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Abstract 
 

Our recent continuum theory for stress-gradient-induced migration of polymers in confined 

solutions, including the depletion from the solid boundaries (E. Hajizadeh and R. G. Larson, Soft 

Matter, 2017, 13, 5942) [1] is applied to a two-dimensional rotational shearing flow in the gap 

between eccentric cylinders. Analytical results for the steady-state distribution of polymer 

dumbbells in the limit of dilute polymer solution 𝑐⁄𝑐∗ ≪ 1 (𝑐∗ is the chain overlap concentration) 

and in the absence of hydrodynamic interactions (HI) are obtained. The effects of eccentricity 𝑒, 

and of three perturbation variables, namely Weissenberg number 𝑊𝑖, Gradient number 𝐺𝑑	(which 

defines the level of polymer chain confinement) and Peclet number 𝑃𝑒  on the polymer 

concentration pattern are investigated. The stress-gradient-induced migration results in polymer 

migration towards the inner cylinder, while wall-depletion-induced migration results in near-zero 

polymer concentration close to flow boundaries, which couples to a stress-gradient-induced 

migration effect. In the presence of wall-depletion, we obtain first order concentration variation 

proportional to 𝑊𝑖. Whereas, in the absence of wall-depletion, there is no first order contribution 

and therefore lowest-order concentration variation is proportional to 𝑊𝑖*. An upper limit of 𝑊𝑖 = 

1.6 exists, beyond which numerical solution demands an excessive under-relaxation to converge. 

In addition, for a high degree of polymer chain confinement, i.e., for 𝐺𝑑 greater than 0.5, the 

continuum theory fails to be accurate and mesoscopic simulations that track individual polymer 

molecules are needed.  
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1. Introduction 
 

The cross-streamline migration of polymers in solution in confined flows with steep changes in 

stress or velocity gradient is a well-known phenomenon that leads to a nonuniform polymer 

concentration profile within the flow domain. Apart from its scientific importance [2], the 

phenomenon has implications for several technological applications in lubrication [3, 4], enhanced 

oil recovery [5], separation processes [6, 7], and DNA sequencing in microfluidics [8, 9]. For 

instance, predicting the conformation and motion of polymer chains in microfluidic geometries is 

of considerable significance in designing efficient devices for single-molecule analysis of DNA 

[10-14]. While simple spherical colloids in confined geometries usually migrate from regions of 

high to low shear rates due to direct interactions between the colloids, with a corresponding 

transport coefficient proportional to the shear-rate derivative of the pair-correlation function [15, 

16], migrations of non-interacting polymers can be more complicated due to the coupling of the 

polymer conformation tensor to the second derivative of the velocity field [1]. 

Theories for polymer migration typically involve incorporating into the mass balance equation a 

polymer ‘‘stress-diffusion’’ term, proportional to the divergence of the polymer stress tensor, 

which can be derived in a variety of ways, such as by using the two-fluid model [4, 7, 17-21]. 

Other approaches, including perturbation expansions within the phase space kinetic theory [4, 17] 

and ‘‘body tensor continuum theory’’ proposed by  Öttinger [22] all result in mass transport terms 

that include the divergence of the stress tensor, and other terms that appear in both the polymer 

mass balance equation and the polymer constitutive equation and that differ among the various 

approaches mentioned above [17].  

We have recently developed a continuum theory [23] for the stress-gradient-induced migration of 

polymers in solutions based on a systematic perturbation analysis and validated, for the first time, 

through mesoscopic bead-spring simulations, which successfully identifies the migration source 

and clarifies the origin of discrepancies among the existing theories. The work shows that some 

terms arising in existing theories are due to the inclusion of higher order terms in an expansion in 

a perturbation parameter 𝐺𝑑, which is a measure of the degree of polymer chain confinement. 

Specifically, 𝐺𝑑 is the ratio of polymer radius of gyration to the length scale over which a steep 

change in velocity gradient occurs, as discussed in section 3. We earlier demonstrated that in dilute 
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solutions migration arises from the second and higher order spatial gradients in velocity. This 

continuum theory has been applied to a periodic vortex flow [23], periodic electroosmotic flow 

[9], and concentric cylinder flow [1]. In the latter, we observed a strong polymer migration towards 

the inner cylinder and confirmed this phenomenon and the range of accuracy of the continuum 

theory via Brownian dynamics [24] simulations [1].  

Here, we wish to extend our recent continuum theory to the flow in the gap between eccentric 

cylinders, which is an important model problem for journal bearing flows. In practical applications, 

such flows often involve lubricants that contain polymer additives, whose migration would be a 

significant concern, making this problem a potentially important one for lubricant design and 

tribology.  

In this paper, we follow our previous work and use the simple Hookean dumbbell model for 

polymer chains in a dilute solution flowing in the gap between rotating eccentric cylinders. We 

first examine the effect of dimensionless numbers Gradient number 𝐺𝑑, Weissenberg number 𝑊𝑖, 

and Peclet number 𝑃𝑒 on polymer migration pattern to determine the range of validity of the 

continuum theory. Thereafter, we study the effect of wall-depletion on migration patterns, using a 

wall repulsion potential given by a decaying-exponential potential fitted to results from our 

previous Brownian dynamics simulations [1]. This empirical wall potential was shown, by 

comparison to predictions of bead-spring simulations, to account well for the wall-depletion effect 

for concentric Taylor Couette flow. Since we have not changed the polymer chain model or the 

wall parameters, this model is also used in the present study for the case of eccentric cylinders. In 

what follows, Section 2 describes the eccentric cylinder geometry and flow field; Section 3 defines 

the dimensionless groups used in our analyses; Section 4 presents the details of the perturbation 

theory for polymer dumbbells in cylindrical coordinates; Section 5 discusses the results for the 

stress-gradient-induced migration and depletion-induced migration; and ultimately, Section 6 

summarises the main findings and future work. 

 

2. Geometry and Flow Field 
 

For our eccentric cylinders, depicted in Figure 1, the inner cylinder rotates counter-clockwise while 

the outer cylinder remains stationary, producing shear flow between them. 𝑅- and  𝑅* are the radii 



of the inner and outer cylinders,  is the eccentricity which is the offset between the centres of the 

two cylinders,  is the angular velocity of inner cylinder, and  and  are local Cartesian 

coordinates to assist analysing flow in the gap between the two cylinders. 

 
Figure 1 Schematic representation of the eccentric cylinder system 

It has been shown [25] that for a slow laminar flow in a small gap between the eccentric cylinders 

relative to the cylinder’s radius, the velocity components using a lubrication approximation are 

given by 

      (1) 

     (2) 

where  is the linear velocity of the inner cylinder,  is the maximum 

gap,  is the mean gap, and  is the angle-dependent gap:  

       (3) 

where  is the clearance,  is the eccentricity ratio, and  is measured radially 

from the inner cylinder as 

       (4) 

where  The pressure gradient in Eq. (1) is given as 



       (5) 

where . 

In this work, we choose  = 55 and  = 60 where these values are in units of polymer coil size 

[1]. Dimensionless units are used to maintain the validity of the assumption used to derive the 

velocity profile based on the lubrication theory for a “small” clearance space such that . 

 

3. Dimensionless Numbers 
 

As mentioned before, the migration pattern of polymers in solution can be influenced by the degree 

of confinement experienced by the polymer as well as by the stress gradient over its dimension. 

Here, we define a dimensionless gradient number  to quantify the ratio of the polymer size to 

the distance  over which appreciable variations of stress or velocity gradient is expected to occur: 

        (6) 

where  is the mean-square of end-to-end distance of the dumbbell in the absence of flow, 

 is the minimum gap between the two cylinders, where a steep change in velocity 

gradient is expected in the eccentric cylinder. In addition, a dimensionless Weissenberg number 

 is defined to determine the ability of the flow to deform polymer molecules as 

        (7) 

where  is the stress relaxation time of the polymer calculated as  and  is the 

diffusion coefficient of the dumbbell calculated as , where  is the drag coefficient 

of the dumbbell bead and  is the thermal energy. Moreover, in addition to  and , a third 

relevant dimensionless group, i.e., Peclet number , is defined as the ratio of the advective to 

diffusive transports of polymers under flow as 

        (8) 

The three dimensionless numbers are related to each through below expression 
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The Hookean spring constant is defined as 𝐻 = 3𝑘r𝑇/〈𝑅*〉l which can be related to Gd as 𝐺𝑑* =
*xyz
<;{

 and to Wi as 𝑊𝑖 = G|
v<{

, where more details are available in [23]. For a completely analytical 

solution to be derived, all three dimensionless numbers need to remain small. Our previous work 

[23] showed that, for arbitrary 𝑃𝑒, although an analytical solution is not available, if 𝐺𝑑 and 𝑊𝑖 

are small, a simplified polymer transport equation can be derived. In fact, as long as 𝐺𝑑 remains 

small, concentration field equations can still be derived even if neither 𝑃𝑒 nor 𝑊𝑖 is small. This is 

explained in more detail in section 4. 

 

4. Perturbation Theory 
Our recent perturbation theory has been shown to successfully capture the stress-gradient-induced 

polymer migration in dilute solutions [23]. The theory includes coupled equations for polymer 

rheology, fluid dynamics and polymer mass transport. A flowchart summarising different levels 

of continuum theories and mesoscopic simulations for the stress-gradient-induced migration in 

dilute polymer solution is given in Figure 2 (reproduced from [9]). A Hookean dumbbell model in 

a very dilute solution is used and hydrodynamic interactions (HI) are neglected in this study. Note 

that HI can produce polymer migration as shown by earlier studies [26, 27], although without HI 

polymer migration can still occur [7]. The present theory focuses on the simplest case of dilute 

dumbbells without HI as a starting point for exploring the mechanisms of stress-gradient-induced 

polymer migration [23]. A more complete theory including HI can be developed in the future, and 

has been presented already for a simpler flow field with stress-gradient-induced polymer migration 

[9]. For small enough gradient number 𝐺𝑑, a continuum theory is valid for predicting polymer 

migration with different levels of perturbation. At small velocity, the Weissenberg number (𝑊𝑖) 

expansion of the constitutive equation can be used. At high enough velocity, the Weissenberg 

number 𝑊𝑖  expansion fails and to obtain the overall migration mass flux, the polymer 

conformation tensor 𝑆~x  needs to be obtained via solving a constitutive equation. Note that a wall-

depletion term can be included within different levels of continuum theory to study the influence 

of wall-depletion-induced polymer migration. For a large gradient number 𝐺𝑑 , the continuum 

theory fails, and mesoscopic simulation is required, which is the subject of our future study, where 



we will develop a multiscale simulation formalism that couples molecular dynamics simulations 

[28-30] to a mesoscopic smoothed dissipative particle dynamics simulation [31-33] to capture the 

effects of hydrodynamics interactions and strong confinement on polymer configuration and 

migration.  

 

Figure 2 Flowchart summarising different levels of continuum theory and mesoscopic 
simulations for stress-gradient-induced migration in a dilute polymer solution (reproduced from 

[9]) 

Different levels of perturbation theories can be applied to predict polymer migration in dilute 

solutions. At the lowest order in gradient number , the migration flux of a dilute Hookean 

dumbbell is given as 

      (10) 

where  is the depletion force acting on the polymer’s centre of mass,  is the bead drag 

coefficient, and  is the conformation tensor where   is the end-to-end distance of 

a dumbbell, the brackets “ ” represent the ensemble average, and  where the 

subscript “0” denotes that the average is in the absence of flow. The conformation tensor  can 

be obtained by solving the upper-convected Maxwell equation given as  

    (11) 



Where the over-dot represents the substantial time derivative, and the velocity  and its gradients 

in the above are expressed using Einstein notation. The first term in Eq. (10) represents migration 

due to variations in velocity gradients, while the second term denotes the depletion-induced 

migration from the walls. Note that earlier work showed that Eq. (10) gives the migration flux up 

to second order in .  

We now expand the upper-convected Maxwell Eq. (11) in the magnitude of the velocity gradient 

[1], which gives the following lowest order terms for the migration flow, including a zeroth-order 

migration flux in the depletion region: 

       (12) 

       (13) 

      (14) 

To seek solutions to the concentration field, these flux expressions can be used in the following 

steady-state convection-diffusion equation 

      (15) 

As described in [23], we expand the concentration  in a Taylor’s series in powers of the velocity 

magnitude  as  with each term proportional to  raised to the power 

in the parenthetical exponent. This can be considered an expansion in the Peclet number . 

Similar expansion can be achieved in the , considering each term to be proportional to the 

magnitude of the relaxation time raised to the power in the parenthetical exponent [23].  

 

4.1 In the absence of wall depletion: 

 

When wall-depletion is not included, only the stress-gradient-induced migration occurs. Therefore, 

in the absence of any repulsion from the vicinity of the walls, there is no zeroth-order migration 

flux and  is a constant. For eccentric cylinders in the absence of HI and wall depletion 

and in dilute regimes, and when both  and  are small, the steady-state governing equation 

gives the first order theory in  as 



     (16) 

where the gradient of the constant  is zero, making the second term in Eq. (16) equal to zero. 

This also reduces the third term in Eq. (16) to . Using the continuity 

equation , we can get , which then implies that the third term in Eq. (16) is also 

zero.  is thus zero and there is no first-order contribution to the concentration field, so that the 

lowest-order concentration variation is proportional to , as discussed in [1]. 

The second order theory in  is expressed as 

    (17) 

In the absence of wall-induced migration, we showed that , hence the second term in Eq. 

(17) is zero. The third term in Eq. (17) is the source term for 2nd order stress-gradient-induced 

migration. The fourth term in Eq. (17) is zero as both  and  are zero. Therefore, Eq. (17) 

can be simplified as below  

     (18) 

To study situations where  with , we cannot carry out an expansion in  but 

we can use the perturbation in  [23]. Therefore, following the same procedure used for the 

expansion in , we get at lowest order (second order) in   

     (19) 

Note that Eq. (19) is identical to the second-order equation from the Peclet number expansion, Eq. 

(18), except that Eq. (19) contains the convection term which is missing from Eq. (18), 

because this term is third order in , even though it is only second order in . As long as 

, Eq. 19 is valid for arbitrary Pe. In cylindrical coordinates Eq. (19) becomes 

  

 (20) 

The migration terms in Eq. (18) and Eq. (19) as well as the first order and high order derivatives 

of the velocity components in cylindrical coordinates [34] are given in the Appendix I. 



At high enough velocity, the Weissenberg number expansion of the constitutive equation fails, and 

the constitutive Eq. (11) must be solved numerically for the conformation tensor , which is then 

used in Eq. (10) for the overall migration flux  which when substituted into Eq. (15) gives the 

following equation for the polymer concentration for any : 

     (21) 

In cylindrical coordinates, Eq. (21) becomes 

 

     (22) 

while Eq. (11) reduces to the system of equations given below 

   (23) 

We implement periodic boundary conditions in the -direction at  and  to ensure the 

concentration at these two values of  are equal to each other. We use a no-flux condition in the 

-direction at the location of two solid boundaries, i.e.,  and . For the no-flux 

boundary condition, we obtain the radial flux terms from Eq. (21) and set their sum to zero at both 

cylinder boundaries, i.e., inner cylinder boundary and outer cylinder boundary, as given below 

      (24) 

 

4.2 In the presence of wall depletion 

 

In the presence of wall depletion, in contrast to section 4.1 which considered only the stress-

gradient-induced migration, the depletion force results in a non-uniform concentration field at 

zeroth order, . A decaying-exponential potential [35] is used to approximate the depletion, 

expressed as  where r is the radial coordinate centered 

at the axis of rotation,  is a fitted length scale proportional to the radius of gyration of the 



polymer dumbbell and the interaction strength  is adjusted to match the depletion observed in BD 

simulations of the same system [1]. The depletion force is directed normal to the walls and given 

as , producing the flux in Eq. (12). The coupling of the depletion layer to the 

velocity produces what we elsewhere referred to as “depletion-convection-induced” migration 

[36]. When polymer depletion results in a non-uniform , the fluxes do not in general vanish 

and one obtains a first order concentration variation. We can go to higher orders by incorporating 

more terms into the Taylor’s series expansion of the overall concentration field.  

This depleted concentration field can be obtained by retaining only the zeroth-order terms in  

in Eq. (15) 

       (25) 

where  is found from Eq. (12). Note that since the wall depletion force is axisymmetric,  

is zero and therefore  is independent of , although it depends on r. In cylindrical coordinates, 

Eq. (25) becomes 

     (26) 

Since in the presence of the zeroth-order wall potential, the zeroth-order concentration is not 

uniform, the first order concentration  therefore is computed including both the 0th order 

contribution and the 1st order migration flux, in contrast to that in section 4.1. To obtain the first 

order contribution to the polymer concentration field (i.e., the contribution proportional to ), 

we consider all first order terms in Eq. (15) yielding 

     (27) 

where  is given in Eq. (13). Note that the second term in this equation is the convective 

contribution, which is proportional to the Peclet number . In cylindrical coordinates, Eq. (27) 

becomes 



          

  (28) 

After solving  and , the second order contribution  can also be calculated by solving 

the corresponding convection-diffusion equation 

    (29) 

In cylindrical coordinates, Eq. (29) becomes 

     

  (30) 

For concentric cylinders (Taylor-Couette flow) [1], the terms involving  disappear because the 

first order concentration  vanishes, even when axisymmetric wall depletion exists. In eccentric 

cylinders with wall depletion,  does not vanish because  is non-uniform as flow component 

normal to the wall now exists. Eq. (30) for  can be solved using the zeroth-order concentration 

 obtained from solving Eq. (26), the first order concentration  obtained from solving Eq. 

(28) and the migration flux terms and  from Eqs (12), (13) and (14), respectively.  

At high enough velocity, the Weissenberg number expansion of the constitutive equation fails and 

the constitutive theory needs to be used. Therefore, Eq. (15) needs to be solved by using the overall 

migration flux including wall-depletion-induced contribution as  

    (31) 

in cylindrical coordinates Eq. (31) becomes 

           

            (32) 



Periodic boundary conditions in the -direction at  and  are implemented to ensure 

the concentration at these two values of  equal to each other. No-flux in the -direction at the 

location of two solid boundaries, i.e.,  and  are again used. For the no-flux 

boundary condition, we set the total flux in the -direction to zero and add the wall-depletion term 

so that Eq. (24) becomes 

      (33) 

here,  and  are dummy variables, representing  or .  

At high enough velocity, the Weissenberg number expansion of the constitutive equation fails. In 

such cases, Eqs. (13,14) are no longer useful, and constitutive Eq. (11) must be solved for the 

conformation tensor , which is then used in Eq. (10) to obtain the overall migration flux at all 

. Beyond this, if the size of the polymer is comparable to the geometrical length scale, i.e. when 

 becomes large, the use of continuum theory based on low-order expansions in  fails 

altogether, and mesoscopic simulation methods that track individual polymer molecules are 

needed. 

  

5. Results and Discussion 
 

A finite difference method is applied to discretize the continuum theory equations given in Section 

4. A mesh size of 200 × 200 is used to represent steps in the radial and azimuthal directions, 

respectively. The central difference scheme is implemented for discretization in the azimuthal 

direction as well as in the radial direction, while boundary cells in the radial direction uses a 

forward difference for the inner boundary at r=R1 and a backward difference for the outer boundary 

at r=R2. The initial field of the polymer concentration is set to be unity. A matrix algebra technique 

is used to solve the linearized equations, where cells in the radial direction range from i = 1 to 200 

and cells in the azimuthal direction range from j = 1 to 200. The first solution starts from cell (2, 

2) using central difference method, i.e. interpolating values from its adjacent cells (1, 2), (3, 2), (2, 

1), (2, 3); and then iterate through all cells in the computational domain. For the constitutive 

equation, the initial field of conformation tensor is set to unity and similar matrix algebra technique 



is used to compute conformation tensor in the computational domain and converged solution is 

then used to solve the polymer concentration. The spatial domain is discretised as described and 

time interval is not included in this work. A converged solution is achieved after 10000 iterations 

for each simulation. For , an under-relaxation parameter η is implemented for calculating 

the conformation tensor  through Eq. (23) to avoid steep changes in  values between 

subsequent iterations. This allows stable calculations when  and subsequently  become large 

(which leads to large convection and strong flow deformation of polymer molecules). To maintain 

computational efficiency, a minimum value of η=0.1 is applied, since a smaller η leads to stronger 

under-relaxation and therefore, longer calculations. Converged simulation results are analysed to 

show the capability of the continuum theories. More details of the numerical methods used are 

available in Appendix II. 

 

5.1. Stress-gradient-induced migration 

 

We first neglect the wall effect, and evaluate the concentration field at different levels of 

perturbation theory defined in section 4.1. We follow the flowchart for stress-gradient-induced 

continuum migration theories for incompressible fluids presented in Figure 2 to investigate the 

validity of different levels of perturbation theories for polymer migration in eccentric cylinders.   

Comparison between concentric and eccentric cylinders (with eccentricity , which 

corresponds to  = 0.2, or 20% of the gap) is firstly presented using constitutive theory. 

Constitutive theory is used as the default method throughout this work unless otherwise specified. 

To show the reliability of the current theory we first reproduce concentric cylinder results (by 

setting eccentricity ) and then demonstrate the impact of eccentricity on polymer migration. 

Here we note that polymer concentration  is normalized by  as  to better 

present the variation of concentration profile in section 5.1, when only stress-gradient-induced 

migration is included and  is very close to unity for small . This normalization is not performed 

in section 5.2, when stress-gradient-induced and wall-depletion-induced migration are both 

included. 



Figure 3 shows the predicted steady-state distribution of polymer concentration  in the radial 

direction at four different azimuthal angles resulting from polymer migration. Polymer has 

migrated towards the inner cylinder for both concentric and eccentric cylinders. As expected, for 

concentric cylinders in Figure 3(a), the polymer concentration profiles at the four azimuthal angles 

are identical. For eccentric cylinders in Figure 3(b), the concentration profile is steeper near the 

outer cylinder at , i.e. in the wider clearance region (see Figure 1), while at other azimuths, 

at , the higher concentration gradient  is in the inner half of the clearance, 

indicating steeper polymer build up near inner cylinder. Note that in Figure 3(b) the position y 

within the gap is not normalized by the local gap  so that the angle-dependence of clearance 

due to eccentricity is shown at various azimuthal angles . A normalized radial position  

will be used thereafter. For example, for eccentricity ,  = 6 at  and = 4 at 

. 

Figure 4 shows the distribution of polymer concentration  in the circumferential direction at three 

different normalized radial distances , i.e., near the inner cylinder, in the middle of the gap, 

and near the outer cylinder. Higher concentrations are observed towards the inner cylinder, as in 

Figure 3, but with the influence of eccentricity at different  values clearly shown in Figure 4(b). 



Figure 3. Radial profile of scaled polymer concentration  for eccentricity (a)   and (b) 
 



Figure 4. Profile of scaled polymer concentration  in the circumferential direction for 
eccentricity (a)  and (b)  

Next, maintaining a constant eccentricity of , the rotational velocity of the inner cylinder is 

increased from 0.001 to 0.2, resulting in an increase of Peclet number  from 0.08 to 15.1, while 

keeping the Weissenberg number . The gradient number  remains constant at 0.2. This 

is conducted to study the effect of convection in terms of  Note here we used second order 

theory in  (Eq. 19) and the second order theory in  (Eq. 18) to perform the numerical 

calculations, providing for the effect of convection to be isolated. (a & b) shows the 

distribution of  in the radial and circumferential directions, respectively. (a) shows that 

in the radial direction  profile calculated through (Eq. 19) closely match that calculated from the 

(Eq. 18) as  increases to 15.1. In the circumferential direction at ,  (b) 

shows that  profile remains largely unchanged when  and matches that calculated from 



(Eq. 18) . However, when ,  profile calculated from Eq. 19 shows deviations in the wide 

gap area i.e.,   from  profile calculated from Eq. 18. Note that the increase in  produced 

by an increase of the inner cylinder rotation speed also leads to an increased Weissenberg number 

, though in  we keep  to isolate the effect of . When , 

the influence of convection kicks in and alters the polymer concentration profile, changing local 

 value. The low order continuum theory remains valid for large , reaffirming the previous 

finding that the simplified polymer transport equation is valid for arbitrary  when  and 

are both small [1]. 

Figure 5 Profile of  from 2nd order theory in  (lines) and 2nd order theory in  (symbols) in 
the (a) radial direction at   and (b) in the circumferential direction at  

(sharing the same legend in (a)) for different  with eccentricity 



Figure 6 compares the radial distribution of  at  and the velocity field for eccentric 

cylinders with eccentricity  calculated using the constitutive theory and the second order 

theory in  given in flowchart in Figure 2 and Equations (21) & (19), respectively. At  = 

2.0×10-4, polymer concentration obtained from the second order theory matches well with that 

from the constitutive theory as shown in Figure 6(b). Results from the two levels of the theory 

match well for each  respectively, showing higher polymer concentration towards the inner 

cylinder. When  approaches unity, both theories predict reduced  values from   

to 0.8 compared to those from small  conditions, showing the influence of convection on 

concentration profile. (The lower overall concentration at  for increased  is compensated 

by a higher overall concentration at other values of .) When  further increases above unity, the 

calculation using the constitutive theory becomes numerically unstable, yielding an oscillatory 

distribution  in the circumferential direction. This oscillation initiates from  near the inner 

cylinder and propagates downstream circumferentially with increasing numbers of iterations in the 

calculation, eventually diverging. An under-relaxation parameter η, therefore, is implemented to 

stabilize the calculation, which allows attainment of converged solutions up to a maximum value 

of  for the constitutive theory calculation when under-relaxation parameter is allowed to 

go as low as η=0.1. At higher  the numerical instability amplifies, requiring an excessively low 

under-relaxation parameter, which is computationally inefficient. This calculation instability 

observed at higher  is possibly due to amplified numerical artefacts.  



Figure 6. Concentration contour map in the gap between eccentric cylinders with eccentricity 
 of (a) second order theory concentration  when  and (b)  radial 

concentration profile at   predicted by both theories when ,  
and  respectively. 

Next, Figure 7 explores the effect of eccentricities of  for  = 2.0×10-3  7.9×10-3. 
Given that we define  using the thinnest gap,  changes from 0.2 to 0.81 as eccentricity 
increases.  Figure 7(a) shows that at the widest gap i.e., ,  an increase in eccentricity beyond 

 leads to a non-monotonic concentration gradient, with positive  from  to 
, and negative thereafter. At lower eccentricities, the maximum concentration  remains near 

the inner cylinder. This local maximum in  as a function of  can be further seen near  in 
Figure 8 at high  or . The non-monotonic concentration profile for large eccentricity is 
dictated by the variations of the migration term defined in Eq. (10), which is due to changes in the 
second order derivatives of the velocity components and in the conformation tensor. At low , 
the migration is controlled by the second order derivatives of the velocity components, in the term 

 in Eq. (18). In the simplest case of concentric cylinders, polymers under tension on 
curved streamlines experience a net inward force and therefore an inward migration towards the 
centre of curvature. When eccentricity becomes large, there are multiple second order velocity 
derivatives that contribute to the net flux, and the net result is a non-monotonic profile.  By way 
of analogy, we note that at high enough gap and high eccentricity, a recirculating flow occurs in 
eccentric cylinder flow, and under less severe conditions the velocity becomes non-monotonic in 
the gap, as it does at  or  in the problem considered here. So, it is not surprising that higher 
order velocity derivatives would also become non-monotonic with increasing eccentricity. 

Figure 7(b) shows the distribution of polymer concentration  in the circumferential direction, at 

, i.e., near the inner cylinder. At low eccentricities , a “bell-shaped”  

distribution is observed, with a maximum  near  and a minimum  near ; i.e. at the 

narrowest gap. At high eccentricities , in addition to the minimum near , two more 



minima near  and  are observed. Moreover, the increased eccentricity leads to 

a decrease in  with increasing  near , although the value of  itself (without normalization 

by Wi2) near  increases with increasing eccentricity. Note that  quantifies the ratio of 

polymer size to the minimum gap. An increased eccentricity therefore results in a larger  value, 

and the size of the polymer becomes more comparable to the narrow clearance. Figure 8 

demonstrates an increasingly inhomogeneous concentration profile in the  direction when 

eccentricity increases.

 

 
Figure 7 Profile  in the (a) radial direction at  and (b) circumferential direction at 

 for eccentricities  
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Figure 8 Contour plot of scaled polymer concentration  in the gap for eccentricities  

Our results show that the low order theory remains valid when  number is small (shown in 

Figure 6), but when  approaches 1, the constitutive theory should be used to take into account 

the effect of flow on the polymer conformation tensor, which is used to compute the migration 

flux. The low order theory predicts a monotonic increase in polymer concentration near the inner 

cylinder with increasing , while the constitutive theory captures viscoelastic effects more fully 

by calculating the conformation tensor  outside of the weak flow limit. However, the solution 

based on the constitutive equation becomes numerically unstable at large  values, eventually 

leading to unreliability of the continuum theory when  at least if the under-relaxation 

parameter is set no lower than η=0.1. Additionally, convection outside of the second order limit in 

 is found to influence the polymer concentration profile when . However, the 2nd order 

perturbation theory in  remains valid even for large  as long as remains small.  



increases as eccentricity increases and the continuum theory for the eccentric cylinder system fails 

when  value approaches unity, i.e., when polymer size becomes comparable to the distance over 

which appreciable changes in stress or velocity gradient occur (i.e., there is strong confinement). 

For  approaching unity, mesoscopic simulations will be required to capture polymer migration, 

which is the subject of our future work, where we plan to couple molecular dynamics [37] 

simulations [38] with smoothed dissipative particle dynamics [33, 39] to design polymer-based 

lubricants with a variety of polymer chain structures and linear-dendrimer polymer blends [30]. 

 

5.2 Stress-gradient and depletion-induced migration 

 

Previous studies showed that polymer migration due to wall steric depletion can be significant in 

confined channels [9].  (Note that the wall migration effects considered here are entirely due to 

steric depletion, and not to wall hydrodynamic interactions, which can also cause significant 

migration effects under flow [40, 41]). To understand the influence of wall steric depletion-induced 

polymer migration in eccentric cylinders, we now introduce wall-depletion terms into the 

governing equations by solving Eq. (32) using conformation [14] tensor  obtained via the 

constitutive theory. 

As shown in Eq. (10), the polymer migration flux is composed of two terms, i.e., the stress-

gradient-induced contribution  and the wall-depletion-induced contribution 

. Figure 9 shows the distribution of migration fluxes from both terms in the 

radial direction, for eccentricity  at  and  = 0.47. Note that  and (

 ) share the same y axis on the left, and  has its own y axis on the right.  decreases 

from  to 1 and is negative, indicating the stress-gradient-induced migration is directed 

towards the inner cylinder. As expected,   is largest in magnitude near each wall, and is 

nearly zero between  to 0.9.  near the inner cylinder is positive while near the 

outer cylinder it is negative, producing migration towards the centre of the gap. The magnitude of 

 in the near-wall regions is almost 104 times higher than that of , indicating that  

dominates near the wall, as confirmed by the overlap of  and ( ). 



Figure 10 shows the concentration distribution in the radial direction with and without wall-

depletion, confirming by the near-zero concentration near the walls that  dominates there, as 

suggested also by Figure 9. Away from the walls, only a small concentration gradient 

 is predicted, resulting from the effect of  driving polymer migration 

towards the inner cylinder. In the absence of , only  drives the polymer migration 

leading to an increased polymer concentration ( ) towards the inner cylinder. Note that the 

largest value of  is significantly higher than that of  , due to significant 

contribution of  , which drives polymer away from the walls.  

 
Figure 9 Gap dependence of migration flux of a dilute Hookean dumbbell due to wall-depletion-
induced flux   and stress-gradient-induced flux  for eccentricity  at .  The 
sum of the two (red solid line) overlaps with  (dashed green line) since the stress gradient 

terms is so small (note the re-scaling by 10-4 on the right axis).  



 
Figure 10 Radial distribution of  with and without wall depletion  for eccentricity  at 

 

Figure 11 shows the radial distribution of  in the absence of flow, for eccentricities of .  

Brownian dynamics [24] simulation results for  [1] validate the continuum theory in the 

absence of flow, where   vanishes and only  drives the polymer migration. Increasing 

eccentricity reduces the plateau due to the increased gap at . Increasing eccentricity also 

increases . Note that  is the highest we can achieve when wall-depletion is included, 

since a further increase of  would require an eccentricity beyond  which makes it 

impossible to maintain a mass balance in the narrow gap due to the depletion layer. 



 
Figure 11 Radial distribution of  calculated by BD simulation for  and by constitutive 

theory for  at  in the absence of flow 

Figure 12 shows the radial distribution of  at different azimuthal angles for  in the presence 
of flow at . Similar migration patterns are observed at , showing a 
depleted region near the wall. In the centre of the gap, a higher  is observed at  than at 

, due to reduced gap at  and mass balance. 

 



Figure 12 Radial distribution of  for eccentricity  at  in the presence of 
flow 

Figure 13 shows the concentration distribution in the radial and circumferential directions for 
different  when both wall-depletion and stress-induced migration are present. No observable 
change of  in the radial direction is found when  changes from 0.08 to 180.9. However, the 
distribution of  in the circumferential direction is shifted downstream when , because of 
the influence of convection as also noticed in Figure 5. Note that  also increases from 2.0×104 
to 0.47. When  exceeds 1.6 the numerical solution of the continuum theory becomes unstable 
even when a minimum η=0.1 used, leaving the constitutive theory unreliable for higher , 
regardless of the inclusion of wall-depletion as discussed for Figure 6 earlier. Continuum theory 
becomes unreliable in such circumstances and mesoscopic simulations such as Brownian dynamics 
[24] simulations will be required to track polymer dynamics and stress-gradient-induced 
migration.

 



Figure 13 Distribution of  in the (a) radial direction at   and (b) circumferential direction 
at  for eccentricity  and for different values of  

6. Conclusions 

We have applied our recent continuum theory for the stress-gradient-induced migration of dilute 

polymer solutions to shearing flow between eccentric cylinders. A stress-gradient-induced 

migration drives polymers from the outer towards the inner cylinder for both concentric and 

eccentric cylinders. An increase of the rotation speed of the inner cylinder leads to an increase in 

both Weissenberg and Peclet numbers,  and , which in turn increases the polymer 

concentration near the inner cylinder. The theory is valid at low values of the gradient number Gd, 

which is proportional to the ratio of the polymer radius of gyration to the gap. The migration forces 

given in Eqs. (10-14) are related to velocity and its derivatives, resulting in a dependence of 

polymer concentration on rotation speed  (and , and  as they are proportional to  by 

definition). Predictions from the low order theory in  match well with those obtained from 

solving the full constitutive theory when  is small, i.e., when viscoelastic effects are small. But 

when  approaches 1, the perturbation theory fails, and stress must be obtained from the full 

constitutive theory which is valid up to arbitrarily high . However, amplified numerical 

artefacts occur when using the constitutive theory (when ) due to steep changes in the 

conformation tensor during calculation. An under-relaxation parameter is therefore used to 

stabilize the calculation for the constitutive theory i.e., . Nevertheless, a maximum of 

 is achieved with minimum under-relaxation η=0.1; the smaller η required to stabilize 

the calculation is computationally inefficient. For concentric cylinders, a much larger  (close to 

4.71) can be applied, which shows the possibility of large migration effects in lubricated bearings 

with gaps comparable to the size of the polymer molecules [1]. In eccentric-cylinder flow, 

extensional components of the flow are generated, leading to an amplified deformation of the 

polymer molecules, at the same Weissenberg number , although large migration effects are also 

possible for eccentric cylinders. In both concentric and eccentric cylinders, polymer migration is 

largely dictated by the coupled variations in the second derivatives of the velocity components. In 

the simplest case of concentric cylinders, these terms represent the effect of polymer alignment 

along curved streamlines, which drives polymer migration towards the centre of the streamline 
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curvature in the simplest case. This is analogous to surface tension along a curved surface, 

producing an inward migration towards the inner cylinder.  It is the same driving force that 

produces rod climbing. 

Wall-depletion-induced migration has a large effect on the polymer concentration profile, 

producing near-zero polymer concentrations near the cylinder walls and a nearly flat concentration 

plateau elsewhere, with a slight downward slope towards the outer wall. The coupling of the 

depletion layer to the velocity produces “depletion-stress-gradient-induced” migration, as the 

concentration gradient produced by depletion couples to the convection term, producing additional 

migration that is first order in 𝑊𝑖. In the presence of wall, beyond a maximum gradient number 

𝐺𝑑 of 0.5, the mass balance of polymer and stability of the system could not be maintained in the 

narrow gap region, presumably because the dumbbell size becomes comparable to that of the 

eccentric cylinder gap, which is further intensified by the depletion layer when 𝐺𝑑 approaches 0.5. 

For a fixed gap, the Peclet number 𝑃𝑒 is proportional to 𝑊𝑖 and can reach a very large value for 

small 𝐺𝑑 and modest 𝑊𝑖, leading to a downstream shift in the maximum polymer concentration. 

𝐺𝑑, which is related to 𝑊𝑖 and 𝑃𝑒 as 𝑊𝑖 =	 -
-[
	𝐺𝑑*	𝑃𝑒, must be small regardless of whether 𝑊𝑖 

and 𝑃𝑒 are small so that the velocity gradient varies only modestly across the polymer molecule. 

The required condition 𝐺𝑑	 < 	1, implies that 𝑊𝑖	 << 	𝑃𝑒. This work demonstrates the utility of 

the continuum theory for solving concentration profiles in eccentric cylinder flow even for large 

𝑃𝑒, when 𝑊𝑖 is smaller than 1.6 and when 𝐺𝑑 is smaller than 0.5, with significant implications for 

use of polymer additives in lubricated bearings. 

 

 

Supplementary Material 
	
A complete list of migration terms and velocity components in cylindrical coordinates are available 

in Appendix I. Additional illustration of the numerical method used is also available in Appendix 

II. 
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