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ABSTRACT

As first explained by the classic Asakura–Oosawa (AO) model, effective attractive forces between colloidal particles induced by depletion of
nonadsorbing polymers can drive demixing of colloid–polymer mixtures into colloid-rich and colloid-poor phases, with practical relevance
for purification of water, stability of foods and pharmaceuticals, and macromolecular crowding in biological cells. By idealizing polymer coils
as effective penetrable spheres, the AO model qualitatively captures the influence of polymer depletion on thermodynamic phase behavior
of colloidal suspensions. In previous work, we extended the AO model to incorporate aspherical polymer conformations and showed that
fluctuating shapes of random-walk coils can significantly modify depletion potentials [W. K. Lim and A. R. Denton, Soft Matter 12, 2247
(2016); J. Chem. Phys. 144, 024904 (2016)].We further demonstrated that the shapes of polymers in crowded environments sensitively depend
on solvent quality [W. J. Davis and A. R. Denton, J. Chem. Phys. 149, 124901 (2018)]. Here, we apply Monte Carlo simulation to analyze
the influence of solvent quality on depletion potentials in mixtures of hard-sphere colloids and nonadsorbing polymer coils, modeled as
ellipsoids whose principal radii fluctuate according to random-walk statistics. We consider both self-avoiding and non-self-avoiding random
walks, corresponding to polymers in good and theta solvents, respectively. Our simulation results demonstrate that depletion of polymers of
equal molecular weight induces much stronger attraction between colloids in good solvents than in theta solvents and confirm that depletion
interactions are significantly influenced by aspherical polymer conformations.
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I. INTRODUCTION

In the field of condensed matter physics, the Asakura–Oosawa
(AO)model of colloid–polymermixtures1,2 has a status akin perhaps
to the van derWaals model of fluids, the Einsteinmodel of solids, the
Ising model of magnets, and the primitive model of electrolytes. The
AO model, inspired by deep physical insight, first identified poly-
mer depletion as the basic mechanism underlying effective attrac-
tion between colloidal particles induced by nonadsorbing polymers.
In soft, fragile materials, depletion-induced interactions3–7 between
mesoscopic particles typically compare in magnitude to thermal
energies and thus can strongly influence self-assembly and ther-
modynamic phase stability. In this way, the AO model qualita-
tively explains the observed phase behavior of colloid–polymer mix-
tures, in particular, demixing into colloid-rich and colloid-poor bulk
phases.

In many practical applications, such as in stabilizing foods8,9

and pharmaceuticals against coagulation or preventing the

aggregation of proteins,10,11 it is important to minimize depletion-
induced attraction. In other applications, such as in purifying water
by promoting flocculation of colloidal impurities12 or in guiding
the self-assembly of virus particles,13,14 amplifying the effects of
polymer depletion is instead desirable. Depletion also contributes to
macromolecular crowding and segregation of biopolymers within
biological cells.15–22

In its original form, the AO model depicts polymer coils
as effective spheres, of fixed size defined by the radius of gyra-
tion, that are mutually penetrable, but impenetrable to colloidal
particles due to excluded-volume interactions. The model reveals
that depletion of polymers from the space between hard col-
loidal surfaces creates an imbalance in polymer concentration,
and thus in osmotic pressure, that drives effective attraction
between colloids. Equivalently, configurations in which excluded-
volume shells of neighboring colloids overlap maximize the free
volume available to polymer coils and thus are entropically
favored.
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Although it captures the essence of polymer depletion, the
AO model omits certain important aspects of real physical sys-
tems. Most obviously, by idealizing polymer coils as effective
spheres of unvarying size, the model neglects the internal degrees
of freedom—structure and flexibility—of polymers in solution. In
biological systems, the structure associated with folding (or misfold-
ing) of proteins determines the function of such biopolymers with
relevance for many diseases.

The realization that polymers are flexible, aspherical objects
predates the AO model by at least two decades. Kuhn argued23

that linear polymer coils in solution can be modeled as random
walks (RWs) with fluctuating shapes that approximate those of
elongated, flattened ellipsoids (in their principal-axis frame). The
insight that the end-to-end path of a polymer is a physical man-
ifestation of a random walk has spurred many studies of shapes
of random walks.24–38 As a vital example, the shapes of RNA,
DNA, and proteins are important for cellular processes in the
crowded environment of biological cells,39–44 translocation of poly-
mers through narrow pores,45,46 and packaging of DNA in viral
capsids.47

Depletion forces and their impact on polymer crowding and
phase behavior in colloid–polymer mixtures have been probed by
neutron scattering,48–54 atomic force microscopy,55 total internal
reflection microscopy,56 optical trapping,57–59 and turbidity mea-
surements,60–62 to name but a few experimental methods. Mod-
eling studies of colloid–polymer mixtures have used scaling and
mean-field free-volume theories,63–71 force-balance theory,72 per-
turbation theory,73,74 polymer field (renormalization group) the-
ories,75–82 integral-equation theories,83–87 density-functional the-
ories,88–92 adsorption theories,93–95 and computer simulation of
molecular96–111 and coarse-grained70,112,113 polymer models.

Previous studies have investigated depletion forces induced
by aspherical depletants (e.g., rods, ellipsoids) that are fixed in
size and shape.58,74,114,115 Recently, we explored polymer crowd-
ing and depletion forces in models of colloid–polymer mixtures,
with polymers modeled as fluctuating, penetrable ellipsoids, in both
θ solvents71,116,117 and good solvents,118 distinguished by whether
polymer segments are effectively ideal (noninteracting) or non-
ideal, excluding volume to one another. The purpose of the present
paper is to assess the interconnected influences of polymer shape
and solvent quality on depletion interactions in colloid–polymer
mixtures.

The remainder of this paper is organized as follows. In
Sec. II, we describe modeling of linear polymer coils both as
random walks and as equivalent ellipsoids that fluctuate in size
and shape. The statistics governing conformational fluctuations
depend on whether a coil is modeled as a self-avoiding walk,
appropriate for a polymer in a good solvent, or as a non-self-
avoiding random walk, corresponding to a polymer in a θ sol-
vent. In Sec. III, we outline our numerical methods, based on
Monte Carlo (MC) estimation of average polymer depletion vol-
ume, for computing the potential of mean force (PMF) between
hard-sphere colloids induced by depletion of nonadsorbing poly-
mers in solvents of differing qualities. Section IV presents results
of our calculations of PMFs for fluctuating ellipsoidal and fixed
spherical polymers in both good and θ solvents. Section V summa-
rizes our study and concludes with an outlook for possible future
work.

II. MODELS

As noted above, the classic Asakura–Oosawa coarse-grained
model of colloid–polymer mixtures1,2 idealizes nonadsorbing poly-
mer coils as effective spheres of fixed size. The spherical poly-
mer approximation, while incorporating an important length scale,
ignores aspherical conformations and fluctuations in conformation,
both of which can significantly affect depletion-induced forces. As
in our earlier work on polymer crowding,71,116–118 we extend the
AO model by representing the polymers as effective ellipsoids that
fluctuate in size and shape according to random-walk statistics. In
the current study, we consider only the colloid limit, in which the
colloids are larger than the polymer coils, such that penetration of
polymers by colloids is negligible. Although we focus here on lin-
ear homopolymers, the analysis below is easily generalized to other
macromolecular architectures.119

A. Polymer coils as random walks

The size and shape of a polymer coil composed of N identical
segments linked to form a connected chain can be characterized by
a gyration tensor T, expressed as a matrix with elements

Tij ≙
1
N

N

∑
k=1

rkirkj, (1)

where rki denotes the ith component of the position vector rk of the
kth segment relative to the coil’s center of mass. The gyration ten-
sor relates to the moment of the inertia tensor I of a rigid body via
T ≙ R2

p1 − I, where 1 is the unit tensor and

Rp ≙ ( 1
N

N

∑
i=1

r
2
i )1/2 ≙√Λ1 +Λ2 +Λ3 (2)

is the radius of gyration of a particular coil conformation expressed
in terms of the eigenvalues of T, Λi (i ≙ 1, 2, 3). Note that Rp is
invariant with respect to a change in the reference frame. The root-
mean-square (rms) radius of gyration—a property of a polymer
coil that is experimentally measurable (e.g., via neutron or light ray
scattering)—relates to the eigenvalues via

Rg ≙

√⟨R2
p⟩ ≙√⟨Λ1 +Λ2 +Λ3⟩, (3)

where the angular brackets represent an ensemble average over
polymer conformations.

If the ensemble average in Eq. (3) is evaluated relative to a
fixed frame of reference in which the polymer coil rotates, then
the average tensor describes a sphere, represented by a symmet-
ric matrix with equal eigenvalues. On the other hand, if the aver-
age is evaluated relative to a reference frame that rotates with
the principal axes of the coil and if coordinate axis labeling pre-
serves the order of the eigenvalue magnitudes (Λ1 > Λ2 > Λ3), then
the average tensor describes an anisotropic object, represented
by an asymmetric matrix.32,33 In other words, the average shape
of a fluctuating random walk is spherical when viewed from a
fixed frame of reference, but distinctly aspherical —shaped like
an elongated, flattened bean—when viewed from the principal-axis
frame.23,29,30
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B. Polymer coils as fluctuating ellipsoids

The shape of a polymer coil in the principal-axis frame of ref-
erence can be fit by a general ellipsoid with principal radii propor-
tional to the square-roots of the respective eigenvalues of the gyra-
tion tensor. In Cartesian (x, y, z) coordinates, the ellipsoid surface is
described by

x2

Λ1
+

y2

Λ2
+

z2

Λ3
≙ 3. (4)

Note that the actual shape of the coil is not necessarily ellipsoidal but
is approximated by an ellipsoid whose principal radii have the same
proportions as those derived from the gyration tensor. For a freely
jointed polymer coil of N segments of Kuhn length l, corresponding
to an ideal non-self-avoiding random walk (RW),37 modeling con-
formations of a linear polymer dispersed in a θ solvent, the shape
probability distribution is accurately fit by the analytical form38

P(λ1, λ2, λ3) ≙ f 1(λ1) f 2(λ2) f 3(λ3), (5)

where λi ≡ Λi/(Nl2) are scaled (dimensionless) eigenvalues and the
fit functions are given by

f i(λi) ≙ (αidi)ni−1λ−nii

2Ki
exp(− λi

αi
− d

2
i
αi

λi
), (6)

with fit parameters K i, αi, di, and ni listed in Table I. The rms radius
of gyration of an ideal polymer coil is Rg ≙

√
N/6 l, while the princi-

pal radii of the ellipsoid representing a particular conformation are
given by

Ri(λi) ≙√18λi Rg , i ≙ 1, 2, 3. (7)

It should be noted that the factorization ansatz of Eq. (5) is not exact
since extensions of a random walk in orthogonal directions are not
strictly independent. Nevertheless, conformations that significantly
violate the ansatz occur only rarely for sufficiently long polymer
chains.

For self-avoiding walks (SAWs), modeling conformations of
linear polymers dispersed in a good solvent, whose segments exclude
volume to one another,26,63,64 the rms radius of gyration is related to
the segment number via Rg ≙ CN

νl, with Flory exponent ν ≙ 0.588
and amplitude C ≙ 0.441 08.35 (For an ideal polymer in a θ sol-
vent, ν ≙ 1/2 and C ≙ 1/√6 ≙ 0.408 25.) As a common example, for
polystyrene, good solvents are benzene, toluene, and chloroform,
while typical θ solvents are cyclohexane and decalin depending on
temperature.

Since the gyration tensor eigenvalues vary as N2ν, the scaled
eigenvalues are now defined as λi ≡ Λi/(N2νl2) and are related to the
TABLE I. Fit parameters for probability distribution of eigenvalues of the gyration ten-
sor of a linear polymer coil in a θ solvent modeled as a non-self-avoiding random walk
[Eqs. (5) and (6)].

Eigenvalue i K i αi di ni

1 0.094 551 0.080 65 1.096 1/2
2 0.014 414 6 0.018 13 1.998 5/2
3 0.005 276 7 0.006 031 2.684 4

principal radii via

Ri(λi) ≙ Rg

C

√
3λi ≙ 3.9269

√
λi Rg . (8)

The shape probability distribution is accurately fit by the same fac-
torized function as for RW polymers [Eq. (5)], but with fit functions
of the form

f i(λi) ≙ aiλbii exp(−ciλi). (9)

The fit parameters ai, bi, and ci are tabulated in Table II. It should
be emphasized that the eigenvalue distributions [Eqs. (6) and (9)]
are fits to statistics from molecular simulations of linear polymer
chains35,37,38 and reflect considerable fluctuations in polymer size
and shape.

The average shape of a polymer coil can be quantified by an
asphericity parameter,32,33

A ≡ 1 − 3
⟨λ1λ2 + λ1λ3 + λ2λ3⟩⟨(λ1 + λ2 + λ3)2⟩ , (10)

defined such that a perfect sphere, with all eigenvalues equal, has
A ≙ 0, while a needle-like object has A ≃ 1. Interestingly, for both
RW and SAW coils,A ≃ 0.54 in uncrowded environments.118

The probability distributions Pi(λi) for the individual eigen-
values differ somewhat from the fit functions f i(λi) in Eqs. (6) and
(9). Each is obtained from the parent distribution [Eq. (5)] by inte-
grating over the other two eigenvalues, with limits imposed by the
requirement of eigenvalue ordering (λ1 > λ2 > λ3),

P1(λ1) ≙ ∫ λ1

0
dλ2 ∫

λ2

0
dλ3 P(λ1, λ2, λ3), (11)

P2(λ2) ≙ ∫ ∞

λ2
dλ1 ∫

λ2

0
dλ3 P(λ1, λ2, λ3), (12)

P3(λ3) ≙ ∫ ∞

λ3
dλ1 ∫

λ1

λ3
dλ2 P(λ1, λ2, λ3). (13)

For comparison, Fig. 1 shows the scaled eigenvalue distributions
of polymers in θ and good solvents. Note that, accounting for the
different scaling factors—N for RW polymers, but N1.176 for SAW
polymers—the unscaled eigenvalues are significantly larger for a
SAW polymer in a good solvent than for a RW polymer in a θ sol-
vent, reflecting the more extended conformations of polymers with
excluded-volume interactions.

TABLE II. Fit parameters for probability distribution of eigenvalues of the gyration
tensor of a linear polymer coil in a good solvent modeled as a self-avoiding walk
[Eqs. (5) and (9)].

Eigenvalue i ai bi ci

1 11 847.9 2.355 05 22.3563
2 1.116 69 × 109 3.716 98 148.715
3 1.068 99 × 1014 4.848 22 543.619
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FIG. 1. Probability distributions Pi(λi) [Eqs. (11)–(13)] of scaled eigenvalues λi

(i = 1, 2, 3) of the gyration tensor for polymers in a good solvent (SAW, solid
curves) and θ solvent (RW, dashed curves). Inset: distributions for the largest
eigenvalue λ1.

C. Colloid–polymer mixtures

To explore the influence of aspherical polymer conformations
and solvent quality on the effective interactions induced between
colloidal particles by depletion of nonadsorbing polymers due to
colloid excluded volume, we consider a monodisperse suspension
of colloidal particles, modeled as hard spheres of radius Rc, mixed
with free polymer coils, modeled as ellipsoids whose shapes fluctuate
according to the statistics of random walks (Fig. 2).

The strength and range of depletion-induced interactions
depend on concentration and size of the polymer coils relative to
the colloids. Calibrating theoretical models to experimental systems
requires an appropriate measure for the effective size of a poly-
mer coil. Implementations of the AO model often take the effec-
tive radius of a polymer coil simply as the rms radius of gyration,

FIG. 2. Schematic illustration of the model: colloidal particles (large green spheres)
and polymer coil (smaller red spheres) fit by effective ellipsoid whose shape
fluctuates with the coil.

defining the polymer-to-colloid size ratio as q ≡ Rg/Rc. For later ref-
erence, we note that, for a given size ratio qRW of a RW polymer in a
θ solvent, the scaling relations (Sec. II B) dictate the size ratio qSAW
of a SAW polymer of equal molecular weight (same N) in a good
solvent,

qSAW ≙ C6
ν(Rc/l)2ν−1q2νRW. (14)

More accurate measures for the effective size of a polymer account
for the effect on the depletion layer thickness of deformation of a coil
near a hard surface. We first review the simplest case of a polymer
near a hard, flat wall, as addressed by Asakura and Oosawa,1 and
then consider polymers near hard, spherical colloids.

Consider a solution of Np polymers in a volume V containing
two hard, flat, parallel plates of area A separated by a distance D

much shorter than the lateral extent of the plates (D≪
√
A). The

polymer coils are free to diffuse, except for the constraint imposed
by the plates. In a closed system, the potential of mean force between
the plates induced by depletion of polymers from the intervening
space is defined as the difference in the Helmholtz free energy F(D)
at plate separation D and at infinite separation,

vmf(D) ≡ F(D) − F(∞). (15)

In the dilute limit of noninteracting polymers amid plates sepa-
rated by distance D, the free energy is related to the single-polymer
partition function Z1(D) via

F(D) ≙ −kBTNp lnZ1(D). (16)

The potential of mean force between plates induced by depletion of
Np polymer coils can then be expressed as

βvmf(D) ≙ −Np ln( Z1(D)
Z1(∞)). (17)

Considering that the polymers and plates interact only via
excluded-volume interactions, the single-polymer partition func-
tion is simply proportional to the fraction of volume available to a
polymer,

Z1(D)∝ 1 − 2 ∥⟨x0⟩ + ⟨x(D)⟩∥ A
V
, (18)

where ⟨x0⟩ and ⟨x(D)⟩ represent average thicknesses of depletion
layers adjacent to a surface outside of and between the plates, respec-
tively, and angular brackets denote ensemble averages over depletant
conformations (see Fig. 3). For depletants with simple geometrical
shapes (e.g., spheres or ellipsoids), it can be shown that the deple-
tion layer thickness equals the integrated mean curvature cd of the
depletant.120 For a smooth, convex body, cd is defined as an average
over the body’s closed surface S of the mean curvature,

H(r) ≙ 1
2
( 1
R1(r) + 1

R2(r)), (19)

where R1(r) and R2(r) are the local radii of curvature at a point r on
the surface. To model depletants that fluctuate in size and shape, we
augment this definition with an average over conformations,

cd ≡
1
4π
⟨∮

S
dSH(r)⟩. (20)

Note that cd has physical dimensions of length.
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FIG. 3. Ellipsoidal polymer, seen in cross section as an ellipse, inserted into a
volume containing two infinitely wide parallel hard plates (solid lines) separated
by a distance D. Depletion layers (dashed lines) between and outside the plates
have thicknesses x(D) and x0, respectively, equal to half the ellipsoid width in the
direction perpendicular to the walls.

From Eq. (18) and the limiting relation

x0 ≙ lim
D→∞

x(D), (21)

the partition function for a polymer in a system with infinitely
separated plates is

Z1(∞)∝ 1 − 4 ⟨x0⟩ A
V
. (22)

Substituting Eqs. (18) and (22) into Eq. (17) and assuming a polymer
solution so dilute that the excluded volume is only a small fraction
of the total volume, the PMF between the plates per unit plate area is

wmf(D) ≡ vmf(D)
A

≃ 2Πp ∥⟨x(D)⟩ − ⟨x0⟩∥, (23)

whereΠp ≙ NpkBT/V is the osmotic pressure of an ideal gas of poly-
mer coils. In the limit as the plates come together (D→ 0), where⟨x(D)⟩→ 0, the PMF induced by real polymer chains with the radius
of gyration Rg approaches the exact contact value1,5,64

∣wmf(0)∣ ≙ 2Πp⟨x0⟩ ≙ 4√
π
ΠpRg . (24)

Now, identifying ⟨x0⟩ with the integrated mean curvature cd (aver-
aged over conformations) of an uncrowded polymer coil, modeled
as a fluctuating ellipsoid (see Fig. 3), and defining γ ≡ cd/Rp,eff as the
coefficient of proportionality between cd and the effective polymer
radius Rp,eff, we have

cd ≙ ⟨x0⟩ ≙ γRp,eff ≙
2√
π
Rg , (25)

and thus, finally,

Rp,eff ≙
2√
π γ

Rg . (26)

We emphasize that Rp,eff represents the effective radius of a non-
adsorbing polymer coil in the presence of hard colloidal particles,
taking into account both the diffuse periphery and the aspherical
shape of the coil. We conclude that an experimental system with
the nominal polymer-to-colloid size ratio q ≙ Rg/Rc, defined by ref-
erence to the radius of gyration of a real polymer chain, should be
modeled using an effective size ratio

qeff ≡
Rp,eff

Rc
≙

2√
π γ

Rg

Rc
≙

2√
π γ

q. (27)

For a sphere of fixed radius (AO model), the integrated mean
curvature simply equals the radius (γ ≙ 1). For a fluctuating ellip-
soid, on the other hand, determining γ is nontrivial. We computed
γ using two independent, but equivalent, numerical methods. In
the first method, based on Eq. (25), we numerically integrated the
mean curvature over the surface of the ellipsoid and averaged over
the polymer shape probability distribution [Eq. (5) combined with
Eqs. (6) or (9) for RW or SAWpolymers, respectively]. In the second
method, we computed the half-width of an ellipsoid in a fixed direc-
tion and numerically averaged over orientations and the shape prob-
ability distribution. Both methods involve numerically evaluating a
five-dimensional integral, and both give the same result to within
numerical precision. From the shape distributions corresponding to
a RW polymer (θ solvent) and a SAW polymer (good solvent), we
find γRW ≙ 0.932 54 and γSAW ≙ 0.924 31, respectively.

For polymers dispersed in a suspension of hard-sphere colloids,
the effective size ratio qeff can be objectively defined by equating the
free energy cost of inserting a hard sphere into a solution of poly-
mers, as predicted by polymer field theory, with the work done to
inflate a sphere in the model polymer solution. When applied to
polymers obeying RW statistics and presumed spherical in shape
and fixed in size (AO model), this definition yields75,100,121,122

qeff,RW−AO ≙ (1 + 6√
π
q + 3q2)1/3 − 1, (28)

assuming that qeff < 1, such that penetration of a polymer by a col-
loid can be neglected. For polymers with aspherical (ellipsoidal),
fluctuating shapes dispersed with hard-sphere colloids, we modify
this definition in the same manner as for polymers near a hard, flat
wall by incorporating the integrated mean curvature,

qeff,RW ≙
1

γRW

⎡⎢⎢⎢⎢⎣(1 +
6√
π
q + 3q2)1/3 − 1⎤⎥⎥⎥⎥⎦. (29)

This definition ensures that in the limit q→ 0, the model recov-
ers the exact contact value of the PMF induced by RW polymers
between hard, flat plates. We emphasize that the 1/γ adjustment
proved essential in our earlier study117 for achieving quantitative
agreement with PMF data frommolecular simulations96,97 and from
experiments on DNA-induced depletion forces.57
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In contrast, for polymers that obey SAW statistics, also pre-
sumed spherical and of fixed size (AO model), field theory yields an
effective size ratio36,122

qeff,SAW−AO ≙ (1 + C1q + C2q
2
− C3q

3)1/3 − 1, (30)

where C1 ≃ 3.2130, C2 ≃ 2.6073, and C3 ≃ 0.1197. For aspherical
(ellipsoidal) SAW polymers, we similarly incorporate the integrated
mean curvature and define

qeff,SAW ≙
1

γSAW
[(1 + C1q + C2q

2
− C3q

3)1/3 − 1]. (31)

D. Potential of mean force

Adapting Eq. (15) from plates to spheres, the potential of mean
force between two colloids in thermal equilibrium at absolute tem-
perature T with a solution of nonadsorbing polymers in a closed
volume is defined as the change in Helmholtz free energy F(r) of
the system upon bringing the particles from infinite separation to
center-to-center separation r,

vmf(r) ≙ F(r) − F(∞), (32)

since in an isotropic fluid, the pair potential depends on only the
radial coordinate. For a system in chemical equilibrium with a poly-
mer reservoir, the PMF is defined as the change in grand potential
Ω(r). In earlier work,116 we applied an alternative (but equivalent)
definition, which is more appropriate in the nanoparticle limit, in
which polymer coils are significantly larger than and penetrable by
the colloids (nanoparticles).

The free energy varies with colloidal separation due to mechan-
ical work performed by the colloids in changing the excluded volume
of the polymer with osmotic pressureΠp ≙ npkBT, assuming a dilute
(ideal gas) polymer solution of mean density np. In the AO model,
this work is easily evaluated,

vmf(r) ≙ −Πp∫
r

∞

dr
′

Aov(r′) ≙ −ΠpVov(r), (33)

where Aov(r) and Vov(r) are the cross-sectional area and volume,
respectively, of the overlap region of the two excluded-volume shells,
and we choose F(∞) ≙ 0. It should be noted that, when used to
model thermodynamic phase behavior, Eq. (33) must be corrected
for triplet overlaps at size ratios above q ≃ 0.1547, especially away
from the dilute colloid concentration limit. For spherical colloids
and spherical polymers of fixed radius Rp, the convex-lens-shaped
pair overlap region, defined by the intersection of two spherical
excluded-volume shells, has volume

Vov(r) ≙ 4π
3
[(Rc + Rp)3 − 3r

4
(Rc + Rp)2 + r3

16
] (34)

for 2Rc < r < 2(Rc + Rp) (otherwise zero). Equations (33)–(34)
express the conventional AO potential.

In the case of aspherical depletants, this simple geometric
approach can be adapted by calculating an average of the overlap
volume ⟨Vov(r)⟩ over an ensemble of polymer conformations (ori-
entations and shapes). From a large sample of randomly generated
conformations (microstates), ⟨Vov(r)⟩ equals the sampled volume

times the fraction of microstates in which a depletant overlaps both
colloids.

Two limitations of our modeling approach are important to
note. First, the coarse-grained model of polymer coils necessarily
neglects coil shapes that deviate from ellipsoidal, which may affect
how nonadsorbing polymers interact with hard colloidal surfaces.
Second, although neighboring coils in a θ solvent do not influence
each other’s shape distribution, since polymer segments are effec-
tively noninteracting, excluded-volume interactions between seg-
ments in a good solvent can lead to correlations between shapes
of neighboring coils. Such correlations may affect the strength and
range of polymer depletion-induced interactions, especially in semi-
dilute or concentrated polymer solutions. The present modeling
approach, which describes only the PMF induced by independent
ellipsoidal polymer coils, neglects such effects. In Sec. IV, we dis-
cuss implications and potential remedies of these limitations of our
approach.

III. MONTE CARLO SIMULATIONS

To compute the potential of mean force between colloids
induced by depletion of nonadsorbing polymers that fluctuate in
size and shape according to either RW chain statistics (θ sol-
vent) or SAW statistics (good solvent), we used Monte Carlo
(MC) simulation methods.123 Applying Eq. (33), we determined
the average overlap volume ⟨Vov(r)⟩ by placing two hard-sphere
colloids in a rectangular parallelepiped simulation box at center-
to-center separation r, inserting a polymer ellipsoid at a ran-
dom position with random orientation and shape governed by
the appropriate gyration tensor eigenvalue probability distribution
[Eqs. (6) or (9)], and counting the fraction of double overlaps,
i.e., insertions leading to an overlap of the ellipsoid with both
spheres.

As noted in Sec. II, since our model constrains polymer coils to
have only ellipsoidal shapes, our approach, although it captures the
gross shapes of polymers, neglects any influence of non-ellipsoidal
conformations on polymer–colloid interactions. Furthermore, since
we insert polymer coils only one at a time, our approach, when
applied to SAW polymers in good solvents, is limited to dilute poly-
mer solutions since it neglects possible correlations between shapes
of neighboring, interacting coils.

To randomly sample polymer conformations, we implemented
a variation of the Metropolis algorithm.123 Trial changes in orien-
tation and shape of a polymer ellipsoid were coupled with inser-
tions. To uniformly sample orientations, specified by a unit vec-
tor u aligned with the longest axis of the ellipsoid, we generated
a new (trial) unit vector, u′ ≙ (u + τv)/∣u + τv∣, where v is a ran-
domly oriented unit vector and τ is a tolerance.123 A trial change in
the shape from one set of gyration tensor eigenvalues λ ≡ {λi} to a
new set λ′ ≡ {λ′i ≙ λi + Δλi}with tolerancesΔλi (i ≙ 1, . . . , 3) implies
a change ΔFc in the coil’s internal free energy,64 Fc ≙ −kBT ln P(λ),
where P(λ) is the polymer shape distribution [Eq. (5) with Eqs. (6) or
(9)]. A trial conformation was rejected if the inserted polymer ellip-
soid overlapped either colloidal sphere. Otherwise, it was accepted
with probability

P(λ→ λ
′) ≙ min{e−βΔFc , 1} ≙ min{P(λ′)

P(λ) , 1}. (35)
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If the trial conformation was accepted, the ellipsoid’s orientation
and shape were updated and the double-overlap counter was incre-
mented. Limiting our study to dilute solutions, we inserted poly-
mers one at a time, thus neglecting polymer–polymer interactions.
To diagnose the overlap of a colloid and a polymer, we computed
the shortest distance between a point (sphere center) and the ellip-
soid surface, requiring evaluating the roots of a sixth-order polyno-
mial.124 This samplingmethod yields the average volume of the poly-
mer depletion region surrounding two colloidal spheres and hence,
from Eq. (33), the PMF.

IV. RESULTS AND DISCUSSION

To compare potentials of mean force between colloidal hard
spheres induced by depletion of nonadsorbing polymers in θ and
good solvents, we implemented the ellipsoidal polymer model
described in Sec. II and performed a series of Monte Carlo simula-
tions. Using the polymer trial insertion method outlined in Sec. III,
we computed the PMF over a range of colloid separations. The side
lengths of the rectangular parallelepiped simulation box were set

small enough to maximize the acceptance ratio, while large enough
to avoid the interaction of a polymer with periodic images of the
colloids. Tolerances for polymer trial moves, optimized by trial
and error, were fixed at τ ≙ 0.001 for rotations and Δλ1 ≙ 0.01, Δλ2
≙ 0.003, and Δλ3 ≙ 0.001 for shape changes. For a given colloid pair
separation, we performed 106 independent trial polymer insertions
and then computed statistical uncertainties (error bars) as standard
deviations from five independent runs for a total of 5 × 106 trial
insertions.

To validate our methods, we first implemented the original
AO model of spherical polymers of fixed size and confirmed that
our algorithm reproduces the exact PMF predicted by Eqs. (33)
and (34). We then proceeded to simulate the ellipsoidal polymer
model for polymers whose sizes and shapes are governed by RW
and SAW chain statistics, corresponding to polymers in θ and good
solvents, respectively. To compare depletion of polymers of equal
segment number in different solvents, we converted polymer-to-
colloid size ratios between RW and SAW statistics using Eq. (14).
This conversion requires specifying the ratio of the colloid radius
Rc to the polymer segment length l. To make potential contact with

FIG. 4. Potential of mean force vmf(r) (units of Πpσ
3
c ) between hard-sphere colloids vs separation r (units of colloid diameter σc) induced by nonadsorbing polymers for the

random-walk polymer-to-colloid size ratio qRW = 0.1 (a), 0.2 (b), 0.3 (c), and 0.4 (d). For corresponding effective size ratios qeff, simulation data are shown for self-avoiding
walk (SAW) polymers in a good solvent (solid symbols) and non-self-avoiding random walk (RW) polymers in a θ solvent (lightly shaded symbols)—both modeled as
fluctuating ellipsoids—and for AO polymers in a good solvent (open symbols), modeled as rigid spheres. The curves represent the analytical expression for the AO potential
[Eqs. (33) and (34)]. The statistical error bars are smaller than the symbol sizes.
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experiments, we chose typical values ofRc ≙ 100 nm and l ≙ 0.76 nm,
corresponding to polyethylene glycol (PEG) in water.125

The results of our calculations for the PMF are presented in
Fig. 4 over a range of size ratios. Note that the vertical axis is scaled by
the polymer osmotic pressure Πp, rendering the plotted PMF inde-
pendent of polymer concentration. As discussed above in Secs. II
and III, however, the results shown for SAW polymers are physi-
cally meaningful only for dilute polymer solutions. For each bare
size ratio of RW polymers in the series qRW ≙ 0.1, 0.2, 0.3, 0.4, we
calculated the corresponding bare size ratio of SAW polymers qSAW
of equal N from Eq. (14). We then ran simulations for the effective
size ratios of ellipsoidal RW and SAW polymers, qeff,RW and qeff,SAW,
calculated from Eqs. (29) and (31), respectively. For comparison,
we also simulated spherical SAW polymers (AO model) with the
effective size ratio qeff,SAW-AO, calculated from Eq. (30). The system
parameters are tabulated in Table III.

In Fig. 4, the solid symbols represent PMF data for polymers
in a good solvent, modeled as fluctuating ellipsoids obeying SAW
chain statistics [Eq. (6)]. The lightly shaded symbols represent PMF
data for polymers in a θ solvent, modeled as fluctuating ellipsoids
obeying RW chain statistics [Eq. (9)]. For comparison, the open
symbols represent PMF data for polymers in a good solvent, mod-
eled as spheres of fixed size (AO model). Since in the dilute limit,
the PMF is proportional to the polymer osmotic pressure, we plot
the dimensionless quantity of vmf(r) scaled by Πp times the cube
of the colloid diameter σc ≙ 2Rc. Note that negative values of vmf(r)
imply an attractive pair interaction between colloids. To within sta-
tistical uncertainty, our data for the AOmodel are perfectly fit by the
analytical expressions of Eqs. (33) and (34) (curves).

Having validated our methods, we now compare our PMF data
for polymer coils modeled as fluctuating ellipsoids (solid symbols
in Fig. 4) with corresponding data for coils of the equal segment
number modeled as spheres of fixed size (open symbols in Fig. 4),
both obeying SAW chain statistics. Evidently, fluctuating ellipsoid
polymers induce generally weaker PMFs than fixed-sphere polymers
(AO model). For ellipsoidal polymers, the contact value vmf(σc) is
consistently lesser in magnitude, while the range of vmf(r) is con-
sistently longer than for spherical polymers. Furthermore, devia-
tions between the PMFs from the ellipsoidal and spherical polymer
models grow with the increasing size ratio.

These results may appear surprising, considering that
depletion-induced attraction in the AO model strengthens with

TABLE III. Polymer-to-colloid size ratios for MC simulations to compute PMF (Figs. 4
and 5) between hard-sphere colloids induced by depletion of nonadsorbing, linear
polymer coils modeled as non-self-avoiding random walks (RWs) or self-avoiding
walks (SAWs) in θ and good solvents, respectively. Tabulated from left to right are
bare and effective size ratios of ellipsoidal RW polymers, qRW and qeff,RW, bare and
effective size ratios of ellipsoidal SAW polymers, qSAW and qeff,SAW, the effective size
ratio of spherical SAW polymers in the AO model, qeff,SAW-AO, and the corresponding
number of segments N.

qRW qeff,RW qSAW qeff,SAW qeff,SAW-AO N

0.1 0.118 21 0.199 09 0.219 89 0.203 25 1 040
0.2 0.231 38 0.449 84 0.471 86 0.436 14 4 155
0.3 0.340 18 0.724 67 0.724 16 0.669 35 9 350
0.4 0.445 18 1.016 41 0.971 16 0.897 65 16 620

increasing size ratio and given that the effective size ratio in the
ellipsoidal polymer model [Eq. (31)] exceeds that in the spherical
polymer model [Eq. (30)] (the integrated mean curvature being
smaller for an ellipsoid than for a sphere of equal radius of gyration).
Nevertheless, these trends are quite consistent with the extra con-
formational freedom of fluctuating ellipsoids to elongate to lengths
beyond their mean diameter and to deform to avoid hard surfaces.
In previous work,117 we showed that the fluctuating ellipsoid
polymer model, when implemented with the appropriate effective
size ratio, nearly exactly reproduces the PMF computed from
“lattice–polymer” simulations of RW polymers whose segments are
confined to the sites of a cubic lattice.96,97

Next, we compare our results for PMFs induced by depletion
of polymer coils, modeled as fluctuating ellipsoids, that obey either
SAW or RW chain statistics. From Fig. 4, we see that SAW polymers
in a good solvent (solid symbols) induce PMFs that are significantly
stronger—both greater in magnitude and longer in range—than
RW polymers of the equal segment number in a θ solvent (lightly
shaded symbols). Qualitatively, this trend is consistent with themore
extended conformations and correspondingly larger effective radius
of gyration of SAW polymers compared with RW polymers of the
same contour length. Quantitatively, it is interesting that, at least
for the system parameters considered here, the attractive well of the
PMF induced by SAW polymers is roughly three times deeper than
that of the PMF induced by RW polymers.

Figure 5 collects data from Fig. 4 in one plot to summarize the
dependence on the polymer-to-colloid size ratio of the PMF induced
by SAW polymers. With the increasing effective size ratio, the depth
and range of vmf(r) both steadily grow. As noted above, the fluc-
tuating ellipsoid polymer model predicts a generally weaker, but
longer-ranged, PMF compared with the AO model. Although we
are not aware of lattice–polymer simulations of colloids dispersed
in SAW polymer solutions, our predictions could be tested against
such molecular-scale simulations.

FIG. 5. Potential of mean force vmf(r) (units of Πpσ
3
c ) between hard-sphere col-

loids vs separation r (units of colloid diameter σc) induced by nonadsorbing SAW
polymers in a good solvent. Over a range of effective polymer-to-colloid size ratios
qeff, simulation data are shown for fluctuating ellipsoidal polymers (solid symbols)
and fixed-size spherical (AO model) polymers (open symbols). The curves rep-
resent the analytical expression for the AO potential [Eqs. (33) and (34)]. The
statistical error bars are smaller than the symbol sizes.
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As mentioned in Secs. II and III, our modeling approach is
based on two main approximations. First, it neglects non-ellipsoidal
shapes of nonadsorbing polymer coils interacting with colloidal
surfaces, and second, it neglects interactions and associated shape
correlations between neighboring coils. The accuracy of the first
approximation can be quantified by comparing predictions of the
coarse-grained polymer model with those of molecular-scale poly-
mer models. In our previous study of depletion interactions induced
by polymers in a θ solvent,117 we compared our PMF results against
simulations of a model of RW polymers on a lattice, demonstrating
remarkable accuracy of the coarse-grained polymer model. A simi-
lar comparison for SAW polymers in a good solvent could further
assess the accuracy of the coarse-grained model.

The second approximation is well justified for polymers in
θ solvents, except to the extent that the θ temperature may vary
with polymer concentration. For SAW polymers in good solvents,
however, neglecting interactions between neighboring coils strictly
limits application of our approach to dilute polymer solutions.
Consequently, the model may not accurately describe the influ-
ence of depletion forces on thermodynamic properties, includ-
ing bulk phase separation in concentrated mixtures of colloids
and polymers in good solvents. Extending the model beyond the
dilute regime would require incorporating the influence on poly-
mer conformations of interactions and correlations between seg-
ments of different coils. This extension could be achieved, for exam-
ple, by simulating a concentrated solution of a few explicit SAW
interacting polymers, computing their gyration tensors, and fitting
the eigenvalue probability distributions over a range of polymer
concentrations.

V. SUMMARY AND CONCLUSIONS

In summary, we have implemented Monte Carlo simulation
methods for computing the potential of mean force between hard-
sphere colloids induced by nonadsorbing polymer coils dispersed in
good and θ solvents. For computational efficiency, we modeled the
polymer coils as general ellipsoids whose conformations (size and
shape) fluctuate according to statistics of either self-avoiding walks
(good solvent) or non-self-avoiding random walks (θ solvent). The
principal radii of the equivalent ellipsoid representing a polymer coil
were determined from accurate fits to probability distributions for
the eigenvalues of the gyration tensor of a SAW or RW.

In the colloid limit in which the polymer radius of gyration is
smaller than the colloid radius, we determined the PMF by comput-
ing the average volume of the polymer depletion region surround-
ing a pair of colloids using a polymer insertion algorithm. Because
polymer conformational distributions vary with solvent quality, the
average depletion volume and therefore the PMF differ between
good and θ solvents. Our results demonstrate that the dependence
of the PMF on polymer shape and solvent quality can be quite
significant.

Comparing the ellipsoidal and spherical (AO) models of poly-
mers in good solvents, we showed that the former model yields a
generally weaker PMF, which we attribute to the freedom allowed
by the fluctuating ellipsoid model for a polymer coil to adapt its
shape to a crowded environment. This finding is consistent with
conclusions from our previous studies of depletion interactions in
colloid–polymer mixtures dispersed in θ solvents.116,117

Comparing the ellipsoidal model of SAW and RW polymers
in good and θ solvents, respectively, we showed that polymers in
good solvents induce considerably stronger PMFs than polymers of
the same number of segments in θ solvents. This trend is explained
by the more extended conformations of SAW polymers, which tend
to enlarge the depletion region around colloids. The coarse-grained
model of depletion interactions induced by nonadsorbing polymers
could be further tested against experiments and molecular-scale
models of polymers, especially for SAW coils dispersed in good
solvents.

Our work suggests the possibility of tuning effective depletion-
induced interactions between colloids, and thereby thermodynamic
phase behavior of colloid–polymer mixtures, by varying solvent
quality, e.g., by selecting particular polymer–solvent combinations
or by changing temperature and cosolvent concentration for a given
combination. Our modeling approach, which focuses on the geome-
try of the depletant, may also have relevance for effective interactions
induced by other types of soft depletants that can vary in size and
shape, such as vesicles126 and microgels.127,128

Future work could explore the influence of solvent quality on
depletion-induced interactions in the protein limit, in which poly-
mers are large enough to be penetrated by colloids. As shown in our
previous studies of polymer–nanoparticle mixtures,116,118 accurate
modeling would require a reliable expression (from polymer field
theory) for the penetration free energy. In this regime, our geomet-
ric approach may yield insights complementary to those provided
by field theories,75–82 integral-equation theories,83–87 and density-
functional theories.88–92 The model could also be extended to con-
centrated polymer solutions by incorporating interactions and cor-
relations between segments within different coils and correspond-
ingly modifying the polymer shape distributions, accounting for the
possible role of polymer density fluctuations near polymer–solvent
demixing critical points.85 Finally, our approach could be gen-
eralized to model depletion interactions between aspherical hard
colloids,129 such as rods or platelets.
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