
Don’t Forget the I/O When Allocating Your LLC
Yifan Yuan1, Mohammad Alian2, Yipeng Wang3, Ren Wang3, Ilia Kurakin3, Charlie Tai3, Nam Sung Kim1

1UIUC, 2University of Kansas, 3Intel
{yifany3, nskim}@illinois.edu alian@ku.edu {yipeng1.wang, ren.wang, ilia.kurakin, charlie.tai}@intel.com

Abstract—In modern server CPUs, last-level cache (LLC) is
a critical hardware resource that exerts significant influence on
the performance of the workloads, and how to manage LLC is
a key to the performance isolation and QoS in the cloud with
multi-tenancy. In this paper, we argue that in addition to CPU
cores, high-speed I/O is also important for LLC management.
This is because of an Intel architectural innovation – Data
Direct I/O (DDIO) – that directly injects the inbound I/O
traffic to (part of) the LLC instead of the main memory. We
summarize two problems caused by DDIO and show that (1)
the default DDIO configuration may not always achieve optimal
performance, (2) DDIO can decrease the performance of non-I/O
workloads that share LLC with it by as high as 32%.

We then present IAT, the first LLC management mechanism
that treats the I/O as the first-class citizen. IAT monitors and
analyzes the performance of the core/LLC/DDIO using CPU’s
hardware performance counters and adaptively adjusts the num-
ber of LLC ways for DDIO or the tenants that demand more LLC
capacity. In addition, IAT dynamically chooses the tenants that
share its LLC resource with DDIO to minimize the performance
interference by both the tenants and the I/O. Our experiments
with multiple microbenchmarks and real-world applications
demonstrate that with minimal overhead, IAT can effectively and
stably reduce the performance degradation caused by DDIO.

Index Terms—cache partitioning, DDIO, performance isolation

I. INTRODUCTION

The world has seen the dominance of Infrastructure-as-a-
Service (IaaS) in cloud data centers. IaaS hides the underlying
hardware from the upper-level tenants and allows multiple
tenants to share the same physical platform with virtualization
technologies such as virtual machine (VM) and container (i.e.,
workload collocation) [46, 59]. This not only facilitates the
operation and management of the cloud but also achieves high
efficiency and hardware utilization.

However, the benefits of the workload collocation in the
multi-tenant cloud do not come for free. Different tenants may
contend with each other for the shared hardware resources,
which often incurs severe performance interference [37, 61].
Hence, we need to carefully allocate and isolate hardware
resources for tenants. Among these resources, the CPU’s
last-level cache (LLC), with much higher access speed than
the DRAM-based memory and limited capacity (e.g., tens of
MB), is a critical one [65, 78].

There have been a handful of proposals on how to partition
LLC for different CPU cores (and thus tenants) with hardware
or software methods [13, 39, 42, 62, 71, 72, 76]. Recently,
Intel® Resource Director Technology (RDT) enables LLC
partitioning and monitoring on commodity hardware in cache
way granularity [22]. This spurs the innovation of LLC

management mechanisms in the real world for multi-tenancy
and workload collocation [11, 57, 61, 66, 73, 74]. However,
the role and impact of high-speed I/O by Intel’s Data Direct
I/O (DDIO) technology [31] has not been well considered.

Traditionally, inbound data from (PCIe-based) I/O devices
is delivered to the main memory, and the CPU core will fetch
and process it later. However, such a scheme is inefficient
w.r.t. data access latency and memory bandwidth consumption.
Especially with the advent of I/O devices with extremely high
bandwidth (e.g., 100Gb network device and NVMe-based
storage device) – to the memory, CPU is not able to process
all inbound traffic in time. As a result, Rx/Tx buffers will
overflow, and packet loss occurs. DDIO, instead, directly steers
the inbound data to (part of) the LLC and thus significantly
relieves the burden of the memory (see Sec. II-B), which
results in low processing latency and high throughput from the
core. In other words, DDIO lets the I/O share LLC’s ownership
with the core (i.e., I/O can also read/write cachelines), which
is especially meaningful for I/O-intensive platforms.

Typically, DDIO is completely transparent to the OS
and applications. However, this may lead to sub-optimal
performance since (1) the network traffic fluctuates over time,
and so does the workload of each tenant, and (2) I/O devices
can contend with the cores for the LLC resource. Previously,
researchers [18, 54, 56, 69] have identified the “Leaky DMA”
problem, i.e., the device Rx ring buffer size can exceed
the LLC capacity for DDIO, making data move back and
forth between the LLC and main memory. While ResQ [69]
proposed a simple solution for this by properly sizing the Rx
buffer, our experiment shows that it often undesirably impacts
the performance (see Sec. III-A). On the other hand, we
also identify another DDIO-related inefficiency, the “Latent
Contender” problem (see Sec. III-B). That is, without DDIO
awareness, the CPU core is assigned with the same LLC ways
that the DDIO is using, which incurs inefficient LLC utilization.
Our experiment shows that this problem can incur 32%
performance degradation even for non-I/O workloads. These
two problems indicate the deficiency of pure core-oriented LLC
management mechanisms and necessitate the configurability
and awareness of DDIO for extreme I/O performance.

To this end, we propose IAT, the first, to the best of our
knowledge, I/O-aware LLC management mechanism. IAT
periodically collects statistics of the core, LLC, and I/O
activities using CPU’s hardware performance counters. Based
on the statistics, IAT determines the current system state with
a finite state machine (FSM), identifies whether the contention
comes from the core or the I/O, and then adaptively allocates



CPU
…

Integrated I/O 
Controller

PCIe-based 
I/O Device

Integrated 
Memory 

Controller 

W
ay

 1

Shared
LLC

W
ay

 N
-1

W
ay

 2

W
ay

 N

…

Core &
L1/L2 

Caches
Memory

On-chip Interconnect

Core &
L1/L2 

Caches

Conventional DMA DDIO (Write Update & Write Allocate)

Fig. 1: Typical cache organization in modern server CPU,
conventional DMA path, and DDIO for I/O device.

the LLC ways for either cores or DDIO. This helps alleviate
the impact of the Leaky DMA problem. Besides, IAT sorts
and selects the least memory-intensive tenant(s) to share LLC
ways with DDIO by shuffling the LLC ways allocation, so
that the performance interference between the core and I/O
(i.e., the Latent Contender problem) can be reduced.

We develop IAT as a user-space daemon in Linux and
evaluate it on a commodity server with high-bandwidth
NICs.Our results with both microbenchmarks and real
applications show that compared to a case running a single
workload, applying IAT in co-running scenarios can restrict
the performance degradation of both networking and non-
networking applications to less than 10%, while without IAT,
such degradation can be as high as ∼30%.

To facilitate the future DDIO-related research, we make
our enhanced RDT library (pqos) with DDIO functionalities
public at https://github.com/FAST-UIUC/iat-pqos.

II. BACKGROUND

A. Managing LLC in Modern Server CPU

As studied by prior research [39, 49], sharing LLC can cause
performance interference among the collocated VM/containers.
This motivates the practice of LLC monitoring and partitioning
on modern server CPUs. Since the Xeon® E5 v3 generation,
Intel began to provide RDT [28] for resource management in
the memory hierarchy. In RDT, Cache Monitoring Technology
(CMT) provides the ability to monitor the LLC utilization by
different cores; Cache Allocation Technology (CAT) can assign
LLC ways to different cores (and thus different tenants) [22]1.
Programmers can leverage these techniques by simply
accessing corresponding Model-Specific Registers (MSRs)
or using high-level libraries [32]. Furthermore, dynamic
mechanisms can be built atop RDT [11, 42, 57, 61, 66, 73, 74].

B. Data Direct I/O Technology

Conventionally, direct memory access (DMA) operations
from a PCIe device use memory as the destination. That is,
when being transferred from the device to the host, the data
will be written to the memory with addresses designated by the
device driver, as demonstrated in Fig. 1. Later, when the CPU
core has been informed about the completed transfer, it will
fetch the data from the memory to the cache hierarchy for future

1With CAT, a core has to be assigned with at least one LLC way. A core
(1) can only allocate cachelines to its assigned LLC ways, but (2) can still
load/update cachelines from all the LLC ways.

I/O Device

OS/Hypervisor/User-space Stack

…
Container

APP
virtio

Container
APP
virtio

(a) Aggregation.

PF VF VF…
Kernel

Container
APP

Container
APP

I/O 
Device

(b) Slicing.

Fig. 2: Two models of tenant-device interaction.

processing. However, due to the dramatic bandwidth increase
of the I/O devices over the past decades, two drawbacks of
such a DMA scheme became salient: (1) Accessing memory
is relatively time-consuming, which can potentially limit the
performance of data processing. Suppose we have 100Gb
inbound network traffic. For a 64B packet with 20B Ethernet
overhead, the packet arrival rate is 148.8 Mpps. This means
any component on the I/O path, like I/O controller or core, has
to spend no more than 6.7ns on each packet, or packet loss
will occur. (2) It consumes much memory bandwidth. Again
with 100Gb inbound traffic, for each packet, it will be written
to and read from memory at least once, which easily leads
to 100Gb/s×2=25GB/s memory bandwidth consumption.

To relieve the burden of memory, Intel proposed Direct
Cache Access (DCA) technique [23], allowing the device
to write data directly to CPU’s LLC. In modern Intel®

Xeon® CPUs, this has been implemented as Data Direct I/O
Technology (DDIO) [31], which is transparent to the software.
Specifically, as shown in Fig. 1, when the CPU receives data
from the device, an LLC lookup will be performed to check
if the cacheline with the corresponding address is present
with a valid state. If so, this cacheline will be updated with
the inbound data (i.e., write update). If not, the inbound data
will be allocated to the LLC (i.e., write allocate), and dirty
cachelines may be evicted to the memory. By default, DDIO
can only perform write allocate on two LLC ways (i.e., Way
N−1 and Way N in Fig. 1). Similarly, with DDIO, a device
can directly read data from the LLC; if the data is not present,
the device will read it from the memory but not allocate it in
the LLC. Prior comprehensive studies [1, 36, 44] show that in
most cases (except for those with persistent DIMM), compared
to the DDIO-disabled system, enabling DDIO on the same
system can improve the application performance by cutting
the memory access latency and reducing memory bandwidth
consumption. Note that even if DDIO is disabled, inbound
data will still be in the cache at first (and immediately evicted
to the memory). This is a performance consideration since
after getting into the coherence domain (i.e., cache), read/write
operations with no dependency can be performed out-of-order.

Although DDIO is Intel-specific, other CPUs may have
similar concepts (e.g., ARM’s Cache Stashing [5]). Most
discussions in this paper are also applicable to them.

C. Tenant-device Interaction in Virtualized Servers

Modern data centers adopt two popular models to organize
the I/O devices in multi-tenant virtualized servers with
different trade-offs. As shown in Fig. 2, the key difference
is the way they interact with the physical device.

In the first model, logically centralized software stacks have
been deployed for I/O device interaction. It can run in OS,

https://github.com/FAST-UIUC/iat-pqos


Th
ru

pu
t (

G
bp

s)

0

2

4

6

8

Pr
oc

 R
at

e 
(M

pp
s)

0

4

8

12

16

64 128 256 512 1024

Proc Rate
Thruput Th

ru
pu

t (
G

bp
s)

0

10

20

30

40

Pr
oc

 R
at

e 
(M

pp
s)

0

1

2

3

4

64 128 256 512 1024

Proc Rate
Thruput

(a) 64B small packet. (b) 1.5KB large packet.
Rx Ring Buffer Size (entries) Rx Ring Buffer Size (entries)

Fig. 3: l3fwd results with different Rx ring sizes in RFC2544.

hypervisor, or even user-space. For example, SDN-compatible
virtual switches, such as Open vSwitch (OVS) [60] and
VFP [15], have been developed for NIC. Regarding SSD,
SPDK [75] is a high-performance and scalable user-space
stack. As demonstrated in Fig. 2a, the software stack controls
the physical device and sends/receives packets to/from it.
Tenants are connected to the device via interfaces like
virtio [64]. Since all traffic in this model needs to go through
the software stack, we call this model “aggregation”.

In the second model (Fig. 2b), the hardware-based single
root input/output virtualization (SR-IOV) technique [10]
is leveraged. With SR-IOV, a single physical device can
be virtualized to multiple virtual functions (VFs). While
the physical function (PF) is still connected to the host
OS/hypervisor, we can bind the VFs directly to the tenants (i.e.,
host-bypass). In other words, the basic switching functionality
is offloaded to the hardware, and each tenant directly talks to
the physical device for data reception and transmission. Since
this model disaggregates the hardware resource and assigns it
to different tenants, it is also called “slicing”. Note that many
hardware-offloading solutions for multi-tenancy [16, 45, 52]
can be intrinsically treated as the slicing model.

III. MOTIVATION: THE IMPACT OF I/O ON LLC

A. The Leaky DMA Problem

The “Leaky DMA” problem has been observed by multiple
papers [18, 54, 56, 69]. That is, since, by default, there are
only two LLC ways for DDIO’s write allocate, when the
inbound data rate (e.g., NIC Rx rate) is higher than the
rate that CPU cores can process, the data in LLC waiting
to be processed is likely to (1) be evicted to the memory
by the newly incoming data, and (2) later be brought back
to the LLC again when a core needs it. This is especially
significant for large packets as with the same in-flight packet
count, larger packets consume more cache space than smaller
packets. Hence, this incurs extra memory read/write bandwidth
consumption and increases the processing latency of each
packet, eventually leading to a performance drop.

In ResQ [69], the authors propose to solve this problem
by reducing the size of the Rx/Tx buffers. However, this
workaround has drawbacks. In a cloud environment, tens
or even hundreds of VMs/containers can share a couple of
physical ports through the virtualization stack [24, 47]. If the
total count of entries in all buffers is maintained below the
default DDIO’s LLC capacity, each VM/container only gets
a very shallow buffer. For example, in an SR-IOV setup, we
have 20 containers, each assigned a virtual function to receive

0

100

200

300

4 8 16

No Overlap
DDIO Overlap

0
20
40
60
80

4 8 16

No Overlap
DDIO Overlap

Av
g 

La
te

nc
y 
�n

s)

58.7

Working Set Size (MB)

Th
ru

pu
t (

M
B/

s)

Working Set Size (MB)
(a) Throughput. (b) Latency.

Fig. 4: DDIO effect on X-Mem performance.
traffic. To guarantee all buffers can be accommodated in the
default DDIO’s cache capacity (several MB), each buffer
can only have a small number of entries. A shallow Rx/Tx
buffer can lead to severe packet drop issues, especially when
we have bursty traffic, which is ubiquitous in modern cloud
services [4]. Hence, while this setting may work with statically
balanced traffic, dynamically imbalanced traffic with certain
“heavy hitter” container(s) will incur a performance drop.

Here we run a simple experiment to demonstrate such ineffi-
ciency (see Sec. VI-A for details of our setup). We set up DPDK
l3fwd application on a single core of the testbed for traffic
routing. It looks at the header of each network packet up against
a flow table of 1M flows (to emulate real traffic). The packet is
forwarded if a match is found. We run an RFC2544 test [53]
(i.e., measure the maximum throughput when there is zero
packet drop) from a traffic generator machine with small (64B)
or large (1.5KB) packets. From the results in Fig. 3, we observe
that for the large-packet case (Fig. 3b), shrinking Rx buffer
size may not be a problem – the throughput does not drop until
the size is 1/8 of the typical value. However, the small-packet
case is in a totally different situation (Fig. 3a) – by cutting half
the buffer size (from 1024 to 512), the maximum throughput
can drop by 13%. If we use a small buffer of 64 entries, the
throughput is less than 10% of the original throughput. Between
these two cases, the key factor is the packet processing rate.
With a higher rate, small-packet traffic tends to press the CPU
core more intensively (i.e., less idle and busy polling time). As
a result, any skew will lead to a producer-consumer imbalance
in the Rx buffer, and a shallow buffer is easier to overflow
(i.e., packet drop). Hence, sizing the buffer is not a panacea for
compound and dynamically changing traffic in the real world.
This motivates us not merely to size the buffer but also to
tune the DDIO’s LLC capacity adaptively.

B. The Latent Contender Problem

We identify a second problem caused by DDIO – the
“Latent Contender” problem. That is, since most current
LLC management mechanisms are I/O-unaware, when
allocating LLC ways for different cores with CAT, they may
unconsciously allocate DDIO’s LLC ways to certain cores
running LLC-sensitive workloads. This means that even if these
LLC ways are entirely isolated from the core’s point of view,
DDIO is actually still contending with the cores for the capacity.

We run another experiment to further demonstrate this
problem. In this experiment, we first set up a container bound to
one CPU core, two LLC ways (i.e., Way 0−1), and one NIC VF.
This container is running DPDK l3fwd with 40Gb traffic. We
then set up another container, which is running on another core.



State 
Transition

LLC 
Re-alloc

SleepGet Tenant 
Info

Poll Prof 
Data

Prof 
Stable?

Tenants
Changed?

LLC 
Alloc

Yes

Yes

No

NoStart

Fig. 5: Execution flow of IAT.

We run X-Mem [19], a microbenchmark for cloud application’
memory behavior characteristics. We increment the working
set of X-Mem from 4MB to 16MB and apply the random-read
memory access pattern to emulate real applications’ behavior.
We measure the average latency and throughput of X-Mem in
two cases: (1) the container is bound to two dedicated LLC
ways (i.e., no overlap), and (2) the container is bound to the
two DDIO’s LLC ways (i.e., DDIO overlap). As the results
in Fig. 4 show, even if X-Mem and l3fwd do not explicitly
share any LLC ways from the core point of view, DDIO may
still worsen X-Mem’s throughput by up to 26.0% and average
latency by up to 32.0%. This lets us think of how we should
select tenants that share LLC ways with DDIO.

Some previous works propose to never use DDIO’s LLC
ways at all for core’s LLC allocation [14, 69]. We argue that
they are sub-optimal for two fundamental reasons. (1) We
have motivated that we should dynamically allocate more/less
LLC ways for DDIO (Sec. III-A). If, in some cases, DDIO
is occupying a large portion of LLC, there will be little room
for cores’ LLC allocation. (2) When the I/O traffic does not
press the LLC, isolating DDIO’s LLC ways is wasteful. It is
better to make use of this LLC portion more efficiently.

IV. IAT DESIGN

IAT is an I/O-aware LLC management mechanism that makes
better use of DDIO technology for various situations in multi-
tenant servers. When IAT detects an increasing amount of LLC
misses from DDIO traffic, it first decides whether the misses are
caused by the I/O traffic or the application running in the cores.
Based on the decision, IAT allocates more or fewer LLC ways
to either the core or the DDIO to mitigate the core-to-I/O or
I/O-to-I/O interference. IAT can also shuffle the tenants’ LLC al-
location to further reduce core-I/O contention. Specifically, IAT
performs six steps to achieve its objective, as depicted in Fig. 5.

A. Get Tenant Info and LLC Alloc

At initialization (or tenants change), IAT obtains the tenants’
information and the available hardware resources through the
Get Tenant Info step. Regarding hardware resources, it needs
to know and remember the allocated cores and LLC ways for
each tenant; regarding software, it needs to know two things.
(1) Whether the tenant’s workload is “I/O” (e.g., “networking”
in this paper) or not. This can help IAT decide whether a
performance fluctuation is caused by I/O or not since non-I/O
applications also have execution phases with different behaviors.
Note that a non-I/O tenant may maintain the connection to
the I/O device (for ssh, etc., but not intensive I/O traffic). (2)
The priority of each tenant. To improve resource utilization,
modern data centers tend to collocate workloads with different

priorities on the same physical platform [20, 49]. Since the
cluster management software commonly provides hints for such
priorities [68], IAT can obtain such information directly. In IAT,
we assume two possible priorities (there can be more in real-
world deployment) for each workload – “performance-critical
(PC)” and “best-effort (BE)”. Although the software stack in
the aggregation model (e.g., virtual switch) is not a tenant, we
still keep the record for it and assign it with a special priority.

After getting the tenant information, IAT allocates the LLC
ways for each tenant accordingly (i.e., LLC Alloc).

B. Poll Prof Data

In this step, IAT polls the performance status of each
tenant to decide the optimal LLC allocation. Using the
application-level metrics (operations per second, tail latency,
etc.) is not a good strategy since they vary across tenants.
Instead, we directly get the profiling statistics of the following
hardware events from the hardware counters.

Instruction per cycle (IPC). IPC is a commonly-used
metric to measure the execution performance of a program
on a CPU core [7, 37]. Although it is sensitive to some
microarchitectural factors, such as branch-misprediction and
serializing instructions, it is stable in our timescale (i.e.,
hundreds of ms to s). We use it to detect tenants’ performance
degradation and improvement.

LLC reference and miss. LLC reference and miss counts
reflect the memory access characteristic of a workload. We
can also derive the LLC miss rate from these values, which
is yet another critical metric for workload performance [70].

DDIO hit and miss. DDIO hit is the number of DDIO
transactions that apply write update, meaning the targeted
cacheline is already in the LLC; DDIO miss reflects the
number of DDIO transactions that apply write allocate,
which indicates a victim cacheline has to be evicted out of the
LLC for the allocation. These two metrics reflect the intensity
of the I/O traffic and the pressure it puts on the LLC.

IPC and LLC ref/miss are per-core metrics. If a tenant is oc-
cupying more than one core, we aggregate the values as the ten-
ant’s result. DDIO hit/miss are chip-wide metrics, which means
we only need to collect them once per CPU and cannot distin-
guish between those caused by different devices or applications.

After collecting these events’ data, IAT will compare
them with those collected during the previous iteration. If
the delta of one of the events is larger than a threshold
THRESHOLD_STABLE, IAT will jump to the State Transition

step to determine how to (potentially) adjust the LLC allocation.
Otherwise, it will regard the system’s status as unchanged
and jump to the Sleep step, waiting for the next iteration.
Also, there are three cases where we do not jump to the
State Transition step. (1) If we only see IPC change but
no significant LLC reference/miss and DDIO hit/miss count
change, we assume that this change is attributed to neither
cache/memory nor I/O. (2) If we observe IPC change of a
non-I/O tenant (no DDIO overlap) with corresponding LLC
reference/miss change but no significant DDIO hit/miss count



1

2

3

5 6

8 9

11

10

Low
Keep

High
KeepReclaim

4 7

I/O
Demand

Core
Demand

12

Fig. 6: State transition diagram of IAT.

change over the system, we know this is mainly caused by
CPU core’s demand of LLC space. In this case, other existing
mechanisms [11, 57, 66, 73, 74] can be called to allocate
LLC ways for the tenant. (3) If we observe IPC change of a
non-I/O tenant (with DDIO overlap) with corresponding LLC
reference/miss change and DDIO hit/miss change, we will try
shuffling LLC ways allocation (see Sec. IV-D) at first.

C. State Transition

The core of IAT design is a system-wide Mealy FSM, which
decides the current system state based on the data from Poll

Prof Data. For each iteration, the state transition (including
self-transition) is triggered if changes happened in Poll Prof

Data; otherwise, IAT will remain in the previous state. Fig. 6
shows the five states.

Low Keep. In this state, the I/O traffic is not intensive and
does not press the LLC (i.e., does not contend with cores for
the LLC resource). IAT is in this state if the DDIO miss count
is small. Here the DDIO hit count is not necessarily small,
since if most DDIO transactions can end up with write update,
LLC thrashing will not happen. Because I/O traffic does not
trigger extensive cache misses, we keep the number of LLC
ways for DDIO at the minimum value (DDIO_WAYS_MIN).

High Keep. This is a state where we have already allocated the
largest number of LLC ways for DDIO (DDIO_WAYS_MAX),
regardless of the numbers of DDIO miss and hit. We set such
an upper bound because we do not expect DDIO to compete
with cores without any constraints across the entire LLC,
especially when there is a PC tenant running in the system
with high priority.

I/O Demand. This is a state where the I/O contends with
cores for the LLC resource. In this state, I/O traffic becomes
intensive, and the LLC space for write update cannot satisfy
the demand of DDIO transactions. As a result, write allocate

(DDIO miss) happens more frequently in the system, which
leads to a large amount of cacheline evictions.

Core Demand. In this state, the I/O also contends with cores
for the LLC resource, but the reason is different. Specifically,
now the core demands more LLC space. In other words, a
memory-intensive I/O application is running on the core. As a
result, the Rx buffer is frequently evicted from the LLC ways
allocated for the core, leading to decreased DDIO hits and
increased DDIO misses.

Reclaim. Similar to Low Keep, in this state, the I/O traffic is
not intensive. The difference is that the number of LLC ways
for DDIO is at a medium level, potentially wasteful. In this

case, we should consider reclaiming some LLC ways from
DDIO. Also, the LLC ways for a specific tenant can be more
than enough, motivating us to reclaim LLC ways from the core.

IAT is initialized from the Low keep state. When
the number of DDIO miss is greater than a threshold
THRESHOLD_MISS_LOW, it indicates that the current LLC
ways for DDIO are insufficient. IAT determines the next
state by further examining the value of DDIO hit and LLC
reference. Decrease of the DDIO hit count with more LLC
references implies the core(s) is increasingly contending the
LLC with DDIO, and the entries in the Rx buffer(s) are
frequently evicted from the LLC. In this case, we move to the
Core Demand state ( 3 ). Otherwise (i.e., an increase of DDIO
hit count), we move to the I/O Demand state ( 1 ) since the
DDIO miss is attributed to the more intensive I/O traffic.

In the Core Demand state, if we observe the decrease of the
DDIO miss count, we regard it as a signal of system balance
and will go back to the Reclaim state ( 8 ). If we observe an
increase of DDIO miss count and no fewer DDIO hits, we
go to I/O Demand state ( 4 ) since right now, the core is no
longer the major competitor. If we observe neither of the two
events, IAT will stay at the Core Demand state.

In the I/O Demand state, if we still observe a large amount
of DDIO miss, we keep in this state until we have allocated
DDIO_WAYS_MAX number of ways to DDIO and then transit
to the High Keep state ( 10 ). If a significant degradation of
DDIO miss appears, we assume the LLC capacity for DDIO
is over-provisioned and will go to the Reclaim state ( 6 ).
Meanwhile, fewer DDIO hits and stable or even more DDIO
misses indicate that core is contending LLC, so we go to the
Core Demand state ( 7 ). Also, the High Keep state obeys the
same rule ( 11 and 12 ).

We keep in the Reclaim state if we do not observe a
meaningful increase of DDIO miss count until we have
reached the DDIO_WAYS_MIN number of LLC ways for
DDIO, then we move to the Low Keep state ( 2 ). Otherwise,
we move to the I/O Demand state to allocate more LLC ways
for DDIO to amortize the pressure from intensive I/O traffic
( 5 ). At the same time, if we also observe a decrease in DDIO
hit count, we will go to the Core Demand state ( 9 ).

D. LLC Re-alloc

After the state transition, IAT will take the corresponding
actions, i.e., re-allocate LLC ways for DDIO or cores.

First, IAT changes the number of LLC ways that are
assigned to DDIO or tenants. Specifically, in the I/O Demand
state, IAT increases the number of LLC ways for DDIO by
one per iteration (miss-curve-based increment like UCP [62]
can also be explored, same below). In the Core Demand state,
IAT increases the number of LLC ways for the selected tenant
by one per iteration. In the Low Keep and High Keep states,
IAT does not change the LLC allocation. In the Reclaim state,
IAT reclaims one LLC way from DDIO or core per iteration,
depending on the values it observes (e.g., smaller LLC miss
count of the system or smaller LLC reference count of a tenant).
All idle ways are in a pool to be selected for allocation. Since



Virtual Switch
PC Tenant
BE Tenant 1

Unallocated 

BE Tenant 2
DDIO

Core
Demand Reclaim

Time

Flow #

t1 t2

More 
flows 

Fewer 
flows 

(a) Example 1 with aggregation model.

Time

Traffic

t1 t2 t3

More 
traffic 

Less 
traffic BE Tenant 2 

Phase Change

IO
Demand ReclaimState 

Unchanged

(b) Example 2 with slicing model.
Fig. 7: Two examples of LLC allocation with IAT.

the current CAT only allows a core to have consecutive LLC
ways, the selection of the idle ways should try to be consecutive
with the existing allocation. Otherwise, shuffling may happen.

IAT should identify the workload that requires more or fewer
LLC ways in the Core Demand and Reclaim states. The mecha-
nism depends on the models of the tenant-device model we are
applying. In the aggregation model, all the Rx/Tx buffers are
allocated and managed by the centralized software stack. This
means a performance drop of the software stack can bottleneck
the performance of the I/O applications running in the attached
tenants. So, in this case, IAT increases/decreases the number
of LLC ways for software stack’s cores at first. However, in
the slicing model, each VF’s Rx/Tx buffers are managed by
the tenants themselves. IAT selects the tenant that needs more
LLC ways from all I/O-related tenants by sorting their delta
of LLC miss rate (in percentage) between the current and the
last iteration and chooses the one with the most LLC miss rate
increase. In this way, we are able to satisfy the LLC demand
of the corresponding cores, thus reducing the DDIO miss.

Second, IAT will shuffle the LLC ways that have been as-
signed to tenants, i.e., properly select the tenants that have mini-
mal LLC pressure and move their assigned ways to the ways of
DDIO. As we discussed in Sec. III-B, sharing LLC ways with
DDIO may incur performance degradation of the core, even if
the core is running a non-I/O workload. Hence, it is necessary
to reduce such interference. First of all, we should avoid any
core-I/O sharing of LLC ways if LLC ways have not been fully
allocated. If sharing is necessary, intuitively, the tenants running
PC workloads (high priority) should be isolated from LLC
ways for DDIO as much as possible. IAT tries its best to only
let BE tenants share ways with DDIO. Meanwhile, we do not
want the BE tenants to contend LLC with DDIO too much since
the PC tenants’ performance is correlated to DDIO’s [56, 69].
So before shuffling, IAT sorts all the BE tenants by their LLC
reference count in the current iteration and chooses the one(s)
with the smallest value to share LLC ways with DDIO. Note
that according to Footnote 1, after shuffling, a tenant can still
access its data in previously assigned LLC ways until it has
been evicted by other tenants. Hence, shuffling will not lead to
sudden cache under-utilization and performance degradation.

E. Sleep

The application performance may take some time to
become stable after the LLC Re-alloc step. Also, polling the
performance counters is not free (see Sec. VI-D). Hence, it
is necessary to select a proper polling interval for IAT (e.g.,
one second in our experiments). During this interval, IAT will
simply sleep to let the OS schedule other tasks on the core.
After each Sleep, if IAT is informed about changes of tenants
(e.g., tenant addition/removal, application phase change),
it will go through the Get Tenant Info and LLC Alloc steps.
Otherwise, it will conduct the next iteration of Poll Prof Data.

F. Putting It All Together: Two Examples

We use two tangible examples with NIC as the I/O device
to illustrate how IAT works (see Fig. 7). In the first example
(Fig. 7a) with the aggregation model, the throughput of
network traffic is fixed. We have three tenants, one PC and two
BE, each assigned with different LLC ways. In the beginning,
the flow count of the network traffic is small, and BE Tenant 2
shares LLC ways with DDIO. At t1, a large number of flows
appear in the traffic. As a result, the flow table in the virtual
switch becomes larger and requires more space than the two
LLC ways that are already assigned. Hence, IAT detects more
DDIO misses and fewer DDIO hits and goes to the Core
Demand state. Two more LLC ways are then assigned to the
virtual switch (one for each iteration) so that the system reaches
a new balance. To make room for the virtual switch, we shift
the LLC ways of other tenants and let BE Tenant 2 share LLC
ways with DDIO. At t2, many flows have ended, and there
is no need for the virtual switch to maintain a big flow table
in the LLC. IAT goes to the Reclaim state and reclaims two
LLC ways from the virtual switch. Also, since now we have
idle LLC ways, we remove the core-I/O sharing of LLC ways.

In the second example (Fig. 7b) with the same tenants setup
but the slicing model, the throughput of the network traffic be-
gins from a low level. At t1, more traffic comes into PC Tenant,
and the number of LLC ways for DDIO becomes insufficient,
which leads to more DDIO misses. IAT detects this situation and
transits to the I/O Demand state, allocating more LLC ways for
DDIO. At t2, the workload in BE Tenant 2 enters a new phase,
which is LLC-consuming. IAT notices this by the delta of LLC
reference count and let BE Tenant 1, which consumes less LLC,
share the LLC ways with DDIO to reduce the performance
interference. At t3, the amount of incoming network traffic
is decreasing, and the LLC capacity for DDIO is more than
enough. Thus, IAT can reclaim some LLC ways from DDIO.

V. IMPLEMENTATION

We implement IAT as a Linux user-space daemon, which is
transparent to the application and the OS. Currently, we choose
user-space implementation because it is more portable and
flexible. However, IAT can be implemented in the kernel space
as well. Since the x86 instructions for MSR manipulation
(rdmsr and wrmsr) are ring-0, a kernel-space implementation
can potentially have lower monitoring and control overhead.
Another possibility is implementing IAT in the CPU power



TABLE I: Configuration of Intel® Xeon® 6140 CPU.
Cores 18 cores, 2.3GHz

Caches

8-way 32KB L1D/L1I,
16-way 1MB L2,
11-way 24.75MB non-inclusive shared LLC
(split to 18 slices)

Memory Six DDR4-2666 channels

controller [77]. Note that IAT can also be integrated into other
CPU resource management systems [57, 73, 74].

LLC allocation. For standard CAT functionalities (i.e.,
allocating LLC ways for cores), we leverage APIs from the
Intel pqos library [32]. To better isolate different applications
and demonstrate the influence of DDIO, we do not allow
LLC ways sharing across different tenants (but in real-world
deployment, sharing should be explored [11, 66, 73]). For
changing and querying the LLC ways for DDIO, we write and
read the DDIO-related MSRs [26] via the msr kernel module.

Profiling and monitoring. Similarly, we use pqos’s APIs for
regular profiling and monitoring (LLC miss, IPC, etc.). For
monitoring DDIO’s hit and miss, we use the uncore perfor-
mance counters [30]. Modern Intel CPUs apply the non-uniform
cache access (NUCA) architecture [41] to physically split the
LLC into multiple slices. To reduce the monitoring overhead,
for each DDIO event, we only use the performance counters
in the Caching and Home Agent (CHA, the controller of each
LLC slice in Intel CPUs) of one LLC slice. Since modern Intel
CPUs apply a hashing mechanism for LLC addressing, the
data (from both the core and the DDIO) is distributed to all
the LLC slices evenly [34, 51]. Hence, by only accessing one
LLC slice’s performance counters, we can infer the full picture
of the DDIO traffic by multiplying it by the number of slices.

Tenant awareness. Since CAT assigns LLC ways to cores,
we need to know the core affiliation of each tenant. For
simplicity, we keep such affiliation records in a text file. When
the daemon is starting or is notified of a change, it will parse
the records from this file. In the real-world cloud environment,
IAT can have an interface to the orchestrator or scheduler to
query the affiliation information dynamically.

VI. EVALUATION

A. Setup

Hardware. We do experiments on a quad-socket Intel server
with Xeon® Scalable Gold 6140 CPUs@2.3GHz [29] (Hyper-
Threading and Turbo Boost disabled). See Tab. I for CPU
configuration. It has 512GB DDR4 memory and two Intel®

XL710 40GbE NICs [27] (both attached to socket-0). We con-
nect each NIC directly to another server as the traffic generator.
Using higher-bandwidth NIC will make the difference more
significant but will not change the observation and conclusion.

System software. Since the current DDIO does not support
remote socket [43], we run all experiments on socket-0. To
reflect the multi-tenant cloud environment, we run applications
in docker containers. For network connectivity, we have two
models. (1) Aggregation: we connect the physical NICs and
containers via OVS [60] (DPDK [25]-based). (2) Slicing: we

TABLE II: IAT parameters.
Name Value
THRESHOLD_STABLE 3%
THRESHOLD_MISS_LOW 1M/s
DDIO_WAYS_MIN/MAX 1/6
Sleep interval 1 second

64 128 256 512 1K 1.5K

Baseline
IAT

64 128 256 512 1K 1.5K

Baseline
IAT

64 128 256 512 1K 1.5K

Baseline
IAT

CP
P

200

400

600

800

1000

1

1.5

2

2.5

3

64 128 256 512 1K 1.5K

IPC-Baseline IPC-IAT
CPP-Baseline CPP-IAT

7.5

5

2.5

0

75

50

25

0

100

75

50

25

0

100

(a) DDIO hit count per second. (b) DDIO miss count per second.

(c) Memory bandwidth consumption. (d) OVS IPC and CPP.

IP
C

M
em

 B
W

 (G
B/

s)
DD

IO
 H

it 
(M

/s
)

DD
IO

 M
iss

 (M
/s

)

Packet Size Packet Size

Packet Size Packet Size

Fig. 8: System performance with different packet sizes.

bind a VF of the physical NIC to each container with SR-IOV.
By default, we use 1024 entries as the Rx/Tx buffer size. For
the containers that require a TCP/IP stack, we use DPDK-
ANS [3] for high performance. Both the host and the containers
run Ubuntu 18.04. To measure IAT’s absolute overhead and
not disturb tenants, we run IAT daemon on a dedicated core2.

IAT parameters. We use empirical parameters (see Tab. II)
to keep the balance of stability and agility. They can be tuned
for various QoS requirements and hardware. The parameter
sensitivity is similar to dCAT [74].

B. Microbenchmark Results

We first isolate the two problems in Sec. III and separately
verify whether IAT can alleviate them in microbenchmarks.

Solving the Leaky DMA problem. Applying the aggregation
model, we set up two containers running DPDK test-pmd
(a simple program that bounces back the Rx traffic), each
with two dedicated cores and one dedicated LLC way, both
connected to OVS, which is running on two dedicated cores and
two dedicated LLC ways. Also, the two NICs are connected
to OVS. We insert four rules to OVS: “NIC0->Container0”,
“NIC1->Container1”, “Container0->NIC0”, and “Container1-
>NIC1”. Both NICs send single-flow traffic with line rate. With
such settings, the LLC miss of OVS itself is negligible and
will not affect the performance. We start the experiment from
64B packet size, and over time, when OVS’s performance gets
stable, we double the packet size until the MTU size (1.5KB).

We collect the performance numbers of baseline (i.e.,
default DDIO configuration without IAT, but with basic static
CAT for cores) and IAT case and show them in Fig. 8. The
most fundamental results are DDIO hit count (Fig. 8a) and
miss count (Fig. 8b). When the packet size is small, the
default two LLC ways for DDIO are enough to contain the
on-the-fly inbound packets; however, as packet size increases

2We do encourage collocating IAT with other (ligh-weight) applications
in real world deployment.



1 10 100 1k 10k100k 1M

Baseline
IAT

CP
P

300

400

500

600

1.5

2

2.5

3

1 10 100 1k 10k100k 1M

IPC-Baseline IPC-IAT
CPP-Baseline CPP-IAT

4.5

3

1.5

0

(a) LLC miss per second. (b) IPC and CPP.

IP
C

6
LL

C
 M

is
s 

(M
/s

)

Flow Count Flow Count

Fig. 9: OVS performance with different flow counts.

Th
ru

pu
t (

M
B/

s)

0

50

100

150

200

64 128 256 512 1K 1.5K

Baseline Core-only
I/O-iso IAT La

te
nc

y 
(n

s)

0

25

50

75

100

64 128 256 512 1K 1.5K

Baseline Core-only
I/O-iso IOCA

Th
ru

pu
t (

M
B/

s)

0

50

100

150

200

64 128 256 512 1K 1.5K

Baseline Core-only
I/O-iso IAT La

te
nc

y 
(n

s)
0

25

50

75

100

64 128 256 512 1K 1.5K

Baseline Core-only
I/O-iso IAT

Packet Size Packet Size

Packet Size Packet Size

(a) Throughput between 5s and 15s. (b) Avg latency between 5s and 15s.

(c) Throughput after 15s. (d) Avg latency after 15s.
Fig. 10: The (stable) performance of X-Mem in container 4.

over time, on-the-fly packets put much more pressure on the
LLC, and thus the default two LLC ways become deficient,
which is reflected in the increase of DDIO miss count. At this
time, IAT detects the unstable status and transits its state to I/O
Demand, allocating more LLC ways for DDIO (one by each
time). As a result, the DDIO hit count with IAT is higher than
the baseline, and the DDIO miss count is lower. This leads
to better memory throughput performance in Fig. 8c – with
IAT, the memory bandwidth consumption can be reduced by
at most 15.6%. Note that due to the limited capacity of LLC,
IAT is not able to eliminate the memory traffic. It is desirable
to combine IAT and a slightly smaller Rx buffer (e.g., 512 in
Fig. 3) to achieve even better memory traffic reduction with
modest throughput loss. We also plot OVS performance in
Fig. 8d. Again, with large packet sizes, IAT is able to improve
OVS’s IPC by ∼5% and reduce cycle per packet (CPP).

Meanwhile, IAT can still identify the core’s demand for LLC
capacity in a networking application. We demonstrate this with
a second experiment with similar settings. The difference is, we
fix the traffic at 64B line-rate (so that cores will be the dominant
source of LLC miss). We start the line-rate traffic from a single
flow, gradually increase the number of flows in the traffic, and
report the performance in Fig. 9. To maintain the growing num-
ber of flows in its flow table, OVS requires more memory space.
Hence, if we keep the static initial LLC allocation for OVS, it
will suffer from a higher LLC miss count (and thus lower IPC)
after more than 1k flows. On the other hand, IAT, by detecting
the drop of IPC and the increase of LLC miss rate, is able to
identify the demand for LLC of OVS’s cores and allocate more
LLC ways for them. As a result, OVS maintains a low LLC miss
count and gains at most 11.4% higher IPC than the baseline.
Note that with more flows, the IPC and CPP inevitably worsen
since OVS’s design [60] leads to more (slower) wildcarding
lookups instead of pure (faster) exact match lookups.

We also repeat the experiments with three, four, and five
containers and observe comparable performance improvement.

LL
C 

M
iss

 (M
/s

)

0 1 2 3 4 5 6 7 8 … 15 16 17 18 19 20

Container 0, 1
Container 2
Container 3
Container 4
DDIO

Working Set 
2MB->10MB

DDIO Ways
2->4

1M/s

Stable Stable StableTransient

Time (second)

Transient

Fig. 11: LLC allocation and LLC miss of container 4 over
time with IAT and 1.5KB packet size.

Solving the Latent Contender problem.3 With the slicing
model, we demonstrate that IAT can efficiently choose the LLC
sharing policy between core and I/O. We have one VF for each
NIC and bind them to two containers (0 and 1, marked as PC)
running DPDK test-pmd. Each container runs on one dedicated
core, and they share three dedicated LLC ways (no DDIO over-
lap). On each NIC, we generate single-flow line-rate traffic with
different packet sizes. Besides, we have three identical contain-
ers (2 and 3 as BE, 4 as PC), each with one dedicated core and
two dedicated LLC ways (no DDIO overlap) running X-Mem
(random read pattern). In the beginning, all X-Mem containers
have a working set of 2MB. At time 5s, we increase the working
set size of container 4 to 10MB (L2 cache size + 4 LLC ways
size). Furthermore, at time 15s, when the system has been sta-
ble, we manually increase LLC ways count for DDIO from two
to four to see whether IAT can dynamically mitigate the DDIO
overlapping interference. In addition to the baseline and IAT, we
also test two cases: (1) Core-only, which means we only adjust
the LLC allocation without I/O awareness4; (2) I/O-iso, based
on Core-only, further excludes the DDIO’s ways from core’s
LLC allocation. These are to emulate the behavior of other state-
of-the-art LLC management mechanisms for comparison. We re-
port the (stabilized) performance of X-Mem in container 4 (PC)
in Fig. 10. After 5s, when the working set size of container 4
increases dramatically, IAT starts allocating more LLC ways for
container 4, which are shared with DDIO. To avoid contention
between core and I/O, IAT shuffles the assigned LLC ways for
container 4 and selects container 3 with BE workload to share
LLC ways with DDIO. As seen from Fig. 10a, larger packet
sizes will put higher pressure on the LLC ways for DDIO,
interfering with the core more seriously and thus drag down the
X-Mem’s throughput. Core-only, by simply allocating two more
“idle” (but actually shared with DDIO) LLC ways for X-Mem,
performs well with small packet sizes but fails to maintain this
trend with larger packet sizes since the core-I/O contention is
mitigated but not eliminated. IAT is able to maintain constantly
high throughput with all packet sizes (53.6%∼111.5% com-
pared to baseline and 1.4%∼56.0% compared to Core-only)
since it not only allows X-Mem to use more LLC space but
also avoids core-I/O contention. Regarding latency (Fig. 10b),
Core-only does not help since the randomly accessed data can
be in the X-Mem-dedicated LLC ways, the two core-I/O shared
LLC ways, or the memory. On average, the latency will not

3In this experiment, to isolate the problem, we temporarily disable IAT’s
functionality of changing LLC ways for DDIO.

4We do this by disabling I/O Demand state and LLC shuffling.



N
or

m
 E

xe
c 

Ti
m

e 
to

 S
ol

o 
Ru

n

1

1.05

1.1

1.15

1.2

1.25

bz
ip2 gc

c
mc
f

mi
lc

ze
us
mp

ca
ctu
sA
DM

les
lie
3d

Ge
ms
FD
TD lbm

om
ne
tpp as

tar

sp
hin
x3

xa
lan
cb
mk

Ro
ck
sD
B.A

Ro
ck
sD
B.B

Ro
ck
sD
B.C

Ro
ck
sD
B.D

Ro
ck
sD
B.F

ge
om
ea
n

Redis-Baseline
Redis-IAT
FastClick-Baseline
FastClick-IAT

Fig. 12: Normalized execution time to solo run of SPEC2006 and RocksDB with two networking applications.

be much better than doing nothing (i.e., baseline). However,
IAT still maintains low latency (34.5%∼52.2% compared to
baseline and 32.9%∼44.2% compared to Core-only) since it
achieves 100% LLC isolation for container 4. In this phase,
I/O-iso achieves performance similar to IAT, but in a different
way: due to the limited available ways, it has to reduce the ways
for BE container 2 and 3 to make room for the PC containers.

After 15s, since DDIO shares (two) LLC ways with
container 4 again, IAT detects the system’s unstableness by the
increasing LLC miss count of container 4’s core and reshuffles
the LLC ways allocation for as much LLC isolation as
possible. Core-only, sharing all its four LLC ways with DDIO,
suffers from more severe performance interference compared
to it during 5s and 15s, which is especially significant when
packet size is large. Both throughput (Fig. 10c) and latency
(Fig. 10d) are very close to the baseline. It is worth noting
that with small packet sizes, Core-only performs better in
Fig. 10d than in Fig. 10b, which is because the LLC ways
for DDIO in Fig. 10d are more than enough, and the inbound
packet can be distributed to a larger space, which amortizes
the contention. Regarding I/O-iso, it has even less LLC space
(11 − 4 = 7 ways) for cores. Recalling Footnote 1, the PC
containers have to share 7−2 = 5 ways. Depending on the
relative priority between container 4 and 0/1, container 4 can
have 1∼3 ways (i.e., the big range in Fig. 10c and Fig. 10d),
leading to latency and throughput degradation anyway.

To show IAT’s dynamic performance, we depict LLC alloca-
tion with IAT in 0∼20s and container 4’s LLC miss (we have
another independent pqos process to measure this every 0.1s)
with 1.5K packet size in Fig. 11. We find IAT is able to react
timely (within the timescale of sleep interval) to system/appli-
cation phase changes, which are reflected in hardware metrics.

C. Application Results

We evaluate two sets of applications as the non-networking
cloud workloads. (1) SPEC2006 benchmark suite [21]. We
run selected memory-sensitive benchmarks [35], all with the
ref input. (2) RocksDB [12], a persistent key-value store.
We use YCSB [9] with 0.99 Zipfian distribution to test the
performance of RocksDB. To avoid any storage I/O operations,
we only load 10K records (1KB per record) so that all records
are in RocksDB’s memtable.

We choose in-memory key-value store (KVS) and
network function virtualization (NFV) service chain as two
representative networking workloads since they both involve
tremendous network traffic and are cache-sensitive, which are
the targeted usages for DDIO and IAT.

In-memory KVS. We use Redis [63], a popular in-memory
KVS, to conduct the experiment. We run two Redis containers,
each with two dedicated cores, and connect them to the OVS,
which runs on another two dedicated cores. The OVS and two
Redis containers share three LLC ways (no DDIO overlap).
Besides, we have one PC container running either a SPEC2006
benchmark or RocksDB on one dedicated core and two LLC
ways. We also have two BE containers, each with two LLC
ways and one dedicated core, running X-Mem random-read, but
with different working sets (one 1MB, one 10MB). In summary,
nine cores are assigned. Initially, the LLC ways allocation of
the three non-networking containers are randomly shuffled, and
DDIO is not considered. The two NICs are connected to the
OVS, and we run YCSB benchmarks from the traffic generator
machines (each using eight threads). We pre-load 1M records
with 1KB size and run different operations for testing.

NFV service chain. We run a FastClick [6]-based stateful
service chain with and without IAT. This service chain consists
of three network functions (NFs): a classifier-based firewall,
an AggregateIPFlows-based flow stats, and a network address/-
port translator (NAPT). Each of the two NICs is virtualized
to two VFs with different VLAN tags. We have four identical
containers, each bound to one VF (i.e., each container process-
ing one VLAN’s traffic), running the service chain on four
separate and dedicated cores. Such four containers share three
LLC ways (no DDIO overlap). The non-networking workloads
are the same as the KVS experiment. We generate traffic (all
1.5KB packets) of four VLANs from the two traffic generator
machines with equal bandwidth, i.e., 20Gbps per VLAN.

To isolate the performance impact caused by DDIO and
highlight the two problems this work is committed to tackling,
we temporarily disable IAT’s functionality of assigning
more/less LLC ways for tenants (but the ways for different
tenants will still be shuffled). We first run each application
solely (i.e., solo run) to get purely isolated performance. We
then co-run the applications in the scenarios above with and
without IAT (i.e., baseline and IAT). We run each case ten times
and collect the performance degradation of each application.

We first report the execution time of each non-networking
application normalized to solo run in Fig. 12. For SPEC2006,
the working set size and cache sensitivity of each benchmark
vary [35]. But in general, without DDIO awareness and IAT,
we observe a 2.5% ∼ 14.8% performance degradation when
co-running with Redis and 3.5% ∼ 24.9% when co-running
with FastClick. Without DDIO awareness, a non-networking
application is likely to be affected by the networking application



N
or

m
 W

ei
gh

te
d 

La
te

nc
y 

to
 S

ol
o 

Ru
n

1

1.1

1.2

A B C D F

Redis-Baseline Redis-IAT
FastClick-Baseline FastClick-IAT

YCSB Workload

1.177

Fig. 13: Normalized weighted average latency to solo run of
RocksDB with two networking applications.

Th
ru

pu
t (

KQ
PS

)

0

20

40

60

80

A B C D F

Solo Baseline IAT

N
or

m
 W

ei
gh

te
d 

La
te

nc
y 

to
 S

ol
o 

Ru
n

1

1.1

1.2

1.3

A B C D F

Avg-Baseline
Avg-IAT
95th-Baseline
95th-IAT

YCSB Workload YCSB Workload
(a) Throughput. (b) Latency.

Fig. 14: Redis performance on different YCSB workloads.

which seems to have complete isolation against it. In other
words, if its LLC portion happens to overlap with DDIO (e.g.,
baseline’s maximum value in Fig. 12 and following figures), a
significant degradation will appear; if there is no overlap (e.g.,
baseline’s minimum value in Fig. 12 and following figures), the
impact is small – this incurs the big range of the baseline results
(recall that LLC allocation was randomly shuffled at the be-
ginning). However, IAT can effectively and stably maintain the
performance isolation (at most 5.0% degradation). The reasons
why it does not perfectly match the performance of solo run are:
(1) partial LLC way overlap with DDIO may be inevitable when
IAT assigns more LLC ways for DDIO (e.g., High Keep state),
and (2) the memory bandwidth consumed by the networking
applications may also affect the performance of non-networking
applications [57, 69]. Applying Intel® Memory Bandwidth Allo-
cation (MBA) can solve this problem, which is out of the scope
of this paper. Similarly, YCSB workloads for RocksDB have
different cache locality requirements and thus are affected by
networking applications to various extents (i.e., 2.6%∼14.9%
and 6.5%∼20.6%, respectively). Again, IAT shuffles the LLC
ways of the non-networking application so that it is isolated
from DDIO as much as possible, which leads to only 1.2%∼
2.6% and 2.0%∼ 4.9% throughput degradation, respectively.
Also note that, with more intensive network traffic (i.e., line-rate
for both inbound and outbound traffic), FastClick generally
exerts more impact on the performance of non-networking
applications than on Redis. We expect Redis to be impacted
more severely when running more instances on a single server.

We also report the latency results of RocksDB in Fig. 13.
Since there can be more than one type of operation in a single
YCSB benchmark, we normalize each operation’s latency and
calculate the weighted average value (i.e., normalized weighted
latency). Since the key-value data of RocksDB can be evicted
from the LLC to the main memory by the inbound DDIO data,
the average latency performance can be much worse than solo
run (i.e., as high as 14.1% for Redis and 19.7% for FastClick).
IAT can help mitigate such unexpected eviction by shuffling
the LLC ways for the non-networking application, resulting
in at most 6.4% and 9.9% longer latency, respectively.

We then discuss the performance of networking applications.

Number of Tenants

Ex
ec

 T
im

e 
(u

s)

0
200
400
600
800

1 2 4 8 16

1Core-Unstable
1Core-Stable
2Core-Unstable
2Core-Stable

Fig. 15: IAT execution time with different tenant counts.

Fig. 14 depicts the YCSB results of Redis. In the baseline,
since DDIO is not considered, if an application that heavily
consumes cache resources (e.g., X-Mem with 10MB working
set, mcf, omnetpp, and xalancbmk in SPEC2006, and RocksDB)
happens to be sharing LLC ways with DDIO, not only such
non-networking application itself but also the networking
applications will be adversely impacted. Specifically, we can
see 7.1% ∼ 24.5% throughput degradation, 7.9% ∼ 26.5%
longer average latency, and 10.1%∼20.4% longer tail latency
among different YCSB workloads, especially with workloads
that involve dense read operations (i.e., A, B, and C). IAT
mitigates such degradation by (1) allocating more LLC ways
for DDIO to inject inbound packets into the LLC and (2)
shuffling LLC ways to minimize, if not eliminate, the overlap
between DDIO and cache-hungry applications. These two
methods seem a little contradictory since more LLC ways for
DDIO mean more chance to overlap with other applications.
But actually, with more LLC ways for DDIO, inbound packets
can be distributed evenly among LLC ways, amortizing
pressure on each single LLC way. Even if a few ways are
overlapped, the overall benefit still outperforms the adverse
impact. As a result, IAT minimizes performance degradation
to 2.8%∼5.6%, 2.9%∼8.9%, and 2.8%∼8.7%.

Regarding FastClick, since we are using large packets, the
CPU core is not the bottleneck of packet processing, and we
do not observe a meaningful throughput drop of the service
chain. Also, due to the limitation of the software packet
generator [40] we are using, we are not able to report the
average and tail latency. However, we do see a lower maximum
round-trip latency and fewer time variances (i.e., a significant
difference between the round-trip latency of two consecutive
packets) with IAT, compared to baseline. This shows, allowing
more packets to be fetched and processed from the LLC, IAT
makes the FastClick service chain’s performance more stable.

D. IAT Overhead

We set up different numbers of tenants and measure IAT
daemon’s execution time of each interval (excluding the
initialization time and sleep time). We measure two cases: (1)
each tenant has one dedicated core, and (2) each tenant has
two dedicated cores. We run the IAT daemon on its dedicated
core for 1000 seconds and report the average values. We
classify the results into two categories, i.e., Stable (only the
Poll Prof Data time) and Unstable (Poll Prof Data + State

Transition + LLC Re-alloc time), and depict them5 in Fig. 15.

5Since our CPU only has 18 cores, we have at most eight tenants for the
two cores per tenant case.



First, most of IAT’s execution time is spent on the Poll

Prof Data step, while conducting State Transition and LLC

Re-alloc is relatively cheap. This is because, in the Poll Prof

Data step, the daemon needs to read and write CPU hardware
performance counters, each with costly context-switch. In
contrast, the State Transition step is mainly branches and
numerical comparison, and LLC Re-alloc typically only
involves a couple of (i.e., fewer than five) CPU register writes.

Second, IAT’s execution time increases roughly sub-linearly
with the number of cores it is monitoring. Monitoring more
cores means more counter-read operations, which is the
dominant part of the execution time. Also, with the same
number of cores, fewer tenants correspond to a shorter time
since the overhead of context-switch is alleviated. Even with
a large number of cores, IAT’s execution time does not exceed
800us, which shows the lightweightness and efficiency of
IAT. That is, given the one-second interval in this paper, IAT,
if co-running on a tenant’s core, may only add negligible
overhead (i.e., at most 0.08%) to the system.

We also have an experiment that collocates IAT with
an X-Mem container with ∼ 100% core utilization with
configurations in Sec. III-B and see ∼0.5% impact on X-Mem
throughput and practically no impact on X-Mem latency.

VII. DISCUSSION

IAT’s limitations. First, like most mechanisms based on
modern Intel CPUs, LLC can only be partitioned in the way
granularity in IAT, which is a commodity hardware limitation.
And the low associativity (11-way) on Intel CPUs may lead to
insufficiency (when allocating many tenants) and performance
degradation [71]. One way to mitigate this (but loosen the
strict isolation) is to group tenants and assign LLC ways [11].

Second, as a hard limitation of most dynamic LLC parti-
tioning proposals, IAT is not able to handle microsecond-level
traffic/workload changes [17, 33, 50]. This is mainly because (1)
cache needs some time to take effect, and (2) short interval may
cause fluctuation in sampling data. In other words, even in a sin-
gle fine-grained routine, there can be steps with different charac-
teristics, which is more transient. For example, when the inter-
val is 1ms or shorter, some workloads’ IPC value will fluctuate
dramatically even if the monitored tenant is constantly doing a
stable job without any interference. Also, the time of accessing
CPU registers is not negligible at this timescale. In such cases,
IAT should co-work with state-of-the-art CPU core scheduling
mechanisms [17, 56] to maintain strict performance isolation.

Finally, IAT relies on some user-given tenant information
to characterize workloads. However, we argue that this is
not a concern since we target scenarios requiring extreme
performance, which is more common in the private cloud
than the public cloud6. In the private cloud, the basic tenant
information should be transparent to the operator.

IAT in hardware. IAT can be implemented in the hardware.
On the one hand, it may allow us to consider per-device DDIO

6In the public cloud, it is more economical to have a (relatively) looser
resource allocation for tenants to avoid SLA violation.

statistics and adapt fine-grained DDIO based on those statistics
at a faster rate without worrying about the performance
overhead. On the other hand, a hardware implementation can
enable DDIO to select LLC ways at runtime – it will allow
DDIO to have more fine-grained (per-cacheline) control over
the destination of data in the LLC and can detect/react to
contention/congestion faster (microsecond-scale).

DDIO for the remote socket. Currently, DDIO only supports
the local socket. That is, inbound data are only injected into
the socket that the corresponding I/O device is attached to,
even if the application is running on a remote socket [43].
One solution to overcome this constraint is the multi-socket
NIC technology [55, 67], where the inbound data from the
same NIC can be dispatched to different sockets. We also
expect that DDIO will be extended to support remote sockets
through socket interconnect (i.e., Intel UPI).

Future DDIO consideration. The current DDIO implemen-
tation in Intel CPUs does not distinguish among devices and
applications. That is, inbound traffic (both write update and
write allocate) from various PCIe devices is treated the same.
This, in turn, may cause performance interference between
applications that use DDIO simultaneously. For example, a BE
batch application (e.g., Hadoop) with heavy inbound traffic may
evict the data of other PC applications (e.g., Redis, NFs) from
DDIO’s LLC ways, which leads to performance degradation of
those PC applications. However, the batch applications, whose
performance is insensitive to the memory access latency, cannot
get significant benefit from fetching data from the LLC instead
of the memory. We expect that DDIO in future Intel CPUs
can be device-aware. I.e., it can assign different LLC ways
to different PCIe devices, or even different queues in a single
device, just like what CAT does on CPU cores. Also, we expect
that DDIO can be application-aware, meaning an application
can choose whether or not to use DDIO entirely or partially. For
instance, to avoid cache pollution, an application may enable
DDIO only for packet header, while leaving the payload to the
memory. IAT can further evolve to leverage such awareness.

VIII. RELATED WORK

A. Cache Partitioning and Isolation

We have discussed prior research on cache partitioning with
hardware/software techniques in previous sections. Most of
them do not consider/leverage the I/O-related LLC during
allocation. CacheDirector [13] proposes a means to better
utilize DDIO feature by directing the most critical data
to the core’s local LLC slice, but it does not consider the
performance interference and is applicable only if the per-core
working set can fit into an LLC slice, which is unrealistic
for many applications. IAT is complementary to these prior
proposals and can co-work with them to provide a more
comprehensive and robust cache QoS solution.

SLOMO [48] observes NFV performance contention caused
by DDIO. However, it neither formulates the root causes nor
proposes solutions. Farshin, Roozbeh, Maguire, and Kostic [14]
conduct a performance analysis of DDIO in multiple scenarios



and propose some optimization guidelines. However, they have
inaccurate speculations of DDIO. For example, they speculate
that data from I/O and core has different eviction priorities
in different LLC ways (e.g., “not bijective”), which is not
true. Another example is, they describe that when disabling
DDIO, LLC will be completely bypassed. But in fact, the data
will still be in LLC (controller) first. We clarify the confusion
of DDIO behavior in Sec. II-B and proposes a concrete and
systematic solution for I/O-aware LLC management.

B. I/O Performance Partitioning

There are plenty of papers related to partitioning I/O
for different applications/tenants, including I/O queuing and
scheduling/throttling [2, 58], prioritizing/classifying applica-
tions [38, 50], and software-hardware co-partitioning [8]. While
these solutions provide isolation from different levels (device,
OS, application, etc.), none of them have investigated the I/O’s
interference to CPU’s LLC, which inevitably leads to applica-
tions’ performance drop in I/O-intensive scenarios. IAT provides
the capability of identifying and alleviate such interference and
thus can work with those I/O partitioning techniques together.

IX. CONCLUSION

In modern cloud servers with Intel® DDIO technology, I/O
has become an important factor that affects CPU’s LLC perfor-
mance and utilization. In this paper, we first summarized two
problems caused by DDIO, and then proposed IAT, the first I/O-
aware mechanism for LLC management, which allocates LLC
ways for not only the core but also the I/O. Our experiments
showed that IAT is able to effectively reduce the performance
interference caused by DDIO between applications. We hope
this paper can attract more attention to the study of I/O-aware
LLC management in the architecture and system communities.

ACKNOWLEDGMENT

We would like to thank Robert Blankenship, Miao Cai,
Haiyang Ding, Andrew Herdrich, Ravi Iyer, Yen-Cheng Liu,
Radhika Mittal, Amy Ousterhout, Anil Vasudevan, as well
as the anonymous reviewers for their insightful and helpful
information and feedback. This research is supported by
National Science Foundation (No. CNS-1705047) and Intel
Corporation’s Academic research funding.

REFERENCES

[1] M. Alian, Y. Yuan, J. Zhang, R. Wang, M. Jung, and N. S.
Kim, “Data direct I/O characterization for future I/O system
exploration,” in Proceedings of the 2020 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS’20), Virtual Event, Aug. 2020.

[2] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and
E. Thereska, “End-to-end performance isolation through virtual
datacenters,” in Proceedings of the 11st USENIX Symposium
on Operating Systems Design and Implementation (OSDI’14),
Broomfield, CO, Oct. 2014.

[3] Ansyun Inc., “DPDK native accelerated network stack,”
https://www.ansyun.com, accessed in 2021.

[4] D. Ardelean, A. Diwan, and C. Erdman, “Performance analysis
of cloud applications,” in Proceedings of the 15th USENIX

Symposium on Networked Systems Design and Implementation
(NSDI’18), Renton, WA, Apr. 2018.

[5] arm, “Arm DynamIQ shared unit technical reference manual,”
https://developer.arm.com/documentation/100453/0300/
functional-description/l3-cache/cache-stashing, accessed in
2021.

[6] T. Barbette, C. Soldani, and L. Mathy, “Fast userspace
packet processing,” in Proceedings of the Eleventh
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS ’15), Oakland, CA, May 2015.

[7] R. Bitirgen, E. Ipek, and J. F. Martinez, “Coordinated
management of multiple interacting resources in chip
multiprocessors: A machine learning approach,” in Proceedinsg
of the 41st IEEE/ACM International Symposium on
Microarchitecture (MICRO’08), Lake Como, Italy, Nov. 2008.

[8] S. Chen, C. Delimitrou, and J. F. Martínez, “PARTIES:
QoS-aware resource partitioning for multiple interactive
services,” in Proceedings of the 24th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’19), Providence, RI, Apr. 2019.

[9] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with YCSB,”
in Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC’10), Indianapolis, IN, Jun. 2010.

[10] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan, “High
performance network virtualization with SR-IOV,” Journal of
Parallel and Distributed Computing, vol. 72, no. 11, 2012.

[11] N. El-Sayed, A. Mukkara, P.-A. Tsai, H. Kasture, X. Ma,
and D. Sanchez, “KPart: A hybrid cache partitioning-sharing
technique for commodity multicores,” in Proceedings of the
24th IEEE International Symposium on High Performance
Computer Architecture (HPCA’18), Vienna, Austria, Feb. 2018.

[12] Facebook, “RocksDB: A persistent key-value store for fast
storage environments,”
https://rocksdb.org, accessed in 2021.

[13] A. Farshin, A. Roozbeh, G. Q. Maguire Jr., and D. Kostić,
“Make the most out of last level cache in Intel processors,” in
Proceedings of the 14th European Conference on Computer
Systems (EuroSys’19), Dresden, Germany, Mar. 2019.

[14] ——, “Reexamining direct cache access to optimize I/O
intensive applications for multi-hundred-gigabit networks,” in
Proceedings of 2020 USENIX Annual Technical Conference
(ATC’20), Virtual Event, Jul. 2020.

[15] D. Firestone, “VFP: A virtual switch platform for host SDN
in the public cloud,” in Proceedings of the 14th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’17), Boston, MA, Apr. 2017.

[16] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,
M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield, E. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, L. Jack,
L. Norman, F. Liu, K. Ovtcharov, J. Padhye, G. Popuri,
S. Raindel, T. Sapre, M. Shaw, M. Silva, Ganriel nd Sivakumar,
N. Srivastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,
K. Vaid, D. A. Maltz, and A. Greenberg, “Azure accelerated
networking: SmartNICs in the public cloud,” in Proceedings
of the 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’18), Renton, WA, Apr. 2018.

[17] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay, “Caladan:
Mitigating interference at microsecond timescales,” in Proceedigs
of the 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’20), Virtual Event, Nov. 2020.

[18] H. Golestani, A. Mirhosseini, and T. F. Wenisch, “Software
data planes: You can’t always spin to win,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC’19), Santa
Cruz, CA, Nov. 2019.

[19] M. Gottscho, S. Govindan, B. Sharma, M. Shoaib, and
P. Gupta, “X-Mem: A cross-platform and extensible memory

https://www.ansyun.com
https://developer.arm.com/documentation/100453/0300/functional-description/l3-cache/cache-stashing
https://developer.arm.com/documentation/100453/0300/functional-description/l3-cache/cache-stashing
https://rocksdb.org


characterization tool for the cloud,” in 2016 IEEE International
Symposium on Performance Analysis of Systems and Software
(ISPASS’16), Uppsala, Sweden, Jun. 2016.

[20] J. Han, S. Jeon, Y.-r. Choi, and J. Huh, “Interference
management for distributed parallel applications in consolidated
clusters,” in Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’16), Atlanta, GA, Apr. 2016.

[21] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, 2006.

[22] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos,
R. Singhal, and R. Iyer, “Cache QoS: From concept to reality
in the Intel® Xeon® processor E5-2600 v3 product family,”
in Proceedings of the 2016 IEEE International Symposium
on High Performance Computer Architecture (HPCA’16),
Barcelona, Spain, Mar. 2016.

[23] R. Huggahalli, R. Iyer, and S. Tetrick, “Direct cache access
for high bandwidth network I/O,” in Proceedings of the 32nd
International Symposium on Computer Architecture (ISCA’05),
Madison, WI, Jun. 2005.

[24] J. Hwang, K. K. Ramakrishnan, and T. W. and, “NetVM:
High performance and flexible networking using virtualization
on commodity platforms,” in Proceedings of 11th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’14), Seattle, WA, Apr. 2014.

[25] Intel Corporation, “Data plane development kit (DPDK),”
https://www.dpdk.org, accessed in 2021.

[26] ——, “Intel 64 and IA-32 architectures software developer’s
manual volume 4: Model-specific registers,”
https://software.intel.com/en-us/download/intel-64-and-ia-32-
architectures-software-developers-manual-volume-4-model-
specific-registers, accessed in 2021.

[27] ——, “Intel Ethernet converged network adapter XL710 10/40
GbE,”
https://www.intel.com/content/www/us/en/ethernet-products/
converged-network-adapters/ethernet-xl710-brief.html, accessed
in 2021.

[28] ——, “Intel resource director technology (Intel RDT),”
https://www.intel.com/content/www/us/en/architecture-and-
technology/resource-director-technology.html, accessed in 2021.

[29] ——, “Intel Xeon Gold 6140 processor,”
https://ark.intel.com/content/www/us/en/ark/products/120485/
intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html,
accessed in 2021.

[30] ——, “Intel Xeon processor Scalable family uncore reference
manual,”
https://www.intel.com/content/www/us/en/processors/xeon/
scalable/xeon-scalable-uncore-performance-monitoring-
manual.html, accessed in 2021.

[31] ——, “Intel® data direct I/O (DDIO),”
https://www.intel.com/content/www/us/en/io/data-direct-i-o-
technology.html, accessed in 2021.

[32] ——, “User space software for Intel resource director
technology,”
https://github.com/intel/intel-cmt-cat, accessed in 2021.

[33] C. Iorgulescu, R. Azimi, Y. Kwon, S. Elnikety, M. Syamala,
V. Narasayya, H. Herodotou, P. Tomita, A. Chen, J. Zhang,
and J. Wang, “Perfiso: Performance isolation for commercial
latency-sensitive services,” in Proceedings of 2018 USENIX
Annual Technical Conference (ATC’18), Boston, MA, Jul. 2018.

[34] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse
engineering of cache slice selection in intel processors,” in
Proceedings of the 2015 Euromicro Conference on Digital System
Design (DSD’15), Funchal, Madeira, Portugal, Aug. 2015.

[35] A. Jaleel, “Memory characterization of workloads
using instrumentation-driven simulation,” Web Copy:
http://www.jaleels.org/ajaleel/publications/SPECanalysis.pdf,

2010.
[36] A. Kalia, D. Andersen, and M. Kaminsky, “Challenges

and solutions for fast remote persistent memory access,” in
Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC’20), Virtual Event, Oct. 2020.

[37] M. Kambadur, T. Moseley, R. Hank, and M. A. Kim,
“Measuring interference between live datacenter applications,”
in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis
(SC’12), Salt Lake City, UT, Nov. 2012.

[38] G. Kappes and S. V. Anastasiadis, “A user-level toolkit for
storage I/O isolation on multitenant hosts,” in Proceedings of
the 11th ACM Symposium on Cloud Computing (SoCC’20),
Virtual Event, Oct. 2020.

[39] H. Kasture and D. Sanchez, “Ubik: Efficient cache sharing with
strict QoS for latency-critical workloads,” in Proceedings of
the 19th international conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’14),
Salt Lake City, UT, Mar. 2014.

[40] Keith Wiles, “Pktgen - traffic generator powered by DPDK,”
https://github.com/pktgen/Pktgen-DPDK, accessed in 2021.

[41] C. Kim, D. Burger, and S. W. Keckler, “An adaptive, non-
uniform cache structure for wire-delay dominated on-chip
caches,” in Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS’02), San Jose, CA, Oct. 2002.

[42] N. Kulkarni, G. Gonzalez-Pumariega, A. Khurana, C. A.
Shoemaker, C. Delimitrou, and D. H. Albonesi, “CuttleSys:
Data-driven resource management for interactive services
on reconfigurable multicores,” in Proceedings of the 53rd
IEEE/ACM International Symposium on Microarchitecture
(MICRO’20), Virtual Event, Oct. 2020.

[43] I. Kurakin and R. Khatko, “IO issues: Remote socket accesses,”
https://software.intel.com/en-us/vtune-cookbook-io-issues-
remote-socket-accesses, accessed in 2021.

[44] M. Kurth, B. Gras, D. Andriesse, C. Giuffrida, H. Bos, and
K. Razavi, “NetCAT: Practical cache attacks from the network,”
in Proceedings of the 41st IEEE Symposium on Security and
Privacy (Oakland’20), Virtual Event, May 2020.

[45] D. Kwon, J. Boo, D. Kim, and J. Kim, “FVM: FPGA-assisted
virtual device emulation for fast, scalable, and flexible storage
virtualization,” in Proceedings of the 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI’20),
Virtual Event, Nov. 2020.

[46] Q. Llull, S. Fan, S. M. Zahedi, and B. C. Lee, “Cooper: Task
colocation with cooperative games,” in Proceedings of 2017
IEEE International Symposium on High Performance Computer
Architecture (HPCA’17), Austin, TX, Feb. 2017.

[47] F. Manco, C. Lupu, F. Schmidt, J. Mendes, S. Kuenzer, S. Sati,
K. Yasukata, C. Raiciu, and F. Huici, “My VM is lighter
(and safer) than your container,” in Proceedings of the 26th
ACM Symposium on Operating Systems Principles (SOSP’17),
Shanghai, China, Oct. 2017.

[48] A. Manousis, R. A. Sharma, V. Sekar, and J. Sherry, “Contention-
aware performance prediction for virtualized network functions,”
in Proceedings of the 2020 ACM SIGCOMM Conference
(SIGCOMM’20), Virtual Event, Aug. 2020.

[49] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: Increasing utilization in modern warehouse scale
computers via sensible co-locations,” in Proceedings of the
44th IEEE/ACM International Symposium on Microarchitecture
(MICRO’11), Porto Alegre, Brazil, Dec. 2011.

[50] M. Marty, M. de Kruijf, J. Adriaens, C. Alfeld, S. Bauer,
C. Contavalli, M. Dalton, N. Dukkipati, W. C. Evans, S. Gribble,
N. Kidd, R. Kononov, G. Kumar, C. Mauer, E. Musick, L. Olson,
E. Rubow, M. Ryan, K. Springborn, P. Turner, V. Valancius,
X. Wang, and A. Vahdat, “Snap: A microkernel approach to

https://www.dpdk.org
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-4-model-specific-registers
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-4-model-specific-registers
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-software-developers-manual-volume-4-model-specific-registers
https://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-xl710-brief.html
https://www.intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-xl710-brief.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120485/intel-xeon-gold-6140-processor-24-75m-cache-2-30-ghz.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/processors/xeon/scalable/xeon-scalable-uncore-performance-monitoring-manual.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology.html
https://github.com/intel/intel-cmt-cat
https://github.com/pktgen/Pktgen-DPDK
https://software.intel.com/en-us/vtune-cookbook-io-issues-remote-socket-accesses
https://software.intel.com/en-us/vtune-cookbook-io-issues-remote-socket-accesses


host networking,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles (SOSP’19), Huntsville, Canada,
Oct. 2019.

[51] C. Maurice, N. Scouarnec, C. Neumann, O. Heen, and
A. Francillon, “Reverse engineering Intel last-level cache
complex addressing using performance counters,” in Proceedings
of the 18th International Symposium on Research in Attacks,
Intrusions, and Defenses (RAID’15), Kyoto, Japan, Nov. 2015.

[52] NETRONOME, “Agilio OVS software,”
https://www.netronome.com/products/agilio-software/agilio-
ovs-software/, accessed in 2021.

[53] Network Working Group, “Benchmarking methodology for
network interconnect devices,”
https://tools.ietf.org/html/rfc2544, accessed in 2021.

[54] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-
Buedo, and A. W. Moore, “Understanding PCIe performance
for end host networking,” in Proceedings of the 2018 ACM
SIGCOMM Conference (SIGCOMM’18), Budapest, Hungary,
Aug. 2018.

[55] Nvidia, “Socket direct adapters,”
https://www.nvidia.com/en-us/networking/ethernet/socket-
direct/, accessed in 2021.

[56] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan, “Shenango: Achieving high CPU efficiency
for latency-sensitive datacenter workloads,” in Proceedings of
the 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’19), Boston, MA, Feb. 2019.

[57] J. Park, S. Park, and W. Baek, “CoPart: Coordinated partitioning
of last-level cache and memory bandwidth for fairness-aware
workload consolidation on commodity servers,” in Proceedings
of the 14th European Conference on Computer Systems
(EuroSys’19), Dresden, Germany, Mar. 2019.

[58] T. Patel, R. Garg, and D. Tiwari, “GIFT: A coupon based
throttle-and-reward mechanism for fair and efficient I/O
bandwidth management on parallel storage systems,” in
Proceedings of the 18th USENIX Conference on File and
Storage Technologies (FAST’20), Santa Clara, CA, Feb. 2020.

[59] T. Patel and D. Tiwari, “CLITE: Efficient and QoS-aware
co-location of multiple latency-critical jobs for warehouse
scale computers,” in Proceedings of 2020 IEEE International
Symposium on High Performance Computer Architecture
(HPCA’20), San Diego, CA, Feb. 2020.

[60] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou,
J. Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar,
K. Amidon, and M. Casado, “The design and implementation of
Open vSwitch,” in Proceedings of the 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI’15),
Okaland, CA, May 2015.

[61] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K.
Iyer, “FIRM: An intelligent fine-grained resource management
framework for SLO-oriented microservices,” in Proceedings
of 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20), Virtual Event, Nov. 2020.

[62] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning:
A low-overhead, high-performance, runtime mechanism to
partition shared caches,” in Proceedings of the 39th IEEE/ACM
International Symposium on Microarchitecture (MICRO’06),
Orlando, FL, Dec. 2006.

[63] redislabs, “Redis,”
https://redis.io, accessed in 2021.

[64] R. Russell, “Virtio: Towards a de-facto standard for virtual I/O
devices,” ACM SIGOPS Operating Systems Review, vol. 42,
no. 5, Jul. 2008.

[65] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer,
“Modeling performance variation due to cache sharing,” in
Proceedings of the 2013 IEEE International Symposium on High
Performance Computer Architecture (HPCA’13), Shenzhen,

China, Feb. 2013.
[66] V. Selfa, J. Sahuquillo, L. Eeckhout, S. Petit, and M. E. Gómez,

“Application clustering policies to address system fairness with
Intel’s cache allocation technology,” in Proceedings of the
26th International Conference on Parallel Architectures and
Compilation Techniques (PACT’17), Portland, OR, Nov. 2017.

[67] I. Smolyar, A. Markuze, B. Pismenny, H. Eran, G. Zellweger,
A. Bolen, L. Liss, A. Morrison, and D. Tsafrir, “IOctopus:
Outsmarting nonuniform DMA,” in Proceedings of the
25th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’20),
Virtual Event, Mar. 2020.

[68] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin,
S. Hand, M. Harchol-Balter, and J. Wilkes, “Borg: The next
generation,” in Proceedings of the Fifteenth European Conference
on Computer Systems (EuroSys’20), Virtual Event, Apr. 2020.

[69] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki,
S. Ratnasamy, and S. Shenker, “ResQ: Enabling SLOs in
network function virtualization,” in Proceedings of 15th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI’18), Renton, WA, Apr. 2018.

[70] N. Vasić, D. Novaković, S. Miučin, D. Kostić, and R. Bianchini,
“DejaVu: Accelerating resource allocation in virtualized environ-
ments,” in Proceedings of the 17th International Conference on
Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS’12), London, England, UK, Mar. 2012.

[71] R. Wang and L. Chen, “Futility scaling: High-associativity
cache partitioning,” in Proceedings of the 47th IEEE/ACM
International Symposium on Microarchitecture (MICRO’14),
Cambridge, UK, Dec. 2014.

[72] X. Wang, S. Chen, J. Setter, and J. F. Martínez, “SWAP:
Effective fine-grain management of shared last-level caches
with minimum hardware support,” in Proceedings of 2017
IEEE International Symposium on High Performance Computer
Architecture (HPCA’17), Austin, TX, Feb. 2017.

[73] Y. Xiang, X. Wang, Z. Huang, Z. Wang, Y. Luo, and Z. Wang,
“DCAPS: Dynamic cache allocation with partial sharing,” in
Proceedings of the 13th European Conference on Computer
Systems (EuroSys’18), Porto, Portugal, Apr. 2018.

[74] C. Xu, K. Rajamani, A. Ferreira, W. Felter, J. Rubio, and Y. Li,
“dCat: Dynamic cache management for efficient, performance-
sensitive infrastructure-as-a-service,” in Proceedings of the
13th European Conference on Computer Systems (EuroSys’18),
Porto, Portugal, Apr. 2018.

[75] Z. Yang, J. R. Harris, B. Walker, D. Verkamp, C. Liu, C. Chang,
G. Cao, J. Stern, V. Verma, and L. E. Paul, “SPDK: A
development kit to build high performance storage applications,”
in Proceedings of the 9th IEEE International Conference on
Cloud Computing Technology and Science (CloudCom’17),
Hong Kong, China, Dec. 2017.

[76] Y. Ye, R. West, Z. Cheng, and Y. Li, “COLORIS: A dynamic
cache partitioning system using page coloring,” in Proceedings
of the 23rd International Conference on Parallel Architecture
and Compilation Techniques (PACT’14), Edmonton, Canada,
Aug. 2014.

[77] Y. Zhang, J. Chen, X. Jiang, Q. Liu, I. M. Steriner, A. J.
Herdrich, K. Shu, R. Das, L. Cui, and L. Jiang, “LIBRA:
Clearing the cloud through dynamic memory bandwidth
management,” in Proceedings of the 27th IEEE International
Symposium on High-performance Computer Architecture
(HPCA’21), Virtual Event, Feb. 2021.

[78] H. Zhu and M. Erez, “Dirigent: Enforcing QoS for latency-
critical tasks on shared multicore systems,” in Proceedings of
the 21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’16),
Atlanta, GA, Apr. 2016.

https://www.netronome.com/products/agilio-software/agilio-ovs-software/
https://www.netronome.com/products/agilio-software/agilio-ovs-software/
https://tools.ietf.org/html/rfc2544
https://www.nvidia.com/en-us/networking/ethernet/socket-direct/
https://www.nvidia.com/en-us/networking/ethernet/socket-direct/
https://redis.io

	Introduction
	Background
	Managing LLC in Modern Server CPU
	Data Direct I/O Technology
	Tenant-device Interaction in Virtualized Servers

	Motivation: The Impact of I/O on LLC
	The Leaky DMA Problem
	The Latent Contender Problem

	Iat Design
	Get Tenant Info and LLC Alloc
	Poll Prof Data
	State Transition
	LLC Re-alloc
	Sleep
	Putting It All Together: Two Examples

	Implementation
	Evaluation
	Setup
	Microbenchmark Results
	Application Results
	Iat Overhead

	Discussion
	Related Work
	Cache Partitioning and Isolation
	I/O Performance Partitioning

	Conclusion

