decoder
networks [27–29, 32]. Rather than using max-pooling layers at the encoder like
an undercomplete convolutional network, in an overcomplete convolutional net-
work, one uses upsampling layers. Fig. 1(a) and (b) visually explains this concept
in CNNs. As can be seen from Fig. 1(c) and (d), the overcomplete networks focus
on fine structures and learning local features from an image as the receptive field
is constrained even at deeper layers. More examples of comparison between over
and under complete networks can be found in the supplementary material.

MR Image Reconstruction. Let x ∈ CN denote the observed under-sampled
k-space data, y ∈ CM is the fully-sampled image that we want to reconstruct. To
obtain a regularized solution, the optimization problem of MRI reconstruction
can be formulated as follows [22, 25]:

min
y
R(y) + λ‖x− FDy‖22. (1)

Here, R(y) is the regularization term and λ controls the contribution of sec-
ond term. FD represents the undersampling Fourier encoding matrix that is
defined as the multiplication of the Fourier transform matrix with a binary
undersampling mask D. The ratio of the amount of k-space data required for a
fully-sampled image to the amount collected in an accelerated acquisition is con-
trolled by the acceleration factor (AF). The approximate fully-sampled image ȳ
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Fig. 2. (a) An overview of the proposed OUCR. Here, ⊗ denotes the channel-wise
concatenation. We denote overcomplete and undercomplete CRNN as OC-CRNN and
UC-CRNN, respectively. (b) A schematic of unrolled CRNN iterations. Here, ⊕ denotes
the element-wise addition. (c) The network configuration of the refine-module. DC
represents the data consistency layer.

can be measured from the observed under-sampled k-space data x via an opti-
mization process. One can solve the objective function (Eq. 1) based on iterative
optimization methods, such as gradient descent. A CRNN [22, 31] is capable of
modeling the iterative optimization process in Eq. 1 as ȳ = CRNN(x̄, x,D,Θ),
where ȳ is the reconstructed MR image from CRNN model, x̄ is the zero-filled
image and Θ denotes the trainable parameters of the CRNN model.

OUCR. To have special attention in learning low-level feature structures while
not losing out on the global structures and inspired by previous CRNN meth-
ods [22, 31], we propose a novel OUCR network as shown in Fig. 2. OUCR
consists of two CRNN modules with different receptive fields to reconstruct MR
images (i.e. OC-CRNN and UC-CRNN in Fig.2(a)) and an refine-module (RM).
In a CRNN module fi, let f enci , fdeci , and f resi denote the encoder, decoder, and
ResBlock, respectively (Fig.2(b)). A data consistency (DC) layer is added at the
end of each module to reinforce the data consistency in k-space. The iterations
of a CRNN module can be unrolled as follows:

ȳ
(j+1)
i = DC(fi(ȳ

(j)
i , h

(j)
i ), x,D),

= F−1[Dx+ (1−D)F [fi(ȳ
(j)
i , h

(j)
i )]],

= F−1[Dx+ (1−D)F [fdeci (f resi (h
(j)
i ) + f enci (ȳ

(j)
i ))]],

(2)

where hji is the hidden state after iteration j and F−1 denotes the inverse Fourier
transform. After J iterations of the two CRNN modules, the final reconstructed
MR image ȳ is formulated as follows:

ȳoc = OC-CRNN(x̄, x,D,Θoc),

ȳuc = UC-CRNN(ȳoc, x,D,Θuc),

ȳ = DC(RM(ȳoc ⊗ ȳuc, Θrm), x,D),

(3)
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where ⊗ denotes the channel-wise concatenation and Θoc, Θuc, Θrm denote the
parameters of the overcomplete, undercomplete CRNN and RM network, respec-
tively. The intuition behind using both OC-CRNN and UC-CRNN is to make
use of both local and global features. While we focus more on the local features
using the OC-CRNN, the global features are not neglected altogether as they still
have meaningful information for proper reconstruction. In each CRNN module,
we have two convolutional blocks in both encoder and decoder. Each convolu-
tional block in the encoder has a 2D convolutional layer followed by an upsam-
pling layer in OC-CRNN or a max-pooling layer in UC-CRNN. In the decoder,
each convolutional block has a 2D convolutional layer followed by max-pooling
layer in OC-CRNN or upsampling layer in UC-CRNN. More details regarding
the network configuration can be found in the supplementary material.

3 Experiments and Results

Evaluation and Implementation Details. The following two datasets are
used for conducting experiments – fastMRI [11] and HPKS [6, 10]. The fastMRI
dataset consists of single-coil coronal proton density-weighted knee images corre-
sponding to 1172 subjects. In particular, 973 subjects’ data is used for training,
and 199 subjects’ data (fastMRI validation dataset) is used for testing. For
each subject, there are approximately 35 knee images that contain tissues. The
HPKS dataset is collected by an anonymous medical center from post-treatment
patients with malignant glioma. T1-weighted images from 144 subjects are used,
where 102 subjects’ data are used for training, 14 subjects’ data set are used for
validation, and 28 subjects’ data are used for testing. For each subject, 15 axial
cross-sectional images that contain brain tissues are provided in this dataset. We
simulated k-space measurements using the same sampling mask function as the
fastMRI challenge [11] with 4× and 8× accelerations. All models were trained
using the `1 loss with Adam optimizer by the following hyperparameters: initial
learning rate of 1.5 × 10−4 then reduced by a factor of 0.9 every 5 epochs; 50
maximum epochs; batch size of 4; the number of CRNN iteration J of 5. SSIM
and PSNR are used as the evaluation metrics for comparison.
MR Image Reconstruction Results. Table 1 shows the results correspond-
ing to seven different methods evaluated on the HPKS and fastMRI datasets.
The performance of the proposed model was compared with compressed sensing
(CS) [26], UNet [24], KIKI-Net [4], Kiu-net [29], D5C5 [25], and PC-RNN [31].
For a fair comparison, UNet [24] and Kiu-net [29] are modified for data with
real and imaginary channels and a DC layer is added at the end of the networks.
KIKI-Net [4] which conducts interleaved convolution operation on image and
k-space domains achieves better performance than UNet [24] on HPKS. Kiu-
net [29] which is an overcomplete variant architecture of UNet [24] outperforms
UNet [24] and KIKI-Net [4]. By leveraging the cascade of convolutional neural
networks, D5C5 [25] outperforms the Kiu-net [29] in both HPKS and fastMRI
datasets. PC-RNN [31] which learns the mapping in an iterative way by CRNN
from three different scales achieves the second best performance. As it can be
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Table 1. Quantitative results on the HPKS and fastMRI dataset. Param denotes the
number of parameters.

Method Param
HPKS fastMRI

PSNR SSIM PSNR SSIM
4X 8X 4X 8X 4X 8X 4X 8X

CS - 29.94 24.96 0.8705 0.7125 29.54 26.99 0.5736 0.4870
UNet 8.634 M 34.47 29.47 0.9155 0.8249 31.88 29.78 0.7142 0.6424

KIKI-Net 1.790 M 35.35 29.86 0.9363 0.8436 31.87 29.27 0.7172 0.6355
Kiu-net 7.951 M 35.35 30.18 0.9335 0.8467 32.06 29.86 0.7228 0.6456
D5C5 2.237 M 37.51 30.40 0.9595 0.8623 32.25 29.65 0.7256 0.6457

PC-RNN 1.482 M 38.36 31.54 0.9696 0.8965 32.37 30.17 0.7281 0.6585
OUCR 1.192 M 39.33 32.14 0.9747 0.9044 32.61 30.59 0.7354 0.6634

seen from Table 1, the proposed OUCR outperforms other methods by lever-
aging the overcomplete architecture. Fig. 4 shows the qualitative results of two
datasets with 4× and 8× accelerations. It can be observed that the proposed
OUCR yields reconstructed images with remarkable visual similarity to the ref-
erence images compared to the others (see the last column of each sub-figure
in Fig. 4) in two datasets with different modalities. The reported improvements
achieved by OUCR are statistically significant (p < 10−5). The computational
details of different methods and statistical significance test are provided in Sup-
plementary Table 1 and 2, respectively.

(a)

GT

(b) (c) (d) (e) (f)

Fig. 3. Qualitative results and error maps of ablation study on HPKS with AF=4.
(a) UC-CRNN. (b) UC-CRNN + RM. (c) OC-CRNN. (d) OC-CRNN + RM. (e) UC-
CRNN + OC-CRNN. (f) UC-CRNN + OC-CRNN + RM (proposed OUCR).

In the k-space domain, the center frequencies determine the overall image
contrast, brightness, and general shape. The peripheral area of k-space contains
high spatial frequency information that controls edges, details, sharp transi-
tions. [17]. To further analyze the performance of different methods in low and
high spatial frequency, we carry out the k-space analysis in Fig. 5. We reconstruct
an MR image from partially masked k-space and compare it with the reference
image that is applied same mask on k-space, as shown in Fig. 5 top row. The
reported PSNR and SSIM are presented by Boxplot in Fig. 5 bottom row. It can
be seen that the proposed OUCR exhibits better reconstruction performance
than other methods for both low and high frequency information.

Ablation Study. We conduct a detailed ablation study to separately evalu-
ate the effectiveness of using OC-CRNN, UC-CRNN, and RM in the proposed
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Fig. 4. Qualitative comparison of different methods on (a) HPKS and (b) fastMRI
dataset. The second row of each subplot shows the corresponding error maps.

Table 2. Ablation study of designed modules in term of reconstruction quality on
HPKS with AF=4.

Modules PSNR SSIM
UC-CRNN 37.87 0.9644

UC-CRNN + RM 38.02 0.9658
OC-CRNN 36.97 0.9564

OC-CRNN + RM 37.34 0.9600
UC-CRNN + OC-CRNN 38.98 0.9719

UC-CRNN + OC-CRNN + RM (OUCR) 39.33 0.9747

framework. The results are shown in Table 2. We start with only using OC-
CRNN and UC-CRNN. It can be noted that the performance of OC-CRNN
is lesser than UC-CRNN, since even though OC-CRNN captures the low-level
features properly it does not capture most high-level features like UC-CRNN.
Then, we show that adding RM with each individual module can improve the
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Fig. 5. K-space analysis on (a) low frequency and (b) high frequency. Top row : the
examples of masked k-space image. Bottom row : the Boxplot of reconstruction perfor-
mance by different methods on HPKS dataset.

reconstruction quality. Finally, combing both CRNN networks with RM (pro-
posed OUCR) results in the best performance. Fig. 3 illustrates the qualitative
improvements after adding each major block, which is consistent with the results
reported in Table 2. Moreover, we observe that increasing the number of CRNN
iterations can further improve the performance of the proposed OUCR, but con-
sequently leads to lower computational efficiency. Due to space constraint, an
ablation study regarding CRNN iterations, k-space analysis on fastMRI dataset,
and more visualizations are provided in the supplementary material.

4 Discussion and Conclusion

We proposed a novel over-and-under complete convolutional RNN (OUCR) for
MR image reconstruction. The purposed method leverages an overcomplete net-
work to specifically capture low-level features, which are typically missed out in
the other MR image reconstruction methods. Moreover, we incorporate an un-
dercomplete CRNN, which results in an effective learning of low and high level
information. The proposed method achieves better performance on two datasets
and has less numbers of trainable parameters as compared to the CS and popular
DL-based methods, including UNet [24], KIKI-Net [4], Kiu-net [29], D5C5 [25],
and PC-RNN [31]. This study demonstrates the potential of using overcomplete
networks in MR image reconstruction task.
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ence Foundation (1910141) and the National Institutes of Health (R37CA248077).
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