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ABSTRACT
The end of Dennard scaling and decline ofMoore’s law has prompted
the proliferation of hardware accelerators for a wide range of appli-
cation domains. Yet, at the dawn of an era of specialized computing,
left behind the trend is the general-purpose processor that is still
most easily programmed and widely used but has seen incremental
changes for decades. This work uses an accelerator-inspired ap-
proach to rethink CPU microarchitecture to improve its energy effi-
ciency while retaining its generality. We propose DiAG, a dataflow-
based general-purpose processor architecture that can minimize
latency by exploiting instruction-level parallelism or maximize
throughput by exploiting data-level parallelism. DiAG is designed
to support any RISC-like instruction set without explicitly requiring
specialized languages, libraries, or compilers. Central to this archi-
tecture is the abstraction of the register file as register ‘lanes’ that
allow implicit construction of the program’s dataflow graph in hard-
ware. At the cost of increased area, DiAG offers three main benefits
over conventional out-of-order microarchitectures: reduced front-
end overhead, efficient instruction reuse, and thread-level pipelin-
ing. We implement a DiAG prototype that supports the RISC-V
ISA in SystemVerilog and evaluate its performance, power con-
sumption, and area with EDA tools. In the tested Rodinia and SPEC
CPU2017 benchmarks, DiAG configured with 512 PEs achieves a
1.18× speedup and 1.63× improvement in energy efficiency against
an aggressive out-of-order CPU baseline.
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•Computer systems organization→Data flow architectures;
Superscalar architectures.
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1 INTRODUCTION
At the twilight of transistor scaling, each technology generation
will still shrink the transistor’s dimensions but not so much its
supply voltage. This disparity leads to a circuit utilization wall,
or ‘dark silicon’ [6], resulting in the inevitable consequence that
only a fraction of the circuit can be powered-on under the same
power budget. To combat this issue, a wide range of application-
specific hardware accelerators have been researched [2, 3, 8, 26],
developed, and adopted by industry [16] to populate under-utilized
die area. Today, the industry is diverse with all types of processing
hardware targeting different markets and use cases. One end of the
spectrum is populated by highly efficient but rigid ASICs dedicated
for specific application domains. On the other end lies power hungry
and inefficient, but easily programmed general-purpose processors.
Between these extremes, we find middle ground architectures such
as GPUs, DSPs, FPGAs, and the like occupying various points on
the flexibility-efficiency trade-off line. This work seeks to retain
the generality of traditional CPUs and significantly improve energy
efficiency by applying accelerator design principles to processor
microarchitecture.

To do so, we first identify design factors that make accelerators
more efficient. Unless algorithm-level changes are involved, a pro-
gram running on any hardware performs the same computations
(additions, divisions, etc.) except control related operations such
as branches and loop variables. An ideal processor should spend
nearly all of its power on functional units performing computations
and waste as little as possible on control and data movement. This
is not the case for a modern out-of-order CPU that houses complex
front-end control logic consisting of instruction fetching, decoding,
register renaming, etc. that consume a significant percentage of
total power to the point that computation logic consume as low
as 3% [19]. However, this sacrifice is necessary to ensure correct
execution of any application using its supported instruction set.
Consider a simple example to illustrate this trade-off: we can reduce
the cost of instruction decoding by reducing the number of opcodes
in the ISA, but doing so also reduces generality since fewer opcodes
means fewer operations are supported.

Three techniques: instruction reuse, data-level parallelism, and
optimized data movement contribute to a domain-specific accelera-
tor’s superior efficiency. Instruction reuse [34] refers to repeated
execution of the same program instructions, such as iterations over
the same loop or repeatedly calling the same function. General-
purpose CPUs are largely unaware of instruction reuse as every
instruction must always be fetched, issued, and checked for de-
pendencies whether it is first encountered or repeated in a loop
iteration, only benefiting from locality in caches or pipeline short-
cuts (e.g., loop-stream detectors). This is a major disadvantage as
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many programs tend to spend most of their execution time in loops.
In contrast, instruction reuse is inherent to accelerators since they
are designed for applications that are reused enough to at least
justify its existence. Accelerators eliminate instruction control over-
heads by having a handcrafted datapath for the application directly
imprinted in hardware. With this in mind, we propose a hybrid
design: a dataflow architecture that can fetch, decode, and execute
instructions normally but, as it executes, also constructs a hardware
datapath that replicates the program’s dataflow graph. This datap-
ath can then be reused when a loop is encountered and bypasses the
costly front-end that would otherwise have to re-fetch and decode
the same instructions again.

Exploiting parallelism in a program is crucial to achieving high
performance. While CPUs can exploit instruction-level parallelism
(ILP), they do so at the cost of control complexity through renaming
registers and reordering instructions. Multicores exploit thread-
level parallelism (TLP), but each core still suffers the same ineffi-
ciencies. On the hand, accelerators can effectively exploit data-level
parallelism (DLP) by pipelining entire functions and programs.
Since instruction control is nonexistent or centralized, each of its
pipeline stage is solely a compute operation, i.e., only the execute
stage of the instruction. We apply the same concept to pipeline our
dynamic datapaths by grouping fixed sets of instruction operations
to form pipeline stages and, ideally, scaling compute throughput
with the number of functional units.

We propose DiAG, a dataflow-based general-purpose microar-
chitecture that can support typical RISC ISAs without modification.
DiAG dynamically constructs an instruction dataflow graph (DFG)
of the program as it executes that is similar to a mini-accelerator
datapath. This graph exposes the locally available ILP within the
program, allowing multiple instructions to execute concurrently.
With the DFG, we can eliminate significant control overhead es-
pecially if the program harbors instructions reuse. Furthermore,
when DiAG encounters parallelizable parts of the program that
meet certain criteria, we apply pipelining at the thread-level to
improve hardware utilization. In this mode, DiAG’s throughput
efficiently scales with the number of functional units.
The main contributions of this paper are as follows:

• We propose DiAG, a dataflow-inspired general-purpose pro-
cessor architecture that can dynamically construct a reusable
execution datapath to exploit ILP, TLP, and DLP.

• Unlike conventional dataflow architectures, DiAG directly
maps instructions to hardware in program order, allowing
simple support for branches and interrupts. We extend past
methods that dynamically construct restricted DFGs in hard-
ware [12, 21, 30] to enable architecture composability, in-
struction reuse, and loop pipelining. DiAG is designed as
a plug-and-play processor that can support regular ISAs
without additional baggage.

• We implement a variant of this architecture to support the
RISC-V 32-bit ISA and evaluate its performance by simula-
tion and its power consumption and area properties with
EDA tools. We additionally test a barebones DiAG prototype
on a Xilinx FPGA board. Finally, we provide some optional
ISA extensions to enable thread pipelining to boost DiAG’s
performance.

Func. Unit

Read
RS

Write
RD

FU FU FU ...

Register Lanes

Regular CPU with one
functional unit and RegFile

Dynamically built reusable datapath
(Instructions assigned in-order,

but executed out-of-order)

FU
i4i1 i2 i3

Reg
File

Figure 1: (Left) A single functional unit that reads andwrites
to a register file, essentially a single-issue in-order proces-
sor. (Right) DiAG extends the register file as register lanes
that transport register values from one functional unit to
the next.

Evaluation results using benchmarks from the Rodinia and SPEC
CPU2017 benchmark suite show a 1.18× speedup in relative per-
formance, and 1.63× improvement in energy efficiency on average
against a 12-core 8-issue out-of-order CPU. The remainder of this
paper is organized as follows: Section 2 is a high-level overview,
Section 3 differentiates DiAG from past works on dataflow and
superscalar architectures, Section 4 details how DiAG efficiently
exploits ILP and DLP, Section 5 is a more detailed view of the DiAG
architecture, Sections 6 and 7 evaluate our hardware implementa-
tion and performance, and finally Section 8 concludes the paper.

2 HIGH-LEVEL OVERVIEW
In theory, an ideal processor could consist of only structures that
hold data and structures that process data. Such a processor built for
one task can be handcrafted with the exact memory size and func-
tional units needed. Though near-perfect efficiency is out of reach
with generality, we propose an architecture that can: 1. extract
ILP and DLP with reduced control overhead, 2. exploit dynamic in-
struction reuse, and 3. maximize computation hardware utilization
when possible.

At a glance, the DiAG architecture consists of a row of functional
units and an interconnecting bus flowing through them. The inter-
connect, named register lanes, is designed to serve the combined
roles of forwarding paths, the physical register file, and the reorder
buffer in a traditional out-of-order processor. Each register is ab-
stracted as a lane (wire bundle) that transports its value and status
across functional units. In many ways, this is not fundamentally
different from a typical dataflow processor equipped with a spatial
array of functional units upon which the program’s DFG can be
mapped to. In DiAG however, instructions are assigned to func-
tional units in program order but can execute out-of-order as
soon as their operands from register lanes are available. The method
of DFG construction in DiAG is closely related to CRIB [12] and ear-
lier works that we discuss in the next section. During execution, a
dynamic datapath arises as functional units are orderly loaded with
program instructions. Since register lanes replace the register file,
a restricted dataflow graph is implicitly formed as results from pre-
vious functional units are forwarded to the next. This construction
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Figure 2: Mapping instructions to PEs. (Left) In DiAG, in-
structions are assigned in programorder, register lanes form
theDFG. (Right) Instructions are spatiallymapped to amesh
of PEs, directly reflecting the DFG.

requires no reconfiguration because each functional unit simply
loads its source operands from register lanes after its assigned in-
struction is decoded. Instructions can begin executing as soon as
their source register lanes are valid, resolving any read-after-write
(RAW) hazards. Figure 1 shows register lanes as an extension to the
register file, note that a DiAG processor with only one functional
unit is nearly identical to the back-end of an in-order single-issue
CPU. By implicitly constructing the DFG, DiAG has performed the
combined tasks of renaming registers, issuing, dispatching, and
re-ordering instructions. We effectively reduce the complexity of
the processor’s front-end at the cost of increased hardware area for
sparsely enabled functional units and register lanes. However, the
DiAG architecture truly shines when the dynamically built datapath
is reused across loop iterations. When a backward branch or jump
is encountered, one or more parts of the datapath can be reused
if the target address falls within the already constructed range. A
reused datapath already has instructions loaded and decoded, and
all data dependencies between instructions resolved, effectively
leaving only the execute stage for each instruction. Finally, when
we encounter a parallelizable loop that entirely fits in the DiAG
processor, we can pipeline the datapath to further improve execu-
tion efficiency. By inserting pipeline registers between functional
units, we can ideally scale DiAG’s total throughput proportionally
with the number of functional units.

3 RELATED WORK
DiAG uses a combination of many concepts and techniques from dif-
ferent areas of computer architecture such as dataflow computing,
loop reuse, pipelining, composable architectures, etc. This section
highlights similarities and differences between DiAG and relevant
past works on dataflow architectures and superscalar techniques
with similar themes.

3.1 Dataflow Architectures
Dataflow computing has been a subject of extensive research in
computer architecture. While DiAG borrows many concepts from
dataflow architectures, it strictly adheres to the von Neumann
model of computing. Unlike most past works, DiAG can be used
as a drop-in replacement for regular CPUs and supports generic

RISC-like ISAs without requiring its own ecosystem of specialized
compilers or languages. Thus, it is more appropriately considered a
re-imagined out-of-order microarchitecture imbued with dataflow
concepts.

3.1.1 The Dataflow Model. As its name implies, the dataflow com-
putation model abstracts a program as a directed graph of opera-
tions, and data ‘flows’ internally through edges of the graph during
execution [17]. Since nodes in the graph can perform their opera-
tions as soon as input operands are available, dataflow architectures
can naturally exploit parallelism of operations.

3.1.2 Early Dataflow Architectures. Elegant on paper, many early
implementations of dataflow architectures attempt to statically
replicate the DFG in hardware. Examples of early architectures
include DDM1 [4], the Hughes DataflowMachine [37], and the MIT
Dataflow Architecture [5]. However, pure dataflow architectures
were limited in practicality since they could not easily support
commonly used programming languages and data structures.

3.1.3 Hybrid von Neumann / Dataflow Architectures. Subsequent
works [7, 11, 18, 22, 31, 39] combined dataflow techniques with von
Neumann models of computation and memory. Architectures such
as Tartan [28], TRIPS [32], and Conservation cores [38] also use
a hybrid control flow model where the program’s DFG is divided
into subgraphs that are executed atomically. While DiAG’s microar-
chitecture is inspired by the dataflow model, it differs from most
past works in the following ways: 1. Processing elements (PEs) are
chained together in a line rather than arranged in 2D tiles. All PEs
have assigned instructions regardless of the shape of the graph.
2. Program instructions are assigned to PEs strictly in program
order, and eventually ‘commit’ in-order. 3. Register lanes form the
interconnect between PEs, they dynamically construct a restricted
dataflow graph and serve the same purpose as a reorder buffer.
DiAG addresses two important limitations of past works:
1. Granularity of control. Most dataflow architectures cannot
fully handle control flow changes at the instruction level. They use
compilers to break down a program into control-free sequences
of code, e.g., ‘blocks’ in TRIPS [32] or ‘waves’ in Wavescalar [35].
These sequences are then mapped and executed block-wise in hard-
ware. As a result, supporting an arbitrary branch instruction or
precise interrupts is difficult to realize. DiAG does not decompose
the program into subgraphs and handles all control flow changes at
the instruction level. It supports precise interrupts and speculative
execution fully (e.g., even if all instructions in a program are nested
branches).
2. General compatibility. Most dataflow architectures require
special instruction sets and/or compilers and/or software libraries
to work with the hardware [10, 23, 29, 33, 35]. Thus, there is a
high barrier to adoption as existing binaries for commonly used
ISAs must all be recompiled to work on the platform. Furthermore,
control limitations in 1. only make it more difficult to support all
application types. DiAG differs from past dataflow works in that
instructions are mapped in program order but execute out-of-
order as shown in Figure 2. This not only simplifies instruction
control but also allows composability. We can view DiAG’s DFG as
a linearized version of the spatial DFG mapped to a tile of PEs, this
will become very apparent in Section 4.
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Figure 3: Dataflow execution of a program with five instructions. Instruction assigned to functional units in program order
implicitly constructs the flattened dataflow graph of the program, i.e., the DFG in (A) and (B) are identical.

3.1.4 CGRAs. Coarse-grained reconfigurable architectures such
as Piperench [9], DySER [10], and Stream-Dataflow [29] also utilize
dataflow techniques, however CGRAs are generally intended to be
co-processors or programmable accelerators, not a replacement for
the main CPU. DySER, for example, is a dynamically configurable
dataflow accelerator directly integrated into the processor pipeline
that executes selected blocks of code in dataflow fashion like a
large functional unit. As with the previous architectures, DySER
uses a spatial grid of functional units and reconfigurable switches,
similarly relying on the compiler to map the DFG. A main goal
of DiAG is to be the central processor with full transparency and
support for existing code.

3.2 Related Superscalar Techniques
Many aspects of DiAG are closely related to past works in microar-
chitectural design, superscalar techniques, and optimizations.

3.2.1 Out-of-Order Architectures. Out-of-order processors [36] can
be considered as a type of restricted dataflow architecture [14].
DiAG has two main advantages and disadvantages compared to
modern out-of-order processors. DiAG implicitly resolves data de-
pendencies through its register lanes, eliminating most of the con-
trol structures necessary in out-of-order cores. Dynamic datapaths
constructed by DiAG are reusable, thus loop iterations can execute
at an efficiency close to accelerators. On the other hand, applications
that are memory-centric or contain significant control divergence
perform poorly since most cycles are wasted on stalls. DiAG will
also inevitably use more die area although only a small fraction of
it is powered at a time since PEs are only enabled when executing.
A more detailed comparison between DiAG and out-of-order CPUs
is discussed in Section 5.

3.2.2 Superscalar Techniques. Various similarly themed superscalar
techniques have been proposed, though most are intended to op-
timize the design of out-of-order 𝜇archs. ILDP [21] proposes an
instruction set that allows the processor to group dependent instruc-
tions into strains that are executed in an interconnected back-end of
PEs. However, ILDP retains of most of the front-end pipeline stages
from fetch to register rename, and requires a special ISA with accu-
mulator registersmatching the number of PEs. Complexity-effective
superscalar processors [30] also uses bypass logic to rapidly trans-
fer dependent data between functional units. DiAG fully manifests

this concept, replacing the register file and RAT with a full bypass
circuit. CRIB [12] uses a very similar method to construct a dy-
namic datapath and eliminate front-end structures. DiAG is more
elaborate in its design with full resource duplication at each PE. We
extend CRIB’s approach to the scale of hundreds of PEs not con-
fined to the traditional CPU back-end; this allows us to additionally
exploit full datapath reuse in loops, architecture composability, and
thread-level pipelining.

Loop reuse techniques such as Revolver [13] seek to eliminate
front-end redundancies when repeated instructions are executed in
a loop. In DiAG, the entire datapath along with all functional units
are duplicated and reused with optional pipelining. Clustered spec-
ulative multithreaded processors [27] spawn speculative threads
from a single thread by detecting parallelizable sections of code
at runtime, sharing some similarities with DiAG’s thread pipeline
mode. However, DiAG is non-speculative at the thread level and
the former uses a multi-processor architecture. The mechanisms
proposed in these works generally serve as extensions to the out-
of-order microarchitecture whereas DiAG functions independently.
Composable architectures such as CLP [20] and Core Fusion [15]
can group multiple smaller processor elements and hardware re-
sources to form a larger one using a flexible microarchitecture.
DiAG applies a similar concept, however, we cluster individual PEs
into different subgraphs, allowing the construction of multiple dat-
apaths in the processor depending on properties of the application.

4 DATAFLOW-BASED EXECUTION
DiAG uses dynamic dataflow execution for serial parts of a pro-
gram to minimize latency of execution. This is not an easy task
considering that a major power burden of modern out-of-order
processors lies in its complex front-end logic responsible for resolv-
ing control and data dependencies in the program. This overhead
is necessary to allow aggressive dispatching of as many instruc-
tions as it can each cycle to maximize ILP. Consequently, even
for floating-point operations, a significant chunk of total power
spent executing each instruction is consumed by control structures
such as the register alias table (RAT), reorder buffer (ROB), and
reservation stations, rather than the functional units performing
the operation. The purpose of these control structures is to: 1. de-
termine true data dependencies between instructions, 2. dispatch
instructions not waiting on dependencies to functional units each
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cycle, and 3. maintain a table of active instructions in program
order for control hazards. We use an alternate method similar to
CRIB [12] that accomplishes these tasks without explicit renaming
or out-of-order issue by building a restricted DFG of the program
dynamically in hardware. However, the graph need not be spatially
mapped to a processor array, or even be actually constructed. In-
stead, it arises naturally when instructions are laid out sequentially.

4.1 Instruction Dataflow Graph
DiAG consists of a long row of functional units and each is assigned
a single CPU instruction to execute. The instructions are assigned
strictly in program order (e.g., functional units from left to right
are assigned i0, i1, i2, ...). In most ISAs, regular instructions
require up to two source registers (RS1, RS2) and write to one
destination register (RD). However, registers values are transient by
design, source registers of one instruction are destination registers
written by some instruction before it. Rather than implementing a
fixed register file, we use an interconnect of wires linking outputs
of one functional unit to inputs of subsequent units.

For full generality, this interconnect converts the ISA’s registers
into wires of the same bit-width that can be accessed as it passes by
the functional units. For example, an ISA with 16 registers, each 32-
bit wide translates to 16 register lanes where each lane is a 32-bit
wire alongwith a valid bit. Each functional unit reads its assigned
instruction’s source operands from the register lanes and writes
its output to the destination register lane. To support writes to a
lane, at each functional unit, a switch (2-input multiplexer) selects
between propagating the lane’s current value and the functional
unit’s output. This means that when a functional unit writes to a
lane, it only changes the register lane’s value for future functional
units, not previous ones. The accompanying valid bit is also set
to high when a functional unit writes its output. This bit allows
subsequent units to be aware that the register lane’s value is ready
and correct. Finally, even though functional units are assigned
instructions in program order, they can begin execution as soon
as their inputs are valid, exploiting any available instruction-level
parallelism.

We have now essentially constructed a restricted dataflow graph
of the program. Viewed from a higher abstraction level, the row of
functional units corresponds to computation nodes in the graph.
Register lanes that are read and written correspond to edges in the
graph. To better illustrate this concept, Figure 3 shows a simple
example program that computes the Euclidean distance between
two points. For simplicity, we assume the ISA has only four regis-
ters to work with. In Figure 3: (A) Shows the dataflow graph of the
program with all dependencies between instructions. Assuming a
one cycle latency for operations, the program completes in 3 cycles.
(B)We flatten the same DFG from (A) by laying out instructions in
program order, all edges remain unchanged. (C) Shows the design
described in this section. This diagram simplifies the hardware and
does not show unused multiplexers. Functional units are assigned
instructions in program order (i0 to i4). Each functional unit reads
its inputs from the register lanes, and writes its output to the des-
tination lane, overwriting its value and valid bit for subsequent
functional units. We see in (C) that, even though functional units
are assigned instructions in program order, they begin execution as
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Figure 4: Four processing clusters: two are executing (blue),
one is idle (orange), and the last is loaded with instructions.
A loop can reuse this datapath.

soon as all inputs are valid. In the first cycle, both i0 and i2 have
valid inputs from the register lanes and can begin execution. On the
other hand, i1 cannot begin because it takes register r0 as input,
and the r0 lane is overwritten by i0 whose output is currently
invalid until it completes. Execution completes when all register
lanes are valid at the last functional unit. Assuming a one cycle
latency for each operation, we once again complete execution in
three cycles, identical to the ideal case. In fact, it is clear that in (C),
we have implicitly constructed the same DFG shown in (B), which
in turn is simply a flattened view of the original DFG shown in (A).

4.2 Data Hazards
False register dependencies, namely write-after-read (WAR) and
write-after-write (WAW) hazards do not obstruct ILP in DiAG. Nor-
mally, we cannot overwrite a register value if prior instructions still
require the old value, but this is no issue for register lanes flowing in
one direction. Recall that the output of each functional unit replaces
the register value and valid bit for its destination register lane only
for subsequent instructions. This is analogous to register renaming
which assigns each instruction’s destination register a new physical
register, precluding prior instructions from overwriting its result.
Hence, register writes of one instruction can complete at any time
without affecting the instructions prior to it. Disregarding control
hazards, DiAG can exploit all locally available ILP. If a program
has instructions that are all independent, we can schedule as many
instructions as there are functional units in one cycle, an issue
width of up to infinite. In practice, however, we must account for
wire delay and 2-input multiplexers placed at each functional unit,
more details on timing are presented in Section 6.

4.3 Control Hazards
To support control flow changes such as branches and jumps in
the program, we divide the long row of functional units into parts
called processing clusters. This division is transparent to register
lanes, whose values and control bits are connected from one cluster
to another with a buffer in between. Figure 4 shows a design with 4
processing clusters that are chained in a circular connection. Func-
tional units are interchangeably called processing elements (PEs) in
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Figure 5: Control within a PE tracks the program counter
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all figures. Under serial execution where the program counter (PC)
increments by one word every cycle, we simply load instructions
into the next cluster while the current clusters execute. A cluster is
freed if all its functional units have completed their instructions,
thus, having just two clusters is enough to alternate between. Note
that instructions are always assigned in program order; loading a
single 64-Byte instruction cache line is enough to fill a 16 functional
unit cluster in a 32-bit architecture.

Each PE has an instruction address register that holds address
of the instruction assigned to it. In addition, the PC lane crosses
every PE in a cluster. Control structures within each PE are shown
in Figure 5. As instructions are simultaneously executing in the
cluster, the PC crosses each instruction in program order allowing
completion of memory stores (retiring instructions). The PC is
normally incremented by 4 in each PE it passes (without actual
addition) unless it encounters a branch or jump instruction.

4.3.1 Forward Branch. A positive offset jump or branch that is
taken modifies the PC lane and sets its value to the jump or branch
target address. As a result, the subsequent PEs’ instruction addresses
will no longer match the PC lane. This mismatch disables the func-
tional unit and allows the PC lane to bypass all PEs until the next
match is encountered. An example is shown in Figure 6 (A) where
the third instruction (0x10) is skipped by the branch instruction. If
the target address lies outside the current processing cluster, the
next cluster will load the instructions at the target address.

4.3.2 Backward Branch. A backward branch is handled in mostly
the sameway as forward branches. Figure 6 (B) shows an example of
a backward branch that is taken. As before, subsequent instruction
addresses will not match the modified PC lane and will be disabled.
However, in the case that the target address is in a cluster already
present in the processor, such as the case shown earlier in Figure 4,
we can reuse the dynamic datapath that is already constructed for
the current loop. This enables instruction reuse and eliminates the
overhead of instruction fetching and decoding. If the target address
does not fall within the range of any cluster, it must be loaded from
the instruction cache again.

4.4 Thread Pipelining
In contrast to the previous section, thread pipelining targets par-
allel parts of a program with the goal of maximizing throughput.
We extend the dataflow architecture in the previous section by
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Figure 6: Example of a forward (A) and backward (B) branch
instruction at address 0x08. When the branch is taken, the
program counter (PC) no longer matches the next PE’s in-
struction address and it is ignored.

pipelining register lanes so that possibly all functional units are
active when the pipeline saturates. If two different threads that can
run concurrently, we use spatial parallelism to dedicate multiple
rows of processing clusters to execute each in parallel, similar to
multicores. If two threads are identical but process different data,
we can additionally use temporal parallelism, i.e., thread-level
pipelining to further improve execution efficiency in DiAG.

4.4.1 SIMT Pipeline. Thread pipelining is similar to loop pipelining
where different iterations of a loop execute at different stages of
the pipeline, though each iteration is still executed sequentially. An
easy way to visualize the pipeline is to treat it as a generalization
of the traditional instruction pipeline in microprocessors.

In the classic 5-stage pipeline, each instruction is broken down
into five parts from fetch to write-back. Each pipeline stage then
consists of dedicated hardware logic for one part. When a program
runs, instructions flow through the pipeline and, if there are no
stalls, the pipeline achieves a cycles per instruction (CPI) of ex-
actly 1 with all stages busy. Though instructions are overlapped,
each instruction’s parts are always performed in correct order, i.e.,
no instruction will be decoded before fetched or executed before
decoded. We follow the same intuition to construct a pipeline for
threads rather than instructions. Rather than breaking down in-
structions into parts, we break down threads into instructions. This
is possible since DiAG exploits instruction reuse to reduce each
instruction to only the execute stage. Thus, each pipeline stage
now executes a complete instruction, and each thread, carrying its
register file, flows through the pipeline to complete execution as
shown in Figure 7. We can modify our dataflow design to support
thread pipelining by inserting pipeline registers between functional
units. This graph is exaggerated to illustrate a point, in our design,
pipeline registers are inserted between clusters, not each PE due
to tremendous area cost. As before, functional units are assigned
instructions of the thread in program order, however, from the per-
spective of each executing thread, its instructions are also executed
in original program order.

The main benefit of instruction pipelining is achieving an ideal
CPI of 1 with temporal parallelism. In the case of thread pipelining,
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Figure 7: Thread pipelining with effectively only execute stages for each instruction. Ideally, all five instructions are active
each cycle and IPC = 5 in this example. (This figure is exaggerated, pipeline registers only exist between DiAG clusters, not
each PE.)

we can ideally execute one thread per cycle, provided there are
no stalls and enough PEs for all instructions. This also implies
that the instruction throughput (IPC) achieved by the pipeline
scales linearly with the number of PEs available. If the thread has
fewer instructions than available PEs, we can spatially replicate the
pipeline across clusters to maximize utilization of resources. This
is a major advantage in comparison to multicores since rather than
scaling IPC with more cores, we scale IPC with more PEs which
have minimal control overhead. However, an ideal scenario with
1-cycle operations and no stalls is unrealistic and only represents
a theoretical peak throughput. The pipeline can easily stall due to
cache access misses and non-uniform execution time of instructions
across clusters.

4.4.2 Data Hazards. While parallel threads can be executed in any
order, instructions within each thread execute strictly in program
order as it flows through the pipeline as shown on the right side of
Figure 7, thus there are no data hazards. For each thread, i0 always
executes before i1, then i1 before i2, and so on.

4.4.3 Control Hazards. There are unfortunate constraints to thread
pipelining that limit its applicability to all types of parallel programs.
For starters, there must be enough PEs to fit all instructions of the
thread in the DiAG processor. Secondly, there cannot be backward
jumps or conditional branches within the thread (e.g., nested loops).
If they exist, they must be fully unrolled, otherwise the threads are
executed sequentially. A backward branch cannot be realized when
pipelined since past PEs are concurrently used by other threads.
Fortunately, forward branches are easily handled since each thread
carries its own PC through the pipeline. Like before, each PE is
enabled only if its instruction address matches and the thread’s PC.
When a branch instruction is encountered and the branch is taken,
the thread’s PC is modified to the branch target address, effectively
nullifying the subsequent instructions until the correct address is
reached. Thus, control divergence is not as significant a problem
here as it is in vectored processors.

5 GENERAL ARCHITECTURE
This section presents the general architecture of a DiAG processor
complete with its control and memory subsystem. Much of the
DiAG architecture is parametrizable with a multitude of possible
design choices. An architect can optimize it for performance and

efficiency in specific use cases. Although we assume an implemen-
tation supporting the RISC-V 32-bit ISA, the DiAG architecture we
present is intended to be ISA agnostic and should work reasonably
well with most general-purpose instruction sets.

5.1 Overall Organization
A high-level architecture diagram is depicted in Figure 8. DiAG
is organized hierarchically by the following hardware divisions:
dataflow rings, which contain processing clusters, which contain
individual PEs. A dataflow ring is analogous to a CPU ‘core’, it
connects multiple clusters together and is the smallest hardware
unit that a program can run on. Each ring is independently equipped
with a control unit responsible for handling instruction line fetches
to its clusters, activating and freeing clusters, and thread-level
control tasks. Note that multiple rings can be chained together to
form a larger ring with a longer datapath. A DiAG processor can
thus have multiple ring configurations to exploit different types
of parallelism. Each processing cluster contains a row of PEs as
we described in the previous section. Individual loads and stores
are queued at the level of the processing cluster. Likewise, branch,
jump, and call instructions whose target addresses fall outside the
current cluster are also handled at the cluster level.

5.1.1 Instruction Fetching. Instructions are fetched at the granular-
ity of I-Cache lines and are assigned in program order to PEs in a
cluster. Each processing cluster should hold exactly one instruction
cache line, note that I-Cache lines and register lanes share the same
on-chip network for data transport. Our DiAG implementation has
16 PEs per cluster and 64-Byte cache lines, thus a single line fills
all PEs in a cluster. A processing cluster can begin execution as
soon as instructions are decoded, which takes one cycle after they
are assigned to PEs. When the PC is branched to an instruction
address not aligned to the cache line, we fetch and load the entire
line to the cluster anyway. Instructions prior to our target address
will be disabled anyways due to PC mismatching the instruction
address. A standard direct-mapped instruction cache is used in our
evaluations.

5.1.2 Functional Units. Since each functional unit is assigned only
one instruction to execute at a time, we can consider its imple-
mentation as either a general-purpose ALU/FPU or a fine-grained
reconfigurable compute unit. Using reconfigurable logic has the
advantage of reduced area and power costs, but in turn achieves a

99



ASPLOS ’21, April 19–23, 2021, Virtual, USA Dong Kai Wang and Nam Sung Kim

PE PE PE PE PE

CLUSTER CTLLD ST

L1 D-CACHE

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

L2

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

PE PE PE PE PE

CLUSTER CTLLD ST

L1 D-CACHE

I-
CA

CH
E

TH
RE

AD
 S

CH
ED

 C
TL

AX
I 

M
AS

TE
R

M
EM

O
RY

 I
TF

Example DiAG RISC-V Processor
2 Clusters / 16 PEs (caches not present)

Synthesized with 45nm Library 

Figure 8: DiAG high-level organization and synthesized example with 2 clusters and 16 PEs.

lower frequency. The problem with a reconfigurable design here
is that it must always be allocated enough area for the costliest
instruction (FDIV). In the current prototype, we use a generic 32-bit
integer ALU and FPU with some shared computation logic.

5.1.3 Centralized Control. While control transfer instructions are
handled within each cluster, a control unit for each dataflow ring
keeps track of instruction assignments to each cluster and execution
progress. This unit maintains a hardware scheduling table that
stores the head and tail clusters in use for each thread as well as
their statuses. Its tasks include preemptively loading instruction
lines, freeing completed clusters, and tracking PC. An on-chip 512-
bit bus is present to transport partial register files from clusters that
are not directly connected (in two cycles) for backward branches.
As previously noted, this bus is also shared for loading I-Cache
lines to clusters.

5.1.4 Interrupts and Exceptions. Since instructions are mapped to
PEs in program order, DiAG can easily support precise interrupts.
DiAG’s register lanes serve the same purpose as a reorder buffer
in an out-of-order processor. When an interrupt is encountered at
instruction i, all instructions from i+1, i+2, ... are automatically
disabled because the PE for instruction i modifies the PC lane to
the target trap vector causing subsequent PEs have a PC mismatch.
Finally, all previous instructions canwrite their values to the current
processing cluster’s register file. The next cluster is then loaded
with instructions at the target PC, beginning the interrupt sequence.
The same process applies to a branch misprediction; PEs can always
execute at will, but the PC lane essentially retires instruction in-
order like a reorder buffer.

5.2 Memory Subsystem
A robust memory subsystem is crucial to the overall performance of
a DiAG processor. Under thread pipelining, this is further amplified
since a missed load stalls the entire pipeline. We use a hierarchy of
a memory lanes, cluster-level caches, banked L1 D-Caches, and a
larger last-level cache. Memory accesses in each functional unit are
first checked against memory lanes then routed to a load store unit
at the cluster level, where the previously accessed line is stored. If
missed, the request is queued and then sent to access the banked
L1 D-Cache, where a secondary arbiter manages incoming requests

from processing clusters. The L1 D-Cache in this case is technically
a second level cache, and we choose a size in the range of 32-
128KB depending on the configuration. Locally, at each cluster, we
use memory lanes, which are essentially set-associative register
lanes that transports memory data from PE to PE and enable access
reordering. Datawritten by stores are temporarily stored inmemory
lanes that are passed to succeeding clusters and PEs for immediate
access. There is significant room for further memory optimization
for our work since, with instruction reuse, each PE is assigned a
single memory instruction whose address likely changes in a fixed
pattern each iteration. We expect that localized stride prefetching
and more advanced techniques will be effective in DiAG, however
they are beyond the scope of evaluation for this work.

5.3 Comparison with Superscalar CPU
We compare at large the design aspects of DiAG against typical
out-of-order CPUs to highlight its benefits and drawbacks. We
summarize how each instruction is processed in a standard CPU
and in DiAG in Table 1. The second column shows the case for a
purely serial program and the third column shows the case when a
parallelizable loop fits on DiAG. Dataflow execution can theoreti-
cally achieve the performance of a wide out-of-order core without
needing most of its control structures.

DiAG’s main disadvantage (for serial programs especially) is the
area consumed for a large number of PEs and register lanes. We
can certainly use only two clusters with few PEs, but that would
defeat the purpose of instruction reuse since most loops can no
longer fit. Thus, we decide to duplicate hardware resources and
maintain that generally only a small part of the circuit is active at
once, and PEs are dormant until an instruction is ready to execute.
Furthermore, the total number of operations performed for each
program remains unchanged. This is disadvantage disappears for
parallel parts of the program where a traditional processor must
also invest in additional cores to achieve a high throughput. Under
thread pipelining, IPC is expected to scale almost linearly with the
number of functional units, eliminating the control overhead of
multicores. Trading hardware area for efficiency is DiAG’s philos-
ophy under the dark silicon regime. We can treat DiAG’s design
as a temporal record of a processor’s back-end laid out spatially in
hardware with register lanes traveling in the direction of time.
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Table 1: Comparison with out-of-order processor.

Stages and
Structures

Out-of-Order
Processor

DiAG
(Initial)

DiAG
(Reuse)

Fetch Yes Yes (Batch) No
Decode Yes Yes No
Issue Yes No No

Issue Width 4-8 Instr. Scalable Scalable
Rename Yes No No

Register File Physical RF Reg Lanes Reg Lanes
Dispatch Yes No No
Execute Yes Yes Yes
Commit Reorder Buffer Reg Lanes Reg Lanes

5.4 ISA Extensions
We extend the RISC-V ISAwith two additional instructions to enable
thread-level pipelining:

• simt_s, rc, r_step, r_end, interval. Spawns multiple
loop instances by retaining the current register file in the
cluster with the exception of the control register rc. This in-
structionmust be followed by a simt_e instruction that is off-
set by l_offset and denotes the end of the current pipelined
loop. The value and type of r_step determines how the
control register changes and r_end determines the ending
condition. Threads are only initiated once every interval
cycles.

• simt_e, rc, r_end, l_offset. This instruction is used
to mark the end of the current pipelined region, does not
propagate all but the last thread’s register lanes to the next
processing cluster when the terminating condition is met.

These instructions are inserted at the beginning and end of par-
allelizable loops. Currently, loops that can be pipelined in DiAG
(without negative offset branches) must be identified manually due
to numerous restrictions.

6 HARDWARE IMPLEMENTATION
We implement a parametrizable DiAG processor prototype in Sys-
temVerilog to evaluate its performance. We target the RISC-V 32-
bit (RV32I) instruction set with optional multiplication (-M) and
floating-point (-F) extensions. At this time, we do not have complete
hardware support for environment call, system, and atomic instruc-
tions. Table 2 lists the different hardware configurations used for
evaluation.

6.1 Hardware Synthesis
We synthesize our hardware design using Synopsys Design Com-
piler L-2016.03-SP1 with a FreePDK 45nm library. We then per-
form basic place and route of the synthesized design using Synopsys
IC Compiler for more accurate area and power estimations. Table 3
shows hardware area and power consumption breakdown of key
components in DiAG, hierarchically. The L1 and L2 caches are
modeled separately with CACTI [25] and are not present in the
hardware design.

Table 2: DiAG configurations used for evaluation.

Configuration I4C2 F4C2 F4C16 F4C32

ISA RV32I RV32IMF RV32IMF RV32IMF
PEs / Cluster 16 16 16 16
Total Clusters 2 2 16 32
Total PEs 32 32 256 512
Freq. (Sim.) N/A 2.0GHz 2.0GHz 2.0GHz
Freq. (Syn.) 100MHz 1.0GHz 1.0GHz 1.0GHz

L1I Cache Size 32KB 32KB 32KB 32KB
L1D Cache Size 32KB 64KB 128KB 128KB
L2 Cache Size N/A 4MB 4MB 4MB

Table 3: Hardware area and power breakdown by compo-
nent. * Indicates estimations not entirely from synthesis.

Component Name Hardware Area Total Power

F4C32 (TOP) 93.07 mm2* 74.30 W*
PCLUSTER 2.208 mm2* 2.104 W*
PE (w/ FPU) 97014 𝜇m2 120.4 mW
REGLANE 15731 𝜇m2 3.063 mW
INT ALU 1375.4 𝜇m2 0.774 mW

FPU (MUL / DIV) 66592 𝜇m2 105.2 mW
RV_DECODER 244.6 𝜇m2 0.019 mW

6.1.1 Hardware Area. Area is dominated by floating-point units
that each occupy 68% of a PE and together occupy 48% of a process-
ing cluster. Register lanes account for 16.3% of a processing cluster.
In our design, register lane accesses are synthesized as a chain of
simple MUXes. We do not have the resources for a custom physical
design with shared read wires that could greatly reduce both area
and delay. Although we are using an older technology library, the
area cost of each PE is almost 105𝜇𝑚2 and each cluster around
2𝑚𝑚2. This raises concerns as whether DiAG can be scaled to a
64-bit ISA with 64 register lanes. Indeed, direct scaling to 64 register
lanes would notably increase hardware area. However, for a 64-bit
design, we can first multiplex only the registers that are accessed by
the current cluster. For example, a cluster with 16 instructions can
at most access 32 different registers. Hence, the original 32 register
lane design can still be used with some modifications.

6.1.2 Circuit Timing. Timing is met at 1.0GHz for a processing
cluster with register lanes buffered every 8 PEs. The critical path
in the cluster is the longest path on the register lane running from
the first PE output to last PE’s input within the cluster. Each lane
passes through a 2-input MUX at each PE multiplexing the current
value and write value. Thus, for a cluster with 16 PEs, we insert a
full register buffer on all lanes between PE 8 and 9. We also pass
timing with a 2.0GHz clock with a fixed two cycle delay from first
to last register lanes, this may be preferred as integer ALUs can run
at a higher frequency. Note, however, that the DiAG circuit is fully
synchronous and all PEs across each cluster share the same clock
domain.
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Figure 9: Performance results on the Rodinia benchmark suite.

6.1.3 Dynamic Power. Power consumption numbers are reported
in Table 3 which assumes all PEs are powered on every cycle. How-
ever, during execution, PEs are only enabled when they execute
after all input operands are available; we assume they are clock-
gated in a similar fashion to FPUs in a regular processor.

6.2 FPGA Proof of Concept
We synthesize the integer-only model I4C2 (with 32 PEs) on a Xilinx
VC709 FPGA board running at 100MHz. The DiAG processor uses
an AXI4-Lite master port to access on-chip memories. A Microblaze
processor is also present for monitoring purposes. We preloaded
bare metal RISC-V programs inmemory to verify basic functionality.
Due to limitations of the FPGA, however, we do not use the platform
for performance evaluation.

7 EVALUATION
We evaluate DiAG’s performance and energy efficiency using bench-
marks from the Rodinia and SPEC CPU2017 benchmark suites
against a 12-core 8-issue out-of-order ARM CPU baseline.

7.1 Methodology
Hardware performance is modeled with RTL simulation using Mod-
elSim on the F4C2, F4C16, and F4C32 configurations in Table 2. Our
hardware prototypes do not have a full support of required system
instructions, so we modify, delete, and circumvent non-profiled or
non-critical sections of benchmark code to avoid all system calls.
The modified benchmarks are then cross-compiled to ARM and
to RISC-V with DiAG extensions inserted if applicable. For power
estimations, we record component utilization each cycle in the RTL

testbench. A disabled processing element or floating-point unit is
assumed to be clock-gated, and we assume it does not consume
dynamic power unless the instruction activates it. We then estimate
total energy consumed based the fraction of dynamically active
components each cycle. We use the gem5 [1] simulator in Syscall
Emulation (SE) mode to model an ARM CPU baseline (due to issues
with RISC-V in the simulator). The ARM baseline runs at the same
frequency and is aggressively configured to issue, dispatch, and
retire up to 8 instructions with a 2 cycle latency for each of these
stages. A similar memory hierarchy of 64KB L1 and 4-8MB unified
L2 is selected for the ARM processor. Power consumption for simu-
lation is estimated using McPAT [24]. To improve simulation speed,
the SystemVerilog testbench module used for simulation is less
detailed compared to the full design used for synthesis. Floating-
point operations are modeled as fixed delays and performed with
non-synthesizable real variables, and caches are also only modeled
functionally with delays. Some benchmarks are not simulated in
full due to speed limitations of RTL simulation, and results are
projected based on a smaller input run. However, given the general
regularity of these applications, we have tested various input sizes
to check that projected results are reasonable.

7.2 Single and Multi-Thread Performance
7.2.1 Rodinia Benchmarks. Figure 9a shows performance results
of Rodinia benchmarks running with one thread. Overall, the av-
erage performance of DiAG is 0.91×, 1.12×, and 1.12× compared
to the baseline CPU for configurations with 32, 256, and 512 PEs
respectively. Much like large ROB sizes, no noticeable improvement
can be gained with more than 256 PEs for serial programs. Memory
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Figure 10: Performance results on benchmarks from the
SPEC CPU2017 benchmark suite.

misses across account for nearly 74% of all stalls in DiAG PEs, this
is a detriment in control and memory-bound applications where
DiAG performs much worse than the CPU baseline. Nevertheless,
we observe that even the DiAG configuration with 32 PEs can come
close in performance in generally compute heavy benchmarks if
we do not intend to exploit instruction reuse and thread pipelining.

In the multi-threaded case, DiAG is simply configured to run
in 16-by-2 format, i.e., each thread is allocated to a dataflow ring
with two clusters to alternate between. Our single-thread results
show that 32 PEs is enough to extract most of the available ILP,
however instruction reuse is all but sacrificed. Thus, to exploit TLP,
we configure DiAG to concurrently run as many instances as possi-
ble. Figure 9b shows multi-thread performance result against the
CPU baseline. The purple bar indicates temporal parallelism (SIMT
pipelining) applied in addition to spatial parallelism with multiple
threads. We manually identify or modify program regions in appli-
cable benchmarks to enable thread pipelining while maintaining
correctness. We observe that performance is slightly slower (0.95×
on average) compared to the ARM CPU but elevates to 1.2× with
thread pipelining enabled. The multicore CPU retakes its advan-
tage in most benchmarks where we do not additionally apply SIMT
pipelining. It is therefore important to configure DiAG with enough
PEs to exploit reuse in most workloads to unlock its potential with
thread pipelining. This performance degradation is also largely
attributed to memory stalls due to load congestion, especially in
the initial segments of the benchmark kernels.

7.2.2 SPEC Benchmarks. We additionally evaluate a subset of SPEC
CPU2017 benchmarks. Note that benchmarks that use Fortran
source code (e.g., bwaves) or are too difficult to modify to bypass
unsupported system calls (e.g., gcc) are not evaluated. Identical
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Figure 11: Energy consumption breakdown (%) by hardware
component across four benchmarks.

baseline and DiAG configurations are used in these tests. Results
in Figure 10a shows that the average single-thread performance
for DiAG is 0.81×, 0.97×, and 0.97× compared to baseline for con-
figurations with 32, 256, and 512 PEs respectively. For the multi-
thread case in Figure 10b, DiAG with 512 PEs achieves the same
average performance relative to baseline and a speedup of 1.15×
with pipelining enabled. Individual results reveal the same trend as
Rodinia benchmarks where DiAG excels in the more compute in-
tensive applications and trails behind in memory-bound or control-
dependent applications.

7.3 Performance and Utilization
We take a closer look at how energy is spent by the DiAG processor
and inspect its performance bottlenecks.

7.3.1 Component Utilization. Figure 11 shows the energy con-
sumption breakdown by hardware component in four Rodinia
benchmarks. The FP unit is clock-gated when the PE executes
a non-FP instruction, and consumes very little leakage power. Reg-
ister lanes (including integer ALUs), memory (including LSUs and
caches), and the remaining control logic are assumed to be always
powered. In compute-heavy benchmarks, DiAG expends close to
half of total energy consumed on the functional units, a desirable
result however the 20% overhead on register lanes is nontrivial. It
is no surprise that in graph traversal applications, energy consump-
tion is largely dominated by memory and data movement.

7.3.2 Breakdown of Stalls. The main causes of stalled instructions
averaged across the Rodinia benchmarks are listed below. For this
statistic, we only count the source of stalls, not dependent instruc-
tions that are subsequently stalled.

• 73.6% - Memory stalls. This includes cache misses, full
LSU request queues, busy bus, etc. Memory stalls frequently
arise due to load congestions, which are difficult to circum-
vent. Even with memory lanes, there is significant room for
memory-side optimization in DiAG.

• 21.1% - Control flow changes. When a branch mispre-
diction occurs, all subsequent PEs are flushed. The correct
instruction line must then be loaded into the current or next
processing cluster, wasting at least 3 cycles.

• 5.3% - Other stalls. Stalls caused mostly by structural haz-
ards such as when the shared on-chip 512-bit bus for register
lanes and instruction lines is busy or when no clusters in a
dataflow ring is free to load new instructions.
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Figure 12: Energy efficiency results on the Rodinia benchmark suite.

Results in this section show that DiAG could be well improved
with more advanced prediction and prefetching techniques, and
benefit from a more robust memory subsystem. However, the dis-
tributed nature of PEs in DiAG make it difficult to directly replicate
existing microarchitectural techniques employed by traditional
CPUs. This also presents new opportunities, for example, since
instructions assigned to each PE are fixed under reuse, we can im-
plement FIFO structures for memory accesses as accelerator designs
commonly use. Likewise, penalties due to unpredictable control
flow changes can potentially be ameliorated by simultaneously
constructing multiple speculative datapaths since DiAG’s hardware
resources are abundant but usually sparsely enabled.

7.4 Energy Efficiency
As noted previously, we measure dynamic power consumption
based on the utilization of PEs and floating-point units. Static power
is determined from synthesis and assumed to be constant. Figure 12
shows energy efficiency improvements in the Rodinia benchmarks
measured as the inverse of total energy spent during execution.
Despite, losing performance on some of the benchmarks evaluated,
energy efficiency is improved across most benchmarks in both sin-
gle and multi-threaded cases, with an average of 1.51× and 1.35×
respectively, and 1.63× with SIMT pipelining enabled. Energy ef-
ficiency is improved largely due to eliminated control overheads
as memory and computation structures account for nearly all of
DiAG’s power budget. This improvement is most apparent in pro-
grams with significant instruction reuse, where already constructed
datapaths consume only dynamic power for functional units and
register lanes. However, in memory-bound benchmarks, register
lanes and the memory subsystem dominate energy consumption
as shown in Figure 11. The overheads of data movement in register
lanes thus outweigh the almost nonexistent cost of computation at
each PE, yielding little to no improvements.

7.5 Discussion and Future Work
DiAG is an approach at general-purpose processor architecture
where we adhere to an existing ISA and maintain transparency
to software as a baseline requirement. These restrictions make
DiAG processors viable as drop-in replacements, however, working
within the confines of building DFGs dynamically in hardware has
its limitations as we observe many of the same memory and control
bottlenecks still obstruct performance. As benchmark results in this

section demonstrate, DiAG can support all application types but, in
its current form, excels most at computationally intensive programs.
However, a main drawback of DiAG is the high hardware area cost
that arises from the duplication of computation resources neces-
sary to support any instruction at every PE. As a result, most of the
hardware area is dynamically dead during execution unless thread
pipelining is enabled. In the end, we improved energy efficiency
while retaining generality at the cost of hardware area. This leads
us to consider two possible future directions: reduce hardware area
by resource sharing, or improve hardware utilization by supporting
more execution modes. The first approach shares functional units
within clusters not unlike a CPU’s back-end. We inevitably sacrifice
some performance due to structural hazards. The second approach
keeps the current hardware layout and seeks to improve the utiliza-
tion of PEs. We realize that PEs are generic and DiAG could easily
be adapted to additionally support vector instruction sets. Under
this approach, a DiAG processor can be temporally reconfigured
or spatially partitioned to serve both the roles of main CPU and
accelerator.

8 CONCLUSION
We proposed a dataflow-based architecture for general-purpose
microprocessors that can dynamically construct a reusable execu-
tion datapath. DiAG exploits instruction-level parallelism and data-
level parallelism while eliminating most of the control overhead of
traditional out-of-order processors. This is done by replicating a
dataflow graph of the program in hardware, which naturally reveals
and resolves instruction dependencies. We evaluate DiAG against
an aggressive out-of-order processor and conclude that it achieves
similar performance under the same frequency but benefits from
superior energy efficiency. The main disadvantage of this archi-
tecture is the die area cost of register lanes and hundreds of PEs
equipped with floating-point hardware. However, under the dark
silicon regime, the DiAG architecture is an example of ‘spending’
area to ‘buy’ energy efficiency without sacrificing generality. As
it stands, the DiAG architecture is still in its infancy and presents
many opportunities for future optimization.

ACKNOWLEDGMENTS
We would like to thank Daniel Sanchez and the anonymous review-
ers for their helpful feedback. This work was supported by NSF
award CNS-1705047.

104



DiAG: A Dataflow-Inspired Architecture for General-Purpose Processors ASPLOS ’21, April 19–23, 2021, Virtual, USA

REFERENCES
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali

Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The Gem5 Simulator. SIGARCH Computer
Architecture News 39, 2 (2011), 1–7. https://doi.org/10.1145/2024716.2024718

[2] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,
and Olivier Temam. 2014. DianNao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Salt Lake City, Utah, USA) (ASPLOS ’14). Association for Computing Ma-
chinery, New York, NY, USA, 269–284. https://doi.org/10.1145/2541940.2541967

[3] Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2017. Eyeriss:
An Energy-Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks. IEEE Journal of Solid-State Circuits 52, 1 (2017), 127–138. https:
//doi.org/10.1109/JSSC.2016.2616357

[4] Al Davis. 1978. The Architecture and System Method of DDM1: A Recursively
Structured Data Driven Machine. In Proceedings of the 5th Annual Symposium on
Computer Architecture (ISCA ’78). Association for Computing Machinery, New
York, NY, USA, 210–215. https://doi.org/10.1145/800094.803050

[5] Jack B. Dennis and David P. Misunas. 1974. A Preliminary Architecture for
a Basic Data-Flow Processor. In Proceedings of the 2nd Annual Symposium on
Computer Architecture (ISCA ’75). Association for Computing Machinery, New
York, NY, USA, 126–132. https://doi.org/10.1145/642089.642111

[6] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark Silicon and the End of Multicore Scaling. In
Proceedings of the 38th Annual International Symposium on Computer Architecture
(San Jose, California, USA) (ISCA ’11). Association for Computing Machinery,
New York, NY, USA, 365–376. https://doi.org/10.1145/2000064.2000108

[7] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M. Badia,
Eduard Ayguade, Jesus Labarta, andMateo Valero. 2010. Task Superscalar: AnOut-
of-Order Task Pipeline. In 2010 43rd Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE, New York, NY, USA, 89–100. https://doi.org/10.1109/
MICRO.2010.13

[8] Adi Fuchs and David Wentzlaff. 2019. The Accelerator Wall: Limits of Chip Spe-
cialization. In 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, New York, NY, USA, 1–14. https://doi.org/10.1109/
HPCA.2019.00023

[9] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matt
Moe, and R. Reed Taylor. 2000. PipeRench: A Reconfigurable Architecture and
Compiler. Computer 33, 4 (April 2000), 70–77. https://doi.org/10.1109/2.839324

[10] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-
dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. 2012. DySER:
Unifying Functionality and Parallelism Specialization for Energy-Efficient Com-
puting. IEEE Micro 32, 5 (Sept. 2012), 38–51. https://doi.org/10.1109/MM.2012.51

[11] V. G. Grafe, George S. Davidson, James E. Hoch, and Victor Paul Holmes. 1989.
The Epsilon Dataflow Processor. SIGARCH Computer Architure News 17, 3 (April
1989), 36–45. https://doi.org/10.1145/74926.74930

[12] Erika Gunadi and Mikko H. Lipasti. 2011. CRIB: Consolidated Rename, Issue, and
Bypass. In Proceedings of the 38th Annual International Symposium on Computer
Architecture (San Jose, California, USA) (ISCA ’11). Association for Computing
Machinery, New York, NY, USA, 23–32. https://doi.org/10.1145/2000064.2000068

[13] M. Hayenga, V. R. K. Naresh, and M. H. Lipasti. 2014. Revolver: Processor
architecture for power efficient loop execution. In 2014 IEEE 20th International
Symposium on High Performance Computer Architecture (HPCA). IEEE, New York,
NY, USA, 591–602. https://doi.org/10.1109/HPCA.2014.6835968

[14] Wen-Wei Hwu and Yale N. Patt. 1998. HPSm, a High Performance Restricted Data
Flow Architecture Having Minimal Functionality. In 25 Years of the International
Symposia on Computer Architecture (Selected Papers) (Barcelona, Spain) (ISCA
’98). Association for Computing Machinery, New York, NY, USA, 300–308. https:
//doi.org/10.1145/285930.285989

[15] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. 2007. Core
Fusion: Accommodating Software Diversity in Chip Multiprocessors. In Proceed-
ings of the 34th Annual International Symposium on Computer Architecture (San
Diego, California, USA) (ISCA ’07). Association for Computing Machinery, New
York, NY, USA, 186–197. https://doi.org/10.1145/1250662.1250686

[16] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. SIGARCH Computer Architecture News 45, 2 (June
2017), 1–12. https://doi.org/10.1145/3140659.3080246

[17] Richard M. Karp and Raymond E. Miller. 1966. Properties of a Model for Parallel
Computations: Determinancy, Termination, Queueing. SIAM J. Appl. Math. 14, 6
(1966), 1390–1411. https://doi.org/10.1137/0114108

[18] Krishna M. Kavi, Roberto Giorgi, and Joseph Arul. 2001. Scheduled dataflow:
execution paradigm, architecture, and performance evaluation. IEEE Trans.
Comput. 50, 8 (2001), 834–846. https://doi.org/10.1109/12.947003

[19] Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and
David Glasco. 2011. GPUs and the Future of Parallel Computing. IEEE Micro 31,
5 (Sept. 2011), 7–17. https://doi.org/10.1109/MM.2011.89

[20] Changkyu Kim, Simha Sethumadhavan, M. S. Govindan, Nitya Ranganathan,
Divya Gulati, Doug Burger, and Stephen W. Keckler. 2007. Composable Light-
weight Processors. In Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 40). IEEE, New York, NY, USA, 381–394.
https://doi.org/10.1109/MICRO.2007.41

[21] Ho-Seop Kim and James E. Smith. 2002. An Instruction Set and Microarchitecture
for Instruction Level Distributed Processing. In Proceedings of the 29th Annual
International Symposium on Computer Architecture (Anchorage, Alaska) (ISCA
’02). IEEE Computer Society, New York, NY, USA, 71–81. https://doi.org/10.1145/
545214.545224

[22] David Kuck, Edward Davidson, Duncan Lawrie, Ahmed Sameh, Chuanqi Zhu,
Alexander Veidenbaum, Joel Konicek, Pen-Chung Yew, Kyle Andrew Gallivan,
William Jalby, Harry Wijshoff, Randall Bramley, U. M. Yang, Perry Emrath, D.
Padua, Rudolf Eigenmann, Jay Hoeflinger, G. Jaxon, Zhiyuan Li, T. Murphy,
and J. Andrews. 1993. The Cedar System and an Initial Performance Study. In
Proceedings of the 20th Annual International Symposium on Computer Architecture
(San Diego, California, USA) (ISCA ’93). Association for Computing Machinery,
New York, NY, USA, 213–223. https://doi.org/10.1145/165123.165157

[23] Walter Lee, Rajeev Barua, Matthew Frank, Devabhaktuni Srikrishna, Jonathan
Babb, Vivek Sarkar, and Saman Amarasinghe. 1998. Space-Time Scheduling of
Instruction-Level Parallelism on a Raw Machine. In Proceedings of the Eighth
International Conference on Architectural Support for Programming Languages
and Operating Systems (San Jose, California, USA) (ASPLOS VIII). Association
for Computing Machinery, New York, NY, USA, 46–57. https://doi.org/10.1145/
291069.291018

[24] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture (New
York, New York) (MICRO 42). Association for Computing Machinery, New York,
NY, USA, 469–480. https://doi.org/10.1145/1669112.1669172

[25] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P. Jouppi.
2011. CACTI-P: Architecture-Level Modeling for SRAM-Based Structures with
Advanced Leakage Reduction Techniques. In Proceedings of the International
Conference on Computer-Aided Design (San Jose, California) (ICCAD ’11). IEEE
Press, New York, NY, USA, 694–701. https://doi.org/10.5555/2132325.2132479

[26] Andrea Lottarini, João P. Cerqueira, Thomas J. Repetti, Stephen A. Edwards,
Kenneth A. Ross, Mingoo Seok, and Martha A. Kim. 2019. Master of None
Acceleration: A Comparison of Accelerator Architectures for Analytical Query
Processing. In Proceedings of the 46th International Symposium on Computer
Architecture (Phoenix, Arizona) (ISCA ’19). Association for ComputingMachinery,
New York, NY, USA, 762–773. https://doi.org/10.1145/3307650.3322220

[27] Pedro Marcuello and Antonio González. 1999. Clustered Speculative Multi-
threaded Processors. In Proceedings of the 13th International Conference on Su-
percomputing (Rhodes, Greece) (ICS ’99). Association for Computing Machinery,
New York, NY, USA, 365–372. https://doi.org/10.1145/305138.305214

[28] Mahim Mishra, Timothy J. Callahan, Tiberiu Chelcea, Girish Venkataramani,
Seth C. Goldstein, andMihai Budiu. 2006. Tartan: Evaluating Spatial Computation
for Whole Program Execution. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems (San
Jose, California, USA) (ASPLOS XII). Association for Computing Machinery, New
York, NY, USA, 163–174. https://doi.org/10.1145/1168857.1168878

[29] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. SIGARCH Computer Architecture
News 45, 2 (June 2017), 416–429. https://doi.org/10.1145/3140659.3080255

[30] Subbarao Palacharla, Norman P. Jouppi, and J. E. Smith. 1997. Complexity-
Effective Superscalar Processors. In Proceedings of the 24th Annual Interna-
tional Symposium on Computer Architecture (Denver, Colorado, USA) (ISCA
’97). Association for Computing Machinery, New York, NY, USA, 206–218.
https://doi.org/10.1145/264107.264201

[31] Gregory M. Papadopoulos and David E. Culler. 1990. Monsoon: An Explicit
Token-Store Architecture. SIGARCH Computer Architecture News 18, 2SI (May
1990), 82–91. https://doi.org/10.1145/325096.325117

105

https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2541940.2541967
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1145/800094.803050
https://doi.org/10.1145/642089.642111
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1109/MICRO.2010.13
https://doi.org/10.1109/MICRO.2010.13
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/HPCA.2019.00023
https://doi.org/10.1109/2.839324
https://doi.org/10.1109/MM.2012.51
https://doi.org/10.1145/74926.74930
https://doi.org/10.1145/2000064.2000068
https://doi.org/10.1109/HPCA.2014.6835968
https://doi.org/10.1145/285930.285989
https://doi.org/10.1145/285930.285989
https://doi.org/10.1145/1250662.1250686
https://doi.org/10.1145/3140659.3080246
https://doi.org/10.1137/0114108
https://doi.org/10.1109/12.947003
https://doi.org/10.1109/MM.2011.89
https://doi.org/10.1109/MICRO.2007.41
https://doi.org/10.1145/545214.545224
https://doi.org/10.1145/545214.545224
https://doi.org/10.1145/165123.165157
https://doi.org/10.1145/291069.291018
https://doi.org/10.1145/291069.291018
https://doi.org/10.1145/1669112.1669172
https://doi.org/10.5555/2132325.2132479
https://doi.org/10.1145/3307650.3322220
https://doi.org/10.1145/305138.305214
https://doi.org/10.1145/1168857.1168878
https://doi.org/10.1145/3140659.3080255
https://doi.org/10.1145/264107.264201
https://doi.org/10.1145/325096.325117


ASPLOS ’21, April 19–23, 2021, Virtual, USA Dong Kai Wang and Nam Sung Kim

[32] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,
Jaehyuk Huh, Nitya Ranganathan, Doug Burger, Stephen W. Keckler, Robert G.
McDonald, and Charles R. Moore. 2004. TRIPS: A Polymorphous Architecture
for Exploiting ILP, TLP, and DLP. ACM Transactions on Architecture and Code
Optimization 1, 1 (March 2004), 62–93. https://doi.org/10.1145/980152.980156

[33] Aaron Smith, Jon Gibson, Bertrand Maher, Nick Nethercote, Bill Yoder, Doug
Burger, Kathryn S. McKinle, and Jim Burrill. 2006. Compiling for EDGE Archi-
tectures. In Proceedings of the International Symposium on Code Generation and
Optimization (CGO ’06). IEEE Computer Society, New York, NY, USA, 185–195.
https://doi.org/10.1109/CGO.2006.10

[34] Avinash Sodani and Gurindar S. Sohi. 1997. Dynamic Instruction Reuse. In
Proceedings of the 24th Annual International Symposium on Computer Architecture
(Denver, Colorado, USA) (ISCA ’97). Association for Computing Machinery, New
York, NY, USA, 194–205. https://doi.org/10.1145/264107.264200

[35] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew
Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. 2007. The WaveScalar
Architecture. ACM Transactions on Computer Systems 25, 2, Article 4 (May 2007),

54 pages. https://doi.org/10.1145/1233307.1233308
[36] Robert Marco Tomasulo. 1967. An Efficient Algorithm for Exploiting Multiple

Arithmetic Units. IBM Journal of Research and Development 11, 1 (1967), 25–33.
https://doi.org/10.1147/rd.111.0025

[37] Rex Vedder and Dennis Finn. 1985. The Hughes Data Flow Multiprocessor: Archi-
tecture for Efficient Signal and Data Processing. SIGARCH Computer Architecture
News 13, 3 (June 1985), 324–332. https://doi.org/10.1145/327070.327290

[38] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor. 2010.
Conservation Cores: Reducing the Energy of Mature Computations. SIGARCH
Computer Architecture News 38, 1 (March 2010), 205–218. https://doi.org/10.1145/
1735970.1736044

[39] Toshitsugu. Yuba, Kei Hiraki, Toshio Shimada, Satoshi Sekiguchi, and Kenji
Nishida. 1987. The SIGMA-1 Dataflow Computer. In Proceedings of the 1987
Fall Joint Computer Conference on Exploring Technology: Today and Tomorrow
(Dallas, Texas, USA) (ACM ’87). IEEE, New York, NY, USA, 578–585. https:
//doi.org/10.5555/42040.42134

106

https://doi.org/10.1145/980152.980156
https://doi.org/10.1109/CGO.2006.10
https://doi.org/10.1145/264107.264200
https://doi.org/10.1145/1233307.1233308
https://doi.org/10.1147/rd.111.0025
https://doi.org/10.1145/327070.327290
https://doi.org/10.1145/1735970.1736044
https://doi.org/10.1145/1735970.1736044
https://doi.org/10.5555/42040.42134
https://doi.org/10.5555/42040.42134

	Abstract
	1 Introduction
	2 High-level Overview
	3 Related Work
	3.1 Dataflow Architectures
	3.2 Related Superscalar Techniques

	4 Dataflow-based Execution
	4.1 Instruction Dataflow Graph
	4.2 Data Hazards
	4.3 Control Hazards
	4.4 Thread Pipelining

	5 General Architecture
	5.1 Overall Organization
	5.2 Memory Subsystem
	5.3 Comparison with Superscalar CPU
	5.4 ISA Extensions

	6 Hardware Implementation
	6.1 Hardware Synthesis
	6.2 FPGA Proof of Concept

	7 Evaluation
	7.1 Methodology
	7.2 Single and Multi-Thread Performance
	7.3 Performance and Utilization
	7.4 Energy Efficiency
	7.5 Discussion and Future Work

	8 Conclusion
	Acknowledgments
	References

