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Abstract

Our recent continuum theory for stress-gradient-induced migration of polymers in confined
solutions, including the depletion from the solid boundaries (E. Hajizadeh and R. G. Larson, Soft
Matter, 2017, 13, 5942) [1] is applied to a two-dimensional rotational shearing flow in the gap
between eccentric cylinders. Analytical results for the steady-state distribution of polymer
dumbbells in the limit of dilute polymer solution cc* < 1 (c* is the chain overlap concentration)
and in the absence of hydrodynamic interactions (HI) are obtained. The effects of eccentricity e,
and of three perturbation variables, namely Weissenberg number Wi, Gradient number Gd (which
defines the level of polymer chain confinement) and Peclet number Pe on the polymer
concentration pattern are investigated. The stress-gradient-induced migration results in polymer
migration towards the inner cylinder, while wall-depletion-induced migration results in near-zero
polymer concentration close to flow boundaries, which couples to a stress-gradient-induced
migration effect. In the presence of wall-depletion, we obtain first order concentration variation
proportional to Wi. Whereas, in the absence of wall-depletion, there is no first order contribution
and therefore lowest-order concentration variation is proportional to Wi?. An upper limit of Wi =
1.6 exists, beyond which numerical solution demands an excessive under-relaxation to converge.
In addition, for a high degree of polymer chain confinement, i.e., for Gd greater than 0.5, the
continuum theory fails to be accurate and mesoscopic simulations that track individual polymer

molecules are needed.



1. Introduction

The cross-streamline migration of polymers in solution in confined flows with steep changes in
stress or velocity gradient is a well-known phenomenon that leads to a nonuniform polymer
concentration profile within the flow domain. Apart from its scientific importance [2], the
phenomenon has implications for several technological applications in lubrication [3, 4], enhanced
oil recovery [5], separation processes [6, 7], and DNA sequencing in microfluidics [8, 9]. For
instance, predicting the conformation and motion of polymer chains in microfluidic geometries is
of considerable significance in designing efficient devices for single-molecule analysis of DNA
[10-14]. While simple spherical colloids in confined geometries usually migrate from regions of
high to low shear rates due to direct interactions between the colloids, with a corresponding
transport coefficient proportional to the shear-rate derivative of the pair-correlation function [15,
16], migrations of non-interacting polymers can be more complicated due to the coupling of the

polymer conformation tensor to the second derivative of the velocity field [1].

Theories for polymer migration typically involve incorporating into the mass balance equation a

(%3

polymer ‘‘stress-diffusion’’ term, proportional to the divergence of the polymer stress tensor,
which can be derived in a variety of ways, such as by using the two-fluid model [4, 7, 17-21].
Other approaches, including perturbation expansions within the phase space kinetic theory [4, 17]
and ‘‘body tensor continuum theory’” proposed by Ottinger [22] all result in mass transport terms
that include the divergence of the stress tensor, and other terms that appear in both the polymer
mass balance equation and the polymer constitutive equation and that differ among the various

approaches mentioned above [17].

We have recently developed a continuum theory [23] for the stress-gradient-induced migration of
polymers in solutions based on a systematic perturbation analysis and validated, for the first time,
through mesoscopic bead-spring simulations, which successfully identifies the migration source
and clarifies the origin of discrepancies among the existing theories. The work shows that some
terms arising in existing theories are due to the inclusion of higher order terms in an expansion in
a perturbation parameter Gd, which is a measure of the degree of polymer chain confinement.
Specifically, Gd is the ratio of polymer radius of gyration to the length scale over which a steep

change in velocity gradient occurs, as discussed in section 3. We earlier demonstrated that in dilute



solutions migration arises from the second and higher order spatial gradients in velocity. This
continuum theory has been applied to a periodic vortex flow [23], periodic electroosmotic flow
[9], and concentric cylinder flow [1]. In the latter, we observed a strong polymer migration towards
the inner cylinder and confirmed this phenomenon and the range of accuracy of the continuum

theory via Brownian dynamics [24] simulations [1].

Here, we wish to extend our recent continuum theory to the flow in the gap between eccentric
cylinders, which is an important model problem for journal bearing flows. In practical applications,
such flows often involve lubricants that contain polymer additives, whose migration would be a
significant concern, making this problem a potentially important one for lubricant design and

tribology.

In this paper, we follow our previous work and use the simple Hookean dumbbell model for
polymer chains in a dilute solution flowing in the gap between rotating eccentric cylinders. We
first examine the effect of dimensionless numbers Gradient number Gd, Weissenberg number Wi,
and Peclet number Pe on polymer migration pattern to determine the range of validity of the
continuum theory. Thereafter, we study the effect of wall-depletion on migration patterns, using a
wall repulsion potential given by a decaying-exponential potential fitted to results from our
previous Brownian dynamics simulations [1]. This empirical wall potential was shown, by
comparison to predictions of bead-spring simulations, to account well for the wall-depletion effect
for concentric Taylor Couette flow. Since we have not changed the polymer chain model or the
wall parameters, this model is also used in the present study for the case of eccentric cylinders. In
what follows, Section 2 describes the eccentric cylinder geometry and flow field; Section 3 defines
the dimensionless groups used in our analyses; Section 4 presents the details of the perturbation
theory for polymer dumbbells in cylindrical coordinates; Section 5 discusses the results for the
stress-gradient-induced migration and depletion-induced migration; and ultimately, Section 6

summarises the main findings and future work.

2. Geometry and Flow Field

For our eccentric cylinders, depicted in Figure 1, the inner cylinder rotates counter-clockwise while

the outer cylinder remains stationary, producing shear flow between them. R; and R, are the radii
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of the inner and outer cylinders, e is the eccentricity which is the offset between the centres of the
two cylinders, () is the angular velocity of inner cylinder, and x and y are local Cartesian

coordinates to assist analysing flow in the gap between the two cylinders.

c
>

Figure 1 Schematic representation of the eccentric cylinder system

It has been shown [25] that for a slow laminar flow in a small gap between the eccentric cylinders

relative to the cylinder’s radius, the velocity components using a lubrication approximation are

given by
Vo(r,0) =V [ (%= 2) - 241 0
v (r,0) = Jmes 20 (2 -3%) (%5 - %) @)

where V = QR; is the linear velocity of the inner cylinder, h,,4, = R, — Ry + e is the maximum

gap, h,, = (R2 — R1)/2 is the mean gap, and h is the angle-dependent gap:
h=c(1+ ecosf) (3)

where ¢ = R, — R, is the clearance, € = ¢/, is the eccentricity ratio, and y is measured radially
from the inner cylinder as

y =cp(1+ ecosh) (4)

where ¢, = r — R;. The pressure gradient in Eq. (1) is given as
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where A = 32 /(2 + €2).

In this work, we choose R; = 55 and R, = 60 where these values are in units of polymer coil size
[1]. Dimensionless units are used to maintain the validity of the assumption used to derive the

velocity profile based on the lubrication theory for a “small” clearance space such that c/R; < 0.1.

3. Dimensionless Numbers

As mentioned before, the migration pattern of polymers in solution can be influenced by the degree
of confinement experienced by the polymer as well as by the stress gradient over its dimension.
Here, we define a dimensionless gradient number Gd to quantify the ratio of the polymer size to

the distance d over which appreciable variations of stress or velocity gradient is expected to occur:

_|2(R?)
Gd = /—3 = (6)

where (R?), is the mean-square of end-to-end distance of the dumbbell in the absence of flow,
d = (c — e) is the minimum gap between the two cylinders, where a steep change in velocity
gradient is expected in the eccentric cylinder. In addition, a dimensionless Weissenberg number

Wi is defined to determine the ability of the flow to deform polymer molecules as
Wi=— (7)

where 7 is the stress relaxation time of the polymer calculated as T = (R?),/24D and D is the
diffusion coefficient of the dumbbell calculated as D = kzT/(2(), where { is the drag coefficient
of the dumbbell bead and kT is the thermal energy. Moreover, in addition to Gd and Wi, a third
relevant dimensionless group, i.e., Peclet number Pe, is defined as the ratio of the advective to

diffusive transports of polymers under flow as

vd
Pe = Y (8)

The three dimensionless numbers are related to each through below expression
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The Hookean spring constant is defined as H = 3kzT/{R?), which can be related to Gd as Gd? =

2kgT
d%H

and to Wias Wi = L—i’, where more details are available in [23]. For a completely analytical

solution to be derived, all three dimensionless numbers need to remain small. Our previous work
[23] showed that, for arbitrary Pe, although an analytical solution is not available, if Gd and Wi
are small, a simplified polymer transport equation can be derived. In fact, as long as Gd remains
small, concentration field equations can still be derived even if neither Pe nor Wi is small. This is

explained in more detail in section 4.

4. Perturbation Theory

Our recent perturbation theory has been shown to successfully capture the stress-gradient-induced
polymer migration in dilute solutions [23]. The theory includes coupled equations for polymer
rheology, fluid dynamics and polymer mass transport. A flowchart summarising different levels
of continuum theories and mesoscopic simulations for the stress-gradient-induced migration in
dilute polymer solution is given in Figure 2 (reproduced from [9]). A Hookean dumbbell model in
a very dilute solution is used and hydrodynamic interactions (HI) are neglected in this study. Note
that HI can produce polymer migration as shown by earlier studies [26, 27], although without HI
polymer migration can still occur [7]. The present theory focuses on the simplest case of dilute
dumbbells without HI as a starting point for exploring the mechanisms of stress-gradient-induced
polymer migration [23]. A more complete theory including HI can be developed in the future, and
has been presented already for a simpler flow field with stress-gradient-induced polymer migration
[9]. For small enough gradient number Gd, a continuum theory is valid for predicting polymer
migration with different levels of perturbation. At small velocity, the Weissenberg number (Wi)
expansion of the constitutive equation can be used. At high enough velocity, the Weissenberg
number Wi expansion fails and to obtain the overall migration mass flux, the polymer
conformation tensor Sj, needs to be obtained via solving a constitutive equation. Note that a wall-

depletion term can be included within different levels of continuum theory to study the influence
of wall-depletion-induced polymer migration. For a large gradient number Gd, the continuum

theory fails, and mesoscopic simulation is required, which is the subject of our future study, where



we will develop a multiscale simulation formalism that couples molecular dynamics simulations
[28-30] to a mesoscopic smoothed dissipative particle dynamics simulation [31-33] to capture the

effects of hydrodynamics interactions and strong confinement on polymer configuration and

migration.
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Figure 2 Flowchart summarising different levels of continuum theory and mesoscopic
simulations for stress-gradient-induced migration in a dilute polymer solution (reproduced from

[9D)

Different levels of perturbation theories can be applied to predict polymer migration in dilute
solutions. At the lowest order in gradient number Gd, the migration flux of a dilute Hookean

dumbbell is given as
™= 2Dty v + FIPC (10)

dep,cm
where F*P

; is the depletion force acting on the polymer’s centre of mass, { is the bead drag

coefficient, and S;; = B 2(Rl-Rj) is the conformation tensor where R; is the end-to-end distance of

a dumbbell, the brackets “( ) represent the ensemble average, and f? = . (;2> where the
0

subscript “0” denotes that the average is in the absence of flow. The conformation tensor S;; can

be obtained by solving the upper-convected Maxwell equation given as

SU = Vi,kSkj + Sikvj,k - 1/'1' (Sl] - 1/2 61]) (11)



Where the over-dot represents the substantial time derivative, and the velocity v and its gradients
in the above are expressed using Einstein notation. The first term in Eq. (10) represents migration
due to variations in velocity gradients, while the second term denotes the depletion-induced
migration from the walls. Note that earlier work showed that Eq. (10) gives the migration flux up

to second order in Gd.

We now expand the upper-convected Maxwell Eq. (11) in the magnitude of the velocity gradient
[1], which gives the following lowest order terms for the migration flow, including a zeroth-order

migration flux in the depletion region:

“Z”’l(O) _ Fidep,cm/ ¢ (12)

T = Dy (13)
2

T = 2D vk (14)

To seek solutions to the concentration field, these flux expressions can be used in the following

steady-state convection-diffusion equation
_Dc,i,i + Vi Ci + (C’lm)’i =0 (15)

As described in [23], we expand the concentration ¢ in a Taylor’s series in powers of the velocity
magnitude V asc = ¢@ + ¢® + ¢@ + ... with each term proportional to V raised to the power
in the parenthetical exponent. This can be considered an expansion in the Peclet number Pe.
Similar expansion can be achieved in the Wi, considering each term to be proportional to the

magnitude of the relaxation time raised to the power in the parenthetical exponent [23].

4.1 In the absence of wall depletion:

When wall-depletion is not included, only the stress-gradient-induced migration occurs. Therefore,
in the absence of any repulsion from the vicinity of the walls, there is no zeroth-order migration
flux and c(® = ¢ is a constant. For eccentric cylinders in the absence of HI and wall depletion
and in dilute regimes, and when both Wi and Pe are small, the steady-state governing equation

gives the first order theory in Pe as



—DC’i’l’(l) + Vi C’i(o) + (C(O) Tn(l)) =0 (16)

i
where the gradient of the constant ¢(?) is zero, making the second term in Eq. (16) equal to zero.
This also reduces the third term in Eq. (16) to c(o)ﬁ(l) = cOD1y;; ;. Using the continuity
equation v;; = 0, we can getv; j ;; = 0, which then implies that the third term in Eq. (16) is also
zero. ¢ is thus zero and there is no first-order contribution to the concentration field, so that the

lowest-order concentration variation is proportional to Wi?, as discussed in [1].
b

The second order theory in Pe is expressed as

—Dc; @ + v @+ (cOT) 4+ (cWT®) =0 (17)
,L

i '
In the absence of wall-induced migration, we showed that c() = 0, hence the second term in Eq.
(17) is zero. The third term in Eq. (17) is the source term for 2" order stress-gradient-induced
migration. The fourth term in Eq. (17) is zero as both ¢ and 2':.1(1) are zero. Therefore, Eq. (17)

can be simplified as below
—DC’E’ZL) + ZDTZCTV]"k’iVi’]"k =0 (18)

To study situations where Pe > 1 with Wi << 1, we cannot carry out an expansion in Pe but
we can use the perturbation in Wi [23]. Therefore, following the same procedure used for the

expansion in Pe, we get at lowest order (second order) in Wi
—DC’E’ZL) + U; C’i(z) + ZDTZCTV]"k‘iVi’]"k =0 (19)

Note that Eq. (19) is identical to the second-order equation from the Peclet number expansion, Eq.
(18), except that Eq. (19) contains the convection term v; c,l-(z)which is missing from Eq. (18),
because this term is third order in Pe, even though it is only second order in Wi. As long as Wi <

< 1, Eq. 19 is valid for arbitrary Pe. In cylindrical coordinates Eq. (19) becomes

92¢@  19c@ 1 92c@ ac@ 19c@ - _

-D ( arz 1 or ' r2 902 ) Ur T+ Voo + 2DTICY Vi = 0
(20)
The migration terms in Eq. (18) and Eq. (19) as well as the first order and high order derivatives

of the velocity components in cylindrical coordinates [34] are given in the Appendix I.



At high enough velocity, the Weissenberg number expansion of the constitutive equation fails, and

the constitutive Eq. (11) must be solved numerically for the conformation tensor S;;, which is then

l]:

used in Eq. (10) for the overall migration flux 7™ which when substituted into Eq. (15) gives the

i

following equation for the polymer concentration for any Wi:
_Dc,i,i + v; Ci + ZDT(CSjkvi,j,k)i =0 (21)

In cylindrical coordinates, Eq. (21) becomes

1dc 160

-D (6 < l(’)_c L0°c 9——+ [ZDTSJkUrJ k] +

arz ' ror | 2 092)+ Ur or otV [ZDTSJ"U9J"]+

C[ZDTSjk,ivi,j,k] =0 (22)

while Eq. (11) reduces to the system of equations given below

2v 0Syr vg 0Syr 1
STT (Zvr,r - ) + Srg (ZUTQ + 9) = v, pm + r9 - — _ZT
- v aS-r v E)ST
Spr (UG,T_ r9)+ST9 (ur,r+v9‘9 _;)4_599 (vre n e) = v, 2510 | V6 05rg 23)

_ 21)_9) ( _ l) _ 3599 Vg 6599 i
STG (ng’r r + 599 2U9’9 ) Ur or t r 06 2T

We implement periodic boundary conditions in the 8-direction at 8§ = 0 and 8 = 2 to ensure the
concentration at these two values of 8 are equal to each other. We use a no-flux condition in the
r-direction at the location of two solid boundaries, i.e., 7 = R; and r = R,. For the no-flux
boundary condition, we obtain the radial flux terms from Eq. (21) and set their sum to zero at both

cylinder boundaries, i.e., inner cylinder boundary and outer cylinder boundary, as given below

ac

1
Pl c(;vr + 2180, 51) =0 (24)

4.2 In the presence of wall depletion

In the presence of wall depletion, in contrast to section 4.1 which considered only the stress-
gradient-induced migration, the depletion force results in a non-uniform concentration field at

zeroth order, c(®. A decaying-exponential potential [35] is used to approximate the depletion,

expressed as U%P () = Aexp [—(g — |r —=[)/R,4] where r is the radial coordinate centered

at the axis of rotation, R, is a fitted length scale proportional to the radius of gyration of the
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polymer dumbbell and the interaction strength A is adjusted to match the depletion observed in BD

simulations of the same system [1]. The depletion force is directed normal to the walls and given

de
= - dl;r p, producing the flux in Eq. (12). The coupling of the depletion layer to the

dep,cm
as F;P

velocity produces what we elsewhere referred to as “depletion-convection-induced” migration
[36]. When polymer depletion results in a non-uniform c(?, the fluxes do not in general vanish
and one obtains a first order concentration variation. We can go to higher orders by incorporating

more terms into the Taylor’s series expansion of the overall concentration field.

This depleted concentration field can be obtained by retaining only the zeroth-order terms in Wi

in Eq. (15)

—pc® + (c(o);m(o)) =0 (25)
& i
( ~m(0)

% is found from Eq. (12). Note that since the wall depletion force is axisymmetric, ,

~“m
where ;

is zero and therefore ¢(® is independent of 6, although it depends on r. In cylindrical coordinates,

Eq. (25) becomes

+m(0) (0)
©0) 9z ~m(0) 0c*™ _
+c o + . Pl 0 (26)

92c©

or?

Since in the presence of the zeroth-order wall potential, the zeroth-order concentration is not
uniform, the first order concentration c(*) therefore is computed including both the 0" order
contribution and the 1% order migration flux, in contrast to that in section 4.1. To obtain the first
order contribution to the polymer concentration field (i.e., the contribution proportional to Wi),
we consider all first order terms in Eq. (15) yielding

—Dc;; W+ v ;O + (C(O)T(l))i + (c(l)?(o))i =0 (27)

where m(1)

; is given in Eq. (13). Note that the second term in this equation is the convective

contribution, which is proportional to the Peclet number Pe. In cylindrical coordinates, Eq. (27)

becomes

11



3%2c® 19c® 1 9%2c® ac©® 19c©® (0)~m(1)) ( 0) ~m(1))]
_D(ar ror T 092)+Ur ar T V0750 +[6r( A +

+
) (TN -
(28)

After solving c(® and ¢V, the second order contribution c¢(® can also be calculated by solving

the corresponding convection-diffusion equation

—Dc;; P+ vy, + (C(O)TL(Z)) + (c(l)z.m(l)) + (C(Z)TL(O)) =0 (29)

) )i i

In cylindrical coordinates, Eq. (29) becomes

92¢@  19c® 1 92c@ ac® 19c® 0) ~m(Z)) ( (0) ~m(2))]
_D(ar ror T 092)+Ur ar T V0750 +[6r( roo\¢ e +

+
[ar( €)) ”m(l)) %ai( €)) ”m(l))] ar( ) ”;n(O)) +12 (C(z) ”;n(o))] ~0

(30)

For concentric cylinders (Taylor-Couette flow) [1], the terms involving ¢ disappear because the
first order concentration ¢(¥ vanishes, even when axisymmetric wall depletion exists. In eccentric
cylinders with wall depletion, c() does not vanish because ¢() is non-uniform as flow component
normal to the wall now exists. Eq. (30) for ¢(?) can be solved using the zeroth-order concentration

c(® obtained from solving Eq. (26), the first order concentration c¢(*) obtained from solving Eq.

(28) and the migration flux terms 7", 7"Mand 7"® from Eqs (12), (13) and (14), respectively.

L L

At high enough velocity, the Weissenberg number expansion of the constitutive equation fails and
the constitutive theory needs to be used. Therefore, Eq. (15) needs to be solved by using the overall

migration flux including wall-depletion-induced contribution as

—Dc; +v; ¢; + [c(2DTSpvy g + FEP O] = 0 (31)

in cylindrical coordinates Eq. (31) becomes

depcm
9%c 1dc . 1 d%c 1dc 1dc
—-D (arz e r_z_aQZ) Uy 6_r+ 9;£+ 2DTSJkUer + e ] +——[2DTSJkU91k +
dep,cm dep cm dep,cm
o 19 119 4 —
7 ]‘|'C[ZDTSJkl'ULJk‘|'Z ar +ZT 20 ]—0

(32)
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Periodic boundary conditions in the 8-direction at & = 0 and 6 = 2m are implemented to ensure
the concentration at these two values of 8 equal to each other. No-flux in the r-direction at the
location of two solid boundaries, i.e., r = R; and r = R, are again used. For the no-flux
boundary condition, we set the total flux in the r-direction to zero and add the wall-depletion term

so that Eq. (24) becomes

dc dep,cm

1 1
Pt c(;vr + 2T8j vy j i + 72 )=0 (33)

here, and k are dummy variables, representing r or 6.

At high enough velocity, the Weissenberg number expansion of the constitutive equation fails. In
such cases, Egs. (13,14) are no longer useful, and constitutive Eq. (11) must be solved for the

conformation tensor S;;, which is then used in Eq. (10) to obtain the overall migration flux at all

B
Wi. Beyond this, if the size of the polymer is comparable to the geometrical length scale, i.e. when
Gd becomes large, the use of continuum theory based on low-order expansions in Gd fails
altogether, and mesoscopic simulation methods that track individual polymer molecules are

needed.

5. Results and Discussion

A finite difference method is applied to discretize the continuum theory equations given in Section
4. A mesh size of 200 % 200 is used to represent steps in the radial and azimuthal directions,
respectively. The central difference scheme is implemented for discretization in the azimuthal
direction as well as in the radial direction, while boundary cells in the radial direction uses a
forward difference for the inner boundary at r=R; and a backward difference for the outer boundary
at r=R». The initial field of the polymer concentration is set to be unity. A matrix algebra technique
is used to solve the linearized equations, where cells in the radial direction range fromi= 1 to 200
and cells in the azimuthal direction range from j = 1 to 200. The first solution starts from cell (2,
2) using central difference method, i.e. interpolating values from its adjacent cells (1, 2), (3, 2), (2,
1), (2, 3); and then iterate through all cells in the computational domain. For the constitutive

equation, the initial field of conformation tensor is set to unity and similar matrix algebra technique

13



is used to compute conformation tensor in the computational domain and converged solution is
then used to solve the polymer concentration. The spatial domain is discretised as described and
time interval is not included in this work. A converged solution is achieved after 10000 iterations
for each simulation. For Wi > 1, an under-relaxation parameter 1 is implemented for calculating

the conformation tensor §;; through Eq. (23) to avoid steep changes in §;; values between

subsequent iterations. This allows stable calculations when Wi and subsequently Pe become large
(which leads to large convection and strong flow deformation of polymer molecules). To maintain
computational efficiency, a minimum value of n=0.1 is applied, since a smaller n leads to stronger
under-relaxation and therefore, longer calculations. Converged simulation results are analysed to
show the capability of the continuum theories. More details of the numerical methods used are

available in Appendix II.

5.1. Stress-gradient-induced migration

We first neglect the wall effect, and evaluate the concentration field at different levels of
perturbation theory defined in section 4.1. We follow the flowchart for stress-gradient-induced
continuum migration theories for incompressible fluids presented in Figure 2 to investigate the

validity of different levels of perturbation theories for polymer migration in eccentric cylinders.

Comparison between concentric and eccentric cylinders (with eccentricity e = 1, which
corresponds to € = €/, = 0.2, or 20% of the gap) is firstly presented using constitutive theory.
Constitutive theory is used as the default method throughout this work unless otherwise specified.
To show the reliability of the current theory we first reproduce concentric cylinder results (by
setting eccentricity e = 0) and then demonstrate the impact of eccentricity on polymer migration.
Here we note that polymer concentration € is normalized by Wi? as C = (C — 1)/Wi? to better
present the variation of concentration profile in section 5.1, when only stress-gradient-induced
migration is included and C is very close to unity for small Wi. This normalization is not performed
in section 5.2, when stress-gradient-induced and wall-depletion-induced migration are both

included.
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Figure 3 shows the predicted steady-state distribution of polymer concentration C in the radial
direction at four different azimuthal angles resulting from polymer migration. Polymer has
migrated towards the inner cylinder for both concentric and eccentric cylinders. As expected, for
concentric cylinders in Figure 3(a), the polymer concentration profiles at the four azimuthal angles
are identical. For eccentric cylinders in Figure 3(b), the concentration profile is steeper near the
outer cylinder at 8 = 0, i.e. in the wider clearance region (see Figure 1), while at other azimuths,
at @ = w/2,m, 3m/2, the higher concentration gradient C/ v is in the inner half of the clearance,
indicating steeper polymer build up near inner cylinder. Note that in Figure 3(b) the position y
within the gap is not normalized by the local gap h(0) so that the angle-dependence of clearance
due to eccentricity is shown at various azimuthal angles 6. A normalized radial position y/h(6)
will be used thereafter. For example, for eccentricitye = 1, h(f) =6 at6 = 0 and h(f)=4 atf =

TT.

Figure 4 shows the distribution of polymer concentration € in the circumferential direction at three
different normalized radial distances y/h(6), i.e., near the inner cylinder, in the middle of the gap,
and near the outer cylinder. Higher concentrations are observed towards the inner cylinder, as in

Figure 3, but with the influence of eccentricity at different 6 values clearly shown in Figure 4(b).
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Figure 4. Profile of scaled polymer concentration C in the circumferential direction for
eccentricity (a) = and(b) =

Next, maintaining a constant eccentricity of e = 1, the rotational velocity of the inner cylinder is
increased from 0.001 to 0.2, resulting in an increase of Peclet number Pe from 0.08 to 15.1, while
keeping the Weissenberg number Wi < 1. The gradient number Gd remains constant at 0.2. This
is conducted to study the effect of convection in terms of Pe. Note here we used second order
theory in Wi (Eq. 19) and the second order theory in Pe (Eq. 18) to perform the numerical
calculations, providing for the effect of convection to be isolated. Figure 5(a & b) shows the
distribution of C in the radial and circumferential directions, respectively. Figure 5(a) shows that
in the radial direction C profile calculated through (Eq. 19) closely match that calculated from the
(Eq. 18) as Pe increases to 15.1. In the circumferential direction at y/h(0) = 0.0 , Figure 5(b)

shows that C profile remains largely unchanged when Pe < 1 and matches that calculated from
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(Eq. 18) . However, when Pe > 1, C profile calculated from Eq. 19 shows deviations in the wide
gap area i.e., 8 = 0 from C profile calculated from Eq. 18. Note that the increase in Pe produced

by an increase of the inner cylinder rotation speed also leads to an increased Weissenberg number

Wi = i Gd? Pe, though in Figure 5 we keep We < 1 to isolate the effect of Pe. When Pe > 1,

the influence of convection kicks in and alters the polymer concentration profile, changing local
C value. The low order continuum theory remains valid for large Pe, reaffirming the previous
finding that the simplified polymer transport equation is valid for arbitrary Pe when Gd and

Wi are both small [1].
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Figure 5 Profile of C from 2" order theory in Wi (lines) and 2" order theory in Pe (symbols) in
the (a) radial directionat = and (b) in the circumferential direction aty/h( ) =

(sharing the same legend in (a)) for different Wi with eccentricity =
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Figure 6 compares the radial distribution of C at 8 = 0 and the velocity field for eccentric
cylinders with eccentricity = calculated using the constitutive theory and the second order
theory in Wi given in flowchart in Figure 2 and Equations (21) & (19), respectively. At Wi =
2.0x10™, polymer concentration obtained from the second order theory matches well with that
from the constitutive theory as shown in Figure 6(b). Results from the two levels of the theory
match well for each Wi respectively, showing higher polymer concentration towards the inner
cylinder. When Wi approaches unity, both theories predict reduced C values from y/h(6) = 0.2
to 0.8 compared to those from small Wi conditions, showing the influence of convection on
concentration profile. (The lower overall concentration at & = 0 for increased Wi is compensated
by a higher overall concentration at other values of 8.) When Wi further increases above unity, the
calculation using the constitutive theory becomes numerically unstable, yielding an oscillatory
distribution C in the circumferential direction. This oscillation initiates from 8 = 0 near the inner
cylinder and propagates downstream circumferentially with increasing numbers of iterations in the
calculation, eventually diverging. An under-relaxation parameter 1, therefore, is implemented to
stabilize the calculation, which allows attainment of converged solutions up to a maximum value
of Wi = 1.6 for the constitutive theory calculation when under-relaxation parameter is allowed to
go as low as 1=0.1. At higher Wi the numerical instability amplifies, requiring an excessively low
under-relaxation parameter, which is computationally inefficient. This calculation instability

observed at higher Wi is possibly due to amplified numerical artefacts.
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Figure 6. Concentration contour map in the gap between eccentric cylinders with eccentricity
= of (a) second order theory concentration C® when Wi = 2x ~ and (b) radial
concentration profileat =  predicted by both theories when Wi = 2x ~ Wi = .2
and Wi = respectively.

Next, Figure 7 explores the effect of eccentricities of e = 1 — 4 for Wi = 2.0x103 - 7.9x107.
Given that we define Gd using the thinnest gap, Gd changes from 0.2 to 0.81 as eccentricity
increases. Figure 7(a) shows that at the widest gap i.e., & = 0, an increase in eccentricity beyond
e = 2 leads to a non-monotonic concentration gradient, with positive €/ y from y/h(8) = 0 to
0. , and negative thereafter. At lower eccentricities, the maximum concentration C remains near
the inner cylinder. This local maximum in C as a function of y can be further seen near 6 = 0 in
Figure 8 at high e = 3 or 4. The non-monotonic concentration profile for large eccentricity is
dictated by the variations of the migration term defined in Eq. (10), which is due to changes in the
second order derivatives of the velocity components and in the conformation tensor. At low Wi,
the migration is controlled by the second order derivatives of the velocity components, in the term
Vjk,iVijk In Eq. (18). In the simplest case of concentric cylinders, polymers under tension on
curved streamlines experience a net inward force and therefore an inward migration towards the
centre of curvature. When eccentricity becomes large, there are multiple second order velocity
derivatives that contribute to the net flux, and the net result is a non-monotonic profile. By way
of analogy, we note that at high enough gap and high eccentricity, a recirculating flow occurs in
eccentric cylinder flow, and under less severe conditions the velocity becomes non-monotonic in
the gap, as it does at e = 3 or 4 in the problem considered here. So, it is not surprising that higher
order velocity derivatives would also become non-monotonic with increasing eccentricity.

Figure 7(b) shows the distribution of polymer concentration C in the circumferential direction, at
y/h(0) = 0.2, i.e., near the inner cylinder. At low eccentricitiese =1 2, a “bell-shaped” C
distribution is observed, with a maximum C near 8 = 0 and a minimum C near 8 = m; i.c. at the

narrowest gap. At high eccentricities e = 3 4, in addition to the minimum near 8 = m, two more
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minima near 8 = /4 and 8 = /4 are observed. Moreover, the increased eccentricity leads to
a decrease in C with increasing Wi near 6 = 0, although the value of C itself (without normalization
by Wi?) near 8 = 0 increases with increasing eccentricity. Note that Gd quantifies the ratio of
polymer size to the minimum gap. An increased eccentricity therefore results in a larger Gd value,
and the size of the polymer becomes more comparable to the narrow clearance. Figure 8
demonstrates an increasingly inhomogeneous concentration profile in the 6 direction when

eccentricity increases.
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Figure 8 Contour plot of scaled polymer concentration C in the gap for eccentricities = ~

Our results show that the low order theory remains valid when Wi number is small (shown in
Figure 6), but when Wi approaches 1, the constitutive theory should be used to take into account
the effect of flow on the polymer conformation tensor, which is used to compute the migration
flux. The low order theory predicts a monotonic increase in polymer concentration near the inner
cylinder with increasing Wi, while the constitutive theory captures viscoelastic effects more fully
by calculating the conformation tensor §;; outside of the weak flow limit. However, the solution
based on the constitutive equation becomes numerically unstable at large Wi values, eventually
leading to unreliability of the continuum theory when Wi > 1.6 at least if the under-relaxation
parameter is set no lower than n=0.1. Additionally, convection outside of the second order limit in
Pe is found to influence the polymer concentration profile when Pe > 1. However, the 2" order

perturbation theory in Wi remains valid even for large Pe as long as Wi remains small. Gd
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increases as eccentricity increases and the continuum theory for the eccentric cylinder system fails
when Gd value approaches unity, i.e., when polymer size becomes comparable to the distance over
which appreciable changes in stress or velocity gradient occur (i.e., there is strong confinement).
For Gd approaching unity, mesoscopic simulations will be required to capture polymer migration,
which is the subject of our future work, where we plan to couple molecular dynamics [37]
simulations [38] with smoothed dissipative particle dynamics [33, 39] to design polymer-based

lubricants with a variety of polymer chain structures and linear-dendrimer polymer blends [30].

5.2 Stress-gradient and depletion-induced migration

Previous studies showed that polymer migration due to wall steric depletion can be significant in
confined channels [9]. (Note that the wall migration effects considered here are entirely due to
steric depletion, and not to wall hydrodynamic interactions, which can also cause significant
migration effects under flow [40, 41]). To understand the influence of wall steric depletion-induced
polymer migration in eccentric cylinders, we now introduce wall-depletion terms into the
governing equations by solving Eq. (32) using conformation [14] tensor S;; obtained via the

constitutive theory.

As shown in Eq. (10), the polymer migration flux is composed of two terms, i.e., the stress-
gradient-induced contribution ™S = 2DtS.v; ;; and the wall-depletion-induced contribution
mdep _ pdepcm ; r Rigure 9 shows the distribution of migration fluxes from both terms in the
radial direction, for eccentricity e = 1 at @ = 0 and Wi = 0.47. Note that 7% and (7“4 +
"mstr ) share the same y axis on the left, and ™S has its own y axis on the right. ™St decreases
from y/h(0) = 0 to 1 and is negative, indicating the stress-gradient-induced migration is directed
towards the inner cylinder. As expected, 7“%° is largest in magnitude near each wall, and is

nearly zero between y/h(8) = 0.1 to 0.9. 7% near the inner cylinder is positive while near the

outer cylinder it is negative, producing migration towards the centre of the gap. The magnitude of

~m,dep

TAeP in the near-wall regions is almost 10* times higher than that of ™St indicating that 7

dominates near the wall, as confirmed by the overlap of 7P and (74P 4 “mstr),
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Figure 10 shows the concentration distribution in the radial direction with and without wall-

depletion, confirming by the near-zero concentration near the walls that 7**“? dominates there, as

suggested also by Figure 9. Away from the walls, only a small concentration gradient

(C mdep | jmm)/ y is predicted, resulting from the effect of ™" driving polymer migration

towards the inner cylinder. In the absence of 7"*¢" only ™S drives the polymer migration

leading to an increased polymer concentration (Cymstr) towards the inner cylinder. Note that the

largest value of C mdep | rmstr is significantly higher than that of Cjmser, due to significant

contribution of 7***? which drives polymer away from the walls.
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Figure 9 Gap dependence of migration flux of a dilute Hookean dumbbell due to wall-depletion-

induced flux ]"rn’d P and stress-gradient-induced flux J™S for eccentricity = at =

sum of the two (red solid line) overlaps with J. 4P (dashed green line) since the stress gradient
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Figure 10 Radial distribution of € with and without wall depletion ﬂ"’d P for eccentricity = at

Figure 11 shows the radial distribution of C in the absence of flow, for eccentricities of e = 0 — 3.
Brownian dynamics [24] simulation results for e = 0 [1] validate the continuum theory in the

~, . ~m,de . . . .
mStr vanishes and only . "““F drives the polymer migration. Increasing

absence of flow, where
eccentricity reduces the plateau due to the increased gap at 8 = 0. Increasing eccentricity also
increases Gd. Note that Gd = 0. is the highest we can achieve when wall-depletion is included,
since a further increase of Gd would require an eccentricity beyond e = 3.3 which makes it

impossible to maintain a mass balance in the narrow gap due to the depletion layer.
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Figure 12 shows the radial distribution of C at different azimuthal angles for e = 1 in the presence
of flow at Wi = 0.4 . Similar migration patterns are observed at 6 = 0,§,n,37n, showing a

depleted region near the wall. In the centre of the gap, a higher C is observed at @ = w thanat 8 =
0, due to reduced gap at & = m and mass balance.
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Figure 12 Radial distribution of C for eccentricity = at

flow
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Figure 13 shows the concentration distribution in the radial and circumferential directions for
different Pe when both wall-depletion and stress-induced migration are present. No observable
change of C in the radial direction is found when Pe changes from 0.08 to 180.9. However, the
distribution of C in the circumferential direction is shifted downstream when Pe > 1, because of
the influence of convection as also noticed in Figure 5. Note that Wi also increases from 2.0x10*
to 0.47. When Wi exceeds 1.6 the numerical solution of the continuum theory becomes unstable
even when a minimum n=0.1 used, leaving the constitutive theory unreliable for higher Wi,
regardless of the inclusion of wall-depletion as discussed for Figure 6 earlier. Continuum theory
becomes unreliable in such circumstances and mesoscopic simulations such as Brownian dynamics
[24] simulations will be required to track polymer dynamics and stress-gradient-induced

migration.
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Figure 13 Distribution of € in the (a) radial directionat =  and (b) circumferential direction
aty/h( )= . foreccentricity = and for different values of Wi

6. Conclusions

We have applied our recent continuum theory for the stress-gradient-induced migration of dilute
polymer solutions to shearing flow between eccentric cylinders. A stress-gradient-induced
migration drives polymers from the outer towards the inner cylinder for both concentric and
eccentric cylinders. An increase of the rotation speed of the inner cylinder leads to an increase in
both Weissenberg and Peclet numbers, Wi and Pe, which in turn increases the polymer
concentration near the inner cylinder. The theory is valid at low values of the gradient number Gd,
which is proportional to the ratio of the polymer radius of gyration to the gap. The migration forces
given in Egs. (10-14) are related to velocity and its derivatives, resulting in a dependence of
polymer concentration on rotation speed V (and Wi, and Pe as they are proportional to V' by
definition). Predictions from the low order theory in Wi match well with those obtained from
solving the full constitutive theory when Wi is small, i.e., when viscoelastic effects are small. But
when Wi approaches 1, the perturbation theory fails, and stress must be obtained from the full
constitutive theory which is valid up to arbitrarily high Wi. However, amplified numerical
artefacts occur when using the constitutive theory (when Wi > 1) due to steep changes in the
conformation tensor during calculation. An under-relaxation parameter is therefore used to
stabilize the calculation for the constitutive theory i.e., Wi > 1. Nevertheless, a maximum of
Wi = 1.6 is achieved with minimum under-relaxation n=0.1; the smaller n required to stabilize
the calculation is computationally inefficient. For concentric cylinders, a much larger Wi (close to
4.71) can be applied, which shows the possibility of large migration effects in lubricated bearings
with gaps comparable to the size of the polymer molecules [1]. In eccentric-cylinder flow,
extensional components of the flow are generated, leading to an amplified deformation of the
polymer molecules, at the same Weissenberg number Wi, although large migration effects are also
possible for eccentric cylinders. In both concentric and eccentric cylinders, polymer migration is
largely dictated by the coupled variations in the second derivatives of the velocity components. In
the simplest case of concentric cylinders, these terms represent the effect of polymer alignment

along curved streamlines, which drives polymer migration towards the centre of the streamline
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curvature in the simplest case. This is analogous to surface tension along a curved surface,
producing an inward migration towards the inner cylinder. It is the same driving force that

produces rod climbing.

Wall-depletion-induced migration has a large effect on the polymer concentration profile,
producing near-zero polymer concentrations near the cylinder walls and a nearly flat concentration
plateau elsewhere, with a slight downward slope towards the outer wall. The coupling of the
depletion layer to the velocity produces “depletion-stress-gradient-induced” migration, as the
concentration gradient produced by depletion couples to the convection term, producing additional
migration that is first order in Wi. In the presence of wall, beyond a maximum gradient number
Gd of 0.5, the mass balance of polymer and stability of the system could not be maintained in the
narrow gap region, presumably because the dumbbell size becomes comparable to that of the
eccentric cylinder gap, which is further intensified by the depletion layer when Gd approaches 0.5.
For a fixed gap, the Peclet number Pe is proportional to Wi and can reach a very large value for
small Gd and modest Wi, leading to a downstream shift in the maximum polymer concentration.
Gd, which is related to Wi and Pe as Wi = i Gd? Pe, must be small regardless of whether Wi
and Pe are small so that the velocity gradient varies only modestly across the polymer molecule.
The required condition Gd < 1, implies that Wi << Pe. This work demonstrates the utility of
the continuum theory for solving concentration profiles in eccentric cylinder flow even for large
Pe, when Wi is smaller than 1.6 and when Gd is smaller than 0.5, with significant implications for

use of polymer additives in lubricated bearings.

Supplementary Material

A complete list of migration terms and velocity components in cylindrical coordinates are available
in Appendix I. Additional illustration of the numerical method used is also available in Appendix

II.
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