
QEI: Query Acceleration Can be Generic
and Efficient in the Cloud

Yifan Yuan1, Yipeng Wang2, Ren Wang2, Rangeen Basu Roy Chowhury2, Charlie Tai2, Nam Sung Kim1

1UIUC, 2Intel
{yifany3, nskim}@illinois.edu {yipeng1.wang, ren.wang, rangeen.basu.roy.chowhury, charlie.tai}@intel.com

Abstract—Data query operations of different data structures
are ubiquitous and critical in today’s data center infrastructures
and applications. However, query operations are not always
performance-optimal to be executed on general-purpose CPU
cores. These operations exhibit insufficient memory-level paral-
lelism and frontend bottlenecks due to unstructured control flow.
Furthermore, the data access patterns are not cache- or prefetch-
friendly. Based on our performance analysis on a commodity
server, query operations can consume a large percentage of the
CPU cycles in various modern cloud workloads. Existing accelera-
tor solutions for query operations do not strike a balance between
their generality, scalability, latency, and hardware complexity.

In this paper, we propose QEI, a generic, integrated, and
efficient acceleration solution for various data structure queries.
We first abstract the query operations to a few regular steps and
map them to a simple and hardware-friendly configurable finite
automaton model. Based on this model, we develop the QEI
architecture that allows multiple query operations to execute
in parallel to maximize throughput. We also propose a novel
way to integrate the accelerator into the CPU that balances
performance, latency, and hardware cost. QEI keeps the main
control logic near the L2 cache to leverage existing hardware
resources in the core while distributing the data-intensive
comparison logic to each last-level cache slice for higher
parallelism. Our results with five representative data center
workloads show that QEI can achieve 6.5×∼11.2× performance
improvement in various scenarios with low overhead.

Index Terms—data query, on-chip accelerator, near-cache
processing

I. INTRODUCTION

Nowadays, the combination of diverse applications and

infrastructure in data centers has created great challenges for

both cloud service providers and chip makers in improving data

center hardware’s performance and efficiency. Researchers have

explored the adoption of specialized hardware (or accelerators),

such as FPGAs [12, 28, 49, 66] and GPUs [9, 17, 31], to

improve the performance and efficiency of important parts (com-

pute kernels) of such workloads. These accelerators are usually

connected to the CPU via an I/O interface such as PCIe. Due to

the long communication latency between the core and the PCIe

device [41, 58], the compute kernel has to run for a significant

amount of time to amortize the communication overhead, mak-

ing them unsuitable for accelerating fine-grained and latency-
sensitive operations [7]. One such operation is data query.

Data query (or lookup), in general, refers to the process

of retrieving data for a given key from one of a handful

of popular data structures (see Sec. II for details). Query
operations exist in almost all data center workloads. For

example, a firewall can use a list of blacklisted keywords

to query on a traffic flow to identify malicious requests; a

network packet can query on a routing table to determine

the output port in a virtual switch; a web server can send

query to a database to retrieve a user’s profile. Optimizing

such operations can benefit a wide range of workloads.

In addition to numerous software optimizations for query

operations, there have been a few proposals to use specialized

hardware to accelerate these operations [25, 45, 48, 54, 79, 81].

Almost all of them propose to offload the query operations

entirely or partially to an accelerator integrated inside a

CPU chip. Compared with PCIe-based devices, these on-chip

accelerators considerably reduce the communication overhead,

making them appealing for the query operations.

However, there are still substantial limitations with these

existing solutions. First, the accelerator should efficiently deal

with a wide range of popular applications to justify being

integrated into a general-purpose CPU. Most existing solutions

either focus on a particular application (e.g., only hash table

lookups are accelerated [79, 81]) or require multiple instances

to support different data structures [45], all of which lack

generality and efficiency. Second, many existing proposals

assume a loose integration of the accelerator with the CPU

cores, which still has latency concern, given query operations’

strict latency sensitivity in many workloads. Third, the

hardware complexity and cost of these solutions make them

less practical. For example, the queried data structures seldom

reside in a contiguous memory address space (i.e., larger than a

4KB page) [8, 26], which necessitates an address translation of

some sort and may require a dedicated memory management

unit (MMU) in the accelerator for it to be high-performance.

This incurs non-trivial on-chip hardware costs (see Sec. VII

for detail). These limitations make many of the existing

proposals less attractive for a general-purpose platform. It is

highly desirable to have a versatile, efficient, and balanced

accelerator design with low latency and high throughput.

To this end, we propose QEI, which strives to achieve this

fine balance. We first investigate the processing steps of various

data query operations on popular data structures and observe

that they share very similar inputs/outputs and execution pat-

terns. Based on this observation, we abstract data query opera-

tions using five steps with three types of operations: memory ac-

cess, comparison, and arithmetic. With this abstraction, we can

map each data query operation to a distinct configurable finite

automaton (CFA) – a finite automaton with fixed transition rules

385

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

978-1-6654-2235-2/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00040

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
22

35
-2

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
51

64
7.

20
21

.0
00

40

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

but configurable parameters. We design QEI to be capable of ex-

ecuting these CFAs in a way that makes it possible for a single

accelerator to process multiple types of data query operations,

improving the performance for a wide range of workloads.

QEI consists of three main components: (1) a Query State

Table to store the state information of in-flight query operations,

(2) a CFA Execution Engine that is capable of supporting

multiple CFAs for different data structures and can be extended

via firmware update to support new data structures, and (3)

a Data Processing Unit comprising of various processing

elements such as ALUs and Comparators. The query is initialized

by a new instruction (with two flavors) and is processed by the

appropriate CFA model for state transitions and intermediate

data processing via micro-operations. Depending on the flavor,

the result is returned to either the core or the designated

memory space. Such architecture enables QEI to support a wide

range of queries efficiently with shared hardware resources.

Regarding how the accelerator should be integrated into a

CPU, prior works generally explore two directions. They either

use a distributed design by integrating the accelerator in the core

or last-level Cache (LLC) (see Fig. 6a) or a centralized design

by placing the dedicated accelerator hardware away from the

core tile (connected to the on-chip fabric through a dedicated

port) (see Fig. 6b). In this paper, we propose a novel integration

scheme that builds on the advantages of these schemes to bal-

ance throughput, latency, and design complexity. More specif-

ically, in our integration scheme, the accelerator is tightly cou-

pled to the core while still being able to extract a large amount

of memory-level parallelism (MLP) by overlapping many query

operations (see Fig. 6c). We place the majority of QEI close

to each core’s L2 cache and second-level TLB (L2-TLB) for

resource sharing and put the Comparators into the Caching and

Home Agent (CHA) of each LLC slice to avoid moving large

amounts of data into private caches. With this scheme, QEI can

conveniently leverage L2-TLB for address translation while per-

forming the data-intensive comparisons in a near-data fashion to

exploit parallelism in Non-Uniform Cache Access (NUCA) [37,

44] design, as well as to avoid private cache pollution.

We evaluate QEI using the Sniper simulator [11] with five

representative cloud data center workloads. The results show

that QEI can achieve ∼8× speedup on average and as high

as ∼10× speedup over the baseline software implementation.

We also demonstrate how the integration schemes impact the

performance delivered by the accelerator.

II. BACKGROUND AND CHALLENGES

A. Data Structures in Cloud Workloads

Cloud workloads in data centers are usually data-

intensive [26, 42], and the data is typically organized in

various data structures with different performance and memory

trade-offs. In this section, we discuss the characteristics of

some popular data structures.

Hash Table. A basic hash table is an array where one can

store each key-value pair at a dedicated location indexed by

hashing the key. Hash tables often appear in network function

Pe
rc
en
ta
ge

0%
10%
20%
30%
40%
50%

DPDK
(Hash Table)

JVM
(Tree)

RocksDB
(Skip List)

Snort
(Trie)

FLANN
(Hash Table)

Fig. 1: Percentage of data query operation among total

execution time in different workloads (data structures).

virtualization (NFV) environments, where network functions

run on general-purpose servers instead of specialized hardware

boxes [36, 56]. Some examples of such network functions are

virtual switch [63], firewall [29], and load balancer [21]. Hash

tables are also used for in-memory key-value stores [24] and

machine learning workloads [13, 73].

Tree.1 Tree is a hierarchical data structure with each tree node

storing the key and data. One of the most popular tree data

structures used in the cloud is the object tree managed by

runtime languages for garbage collection. For example, the

garbage collector in Java Virtual Machine (JVM) maintains the

live objects in a tree data structure [1]. A garbage collection

event causes a traversal of the object tree to mark and move

live objects and recycle dead ones. As most cloud applications

are written in managed languages such as Java, garbage

collection is a major consumer of CPU cycles [55].

Trie. We distinguish trie from tree because they have distinct

implementations and usages. In a basic trie, each child node is

indexed by a distinct byte. The node itself does not store a key.

Instead, the path to a leaf node implicitly represents a unique

key. Trie is commonly used for literal matching or prefix

matching. For example, in networking workloads, a routing

table applies longest prefix matching (LPM) on IP addresses to

decide a route [4, 67]. Intrusion prevention systems (IPSs) use

literal matching to decide if a networking request is malicious

by matching the request’s content with a list of keywords [16].

Linked list. Unlike trees and hash tables, linked list is a data

structure that can be more easily extended and maintained

during runtime. People usually choose linked list when data

updates happen frequently. For faster data query speed, a

special type of linked list called skip list [65] is also widely

used. Skip list keeps its data sorted and maintains multiple

levels of linked list so that the query thread can skip nodes

during traversal. One can find skip list usages in database

applications such as RocksDB [23].

To better demonstrate the overheads of query operations

in cloud workloads, we conduct a profiling study with DPDK,

RocksDB, and FLANN on a commodity server with two Intel®

Xeon® 8160 CPUs [40] and 64GB DDR4 memory (see Sec. VI

for benchmarks details and configuration). Based on our

performance profiling with Intel® VTune® [39] and previous

works [27, 55], as summarized in Fig. 1, the data query

1We do not strictly distinguish tree and graph since they share similar
operations from the hardware point of view. For graph-specific issues, such as
circle handling, programmers need to properly deal with them in the software.

386

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

operations in various workloads take up 23%∼44% of the CPU

time. We further use vTune’s top-down analysis to investigate

the architectural bottleneck of query operations. Workloads can

be categorized as being backend bound or frontend bound. We

find hash table queries to be backend bound due to the excessive

amount of data accesses. For instance, DPDK workload is

7.5% frontend bound and 63.9% backend bound2. We observe

higher frontend pressure for queries into lined list or tree

due to the large number of instructions and data-dependent

branches, primarily from pointer chasing. Specifically, the

RocksDB workload is 25.9% frontend bound and 9.5%

backend bound. Although the out-of-order (OoO) execution of

the modern CPU core helps with instruction-level parallelism,

we find each query operation can easily generate hundreds

of dynamic instructions. Core’s ROB and Load-Store Unit can

be quickly saturated. These findings motivate us to accelerate

query operations by reducing data access overhead (backend

bottleneck), dynamic instruction count (frontend/backend

bottleneck), and irregular control flow (frontend bottleneck).

B. Challenges of Designing Query Accelerator

Challenge 1: generality. Query operations on different data

structures can have distinct implementations in software.

Previous works only focus on accelerating a specific operation

on a particular data structure [45, 79, 81] or develop specific

hardware for each data structure [48], resulting in restricted

usage scenarios and poor extensibility.

Challenge 2: latency. We find that previous accelerator studies

rarely discuss the communication latency between the CPU

core and the accelerator. This is partially attributed to the long

execution time of many offloaded computing kernels, which

amortizes such latency. For example, one can offload a large

portion of the computing time in machine learning workloads

to a GPU or a dedicated accelerator [17, 62]. Communication

only happens at the kernel initialization and the data retrieval

stages, which is amortized by the kernel’s long execution time.

However, not all use cases can tolerate such latency. For exam-

ple, as discussed by Kalia et al. [41], the average networking

response latency can be tripled when operations are offloaded

to a GPU. Our targeted query operations are fine-grained and

often used in latency-sensitive workloads, including networking

and database applications. The jitters and latency to serve each

query are critical to the observed quality of service [15, 69, 72].

Challenge 3: design complexity and cost. Adding an

accelerator to the CPU die means reduced area and power

budget for CPU cores and other components. When the

accelerator is not used, it becomes dark silicon, wasting area

and leakage power [22]. Hence, it is desirable to minimize the

area and power consumption by the accelerator. One example

is the MMU, which can substantially increase the hardware

cost of an accelerator. Previous works either assume largely

consecutive memory space via huge page [35, 54, 79] or

dedicated memory management hardware [5, 48]. Using huge

2These numbers show the percentage of unused pipeline slots caused by
either frontend or backend issues.

Comparison
Result

Item (bucket, node, …)

Match

Mis‐
match

Key & Starting Addr
Hash

Fig. 2: Abstraction of query operations.

struct node{
void* _key; void* _value;
struct node *_next;

};
...
void* query_linkedlist
(void* key, struct node *root){

struct node *current = root;
while(current != NULL){

if(!memcmp(current->_key, \
key, KEY_LENGTH)){

return current->_value;
}
current = current->_next;

}
return NULL;

}

voidvoid* query_linkedlist* query_linkedlist
((voidvoid* key,* key, structstruct node *root){node *root){

dstructstruct node *current = root;node *current = root;

ifif(!memcmp(current->_key, \(!memcmp(current->_key, \
key, KEY_LENGTH)){

p
key, KEY_LENGTH)){

l

}}
return
}
return NULL;NULLNULL;

Item (node)
Key & Starting Addr

Comparison

Item (node)
Result

Result
}}
current = current->_next;
}
current = current->_next;

returnreturn current->_value;current->_value;

List 1: Routine of the linked list query and its corresponding

steps in the abstraction.

page can easily cause fragmentation, and there is no guarantee

that huge pages are available on a system that is not freshly

booted. Using dedicated hardware, on the other hand, increases

the hardware area and power budget significantly. Later on,

we will show that an extra TLB can take a significant amount

of area in silicon (see Sec. VII).

III. ABSTRACTING QUERY OPERATIONS

Data queries, regardless of the exact type of the data structure,

have very similar characteristics. In this section, we summarize

these similarities and build an abstract model that can fit

different data structures and query algorithms (see Fig. 2).

Input/output. Each data query operation requires two inputs

and one output. The first input is the key to be queried, and

the second input is a pointer to the data structure (starting

address). Both inputs can be passed to the accelerator through

reference, i.e., via pointers to memory locations. The output

(result) of the operation is the data being queried, e.g., a

node in a linked list. In real applications where the result can

be large, a pointer to the actual data is used as the result.

Execution pattern. Given the inputs, the query operation

starts by accessing an initial location in the data structure. For

a tree and a linked list, the query begins at the root node. For

a hash table, an offset is generated by hashing the key, and

the query operation starts from starting address + offset.

For each item in the data structure (either a node in a tree or

linked list or an entry in a hash table bucket), the item’s key

is read out and compared against the queried key. If the keys

match, the associated data is returned as the result of this

query operation. Otherwise, the query operation will iterate

to the next item linked by the current one until a match is

found or all potential items have been examined.

We demonstrate the execution pattern with a linked list

query operation shown in List 1. Other data structures share

similar flows for query operations with minor modifications.

387

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

IDLE MEM

MEM.N

MEM.K

COMP DONE
1

2

3

4

5
6

7

8

1. {inst, , mem.node & mem.key req}
2. {mem.node recved, , }
3. {mem.key recved, , }
4. {mem.key recved, , comparison}

5. {mem.node recved, , comparison}
6. {comparison recved, mismatch, mem.node req}
7. {comparison recved, match, send final result}
8. {final result sent, , }

Fig. 3: CFA of linked list query operations. State transition

format: {trigger event, condition(s), action(s)}.

A. CFA Model

Given the common inputs and output, and the formalized

execution patterns, we observe that data query operations

can be easily represented as CFA. Typically, accelerators use

fixed pipelines or functional elements to implement specific

algorithms. However, we choose CFA as our model because

(1) the steps in data query operations are relatively regular

and fixed, which fits the expressiveness of a CFA’s state

transitions. (2) CFA enables us to decouple the control logic

and the execution units in the hardware design. Different query

operations can share the same execution units (e.g., ALUs and

Comparators) to amortize the hardware cost and maintain high

generality. (3) Compared to the basic finite automaton, CFA is

more flexible and enables us to process multiple instances of

a single data structure with different parameters. This allows

us to implement multiple CFAs in the accelerator to support

various data structures and query algorithms efficiently.

We continue the linked list example to illustrate how CFA

can be applied to a query operation in detail (see Fig. 3).

Then we briefly describe how the other data structures differ

from the linked list. A query instruction will trigger the idle

CFA to issue memory requests for both the queried key and

the starting node (1). Depending on the order in which the

results of these two requests are returned, the CFA executes

the first comparison via 2 4 or 3 5 . If the comparison

result is “mismatch”, the CFA goes back to “MEM.N” state

and issues the memory request for the next node (6). The

operation continues until a “match” is found, or the next node

is NULL. If a “match” is found, the CFA returns query result

(the node’s value) and becomes idle again via 7 8 .

Querying a binary search tree or a skip list is similar to linked

list, with a slight modification to the comparison state (adding

“>” and “<” to know the traversal direction for transition 6).

For a trie, the next node is indexed by one or more bytes of

the queried key. Within a node, we search an index table (e.g.,

an array) for a match to traverse to the next node. Between

“MEM.N” and “COMP”, we can insert a state to search the

index table. The CFA transits to “DONE” state when we cannot

find a match or the node is the leaf node. For a hash table query,

one extra state for hash calculation needs to be inserted before

1 . For 1 , the memory node is now a key bucket indexed

by the hash value. Also, 6 will load the next entry from

the same bucket. With these basic states and transitions, the

Starting
Addr Type Subtype Key Length Stucture

Size Flags
8B 4B 4B 8B 8B 32B

Fig. 4: Format of data structure header (with field size).

accelerator can even operate on combined data structures such

as a hash table of linked lists. To achieve this, we can treat each

combined data structure as a unified and unique data structure

and assign a unique “subtype” and a dedicated CFA to it.

B. Software Usage Model

As noted above, the accelerator should contain multiple CFA

models to support different data structures and query algorithms

with the same hardware components. To initiate a specific

query operation, the software needs to communicate the

specifics of the data structure and the query to the accelerator.

This allows the accelerator to use the appropriate CFA and

configuration/parameters for the query. For example, the

accelerator needs to know the length of the key for comparison.

It also needs to know the type of the data structure to invoke

the appropriate CFA for the query. These configuration

parameters are uniquely specified for each queried data

structure. We call this set of configuration parameters the

“metadata”. We define a single-cacheline (i.e., 64B) header to

store the metadata (see Fig. 4). This header’s fields include the

pointer to the data structure, type and subtype (e.g., number

of entries in a hash table bucket) of the data structure, the

length of the key stored, the size of the entire data structure

(for static data structures such as hash table), other flags and

reserved bits for future extension. The software is responsible

for populating the header properly, and the CFA parses the

parameters from it before executing a data query operation.

IV. QEI DESIGN

A. QUERY Instructions

To initiate the query operations on QEI and leverage the

software abstraction we built in Sec. III, we define an instruction

called QUERY. This instruction has two flavors – (1) blocking

and (2) non-blocking – which target two distinct use cases.

QUERY_B reg.key/result mem.header_addr
This instruction sends the header_address and key_address

to the accelerator and waits for the result to be returned in

the same register as key_address before it can retire. Note

that it does not block succeeding instructions from entering

core’s pipeline (if slots available).

QUERY_B can be used when there is no independent work

available and can be used in small batches, determined by the

resource limitations of the accelerator and the core pipeline,

to maximize the parallelism. However, once the accelerator

resources are filled up, forward progress will be blocked until

at least one of the query instruction completes. The OoO core

will continue to execute independent instructions until resource

limitations are hit due to the incomplete query instructions

blocking the head of the OoO window.

QUERY_NB impl_reg.header_addr mem.result_addr reg.key
This flavor of the query instruction has an extra operand

indicating the address that the accelerator can write the result to.

388

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

inline static void*
query_b(void* key, void* header){

void* result = key;
__qei_query_b(header, result);
return result;

}

inline static void
query_nb(void** keys, void* header, void** results){

for(int i = 0; i < BATCH_SIZE; i ++){
__qei_query_nb(header, keys, results);
keys ++;
results ++;

}
}

inline static void
polling_result(void** results){

__m512 zmm;
while(1){

__qei_snapshot_read(results, zmm);
if(_mm512_cmpeq_epi64_mask(zmm, 0) != 1){

break;
}

}
}

List 2: An example of QEI instructions usage.

This instruction retires from the core as soon as the accelerator

accepts the request. After the query operation is done, the

accelerator writes the result to the designated result_addr

provided by the instruction. The non-blocking version does not

prevent forward progress, and the program can perform other

independent work while the query is being processed by the

accelerator, thus maximizing the parallelism without blocking

the core resources (e.g., ROB). However, the software is

responsible for reading the result from memory and checking

the result’s completion flags. One way to check for completion

is by occasionally polling the result from the output address,

but this costs extra cycles. The overhead can be reduced by

using wide SIMD SNAPSHOT_READ instruction similar to

HALO [79]. We do not choose hardware interrupt because

it requires the OS to handle the interrupt, which is not cheap.

We show a code snippet that uses the query instructions in

buitin format in List 2. As indicated in the snippet, QUERY_NB
should be used in algorithms where other independent tasks

can be time-multiplexed with the query operations. These

instructions can be batched to maximize the parallelism, but

care must be taken to prevent overflowing the accelerator

resources. An overflow will prevent the accelerator from

accepting further query requests and will prevent them from

retiring, eventually blocking the machine.

Update operations (e.g., insert, delete) are still in software.

Also, memory concurrency is handled by the software by using

appropriate locks and barriers. Since QEI targets read-intensive

cases, the "synchronization" happens infrequently. Besides, the

overhead of lock and barrier operations can be significantly

reduced by using purpose-built hardware mechanisms [14, 51,

77, 79, 82], which are orthogonal to the design of QEI.

B. QEI Microarchitecture

QEI’s goal is to efficiently execute the data query operations

of different data structures with a shared pattern (see Sec. II).

Based on the CFA model we apply in Sec. III, we propose a

flexible design that can handle several common data structure

queries and can also be extended to support emerging data

structures and query algorithms.

Since we want to leverage memory access parallelism, QEI

must support multiple in-flight query operations. This can

CFA Execution Engine
Data Structure 1 Data Structure N

…

=

Comparators

type state datakey_addr
TLB and
Memory
Access

Re
su

lt
Q

ue
ue

ALUs

Q
ue

ry
Q

ue
ue

Query State Table
State Update

Memory
Result

Data Processing
 Unit

…

…

Fig. 5: QEI accelerator microarchitecture.

be done in one of two ways - (1) parallel CFAs by naively

replicating all the hardware for the CFA as many times as the

number of queries, or (2) pipelined CFAs by only working

on one query operation at a time but pipelining multiple

queries one after the other. QEI chooses pipelined CFAs but

in an OoO fashion. Typically, each query operation requires a

series of memory accesses, and the latency for these memory

accesses is quite high. During these memory accesses, the

CFA for that operation is stuck in the same state until the

data comes back and can be processed to determine the next

state. Instead of letting a single query monopolize the CFA

hardware, in QEI, the current state of the operation is saved

in a table, and the hardware is allowed to work on another

query whose data might already be ready. In this way, we time

multiplex the hardware to process multiple in-flight queries.

We depict QEI microarchitecture in Fig. 5 and describe

QEI’s three main components.

Query State Table (QST). To hide memory access latency and

exploit parallelism, like many other accelerator designs, QEI

supports multiple in-flight query operations in parallel. Query

State Table stores the current state of all the in-flight queries.

Specifically, this information includes the key_address (8B),

result_address - valid only for non-blocking queries (8B), type

- type of the data structures (1B), state - the current state in the

corresponding CFA (1B), data - intermediate data or scratch

space (64B), query_mode - blocking or non-blocking (1b), and a

ready bit (1b). When inserting a new outstanding query from

Query Queue, QST finds the first empty entry and sets the ready

bit to 1, and the index of this entry (QST ID) is used for address-

ing during the state transitions. A completed query releases its

QST entry and marks the ready bit to 0. Software is responsible

for tracking the availability of the QST slots to make sure that

QEI accelerator is not overflown. The intermediate data field is

used to stage either a cacheline (i.e., 64B) worth of data from

memory or intermediate results from arithmetic/comparison

operation. QST acts as a scheduler tableĖvery cycle, it selects

a ready entry (in a FIFO manner) to be processed by the CFA

Execution Engine and its state to be updated.

CFA Execution Engine (CEE). CFA Execution Engine is re-

sponsible for processing the entries in the QST and update

their state. CEE contains the state transition rules for CFAs of

multiple data query flows for various data structures. The rules

389

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

to be applied to an entry depend on the value of the type field.

The CEE processes the intermediate data and updates the state

of an entry accordingly, writing back the updated state to the

QST. Each state update can be accompanied by one of several

different operations on the intermediate data - (1) memory

access (in cacheline granularity, i.e., 64B per access)3, (2) arith-

metic operation, and (3) comparison, which is issued to the ap-

propriate Data Processing Unit. The intermediate data is read

from the QST at this time and sent to the processing element

along with the QST ID of the query. Once the operation finishes,

which can take one or several cycles, the new result is written

back to the QST, and the entry is marked ready for further

processing. Software can achieve a similar time-multiplexing

effect by either using software pipelining techniques or helper

threads. However, due to the complex software implementations,

they cannot compete with the efficiency of hardware CFAs.

The state transition rules for several CFAs for querying

common data structures are pre-defined in the CEE. However,

the CEE is designed as a microcoded control machine (i.e.,

configurable), and a firmware update [47, 83], with new state

transition rules, can be applied to support emerging data struc-

tures and query algorithms. In our design, the number of states

is limited by the size of the current_state field in the QST

and allows for 256 states. This is sufficient for the algorithms

we experimented with. However, the field can be made larger if

other data structures’ queries require more states in their CFAs.

Data Processing Unit (DPU). Data Processing Unit consists

of multiple processing elements or function units used to

perform certain operations on intermediate data. The processing

elements include ALUs, comparators, and a hashing unit. For

each related state transition in the corresponding CFA, a micro-

operation can be issued to a data processing element. QEI

’s micro-operations include memory access (read), arithmetic

and logic operations, and comparison. The micro-operation se-

quence in a query is defined by its CFA. For example, querying

a hash table may require computing a hash function with an

input key to produce an output value for further lookup. To do

this, CEE first issues a memory micro-operation to fetch the key

and a subsequent micro-operation to the hash unit to generate

the hashed value. The hashing unit supports common hash

functions. Hash functions not supported by the hashing unit can

be decomposed into several simple arithmetic operations, such

as shift and bit-wise Boolean operations, and calculated using a

series of micro-operations. Comparison is another critical step

in data query operations for most, if not all, data structures.

The comparator elements in the DPU are capable of conducting

bit-wise comparisons (>, < or =) of 64-bit values each cycle.

C. Life of a Query Operation

A query instruction is fetched like any other instruction

by the CPU core and is scheduled by the OoO scheduler

3QEI is backed by the regular cacheable memory in the coherence domain,
following the write-back policy. We assume weak ordering for both the
memory accesses issued by QEI and the query requests sent to QEI by
the core. If strong ordering is required for software’s update operations,
lock/mfence instructions should be applied manually in the software.

to be executed on QEI. Once a query instruction has been

issued, depending on whether it is a blocking or non-blocking

instruction, the instruction behaves like a load or a store.

A blocking query operation behaves like a load, occupies

space in the Load Queue, and is blocked waiting for data to

come back from QEI. Once the query is completed by QEI,

the final data is returned to the Load-Store Unit, which wakes

up the query instruction to get the data and write it back to

the physical register file before it completes and is marked as

such in the ROB. From the point of view of the core pipeline,

this is very similar to a long-latency load.

A non-blocking query operation behaves like a store.

However, it does not have strict ordering requirements as

the software guarantees that ordering violations do not have

any functional impact on it. The instruction goes through

the Load-Store Unit as a store and is immediately completed

upon execution once it is done communicating the required

information to QEI. Upon completion of the request by QEI,

the result is written back to a memory location.

Once a query has been issued to QEI, it writes the pointer

to the key to the key_address field and the pointer to the

header in the data field of an empty QST entry. The pointer

to the header is only needed for fetching the metadata and is

discarded once processing begins. The state is set to “START”,

and the ready bit is set. When the CEE begins processing

this entry, the first thing it does is issue a read for the

metadata and update the state. Once the metadata is ready to

be parsed, required fields are extracted from it and written to

corresponding QST fields. From here on, the type-specific CFA

kicks in. As the CFA goes through various states, it issues

micro-operations to the DPU for fetching and processing

intermediate data and eventually completes the query. After

that, the state of this data query request is changed to “DONE”.

At this point, the result is returned to the core or designated

address via the Result Queue. The corresponding entry is

released by setting it to “IDLE” and notifying the core.

D. Exceptions and Interrupts

When processing a query operation, QEI accesses memory

and performs arithmetic operations on intermediate data. This

can result in several types of faults and exceptions, e.g., access-

ing memory that does not belong to the current thread. Once

an exception occurs, QEI transitions the query to the “EXCEP-

TION” state. For a blocking query, the exception information is

sent to the core through the Result Queue. For a non-blocking

query, the error code is written to the result memory address so

that after polling the designated memory address, the software

can find the exception. The entry is then released. Every query

that causes an exception eventually gets reported to the core

through one of the above two mechanisms, and no special action

is required by the application or the core. The software, how-

ever, must handle the exception if it needs to recover gracefully.

Interrupts, including timer interrupts for context switches,

are handled by flushing QEI. No special action is required

for blocking queries since QEI only holds state for incomplete

queries, which will be flushed from the core on an interrupt. If

390

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

CPU

NoC

LLC Slice 0 LLC Slice N

…

Core 0
L1 $

CHA ACC

Core N
L1 $

…

CHA ACC

L2 $ L2-TLB L2 $ L2-TLB

(a) CHA-based.

CPU

NoC

LLC Slice 0 LLC Slice N

Core 0
L1 $

CHA

Core N-1
L1 $

…

CHA

…

ACC

Standard IO
Interface

L2 $ L2-TLBL2 $ L2-TLB

(b) Device-based.

CPU

NoC

LLC Slice 0 LLC Slice N

…

Comparators

Core 0
L1 $

ACC

CHA

ACC

CHA

…

L2 $ L2-TLB L2 $ L2-TLB

Core N
L1 $

(c) Core-integrated.

Fig. 6: Different integration schemes for QEI.

TABLE I: Comparison of different integration schemes.

Scheme
Accelerator-Core
Latency (cycle)

Accelerator-Data
Latency (cycle)

Hardware Cost
Mem Mgmt
HW

NoC Hot Spot
Private $
Pollution

Scalability

CHA-based 40∼60 10∼50 Low
Dedicated/
Shared

No No Good

Device-based 100∼500 100∼500 Medium/High Dedicated Yes No Medium
Core-integrated 10∼25 20∼40 Low Shared No No Good

QST holds any non-blocking queries, an abort code is written

to its result memory location so that the application can restart

the queries after interrupt handling. This means the flush is

not instantaneous and can take a few cycles, depending on

the number of non-blocking queries in the QST. To reduce the

latency, the writes are done using non-temporal stores, and

stores to the same cacheline can coalesce. Technically QEI

only needs to wait until all the addresses have been translated

for the stores, after which the stores are guaranteed to complete

and are handled by the memory element in the DPU. The

core cannot start executing interrupt handler code until QEI

has been successfully flushed. However, it can start fetching

interrupt handler instructions to parallelize some of the work.

V. INTEGRATING QEI INTO A CPU

As evident from Sec. II-B, the design of QEI needs to

strike a delicate balance between generality, latency, design

complexity, and cost. Having described how QEI can adapt

to various data query operations, we now consider integrating

QEI accelerator into the CPU chip, i.e., where to physically

place QEI and how to interface it with the other components

of the CPU in order to achieve its goal. In this section, we

discuss several possibilities (demonstrated in Fig. 6) and their

respective advantages and disadvantages (summarized in Tab. I).

More specifically, we try to answer the following question:

how should the accelerator be integrated into the CPU?

We first consider an intuitive scheme [45, 54, 80], where

a dedicated functional unit is fully embedded inside the

general-purpose core. The accelerator and the core share

the MMU and the private caches. Although this design has

very low initiation latency, it does not scale well: First,

the accelerator resources are private to the core and can

only execute queries from this core. Second, the accelerator

competes for the data TLB and the private caches and can

negatively interfere with the core. Third, the data access

latency is not much better than if the query is executed using

general-purpose instructions. Due to these limitations, we

restrict ourselves to a qualitative evaluation of this design.

CHA-based Schemes. To solve the scalability issue, the most

recent work, HALO [79], proposed a CHA-based scheme, de-

picted in Fig. 6a. CHA is the LLC controller that is attached to

each LLC slice. The CHA-based scheme exploits parallelism by

placing accelerators in each CHA and distributing the query re-

quests to these accelerators based on a hash function specific to

the NUCA architecture of the particular CPU. This scheme has

two major advantages. First, computations and key comparisons

are moved closer to the LLC. In many cloud workloads, the data

is larger than the core’s private caches (i.e., 1MB L2 cache for

Intel® Xeon® Skylake CPU [78]). Thus, moving computation

near LLC can effectively reduce the memory access latency

and private cache pollution [79]. Second, the accelerators are

naturally distributed with LLC slices, which maximizes the par-

allelism of the query operations. However, CHA itself does not

provide address translation capability. HALO’s usage scenario

assumes that the full data structure can reside within one con-

tiguous page (i.e., huge page). This assumption does not always

hold for many cloud workloads [8, 26], especially when the tar-

geted data structure is a dynamic one, such as linked list. To ac-

commodate querying different kinds of data structures, address

translation capability becomes a necessity. With the CHA-based

scheme, one may add MMU or TLB into the CHA or use the

core’s MMU or IOMMU for address translation. Adding MMU

to a CHA introduces non-negligible hardware cost and leads

to TLB coherence and manageability problems. Using core’s

MMU or IOMMU adds extra round-trip latency to each memory

access and eats into the performance benefits of the accelerator.

We show the penalty of these design choices in Sec. VII.

Device-based Schemes. Another popular way to integrate

hardware accelerators into a CPU is as a device attached to

a high-speed on-chip or off-chip bus (see Fig. 6b). Intel®’s

CXL [18] and IBM’s OpenCAPI [25, 59] are recent efforts to

provide such capability in their proprietary CPUs. This scheme

has the least impact on design as it does not change the design

of the core or the on-chip network. Different accelerators

attached to the same standard device interface can share the

memory management hardware (e.g., IOMMU for IO devices)

and other interfacing logic. In addition, such standard interfaces

391

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

can easily support third-party IP blocks. However, a major

issue with this scheme is the high request and response latency

and limited bandwidth compared to the more integrated designs.

The round-trip latency to an OpenCAPI device can be as high

as 300 ns [10], preventing many latency-sensitive workloads

from benefiting from such design. When multiple devices

connected to openCAPI are in active use, this latency can be

even worse. Since the accelerator is not distributed across the

chip, it also creates a single hotspot on the chip, introducing

fabric congestion and thermal issues. In our experiments, we

observe that each QEI accelerator can saturate as much as

8% of the mesh NoC bandwidth. For a modern CPU with 20

cores or more, if the accelerator is not fully distributed across

the chip, it is easy to cause a hotspot. Note that even if the

NoC bandwidth is not saturated, a higher bandwidth utilization

caused by the hotspot will lead to much longer latency [34].

Alternatively, the accelerator can also be directly connected

to the NoC as a heterogeneous core. DASX [48] is one example.

This scheme can keep the access latency of core-accelerator

and data-accelerator lower than through the standard device

interface. However, this design requires the accelerator to

behave like a regular core, which significantly complicates

the hardware design. For example, the accelerator has to

handle address translation and coherence messages properly

on its own, making the hardware design non-trivial [46]. The

accelerator also occupies one NoC stop, which could have

been used by a general-purpose core.

A. QEI Core-Integrated Scheme

We propose a novel integration scheme for QEI, called

“Core-integrated” in the paper depicted in Fig. 6c, that has the

advantages of being close to the core and yet highly scalable.

The main components of QEI are integrated alongside the

core’s L2 cache. It shares the memory access hardware units

with the L2 cache and uses the L2-TLB, which is typically

close to the L2 cache, for address translation. We leverage

existing hardware mechanisms in the core without significant

changes in their microarchitecture. Since QEI uses the L2

resources, it does not contend for L1 cache and L1 TLB,

reducing negative interference. We place the memory-intensive

operation – the key comparison – in CHAs to maximize

the parallelism and efficiency through near-data computing.

We add Comparators in each of the CHA across the chip to

maximize the throughput. These CHA-based comparators

access the data directly from the LLC, preventing private cache

pollution and reducing round-trip latency. Depending on the

type of query operation, the key can sometimes be huge. Hence,

leaving them in the LLC and doing the comparison in-place

can significantly increase throughput and reduce latency.

The interface between the CEE and Comparators is extended

to traverse the on-chip network using remote micro-operations.

The CEE calculates the address of the memory location to be

compared to the key, translates the address using the L2-TLB,

and issues a remote operation to the appropriate Comparator

(based on the NUCA hash function) to perform the key

comparison and return the result. Note that certain query

TABLE II: Simulated CPU model configuration.
Item Configuration
Cores 24 OoO cores, 2.5GHz

Caches
8-way 32KB L1D/L1I,
16-way 1MB L2,
11-way 33MB shared LLC (split to 24 slices)

LQ/SQ/ROB Entries 72/56/224

Memory Controllers
6 DDR4-2666 channels, 19.2GB/s per channel,
4 8-chip DIMMs per channel

QEI Accelerator
five ALUs per DPU
two comparators per CHA for CHA-based/Core-integrated
ten comparators per DPU for Device-based

NoC Mesh

Process 22nm

algorithms might not use the remote comparison feature, and

a local comparison in QEI might be sufficient. QEI does fetch

cachelines to obtain the next set of pointers in some cases (e.g.,

linked list query), and a small key comparison can be done

in one of the DPU if the key is part of the fetched cacheline.

VI. METHODOLOGY

A. Simulator

We implement QEI in Sniper [11], a multi-core x86 simulator.

We configure the simulator to model a modern Intel® Skylake-

SP server CPU [40] (see Tab. II). We simulate QEI in five differ-

ent integration methods, listed below, and compare the results.

• CHA-TLB. This scheme is similar to HALO described

in [79]. It integrates the accelerator inside each CHA with

a dedicated 1024-entry TLB for address translation.

• CHA-noTLB. Similar to the first scheme. But this scheme

completely leverages the core’s MMU for address translation.

• Device-direct. This scheme attaches the accelerator directly

to the NoC as a special core [48].

• Device-indirect. It simulates a dedicated accelerator which

is connected to the NoC via a standard device interface.

• Core-integrated. The new QEI scheme proposed in this

paper. The QST, CEE, and some of the DPU of the accelerator

are placed in the core, close to L2-cache/TLB, while the

comparators are distributed in the CHAs.

In the Core-integrated, CHA-TLB, and CHA-noTLB schemes,

we configure the accelerator to support ten in-flight query

operations (i.e., each QST has ten entries), which can

keep a decent balance between performance and cost (i.e.,

50% ∼ 90% occupancy). For fairness, in Device-Direct and

Indirect schemes, we configure the accelerator to support

10×24 (number of cores) in-flight operations.

We use McPAT [50] and CACTI [6] for power and area evalu-

ation in an incremental way. That is, we first configure the CPU

in Tab. II and get the baseline power/area. We then add compo-

nents of the QEI accelerator into the configuration. For compo-

nents like ALUs and TLBs, we used the default models in the

tools. We also change the connection-related configuration, e.g.,

TLB port counts. We subtract the baseline value from the value

with the QEI accelerator, thus get the final value of QEI itself.

B. Benchmarks

DPDK. DPDK [38] is a popular networking application

development library for kernel-bypass network functions. We

392

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

use the optimized cuckoo hash table library [19] from DPDK

to setup an L3 Forwarding Information Table (FIB) and

evaluate its performance. During the evaluation, we configure

the hash table to contain various numbers of keys, 16-Bytes

in length, to simulate a regular TCP/IP packet header. We also

connect multiple hash tables to implement tuple space search

algorithm [74] to show the parallelism of QEI.

JVM. Due to the limitations of the simulator, we are not able

to directly simulate JVM. Hence we extract OpenJDK [60]’s

serial Mark-and-Sweep garbage collection functionality and

set up an independent benchmark for the garbage collection

process. We dump a real object tree from running Derby [76],

a relational database, in SPECjvm2008 [75] and use it as the

input to our benchmark.

RocksDB. RocksDB [23] is a persistent key-value store

using Log-Structured Merge-Tree algorithm [61]. Since QEI

targets in-memory and in-cache acceleration, we focus on the

in-memory memtables of RocksDB rather than querying the

data on the disk. The memtable of RocksDB is a skip list. We

first insert 10k items into the database and then do random

queries. We use db_bench, the standard performance testing

tool for RocksDB, to test with 100B key size and 900B value

size for each data item.

Snort. Snort [68] is a popular network IPS. It uses Aho-

Corasick (AC) algorithm [2] for literal matching to detect

potential malicious packets. We follow an efficient open-source

implementation [33] to show the speedup of QEI for querying

the trie data structure. The dictionary contains around 40K

keywords, and we query a 1KB string of characters.

FLANN. FLANN [57] is a library that implements similarity

search algorithms widely used in search engines, e.g., searching

similar images from a large image database. We run the Locality

Sensitive Hashing (LSH) algorithm, which queries a series of

hash tables. We use the 100K-item dataset and default param-

eters for LSH, which are 12 hash tables with 20B key size.

We identify the query-related snippets in each benchmark

as Region-of-Interest (ROI), rewrite these snippets with QEI

instructions, run the entire benchmark, and report the perfor-

mance improvement of such ROIs with QEI. All benchmarks

(including baselines) are complied by GCC 5.4 with “O3”

optimization and are evaluated in single-thread mode, mostly

with default parameters. For each benchmark, we generate

queries as quickly and densely as possible and feed them to

the benchmarks. This stresses QEI to show peak performance.

VII. EVALUATION

A. Query Operation Speedup

We show the data query operation speedup of all

benchmarks with different schemes in Fig. 7. The overall

trend is, the Core-integrated scheme and the CHA-based

schemes have comparable performance over all benchmarks,

while the Device-based schemes sometimes have a significant

performance gap compared to the other schemes.

Not surprisingly, the CHA-TLB scheme achieves the best

performance in all benchmarks (i.e., up to 12.7× speedup).

0
3
6
9

12

DPDK JVM RocksDB Snort FLANN Geomean

Baseline CHA-TLB CHA-noTLB
Device-direct Device-indirect Core-integrated

Sp
ee
du

p 12.67

Fig. 7: Speedup of lookup operations in different workloads

with different schemes.

0

2

4

6

8

50 20
0

35
0

50
0

65
0

80
0

95
0

11
00

12
50

14
00

15
50

17
00

18
50

20
00

DPDK
JVM
RocksDB
Snort
FLANN

Accelerator-NoC Latency (cycles)

Sp
ee

du
p

Fig. 8: Speedup of Device-indirect scheme against different

NoC-accelerator latency.

The performance gain mainly comes from two aspects. First,

data queries are fully distributed to all the accelerators on

the CHAs. This is the fully scalable model, as we discussed

in previous sections. Second, thanks to the dedicated TLBs,

the accelerator can perform address translation locally, without

extra round-trips to the core’s MMU when TLB-hit. Because of

the relatively large TLB size (same as the L2-TLB size), there

are few TLB misses in our tests. On the other hand, the CHA-

noTLB scheme performs worse than the CHA-TLB because of

the extra latency to the core’s MMU. However, the performance

gap between the two CHA-based schemes is 0.5%∼17.9%, not

as much as we initially expected. This is because the parallelism

of CHA-based schemes hides such latency to some extent.

The Core-integrated scheme can achieve at most 10.4×
speedup compared to software baselines. As expected, this

scheme enjoys both parallelism and near-data advantages.

Keys are compared across multiple CHAs and stay in the LLC.

Meanwhile, it leverages the core’s L2-TLB for convenient

address translation. This reduces the design complexity and cost

and eliminates the round-trip latency for address translation

in the CHA-noTLB scheme. Since QEI’s Query State Context

Table is not scaled out of the core, this slightly constrains its

parallelism. Thus, the integrated scheme has a 0.9%∼15.0%

performance gap compared to the fastest CHA-TLB scheme.

However, such a small gap does not defeat the Core-integrated

scheme’s prominent advantages regarding design complexity

and cost (we will show this later), which renders it a more

practical solution in real-world CPUs over CHA-based ones.

Regarding the two Device-based schemes, the performance

is worse than the other schemes. This is mainly due to the

long access latency involved in these two schemes, which

counteracts the benefit of processing multiple in-flight query

operations in parallel. For the Device-direct scheme, although

it accesses the cache with the latency similar to a regular

393

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

SnortDPDK

Baseline CHA-TLB CHA-noTLB
Device-direct Device-indirect Core-integrated

RocksDB
0 0 0

2M 0.6M 1M
1.5M
1M

0.5M

0.45M
0.3M
0.15M

0.75M
0.5M
0.25M

Fig. 9: End-to-end query/packet per second improvement.

core, the core-accelerator communication overhead is still

significant. For the Device-indirect scheme, the cost is even

higher since each data access from the accelerator leads to

a costly round trip through the device interface. To better

understand the impact of the access latency, we also conduct

a latency sensitivity study for the Device-indirect scheme

and demonstrate it in Fig. 8. Here we sweep the accelerator’s

data access latency, which reflects the overhead of the device

interface (including the protocol translation and coherence

handling), from 50 cycles to 2000 cycles. We observe a non-

trivial performance drop of all workloads when we increase the

communication latency. Although the industry keeps improving

the throughput and bandwidth of standard interfaces such as

OpenCAPI, recent data still shows a much more significant

round-trip time of 300ns [10] comparing to CHA-based or

core-integrated model. One way to improve throughput under

outstanding latency overhead is to process queries in batch to

hide the latency. Although this approach effectively improves

throughput [31, 41], it can also lead to much worse average

latency and tail latency, as investigated in [5]. This is not

desirable for our targeted latency-sensitive workloads.

Besides the different integration schemes, the characteristics

of the workloads also affect the efficiency of the accelerator.

First, the degree of parallelism that QEI can achieve depends

on the “density” of the query operations in the workloads.

Take RocksDB as an example. The code size of its “seek”

loop, where one query operation is conducted, is relatively

large. That is, RocksDB executes many other operations

(e.g., key’s pre-processing, memcpy, and thread management)

besides looking up the data structure when process each

request. Hence, the core’s ROB is filled up pretty quickly since

the block version of the query instruction is not retired. In

other words, the performance improvement is bounded by the

core rather than the accelerator. The core’s resource limits the

parallelism we can achieve by QEI. Other benchmarks, such

as JVM, have a relatively higher query density, enabling the

core to issue as many query requests as possible before ROB

is filled up. Thus, the effect of parallelism is more prominent.

Data structures themselves affect the accelerating

performance as well. For each query operation of the hash

table (e.g., DPDK), the number of memory accesses (namely,

header, key, bucket, and key-value pair) is relatively small and

fixed compared to other data structures such as skip list. As

a result, the processing time of each query is relatively short.

In this case, the latency for the core to communicate with the

accelerator becomes more prominent. Hence, the Device-based

Sp
ee

du
p

0
4
8

12
16

5 tuples 10 tuples 15 tuples

Baseline CHA-TLB CHA-noTLB
Device-direct Device-indirect Core-integrated

Fig. 10: Speedup of query operations in tuple space search

with different schemes.

Pe
rc
en
ta
ge

0%
5%

10%
15%

DPDK JVM RocksDB Snort FLANN

0.08%0.3%

Fig. 11: Core’s executed instructions with QEI compared to

the software baseline (in percentage).

schemes’ performance fails to compete with other schemes

with much shorter communication latency. For comparison,

other data structures such as the tree in JVM and the trie in

Snort have much more memory accesses for a single query

operation (e.g., 39.9 on average in our JVM benchmark).

Moreover, the core to accelerator latency is amortized by the

relatively long processing time. Consequently, the performance

of the Device-based scheme is closer to that of other schemes.

This proves that the Device-based scheme is more suitable

for larger kernels that can run for a relatively long time.

For the full application (i.e., not a library or routine of

the program), we also demonstrate the end-to-end query-per-

second improvement in Fig. 9. It shows that QEI improves

end-to-end throughput by 36.2%∼66.7%. Meanwhile, QEI’s

Core-integrated integration scheme’s performance gain is at

the same level as the CHA-based schemes’. Note that, since

query operations are ubiquitous, just like other accelerators for

operations like Malloc [43], and garbage collection [55], even

if the end-to-end performance improvement is not amazingly

high, it still helps save a huge number of CPU cycles and

thus improve the efficiency and throughput of the data center.

B. Non-blocking Query Evaluation

We further evaluate the performance benefit of the

QUERY_NB instruction. As discussed, some applications limit

the parallelism they can benefit from QEI schemes because of

their own characteristics. Thus, we evaluate the non-blocking

version of query instruction with one representative workload,

which demonstrates the ideal use cases of the instruction.

Fig. 10 demonstrates the tuple space search results with 5, 10,

and 15 tuples based on DPDK’s hash library. Tuple space search

can be parallelized naturally since the data query to each hash ta-

ble is independent. For each query, a series of hash tables can be

queried concurrently. Usage of the non-blocking query instruc-

tion can maximize such parallelism. In this test, the software

polls the results every 32 keys. With the non-blocking instruc-

tion, it effectively sends 32×(tuple_count) requests in parallel

to the accelerator. The results show that as the number of tuples

394

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Area and static power results of QEI.
Configuration Area/mm2 Static Power/mW

QEI-10 0.1752 10.8984
QEI-10+TLB 0.5730 30.9049

QEI-240 1.0901 20.8764

Pe
rc
en
ta
ge

0%
10%
20%
30%
40%
50%

CHA-TLB CHA-noTLB Device-direct Device-indirect Core-integrated

Fig. 12: QEI’s average dynamic power consumption compared

to the software baseline (in percentage).

increases, the speedup also increases due to the increasing paral-

lelism. We also notice that the performance of the Device-based

schemes becomes much better than using the blocking instruc-

tion. This is because the performance degradation caused by the

long access latency of both core to accelerator and accelerator

to data is amortized by executing many in-flight operations.

This shows that to compete with our proposed Core-integrated

scheme and CHA-based scheme, the application has to gen-

erate hundreds of requests simultaneously to fully utilize the

parallelism of the accelerator. As mentioned in Sec. VI, the QEI

of Core-integrated scheme only processes ten in-flight queries

concurrently in the integrated CFA. This limited the parallelism

even though the comparators can still process key comparisons

in parallel. Still, the Core-integrated scheme has a significant

latency advantage, as we mentioned previously, which makes

this scheme competitive when the tuple count is smaller.

C. Instruction Count Reduction

We demonstrate the results of the number of dynamic

instructions executed by the core in ROIs in Fig. 11. As ex-

pected, with QEI, a significant amount of dynamic instructions

in the ROIs can be eliminated. As mentioned in Sec. II-A

and [42], the performance of cloud workloads is frequently

bounded by core’s frontend. Thus, reducing the dynamic

instruction count can reduce the frontend pressure significantly.

This, in turn, improves the efficiency of the whole application.

D. Area and Power Results

For the area and static power comparison, we compare

three configurations. They are (1) QEI-10, which can handle

ten in-flight queries simultaneously to represent the CHA

and Core-integrated scheme, (2) QEI-10+TLB to handle

ten in-flight queries simultaneously plus a dedicated TLB

to represent CHA-TLB schemes, and (3) QEI-240 that can

handle 240 in-flight queries to represent the two Device-based

schemes. It is worth noting that for the CHA-based and

Core-integrated schemes, the data is a single accelerator’s area

and power, while for the Device-based schemes, it is the total

area and power of the centralized accelerator.

We show the area and static power results of these three

configurations in Tab. III. In terms of area cost, the QEI-10

configuration only occupies less than 0.2mm2 without TLB

and ∼0.57mm2 with TLB. The extra TLB incurs significant

overhead here, which shows that although CHA-TLB achieves

better performance, the hardware area budget limits its

practicality. On the other hand, the larger device model

(QEI-240), which enjoys a more relaxed design budget, takes

up ∼1mm2. Considering the size of a typical modern CPU

core tile can be around 18mm2 [78], the total area overhead

is negligible. Similarly, the static power consumption of QEI

is also small compared with the total thermal design power

of a CPU chip, which can easily exceed 100W. Besides

the raw power and area comparison, there are some other

considerations of design trade-offs. For example, the Device-

direct accelerator occupies one NoC stop, which can have been

used by a regular core tile. With the Device-direct scheme, we

need to remove one core from the CPU chip. This is the hidden

cost that can not be shown in the area and power comparison.

Other design complexities, such as the logic to make the

accelerator behave like a core (i.e., to answer coherence

message properly, to manage address mapping), are not easy

to be evaluated but are essential factors for accelerator design.

We show the normalized average dynamic power consump-

tion per query in Fig. 12. From the results, the accelerators

can reduce more than 60% dynamic power overhead compared

to the software baseline. This power reduction comes from

both the reduced frontend overhead and private cache accesses,

which take up a considerable portion of the whole core activity.

With such power and area efficiency, and considering that

QEI is integrated inside the CPU chip, which does not require

extra cost for device purchase and maintenance, QEI can

largely reduce the server’s operational cost.

VIII. RELATED WORK

On-chip accelerator for fine-grained operations is not a brand-

new concept. While prior works [3, 32, 43, 52, 55, 64, 70, 71]

focus on specific operations/applications, QEI is more generic

for diverse data structures. We achieve this by abstracting the

data query operations and map them to the accelerator’s CFA.

Minnow [80] also claims flexibility/programmability, but it

does not clearly demonstrate the mapping between its model

and software algorithms/routines, and thus its generality.

The most relevant works to ours are [35, 45, 48, 54, 79, 80],

which also do data query/lookup/analytic accelerations. Each

integration scheme has pros and cons, as we discussed in Sec. V.

QEI is different from these works regarding both hardware

design and integration scheme. No existing accelerator takes

such a hybrid scheme and balances every aspect of a design.

Fully integrated designs [45, 54, 80] tightly couple the

accelerator with the CPU core. Although the latency is

minimum, they do not address the scalability and private

cache pollution issues. Dedicated accelerator designs such as

DASX [48] have relatively long latency comparing to core

integrated design. Thus it is best for applications that are not

latency-sensitive and can batch process many requests each

time. The design complexity is also another concern since the

accelerator needs extra logic to behave like a heterogeneous

core. It also occupies an NoC stop, which could have been

used by an additional general-purpose core. Other accelerators

connected to standard device interfaces will have even longer

395

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

access latency, which leads to sub-optimal performance. Both

Device-based schemes can create hotspots on the CPU chip

and congestion in the NoC, which further increases the latency.

A recently proposed data query accelerator is HALO [79].

HALO targets on a specific data structure, hash table. It

places accelerators inside each LLC slice to get the benefit

of near-data computing and parallelism. Some near-memory

solutions [20, 30, 35, 53] have also been proposed for data

query/analytic operations. These approaches are limited to

particular workloads, and the accelerators have to be able to do

address translation either by hardware or software mechanisms.

For hardware solutions, they need to have their own MMU or go

through the core’s MMU or IOMMU. This increases hardware

cost and complexity or degrades the performance because of

the extra round-trip latency. For software solutions, they require

the application to guarantee that the entire data structure can

reside in the same page, or a new memory mapping method

has to be introduced, which is not easy for many existing

workloads and OSs. Compared to these solutions, QEI keeps

a decent balance among performance, design complexity,

cost, and feasibility. In other words, QEI’s generality and

practicality distinguish it from other similar works.

IX. CONCLUSION

We propose QEI, a generic, integrated, and efficient

accelerator design for speeding up fine-grained query

operations in a diverse set of data structures for cloud

infrastructures and applications. The generality of QEI comes

from abstracting the various data query operations. The CFA

model, which we map the abstraction to, guarantees efficient

execution by simple hardware. We then propose a novel scheme

for integrating QEI and evaluate it against other schemes. Our

results with five representative cloud workloads show that

QEI can achieve 6.5×∼11.2× performance improvement in

various scenarios at low hardware cost and complexity.

ACKNOWLEDGEMENT

We would like to thank David Koufaty, Ryan Carlson,

Andrew Herdrich, Ravishankar Iyer, Rajesh Sankaran, as

well as the anonymous reviewers for their insightful and

helpful feedback. This research is supported by National

Science Foundation (funding No. CNS-1705047) and Intel

Corporation’s Academic research funding.

REFERENCES

[1] O. Agesen, D. Detlefs, and J. E. Moss, “Garbage collection
and local variable type-precision and liveness in Java
virtual machines,” in Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and
Implementation (PLDI’98), Montreal, Canada, Jun. 1998.

[2] A. V. Aho and M. J. Corasick, “Efficient string matching: An
aid to bibliographic search,” Communications of the ACM,
vol. 18, no. 6, 1975.

[3] K. Angstadt, A. Subramaniyan, E. Sadredini, R. Rahimi,
K. Skadron, W. Weimer, and R. Das, “ASPEN: A
scalable in-SRAM architecture for pushdown automata,”
in Proceedings of the 51st IEEE/ACM International Symposium
on Microarchitecture (MICRO’18), Fukuoka, Japan, Dec. 2018.

[4] H. Asai and Y. Ohara, “Poptrie: A compressed trie with
population count for fast and scalable software IP routing
table lookup,” in Proceedings of the 2015 ACM SIGCOMM
Conference (SIGCOMM’15), London, UK, Aug. 2015.

[5] N. Asmussen, M. Roitzsch, and H. Härtig, “M3x: Autonomous
accelerators via context-enabled fast-path communication,” in
Proceedings of 2019 USENIX Annual Technical Conference
(ATC’19), Renton, WA, Jul. 2019.

[6] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect explo-
ration in innovative off-chip memories,” ACM Transactions on
Architecture and Code Optimization (TACO), vol. 14, no. 2, 2017.

[7] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan, “Attack
of the killer microseconds,” Communications of the ACM,
vol. 60, no. 4, 2017.

[8] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M.
Swift, “Efficient virtual memory for big memory servers,” in
Proceedings of the 40th IEEE/ACM International Symposium on
Computer Architecture (ISCA’13), Tel-Aviv, Israel, Jun. 2013.

[9] P. Bhatotia, R. Rodrigues, and A. Verma, “Shredder:
GPU-accelerated incremental storage and computation,” in
Proceedings of 17th USENIX Conference on File and Storage
Technologies (FAST’12), San Jose, CA, Feb. 2012.

[10] A. Cantle and M. Byers, “Accelerating flash memory with the
high performance, low latency, OpenCAPI interface,”
https://www.opencompute.org/files/Accelerating-Flash-
Memory-with-the-High-Performance-Low-Latency-
OpenCAPI-Interface-Final-3-21-19.pdf, 2018.

[11] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout,
“An evaluation of high-level mechanistic core models,” ACM
Transactions on Architecture and Code Optimization (TACO),
vol. 11, no. 3, 2014.

[12] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y.
Kim, D. Lo, T. Massengill, K. Ovtcharov, M. Papamichael,
L. Woods, S. Lanka, D. Chiou, and D. Burger, “A cloud-scale
acceleration architecture,” in Proceedings of the 49th IEEE/ACM
International Symposium on Microarchitecture (MICRO’16),
Taipei, Taiwan, Oct. 2016.

[13] B. Chen, T. Medini, J. Farwell, S. Gobriel, C. Tai, and
A. Shrivastava, “SLIDE: In defense of smart algorithms over
hardware acceleration for large-scale deep learning systems,”
in Proceedings of the 3rd Conference on Machine Learning ans
Systems (MLSys’20), Austin, TX, Mar. 2020.

[14] J. Choe, A. Huang, T. Moreshet, M. Herlihy, and R. I. Bahar,
“Concurrent data structures with near-data-processing: An
architecture-aware implementation,” in Proceedings of the 31st
ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA’19), Phoenix, AZ, Jun. 2019.

[15] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “A hybrid
edge-cloud architecture for reducing on-demand gaming latency,”
Multimedia Systems, vol. 20, no. 5, 2014.

[16] C. J. Coit, S. Staniford, and J. McAlerney, “Towards faster string
matching for intrusion detection or exceeding the speed of Snort,”
in Proceeding of DARPA Information Survivability Conference
and Exposition II (DISCEX’01), Anaheim, CA, Aug. 2001.

[17] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P.
Xing, “Geeps: Scalable deep learning on distributed GPUs with
a GPU-specialized parameter server,” in Proceedings of the
11th European Conference on Computer Systems (EuroSys’16),
London, UK, Apr. 2016.

[18] CXL Consortium, “Compute Express Link (CXL),”
https://www.computeexpresslink.org, accessed in 2020.

[19] DPDK, “DPDK programmer’s guide: Hash library,”
http://doc.dpdk.org/guides/prog_guide/hash_lib.html, accessed
in 2020.

[20] M. Drumond, A. Daglis, N. Mirzadeh, D. Ustiugov, J. Picorel,

396

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

B. Falsafi, B. Grot, and D. Pnevmatikatos, “The Mondrian data
engine,” in Proceedings of the 44th IEEE/ACM International
Symposium on Computer Architecture (ISCA’17), Toronto,
Canada, Jun. 2017.

[21] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and
J. D. Hosein, “Maglev: A fast and reliable software network
load balancer,” in Proceedings of 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’16),
Santa Clara, CA, Mar. 2016.

[22] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam,
and D. Burger, “Dark silicon and the end of multicore scaling,”
in Proceedings of the 38th IEEE/ACM International Symposium
on Computer Architecture (ISCA’11), San Jose, CA, Jun. 2011.

[23] Facebook, “RocksDB: A persistent key-value store for fast
storage environments,”
https://rocksdb.org, accessed in 2020.

[24] B. Fan, D. G. Andersen, and M. Kaminsky, “MemC3: Compact
and concurrent MemCache with dumber caching and smarter
hashing,” in Proceedings of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI’10),
Lombard, IL, Apr. 2013.

[25] J. Fang, T. Y. Mulder, K. Huang, Y. Qiao, X. Zeng, H. P.
Hofstee, J. Lee, and J. Hidders, “Adopting OpenCAPI for high
bandwidth database accelerators,” in Proceedings of the 3rd
International Workshop on Heterogeneous High-performance
Reconfigurable Computing (H2RC’17), Denver, CO, Nov. 2017.

[26] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: A study of emerging scale-out
workloads on modern hardware,” in Proceedings of the
17th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’12),
London, UK, Mar. 2012.

[27] M. Fisk and G. Varghese, “Applying fast string matching to
intrusion detection,” 2001.

[28] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi,
S. Heil, P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K.
Reinhardt, A. M. Caulfield, E. S. Chung, and D. Burger, “A
configurable cloud-scale DNN processor for real-time AI,” in
Proceedings of the 45th IEEE/ACM International Symposium on
Computer Architecture (ISCA’18), Los Angeles, CA, Jun. 2018.

[29] M. Frantzen, F. Kerschbaum, E. E. Schultz, and S. Fahmy, “A
framework for understanding vulnerabilities in firewalls using
a dataflow model of firewall internals,” Computers & Security,
vol. 20, no. 3, 2001.

[30] M. Gao, G. Ayers, and C. Kozyrakis, “Practical near-data
processing for in-memory analytics frameworks,” in Proceedings
of the 2015 International Conference on Parallel Architecture
and Compilation (PACT’15), San Francisco, CA, Oct. 2015.

[31] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park,
“APUNet: Revitalizing GPU as packet processing accelerator,”
in Proceedings of the 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’17), Boston, MA,
Apr. 2017.

[32] V. Gogte, A. Kolli, M. J. Cafarella, L. D’Antoni, and T. F.
Wenisch, “HARE: Hardware accelerator for regular expressions,”
in Proceedings of the 49th IEEE/ACM International Symposium
on Microarchitecture (MICRO’16), Taipei, Taiwan, Oct. 2016.

[33] hankcs, “AC algorithm implementation,”
https://github.com/hankcs/AhoCorasickDoubleArrayTrie,
accessed in 2020.

[34] High Speed Networking Lab, “Congestion control for network
on chip,”
http://engineering.nyu.edu/highspeed/research/past-
projects/congestion-control-network-chip, accessed in 2020.

[35] K. Hsieh, S. Khan, N. Vijaykumar, K. K. Chang, A. Boroumand,
S. Ghose, and O. Mutlu, “Accelerating pointer chasing in
3D-stacked memory: Challenges, mechanisms, evaluation,” in
Proceedings of the 2016 IEEE 34th International Conference
on Computer Design (ICCD’16), Scottsdale, AZ, Oct. 2016.

[36] Y. Hu and T. Li, “Towards efficient server architecture for
virtualized network function deployment: Implications and
implementations,” in Proceedings of the 49th IEEE/ACM
International Symposium on Microarchitecture (MICRO’16),
Taipei, Taiwan, Oct. 2016.

[37] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler, “A NUCA substrate for flexible CMP cache sharing,”
in Proceedings of the 19th International Conference on
Supercomputing (SC’05), Cambridge, MA, Jun. 2005.

[38] Intel Corporation, “Data Plane Development Kit (DPDK),”
https://www.dpdk.org, accessed in 2020.

[39] Intel Corporation, “Intel® VTune™ Performance Ayalyzer,”
https://software.intel.com/en-us/intel-vtune-amplifier-xe,
accessed in 2020.

[40] Intel Corporation, “Intel® Xeon® Platinum 8160 Processor,”
https://ark.intel.com/products/120501/Intel-Xeon-Platinum-
8160-Processor-33M-Cache-2_10-GHz, accessed in 2020.

[41] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising
the bar for using GPUs in software packet processing,” in Pro-
ceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’15), Okaland, CA, May 2015.

[42] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,
T. Moseley, G.-Y. Wei, and D. Brooks, “Profiling a warehouse-
scale computer,” in Proceedings of the 42nd IEEE/ACM
International Symposium on Computer Architecture (ISCA’15),
Portland, OR, Jun. 2015.

[43] S. Kanev, S. L. Xi, G.-Y. Wei, and D. Brooks, “Mallacc:
Accelerating memory allocation,” in Proceedings of the
23rd International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’17),
Xi’an, China, Apr. 2017.

[44] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches,” in Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’02), San Jose, CA, Oct. 2002.

[45] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index
traversals for in-memory databases,” in Proceedings of the
46th IEEE/ACM International Symposium on Microarchitecture
(MICRO’13), Davis, CA, Dec. 2013.

[46] R. Komuravelli, S. V. Adve, and C.-T. Chou, “Revisiting the
complexity of hardware cache coherence and some implications,”
ACM Transactions on Architecture and Code Optimization
(TACO), vol. 11, no. 4, 2014.

[47] P. Koppe, B. Kollenda, M. Fyrbiak, C. Kison, R. Gawlik, C. Paar,
and T. Holz, “Reverse engineering x86 processor microcode,”
in Proceedings of 26th USENIX Security Symposium (USENIX
Security’17), Vancouver, Canada, Aug. 2017.

[48] S. Kumar, N. Vedula, A. Shriraman, and V. Srinivasan,
“DASX: Hardware accelerator for software data structures,” in
Proceedings of the 29th ACM International Conference on
Supercomputing (ISC’15), Newport Beach, CA, Jun. 2015.

[49] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam, E. Chen,
and L. Zhang, “KV-direct: High-performance in-memory
key-value store with programmable NIC,” in Proceedings of the
26th Symposium on Operating Systems Principles (SOSP’17),
Shanghai, China, Oct. 2017.

[50] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,”
in Proceedings of the 42nd IEEE/ACM International Symposium

397

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

on Microarchitecture (MICRO’09), New York City, NY, Dec.
2009.

[51] C.-K. Liang and M. Prvulovic, “MiSAR: Minimalistic
synchronization accelerator with resource overflow management,”
in Proceedings of the 42nd IEEE/ACM International Symposium
on Computer Architecture (ISCA’15), Portland, OR, Jun. 2015.

[52] H. Liu, M. Ibrahim, O. Kayiran, S. Pai, and A. Jog, “Architectural
support for efficient large-scale automata processing,” in
Proceedings of the 51st IEEE/ACM International Symposium
on Microarchitecture (MICRO’18), Fukuoka, Japan, Oct. 2018.

[53] S. Lloyd and M. Gokhale, “Near memory key/value lookup
acceleration,” in Proceedings of the 3rd International Symposium
on Memory Systems (MEMSYS’17), Alexandria, VA, Oct. 2017.

[54] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu,
S. Gupta, D. Sanchez, and N. Beckmann, “Livia: Data-centric
computing throughout the memory hierarchy,” in Proceedings of
the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’20),
Virtual Event, Mar. 2020.

[55] M. Maas, K. Asanović, and J. Kubiatowicz, “A hardware
accelerator for tracing garbage collection,” in Proceedings of
the 45th IEEE/ACM International Symposium on Computer
Architecture (ISCA’18), Los Angeles, CA, Jun. 2018.

[56] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda,
R. Bifulco, and F. Huici, “ClickOS and the art of network
function virtualization,” in Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’14), Seattle, WA, Apr. 2014.

[57] M. Muja and D. G. Lowe, “FLANN - Fast library for
approximate nearest neighbors,”
http://www.cs.ubc.ca/research/flann/#publications, accessed in
2020.

[58] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore, “Understanding PCIe performance
for end host networking,” in Proceedings of the 2018 ACM
SIGCOMM Conference (SIGCOMM’18), Budapest, Hungary,
Aug. 2018.

[59] OpenCAPI Consortium, “OpenCAPI,”
https://opencapi.org, accessed in 2020.

[60] Oracle Corporation, “OpenJDK,”
https://openjdk.java.net, accessed in 2020.

[61] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The
log-structured merge-tree (LSM-tree),” Acta Informatica,
vol. 33, no. 4, 1996.

[62] J. Park, H. Sharma, D. Mahajan, J. K. Kim, P. Olds, and
H. Esmaeilzadeh, “Scale-out acceleration for machine learning,”
in Proceedings of the 50th IEEE/ACM International Symposium
on Microarchitecture (MICRO’17), Boston, MA, Oct. 2017.

[63] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado, “The design and implementation of
Open vSwitch,” in Proceedings of the 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’15),
Okaland, CA, May 2015.

[64] A. Pourhabibi, S. Gupta, H. Kassir, M. Sutherland, Z. Tian,
M. P. Drumond, B. Falsafi, and C. Koch, “Optimus Prime:
Accelerating data transformation in servers,” in Proceedings of
the 25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’20),
Virtual Event, Mar. 2020.

[65] W. Pugh, “Skip lists: A probabilistic alternative to balanced
trees,” Communications of the ACM, vol. 33, no. 6, 1990.

[66] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fowers, G. P.
Gopal, J. Gray et al., “A reconfigurable fabric for accelerating
large-scale datacenter services,” in Proceedings of the 41st
IEEE/ACM International Symposium on Computer Architecture

(ISCA’14), Minneapolis, MN, Jun. 2014.
[67] V. Ravikumar, R. Mahapatra, and J. Liu, “Modified LC-trie

based efficient routing lookup,” in Proceeding of 10th IEEE
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems, Fort Worth, TX,
Jan. 2002.

[68] M. Roesch, “Snort: Lightweight intrusion detection for
networks,” in Proceedings of the 13th Systems Administration
Conference (LISA’99), Seattle, WA, Nov. 1999.

[69] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum, and
J. K. Ousterhout, “It’s time for low latency,” in Proceedings
of the 13th USENIX Conference on Hot Topics in Operating
Systems (HotOS’13), Napa, California, May 2011.

[70] E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron,
“eAP: A scalable and efficient in-memory accelerator for
automata processing,” in Proceedings of the 52nd International
Symposium on Microarchitecture (MICRO’19), Columbus, OH,
Oct. 2019.

[71] V. Salapura, T. Karkhanis, P. Nagpurkar, and J. Moreira,
“Accelerating business analytics applications,” in Proceedings
of the 18th International Symposium on High Performance
Computer Architecture (HPCA’12), New Orleans, LA, Mar. 2012.

[72] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime
measurements in the cloud: Observing, analyzing, and reducing
variance,” in Proceedings of the 2010 International Conference
on Very Large Data Bases (VLDB’10), Singapore, Sep. 2010.

[73] R. Spring and A. Shrivastava, “Scalable and sustainable deep
learning via randomized hashing,” in Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD’17), Halifax, Canada, Aug. 2017.

[74] V. Srinivasan, S. Suri, and G. Varghese, “Packet classification
using tuple space search,” in Proceedings of the 1999 ACM
SIGCOMM Conference (SIGCOMM’99), Cambridge, MA, Aug.
1999.

[75] Standard Performance Evaluation Corporation, “SPECjvm2008,”
https://www.spec.org/jvm2008, accessed in 2020.

[76] The Apache DB Project, “Apache derby,”
https://db.apache.org/derby/, accessed in 2020.

[77] E. Vallejo, R. Beivide, A. Cristal, T. Harris, F. Vallejo,
O. Unsal, and M. Valero, “Architectural support for fair
reader-writer locking,” in Proceedings of the 2010 43rd
IEEE/ACM International Symposium on Microarchitecture
(MICRO’10), Atlanta, GA, Dec. 2010.

[78] WikiChip, “Skylake (server) - Microarchitectures - Intel,”
https://en.wikichip.org/wiki/intel/microarchitectures/
skylake_(server), accessed in 2020.

[79] Y. Yuan, Y. Wang, R. Wang, and J. Huang, “HALO: Accelerating
flow classification for scalable packet processing in NFV,” in
Proceedings of the 46th IEEE/ACM International Symposium
on Computer Architecture (ISCA’19), Pheoeix, AZ, Jun. 2019.

[80] D. Zhang, X. Ma, M. Thomson, and D. Chiou, “Minnow:
Lightweight offload engines for worklist management and
worklist-directed prefetching,” in Proceedings of the 23rd
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’18),
Williamsburg, VA, Mar. 2018.

[81] G. Zhang and D. Sanchez, “Leveraging caches to accelerate
hash tables and memoization,” in Proceedings of the 52nd
IEEE/ACM International Symposium on Microarchitecture
(MICRO’52), Columbus, OH, Oct. 2019.

[82] W. Zhu, V. C. Sreedhar, Z. Hu, and G. R. Gao, “Synchronization
state buffer: Supporting efficient fine-grain synchronization on
many-core architectures,” in Proceedings of the 34th IEEE/ACM
International Symposium on Computer Architecture (ISCA’07),
Jun. 2007.

[83] V. J. Zimmer and S. H. Robinson, “Methods and systems for mi-
crocode patching,” United States Patent 8,296,528, Oct. 23, 2012.

398

Authorized licensed use limited to: University of Illinois. Downloaded on September 29,2021 at 19:31:40 UTC from IEEE Xplore. Restrictions apply.

