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Abstract

We use all-atom molecular dynamics (MD) simulations to extract AGf\fo, the free energy of binding of

potassium salt ions K* to the partially charged polyelectrolyte poly(acrylic acid), or PAA. Upon
increase of the charge fraction of PAA, the chains adopt more extended conformations, and
simultaneously, potassium ions bind more strongly (i.e., with more negative AGf\fo) to the highly
charged chains to relieve electrostatic repulsions between charged monomers along the chains. We
compare the simulation results with the predictions of a model that describes potassium binding to PAA
chains as a reversible reaction whose binding free energy (AGf\fo) is adjusted from its intrinsic value
(AGg) by electrostatic correlations, captured by a random phase approximation (RPA). The bare or
intrinsic binding free energy AG s, which is an input in the model, depends on the binding species and
is obtained from the radial distribution function of K" around the charged monomer of a singly-charged
PAA chain in dilute solutions. We find that the model yields semi-quantitative predictions for AGf\fo
and the degree of potassium binding to PAA chains, asg, as a function of PAA charge fraction, without

using fitting parameters.

1. Introduction

Polyelectrolytes (PEs) are ionized or ionizable polymers that enable a diverse set of biological and
technological applications due to their rich physiochemical properties. Examples include the formation of
membraneless organelles,' chromosome packaging, cellular organization,’ virus self-assembly,’ as well as

9,10

DNA transfection into cells,” stabilization of vaccines,® delivery of therapeutics into the body, and self-

" including thin films.">"> Many of these and other

assembly of materials with various morphologies,'
applications involve formation of polyelectrolyte complexes (PECs) from the association of oppositely
charged polyelectrolytes. Given their importance and ubiquity, PEs have attracted extensive attention, but a
satisfactory theoretical description of their equilibrium behavior in solution has remained elusive. This arises
from the correlated nature of electrostatic interactions, which are coupled to chain configurations, and also

from local binding between charge groups that is sensitive to their chemical specificity.

In this study, we seek to develop a computational method for predicting key parameters needed for

comprehensive accounting of the thermodynamics of polyelectrolyte solutions, focusing on aqueous solutions
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of polyanions and their counterions. A simple theory to treat the electrostatic interactions in solutions
containing charged species is the Debye-Hiickel (DH) theory,'® which predicts the distribution of (small) ions
near a test ion. The DH theory usually works best for electrolyte solutions at low ionic strengths, and, although

17,18

it does not capture the monomer connectivity of polyelectrolyte chains, it has been applied to

polyelectrolyte solutions by Voorn and Overbeek.'’ To remedy the deficiencies of the DH theory, more recent

20222 and the random phase approximation (RPA),> have

approaches, such as field theoretic simulations (FTS)
included the electrostatic correlations due to chain connectivity and form factor of PE chains. In the RPA
theories, however, the polyelectrolyte structure, which reflects the PE chain connectivity, is fixed, and does
not respond to changes in the solution condition, such as the concentrations of species.'”'® Recently, the
assumption of fixed PE structure was relaxed using a variational approach to the electrostatic free energy of

polyelectrolytes.'’

Inherent in the aforementioned theories is that counterions (or, salt ions) and PE monomers are modeled as
generic spheres or point charges interacting through long-range electrostatics at all length scales, despite the
fact that ion specificity (such as the hydration level of the ions and monomers) impacts the interaction of salt
ions with oppositely charged monomers at short distances.***® For instance, the response to added salt of the
swelling of PECs?’ and the viscosity®® of single-polyelectrolyte solutions show that the more “hydrophobic”
salt anions, with fewer waters of hydration, tend to localize (or bind) along polyelectrolytes more strongly than
do highly hydrated ones. In addition, the activity of counterions in the presence of polyelectrolytes deviates
strongly from that of simple electrolyte solutions at the same ionic strength due to localization of counterions
in the vicinity of the polymer chains.”” In fact, these ion-specific effects were manifested through the

experimental observations of Hofmeister on protein stability over 100 years ago.*

Manning, who was among the first to model the binding of ions to polyelectrolytes,*'>* suggested that
when the Coulomb energy between two (neighboring) charged monomers along the PE is higher than the
thermal energy of a (free) ion in the solution, an ion from the solution condenses onto the PE. This prediction,
while qualitatively correct, ignores the aforementioned specificity in the localization of ions along
polyelectrolytes, motivating multiple efforts to incorporate ion-specific effects into the treatment of ion-PE
interactions.>*?>#463¢43 A recent example is that of Sammalkorpi and co-workers, who added an additional
ion-PE-specific interaction potential to the electrostatic potential in their Poisson-Boltzmann model.** The
Sing group, on the other hand, used a “transfer matrix” (TM) to include the effects of neighboring monomer
correlations along the chain in the probability of binding of oppositely charged groups, where the strength of
this local correlation was obtained from molecular simulations.>”™*' In the theory of Muthukumar and
coworkers, the degree of salt ion binding to a PE was obtained self-consistently; however, the electrostatic
correlations were treated using the DH theory.>>*® Ermoshkin and Olvera de la Cruz, on the other hand, used
a random phase approximation (RPA) to determine the contribution of electrostatic correlations to the

equilibrium constant of ion binding to polyelectrolytes.*

More recently, similar to Ermoshkin and Olvera de la Cruz, Friedowitz, Salehi, Larson and co-workers*~
> developed a theory that treats the electrostatic correlations using a RPA and describes ion-PE binding as a
reaction with a self-consistently derived equilibrium constant. Within this theory, the binding of ions to

polyelectrolytes is driven by an intrinsic free energy of binding, AG, and also by a contribution from
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electrostatic correlations between charged groups, u°'", obtained from the RPA.**® The latter contribution
is non-ion-specific although it does depend on the structure of polyelectrolyte chain and fluctuation of charges,
within the RPA theory, as discussed later.*>*® The intrinsic binding strength or AG, on the other hand, is defined
as the standard-state free energy of binding of a salt ion to a monomer (of a polyelectrolyte) in infinite
dilution.* AG therefore accounts for changes in water structure upon binding, and enhanced electrostatics as
a result of the low dielectric constant near PE monomers. While this AG is ion-specific, it has to date been
taken as an adjustable constant for each salt ion-PE monomer pair. To make the theory predictive, a means of

obtaining the relevant AG values a priori is needed for specific ions and polyelectrolytes.

In this work, to estimate a priori the value of AG needed for the theories described above, we use molecular
simulations, here focusing on the binding of potassium ions onto charged poly(acrylic acid), or PAA, chosen
because of its relatively simple chemical repeat unit. Since PAA is a weak polyelectrolyte whose charge level
is set by pH, and we use standard molecular dynamics (MD) simulations without reactive forcefields, we
impose a priori an ionization state onto PAA oligomers (whose charge fraction is related to the experimental
pH), for which we then compute the degree of salt ion binding. We choose both short, S-monomer, PAA chains,
each with only one charged and four neutral monomers, as well as longer PAA chains with varying fractions
ofionized monomers. At very low ionization fractions in the MD simulations, potassium ions bind only weakly
along chains, but increasing the charge fraction leads to strong localization (i.e., binding), in agreement with
the literature.*” We incorporate these results into the RPA theory of Friedowitz et al. for each ionization fraction,
using either a polyelectrolyte form factor obtained directly from the MD simulations or a pre-determined form
factor such as that of a rod or a Gaussian coil.* We find that in the limit of highly ionized PAA chains, the
aforementioned strong localization of potassium ions relieves the repulsions between charged monomers,
described through u€°™™. In this limit and using either the rodlike chain or the chain configuration obtained
from MD simulations, our model yields quantitatively accurate predictions for the fraction of bound potassium

ions on PAA, without using any fitting parameter.

This work is organized as follows: A concise description of the technical details of the MD simulations
along with the aforementioned theory are presented in Section 2. We discuss the simulation and theoretical

results in Section 3, and draw conclusions in Section 4.

2. Methods and Theory

2.1. Simulation Systems

The simulation systems investigated in this study are listed in Table 1. Each contains PAA chain(s), potassium
ions, and water molecules in a cubic box of length L. Systems Al through A5 contain different numbers of
short PAA chains, each with five monomers, with the central one charged. Systems B1 through B5 each contain
a single, longer, 30-monomer PAA chain with varying charge fraction (see Figure 1). Systems C1 through C3
include nearly fully charged PAA chains with different degrees of polymerization. Note that, in this work we

keep neutral the final two monomers at each end of the chain (four monomers in all) to reduce the end chain



effects, and the charge fraction y of the chain is then based on the remaining N, — 4 monomers. (For

instance, the charge fraction of system C1 is 1.)
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Figure 1. (a) Singly-charged PAA chain with 5 monomers, in which the central monomer carries a negative charge due to
the carboxylate ion. (b) 30-monomer PAA chains with different number of charged monomers corresponding to systems
B1 through B5 and C1in Table 1. Open circles represent neutral monomers, and blue ones are those carrying the charged

carboxylate ions.

Table 1. Details of simulation systems: N¢pain denotes the number of PAA chains in the simulation box, Np is the degree
of polymerization (or number of monomers per chain), Nep the number of charged monomers per chain,y = Np/(Np —
4) the “charge fraction” of each chain as defined in the text, Ny, the number of water molecules, and L the size of the
cubic simulation box. For chains of fixed length and varying charge fraction (i.e., systems B1 through B5), the charged
monomers were equally spaced along the chain (see Figure 1). In this work, the PAA chains are of isotactic

stereochemistry.

System Nchain Np Nep 4 Ny L (nm)
Al 5 5 1 N.A. 31670 9.84
A2 10 5 1 N.A. 31670 9.84
A3 20 5 1 N.A. 31670 9.86
A4 30 5 1 N.A. 31670 9.86
B1 1 30 5 0.19 23610 8.92
B2 1 30 6 0.23 23596 8.92
B3 1 30 7 0.27 23602 8.91
B4 1 30 9 0.35 23589 8.91
BS5 1 30 14 0.54 32442 9.91
Cl 1 30 26 1 32398 9.90
C2 1 41 37 1 32597 9.93
C3 1 56 52 1 56337 11.91

2.2 Simulation Details

All MD simulations were performed with GROMACS (version 2019.3),* in which the GAFF force field* was
used to evaluate interactions between PAA chains and K. The partial charges on PAA were obtained from the
recent work of Mintis et al.’® The water molecules (SPC/E model), counterions, and PAA chains were
randomly placed in the simulation box. Then, energy minimization was applied by the steepest descent
algorithm with a convergence criterion that the maximum force on any atom not exceed 800 kJ mol™' nm™".
Subsequently, a short 60 ps simulation under isothermal—isochoric conditions (NVT ensemble) at temperature

T =298.15 K was carried out using the leap-frog algorithm to integrate Newton’s equations of motion with an
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integration time step of 1.5 fs. Production runs with a time step of 2 fs were performed in the isothermal-
isobaric conditions (NPT ensemble) at T = 298.15 K and pressure P = 1.0 atm, kept fixed using the Nose-
Hoover thermostat’’ and the Parrinello-Rahman barostat,’* respectively. The total simulation time for each
case was 100 ns and the trajectories and energies were stored every 5 ps. The last 60 ns were used to calculate

the structural quantities.

The simulation box was cubic with periodic boundary conditions in all the three directions. The van der
Waals interactions were accounted for by Lennard-Jones potentials truncated at 7, = 1.2 nm. The electrostatic
interactions were calculated using the particle mesh Ewald (PME) technique®® with a Fourier spacing of 0.12

nm. All bonds in the polymer chain were constrained using the LINCS algorithm.**

2.3 Calculation of Static Properties from MD simulations

The configuration of the PAA chain with different degrees of deprotonation in the solution is quantified by its

mean-square end-to-end distance:
(Rg) :<(er _rl)z) (1)
where r; and 1y, denote the positions of the first and last monomers of the chain, respectively.

The distribution of counterions around a charged PAA monomer are described by the radial distribution

function (RDF), g(r),

n(r)
pv(r)

g(r) = (2)

where n(r) is the average number of ions in a spherical shell of thickness Ar and volume V (1) ~ 4nr?Ar at
the radial distance, r, from the center of mass of each charged monomer, and p is the average number density
of surrounding ions in a sphere of radius half the box dimension, or, almost equivalently, the overall number

density of ions in the box.

2.4 Extracting binding fraction and effective binding free energy from MD simulations[LR1]

Using an equal molarity Cy of potassium ions and of charged PAA monomers in the simulation box, the salt
ions reversibly bind to the charged groups of the PAA chain(s); i.e.,
AGEH
MA™ + K+ &= MA«K 3
Here MA™ denotes negatively charged monomers on the PAA chain that are firee or unbound by a salt ion,
K* denotes firee potassium ions, and MA«K is a charged monomer paired with a potassium ion. In reaction (3),
AGf\fo denotes the effective free energy of salt (i.e., potassium) binding to a charged group of PAA. Species

and charge conservation gives,

[K¥] + [MA«K] = G “)



[MA] + [MAK] = C, (5)

[x] represents the molar concentration of x. (Clearly, due to the electroneutrality condition, we have [K] =
[MA™].) We will discuss how we distinguish between free and bound potassium ions in the Results section.
One can write the equilibrium constant of the reaction (3), K, as,

[MA « K]

Ko = MAT K]

(6)

However, this equilibrium constant has units (L/mol). To make it dimensionless and normalized, we multiply

it by the concentration of water at standard conditions, [water], = 55.5 mol/L,* leading to,

[MA « K] [water],,

= TA
P [MA™] [K*] A
which can be written as,
[MA « K]
— 7B
MD [MA_]Mg ( )
_ aas
(1 — aps) M (7€)
[ MAeK ] . . f [K*] .
Here apg = c denotes the salt binding fraction, and we have taken Mg = fwater] to be the mole ratio of
0 0

free salt to water. Given the incompressibility of polyelectrolyte solutions and high-water content of the
simulation box (see Table 1), we will relate Mg to the volume fraction of free salt qbg later. Equation (7C) also
resembles closely the equilibrium constant in Langmuir adsorption, with the difference that a,g is replaced by
surface coverage and Mg is replaced by the partial pressure of a free adsorbate. As will be introduced shortly,
Equation (7C) is, however, a special case of the equilibrium constant of salt binding to PE from our theory,>
where the ion size is set equal to the size of a water molecule. Upon finding concentrations of free and bound
potassium from MD simulations, we can use one of Equations (7) to find calculate Kp and then obtain the
effective free energy of binding of potassium ions to PAA using AGf\fo = —In Kyp (assuming equality of the

sizes of ion and water molecules).

2.5 Theory

Our theory treats ion binding to PEs as a reversible reaction, whose free energy is adjusted by electrostatic
correlations. Minimization of free energy in our theory (see refs ****°) with respect to the degree of ion binding

(to PEs) leads to the following equilibrium constant,

aas
X = = exp[—AGas — YT+ 1
theory = T, g p[—AGas — paS™ + 1] (8A)[Mg2]
— ff
= exp[—AG,’is (8B)

with AGES = AGg + pSS™ — 1 and,
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The volume fraction of free ion qbg is related to its mole ratio Mg through qbg = a)SMg, where wg is the

normalized size of the ion defined as wg = ;]—S with v; the molecular volume of species i, with i = S for salt
w

ion, i = W for water.***® Here AG,g is the intrinsic binding free energy between the polyanion monomer and
the K" salt ion, which is an input into the theory and will be measured in MD simulations in this work. AG g
captures all specific effects in ion-monomer binding in infinite dilution.****> The contribution of electrostatic
interactions to ion binding is given by u53"" which depends on the chain form factor P(q) within the random
phase approximation (RPA).* The form factor in the RPA is fixed and should not in principle be perturbed by
the electrostatic interactions. We will use either a pre-defined chain form factor (such as rod or Gaussian coil)
or one obtained from the MD simulations themselves. However, although the chain configurations from the
MD simulations are obviously affected by electrostatic interactions, feeding such configurations into the RPA
could improve the deficiency of the RPA due to its inability to capture chain configuration adjustment to
solution conditions and electrostatic interactions. The form factor from MD simulations itself can be calculated
in two ways, either using the charged monomer-charged monomer RDF, gcp_cp (),
Tmax i
P(q) = N%})(l + 471;3_[0 72 (gep—cp(r) = 1) % dr) (10A)

or using the formula,*"*’

1 Ncp L Nep
P(q) = N < [Z sin(q r;/0)]* > + N < [Z cos(q r;/0)]* > (10B)

In the above, g is the wavenumber and q the wave vector q = (g, q ,q,) in Fourier space, which are

normalized by the reference length £ = vy . N_p is the number of charged monomers per chain, given in
Table 1 for different systems. In Equation (10A), 11,5 s halfthe box size (L), and in Equation (10B) ; denotes

the position of the ith charged monomer of the PE chain.

In the expression for u3 " (Equation 9),

_ Ig (5 .
k? = 471??(%2 I'%(q,as) + z_iNCpUAZFZ(q, a,) P(q)) (1)

is the square of a wavenumber (q)-dependent inverse Debye length.* The wavenumber g is normalized by the
reference length £ = vy , and lg = 2/4meyekgT is the Bjerrum length, with €, the permittivity of space,

the unit of charge, and € the dielectric constant of the medium, which we take to be that of water (¢ = ).
oa is the fraction of unpaired charged monomers of polyelectrolyte, calculated as o0y = 1 — apg. The

normalized volume of a monomer wy, = v /v 1is calculated from the radius of a monomer a,, using v, =
- ma,which in turn is determined from the first peak of g.p_.p () for a single fully charged chain (i.e., system
C1, C2, or C3), so that a, is the average distance between adjacent charged monomers on the chain, and has

. . . 4 .
avalueofay =38 (n ). We note that the salt size ag is obtained from the volume vg = gnag of a salt ion,



which is obtained from wg = vs/v , whose value can be taken to be unity, as discussed below. The Gaussian

. . N I . . ~
smearing function in q space, I'(q, a;) = exp (—quaiz), appearing in the expressions for k% and u§3™,

spreads the charge on salt ions and charged monomers across their size, a;.****

3. Results and Discussion

For the sake of simplicity, in the theory we here assume that the salt ion size is the same as that of a water
molecule (i.e., wg = 1) so that qbg = Mg and the left-hand side of the theoretical equilibrium constant in

Equation (8A), i.e., Kiheory = ﬁ, becomes identical to Kyp in Equation (7). In the SI, we show that
—(AS S
the effect of ion size can be simply embedded in AG g, without significantly changing the binding behavior of

ions.

We first focus on short PAA chains (i.e., systems A1-A4), each of length five monomers, only one of which
is charged. The binding of potassium ion to the PAA charged monomer is affected by chemical specificity,
represented in the MD simulations by the Lennard Jones (LJ) parameters and partial charges of the monomers
atoms, and the K" ion. The ion-charged monomer RDF, g(r), exhibits distinct first and second peaks (see Figure
2a), corresponding to contact of the bare ion and the solvated ion, respectively, with the monomer. Noting the
sharpness of these peaks, we define “bound” ions to be those within the area encompassed by the two, i.e.,
inside the dashed line at the minimum just beyond the second peak (r = r ) in Figure 2a, while those beyond
this distance are considered to be “free”. (To be precise, in the MD simulations, first free ions are determined
which are at least r distance away from each and every (charged) monomer, and then bound ions are
determined.) Assuming an equilibrium exchange between bound and free ions according to Equation (3) and

using their concentrations computed from the simulations, we use Equation (7A) to compute the equilibrium
eff

constant, Kyp, and the free energy AG g (= —kgT In Kyp) of potassium-monomer binding.
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Figure 2. (a) Radial distribution functions, g(r), between the centers of mass of charged monomers and K* for PAA chains
with 5 monomers, with 5, 10, 20, and 30 chains in the simulation box, for systems A1 through A4. The dashed vertical
line denotes the position of the second minimum of g(r) and defines the boundary between “bound” and “free” ions.
(b) Schematic diagram defining the “bound” K*, where K*s close to the two partially negatively charged oxygen atoms of
the charged monomer (i.e., the carboxyl group-containing monomer represented by the blue sphere) are responsible for



the first peak of g(r). Note thatr in g(r) is the distance of a potassium ion from the center of mass of the monomer

containing the charged carboxyl group.

As can be seen in Table 2, the binding free energies AGf\fo (= —4 0 kgT) for systems Al1-A4 are nearly

independent of the number of short chains in the box. Thus, the solution can be regarded as sufficiently dilute

in charged monomer concentration that one can take the calculated AGf\fo to be the “intrinsic” binding free

energy (i.e., uSo'" ~ 0 and AGSY — AG,g — 1; see Equations 8A and 8B). Hence, AGSY = —4 kgT for the
singly charged chains and AGas = —3 kgT.

Table 2 The effective free energy and its standard deviation (SD) calculated from MD simulation for the short 5-monomer

PAA chains. The SD is obtained by dividing the simulation trajectory into 10 parts and taking AGﬁgf from each part as an

independent measure.

System  AGSY (kgT) SD
Al -3.98 0.70
A2 -3.98 0.15
A3 -4.05 0.18
A4 -4.06 0.05

Now, we explore the longer, 30-monomer PAA chain with varying charge fractions (i.e., systems B and
C1). It is well-established that the chain conformation of a polyelectrolyte transitions from a coil at low charge
fraction (characteristic of neutral polymers) into an extended “rod-like” conformation at high charge fraction.
The root mean-square of the end-to-end distance of the long PAA chain (R2)Y/?, calculated from MD
simulations, is plotted in Figure 3a. At the lowest charge fraction of the chain (B1: y = 01 ), the PAA chain
adopts a coil configuration with (RZ)Y/2 ~ 20n (see the snapshot in Figure 3b). As the charge fraction
increases, the chain expands by increasing its end-to-end distance, adopting a rod-like conformation at the
highest charge fraction (C1: y = 1 0; see Figure 3b), where the fully-extended length of a PAA chain with 30
monomers is around 7.6 nm. This chain conformation transitions to an extended state to lower the electrostatic
repulsion between the COO™ groups. The electrostatic repulsions are also relieved by potassium binding to the

chain, as discussed shortly.
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Figure 3. (a) Root mean square end-to-end distance, (Rg)l/z, and (b) example chain conformations of the 30-monomer
PAA chain with various charge fractions y (or equivalently, number of charged monomers Np): 0.19 (B1), 0.23 (B2), 0.27
(B3), 0.35 (B4), 0.54 (B5) and 1.0 (C1). Water molecules and counterions are not shown; shown are carboxylic acid
hydrogen (white), oxygen (red), and aliphatic backbone carbon (cyan) atoms. Note in this and subsequent figures that
the final two monomers at each end of the chain are kept neutral and these monomers are not included in definition of

Y.

Figure 4a shows the radial distribution functions g(r) for potassium around charged monomers of the 30-
monomer chain for varying charge fractions, where, as in Figure 2a, there are two distinct peaks. As the charge
fraction along the chain decreases, the distribution of potassium ions around the charged groups approaches
that for singly charged short 5-monomer chains (see Figure 4b). The g(r) peaks for the 30-monomer chain with
the lowest charge fraction of the 30-monomer chain with (B1: y =01 ) almost matches that of the 5-

monomer chains (Figure 4b).
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Figure 4. (a) Radial distribution functions, g(r), between the charged monomers and K+ for PAA chains with 30 monomers
and various PAA charge fractions fromy =01 (system B1) to unity (system C1); see Table 1 for the specifications of
each system. The dashed line denotes the location of the second minimum of g(r). (b) The radial distribution functions
for K+ and the charged monomers in singly-charged short PAA chains with 20 and 30 chains in the simulation box,
corresponding to systems A3 and A4, respectively. The black curve in (b) is for 30 monomer PAA chain with the charge
fractionofy =01 (system B1).
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As the charge fraction along the chain increases, the two peaks of g(r) grow strongly. This shows that
potassium ions more strongly localize and bind to the charged monomers of the chain as the charge fraction

increases.

Next, to quantify the binding of potassium ions, we use the same criterion to distinguish free and bound
ions as in short-chain systems; the ions at distances from a charged monomer up to the second minimum in
g(r) (i.e., the dashed line in Figure 4a) are considered to be bound. Then, using the concentrations of free and
bound potassium ions, one can employ Equation 7A to calculate the equilibrium constant and from this the

effective binding free energy A(}f\fsf from the MD simulations, which are shown in Figure 5. As can be seen,

AGf\fo almost equals that in singly charged, short chains (AGf\fo ~ —4 kgT) at the lowest charge fraction of the

chain (withy = 01 ). Evidently in this limit, the binding of potassium ions to the charged monomers of the
long chain are nearly uncorrelated with each other, as inferred from Figure 4b. However, at high charge
fractions, the ion binding to the charged monomers strengthens greatly, resulting in larger g(r) peaks in Figure

4a and hence, a greater fraction of bound ions to the charged monomers, @ s, in Figure Sa.

To test our theory for ion binding to PE chains, we use Equations 8 A and 8B to find the binding equilibrium
constant and effective free energy. Briefly, using the intrinsic binding free energy, AGas(= —3 kgT) taken
from the singly-charged short chains, and a form factor for the PAA chain configuration, we calculate the
binding fraction from Equation 8A and effective free energy from Equation 8B. The contribution of
electrostatic correlations to ion binding is calculated within the RPA using Equation 9. To approximate the
chain form factor, we either use a predefined form factor (either a rod or a Gaussian coil), or the form factor
of the 30-monomer chain from MD simulations (using Equations 10A or 10B). For the rod form factor, the
length of the chain is set at L, =~ 26a, (witha, = 038 n being the diameter of a monomer; see Figure

S1), while the Kuhn length of the Gaussian coil was assumed to be the monomer diameter for simplicity,

05

2
26aA) = 25n . Note that the two final monomers at each end of the

giving a radius of gyration of R, = ( S

chain do not contribute to electrostatic correlations, so their effect is removed from chain form factors. The
predictions of the theory in Figure 5 qualitatively resemble the MD results, with predictions of the rodlike
form factor and from the MD simulations agreeing better than those from the Gaussian form factor. The
Gaussian coil form factor leads to stronger repulsions along the chain than for the rod form factor, which are
relieved by attracting ions more strongly to the coil (i.e., more negative AGf\fo in Figure 5b), yielding higher

fractions of bound ions (i.e., higher asg in Figure 5a).

At low charge fractions on the 30-monomer PAA chain, the MD results disagree more strongly from the
predictions, regardless of the method of prescribing the chain structure. However, upon increase of the charge
fraction, the model predictions for a form factor of a rod, or taken from the MD simulations using either
Equation 10A or 10B, agree semi-quantitatively with the results of the MD simulations for a5 and AGf\fo.
(The charged monomer-charged monomer RDFs used to obtain the form factor in Equation 10A are given in
Figure S1.) Figure 5 shows that the contribution of electrostatic correlations to ion binding, 5% ", nicely

captures the increased strength of potassium binding needed to relieve the high electrostatic repulsions along

a highly charged chain. The more accurate predictions from the rod form factor than the Gaussian one at high
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charge fractions is consistent with the extended PAA configurations at high charge fractions depicted in Figure

3b.
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Figure 5. Comparison of a) the binding fraction a,g and b) effective binding free energy AGﬁgf (in units of kgT) as

functions of the charge fraction y (or equivalently, number of charged monomers N_p) of 30-monomer PAA chains, from
MD simulations and theory. Note in this and other figures that the final two monomers at each end of the chain are kept
neutral and these monomers are not included in definitions of a5 and y. The contributions to the effective binding free

corr corr

energy AGST = AGag + uS¥™ — 1 beyond AGag — 1= —4 kgT are due to the electrostatic correlations, given by u5%

(Equation 9). The coupling of binding free energy AGﬁgf and fraction of binding a,g is given by Equation 8. Predictions

using the form factor from Equation 10B are given in Figure S2.

Next, we investigate the neutralization of fully charged PAA chains (systems C1-C3) as a function of its
degree of polymerization. Figure S3 shows that in both MD simulations and theory, increasing the degree of
polymerization of the “fully charged” chains from 30 to 56 slightly increases the binding fraction asg and the
binding strength, |AGf\fo|. As in Figure 5, the intrinsic binding free energy, AG,s , was set at —3 kgT in the

theory.

Interestingly, however, the rate of change of asg and |AGf\fo| with the length of (fully charged) chains is

much slower than with the charge fraction y at fixed chain length (see Figure 6 which merges plots of Figures
5 and S3). It can be concluded that the electrostatic repulsions between nearest adjacent charged monomers

have a much stronger effect on ion binding than do the repulsions between non-adjacent charged monomers.
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Figure 6. a) Binding fraction a,g and b) effective binding free energy AGﬁgf (in units of kgT) for 30-monomer PAA chains

with varying charge fraction (in the yellow-shaded region) and for fully charged PAA chains with varying chain length (in
the white-shaded region). The legend is the same as in Figure 5. Note that the final two monomers at each end of each
chain are kept neutral and are not included in definitions of a,g and y. The contributions to the effective binding free

corr corr

energy AGSE = AGps + pSY™ — 1 beyond AGag — 1 = —4 kgT is due to the electrostatic correlations, given by 5%

(Equation 9). The coupling of binding free energy AGﬁgf and fraction of binding a,g is given by Equation 8.

Finally, we note that the ion size can affect its binding behavior, as discussed in our previous study.” In
Figure S4 of the SI, we present the results when hydration numbers of potassium ions are taken into account,
which increases the (effective) size of the ion, wg. The results in Figure S4 closely mimic those in Figure 6,
with the difference that the increase of ion size wg mainly just shifts the intrinsic binding free energy AGg
(and therefore AGf\fo) to more positive values. Note that if AG g is kept fixed, upon increase of wg, the mixing

entropy of the ions decreases, and this leads to more extensive binding of ions to polyelectrolytes.™

4. Conclusions and Prospective

We studied neutralization of poly(acrylic acid), or PAA, chains by potassium ions using MD simulations and
theory. Three types of simulation systems were investigated: A) a box containing a few short, singly-charged
chains, B) a box containing a longer (30-monomer) chain with various numbers of charged monomers (or
equivalently, with various charge fractions), and C) a box containing a nearly fully charged chain with different

lengths (= 30 monomers). Each system contains potassium ions as the counterions of PAA. We extracted free
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energies of binding of potassium ions to PAA chain, AGf\fo, using the ion-charged monomer radial distribution
function (RDF) for each of the aforementioned systems. It was found that the potassium binding free energy

for type A systems does not change with the number of singly-charged chains (AGf\fo ~ constant), and hence,

one can in this case regard it as the intrinsic free energy of potassium-carboxylic group binding (AGf\fo ~

AGps). Interestingly, this binding free energy matches that of the 30-monomer chain at the lowest charge
fraction in the type B systems. However, as the charge fraction of the chain in type B systems increases, the
chain adopts a more extended configuration. Simultaneously, AGf\fo becomes more negative, corresponding to

stronger potassium-PAA binding, and therefore, a higher degree of potassium binding to the chain, axs.

Next, we used the intrinsic binding free energy AG,g obtained as described above as input to test the ability
of our theory to predict salt ion binding to polyelectrolyte chains, including the effects of ion proximity along

the chain. Our theory is based on a mass action equation that dictates an equilibrium exchange between free

ions and ions bound to PE chains. The (effective) free energy of ion binding to PE chains AGf\fo has two

contributions: the intrinsic free energy, AG,s, and the electrostatic correlations p§%'", where the latter is

obtained from a random phase approximation (RPA). uz3'" in turn strongly depends on chain configuration
and the correlations among charged monomers in the chain. Interestingly, we find that using the intrinsic AG g
obtained from singly-charged chains, and a rodlike chain configuration or a configuration directly from MD
simulations, the theory yields semi-quantitative predictions for AGf\fo and a g as a function of charge fraction
without using any fitting parameter. The accuracy of the predictions improves at higher charge fractions of
PAA chains (i.e., systems B and C). This suggests that a combination of intrinsic binding free energy, which
captures chemical specificity of charged species, and RPA, which accounts for the effects of chain
configuration and polyelectrolyte charge fraction on electrostatic correlations, provides reliable predictions of
neutralization of polyelectrolytes by salt ions. An extension of this theory may be able to predict more complex
phenomena such as ion pairing, by obtaining intrinsic binding free energies of ion pairing from analogous

molecular dynamics simulations.

Acknowledgments

This work was supported by the National Science Foundation under Grant No. 1707640. W. Tian
acknowledges financial support from Jiangsu Overseas Visiting Scholar Program for University Prominent

Young and Mid-aged Teachers and Presidents (2019), PAPD of Jiangsu Higher Education Institutions.

References

1. Kroschwald, S., Maharana, S., Mateju, D., Malinovska, L., Niiske, E., Poser, 1., Richter, D. & Alberti, S.
Promiscuous Interactions and Protein Disaggregases Determine the Material State of Stress-Inducible RNP
Granules. eLife 4, €06807 (2015).

2. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular Condensates: Organizers of Cellular
Biochemistry. Nature Reviews Molecular Cell Biology 18, 285-298 (2017).

14



10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

Nakashima, K. K., Vibhute, M. A. & Spruijt, E. Biomolecular Chemistry in Liquid Phase Separated
Compartments. Frontiers in molecular biosciences 6,21 (2019).

Shakya, A., Park, S., Rana, N. & King, J. T. Liquid-Liquid Phase Separation of Histone Proteins in Cells: Role
in Chromatin Organization. Biophysical Journal 118, 753-764 (2020).

Lu, T. & Spruijt, E. Multiphase Complex Coacervate Droplets. Journal of the American Chemical Society 142,
2905-2914 (2020).

Garmann, R. F., Goldfain, A. M. & Manoharan, V. N. Measurements of the Self-Assembly Kinetics of
Individual Viral Capsids Around Their RNA Genome. Proceedings of the National Academy of Sciences 116,
22485 LP — 22490 (2019).

Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M. &
Danielsen, M. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proceedings of
the National Academy of Sciences 84, 74137417 (1987).

Mi, X., Blocher McTigue, W. C., Joshi, P. U., Bunker, M. K., Heldt, C. L. & Perry, S. L. Thermostabilization
of Viruses via Complex Coacervation. Biomaterials Science (2020). doi:10.1039/D0OBM01433H

Blocher, W. C. & Perry, S. L. Complex Coacervate-Based Materials for Biomedicine. WIREs Nanomedicine
and Nanobiotechnology 9, 1442 (2017).

Kapelner, R. A. & Obermeyer, A. C. lonic Polypeptide Tags for Protein Phase Separation. Journal of Chemical
Sciences 10, 2700-2707 (2019).

Shamoun, R. F., Reisch, A. & Schlenoff, J. B. Extruded Saloplastic Polyelectrolyte Complexes. Advanced
Functional Materials 22, 1923-1931 (2012).

Alkekhia, D., Hammond, P. T. & Shukla, A. Layer-by-Layer Biomaterials for Drug Delivery. Annual Review of
Biomedical Engineering 22, 1-24 (2020).

Barberio, A. E., Smith, S. G., Correa, S., Nguyen, C., Nhan, B., Melo, M., Tokatlian, T., Suh, H., Irvine, D. J. &
Hammond, P. T. Cancer Cell Coating Nanoparticles for Optimal Tumor-Specific Cytokine Delivery. ACS nano
14, 11238-11253 (2020).

Kazemabad, M., Verliefde, A., Comelissen, E. R. & D’Haese, A. Crown Ether Containing Polyelectrolyte
Multilayer Membranes for Lithium Recovery. Journal of Membrane Science 595, 117432 (2020).

Schlenoff, J. B. & Dubas, S. T. Mechanism of Polyelectrolyte Multilayer Growth : Charge Overcompensation
and Distribution. Macromolecules 34, 592-598 (2001).

Debye, P. & Hiickel, E. Zur Theorie der Elektrolyte. Physikalische Zeitschrift 9, 185-206 (1923).

Shen, K. & Wang, Z.-G. Electrostatic Correlations and the Polyelectrolyte Self Energy. The Journal of
Chemical Physics 146, 84901/1-16 (2017).

Qin, J. & de Pablo, J. J. Criticality and Connectivity in Macromolecular Charge Complexation. Macromolecules
49, 8789-8800 (2016).

Overbeek, J. T. G. & Voorn, M. J. Phase Separation in Polyelectrolyte Solutions. Theory of Complex
Coacervation. Journal of Cellular and Comparative Physiology 49, 7-26 (1957).

Park, S., Barnes, R., Lin, Y., Jeon, B., Najafi, S., Delaney, K. T., Fredrickson, G. H., Shea, J.-E., Hwang, D. S.
& Han, S. Dehydration Entropy Drives Liquid-Liquid Phase Separation by Molecular Crowding.
Communications Chemistry 3, 83 (2020).

McCarty, J., Delaney, K. T., Danielsen, S. P. O., Fredrickson, G. H. & Shea, J.-E. Complete Phase Diagram for
Liquid—Liquid Phase Separation of Intrinsically Disordered Proteins. The Journal of Physical Chemistry Letters
10, 1644—1652 (2019).

Danielsen, S. P. O., McCarty, J., Shea, J.-E., Delaney, K. T. & Fredrickson, G. H. Molecular Design of Self-

Coacervation Phenomena in Block Polyampholytes. Proceedings of the National Academy of Sciences 116,

15



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

8224-8232 (2019).
Borue, V. Y. & Erukhimovich, I. Y. A Statistical Theory of Weakly Charged Polyelectrolytes: Fluctuations,
Equation of State and Microphase Separation. Macromolecules 21, 3240-3249 (1988).
Hostnik, G., Podlipnik, C., Mériguet, G. & Cerar, J. Specificity of Counterion Binding to a Conjugated
Polyelectrolyte: A Combined Molecular Dynamics and NOESY Investigation. Macromolecules 53, 1119-1128
(2020).
Hinderberger, D., Spiess, H. W. & Jeschke, G. Dynamics, Site Binding, and Distribution of Counterions in
Polyelectrolyte Solutions Studied by Electron Paramagnetic Resonance Spectroscopy. The Journal of Physical
Chemistry B 108, 3698-3704 (2004).
Hori, N., Denesyuk, N. A. & Thirumalai, D. Ion Condensation onto Ribozyme Is Site Specific and Fold
Dependent. Biophysical Journal 116, 2400-2410 (2019).
Ghostine, R. A., Shamoun, R. F. & Schlenoff, J. B. Doping and Diffusion in an Extruded Saloplastic
Polyelectrolyte Complex. Macromolecules 46, 4089—4094 (2013).
Saloméki, M., Tervasmaki, P., Areva, S. & Kankare, J. The Hofmeister Anion Effect and the Growth of
Polyelectrolyte Multilayers. Langmuir 20, 3679-3683 (2004).
Wandrey, C., Hunkeler, D., Wendler, U. & Jaeger, W. Counterion Activity of Highly Charged Strong
Polyelectrolytes. Macromolecules 33, 7136-7143 (2000).
Hofmeister, F. Zur Lehre von der Wirkung der Salze. Archiv fiir experimentelle Pathologie und Pharmakologie
24, 247-260 (1888).
Manning, G. S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions 1. Colligative
Properties. The Journal of Chemical Physics 51, 924-933 (1969).
Manning, G. S. Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions II. Self-Diffusion of
the Small lons. The Journal of Chemical Physics 51, 934-938 (1969).
Manning, G. S. Counterion Binding in Polyelectrolyte Theory. Accounts of Chemical Research 12, 443—449
(1979).
Batys, P., Luukkonen, S. & Sammalkorpi, M. Ability of the Poisson—Boltzmann Equation to Capture Molecular
Dynamics Predicted lon Distribution Around Polyelectrolytes. Physical Chemistry Chemical Physics 19,
24583-24593 (2017).
Muthukumar, M. Theory of Counter-lon Condensation on Flexible Polyelectrolytes: Adsorption Mechanism.
The Journal of Chemical Physics 120, 9343-9350 (2004).
Hua, J., Mitra, M. K. & Muthukumar, M. Theory of Volume Transition in Polyelectrolyte Gels with Charge
Regularization. The Journal of Chemical Physics 136, 134901 (2012).
Madinya, J. J., Chang, L.-W., Perry, S. L. & Sing, C. E. Sequence-Dependent Self-Coacervation in High
Charge-Density Polyampholytes. Mol. Syst. Des. Eng. 5, 632—-644 (2020).
Liu, Y., Santa Chalarca, C. F., Carmean, R. N., Olson, R. A., Madinya, J., Sumerlin, B. S., Sing, C. E., Emrick,
T. & Perry, S. L. Effect of Polymer Chemistry on the Linear Viscoelasticity of Complex Coacervates.
Macromolecules 53, 7851-7864 (2020).
Lytle, T. K., Chang, L.-W., Markiewicz, N., Perry, S. L. & Sing, C. E. Designing Electrostatic Interactions via
Polyelectrolyte Monomer Sequence. ACS Central Science 5, 709718 (2019).
Lytle, T. K. & Sing, C. E. Transfer Matrix Theory of Polymer Complex Coacervation. Soft Matter 13, 7001—
7012 (2017).
Lytle, T. K., Salazar, A. J. & Sing, C. E. Interfacial Properties of Polymeric Complex Coacervates from
Simulation and Theory. The Journal of Chemical Physics 149, 163315 (2018).
Ermoshkin, A. V & Olvera de la Cruz, M. A Modified Random Phase Approximation of Polyelectrolyte

16



43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

Solutions. Macromolecules 36, 7824—7832 (2003).

Friedowitz, S., Salehi, A., Larson, R. G. & Qin, J. Role of Electrostatic Correlations in Polyelectrolyte Charge
Association. The Journal of Chemical Physics 149, 163335/1-14 (2018).

Salehi, A. & Larson, R. G. A Molecular Thermodynamic Model of Complexation in Mixtures of Oppositely
Charged Polyelectrolytes with Explicit Account of Charge Association/Dissociation. Macromolecules 49,
9706-9719 (2016).

Lou, J., Friedowitz, S., Qin, J. & Xia, Y. Tunable Coacervation of Well-Defined Homologous Polyanions and
Polycations by Local Polarity. ACS Central Science 5, 549557 (2019).

Ghasemi, M. & Larson, R. G. Role of Electrostatic Interactions in Charge Regulation of Weakly Dissociating
Polyacids. Progress in Polymer Science 112, 101322 (2021).

Hinderberger, D., Jeschke, G. & Spiess, H. W. Counterion Condensation and Conformational Transitions of
Polyelectrolytes Characterized by EPR Spectroscopy. Macromolecules 35, 9698-9706 (2002).

Abraham, M. J., Murtola, T., Schulz, R., Pall, S., Smith, J. C., Hess, B. & Lindahl, E. GROMACS: High
Performance Molecular Simulations Through Multi-Level Parallelism from Laptops to Supercomputers.
SoftwareX 1-2, 19-25 (2015).

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and Testing of A general
Amber Force Field. Journal of Computational Chemistry 25, 1157-1174 (2004).

Mintis, D. G. & Mavrantzas, V. G. Effect of pH and Molecular Length on the Structure and Dynamics of Short
Poly(acrylic acid) in Dilute Solution: Detailed Molecular Dynamics Study. The Journal of Physical Chemistry
B 123, 42044219 (2019).

Nosé, S. A Molecular Dynamics Method for Simulations in the Canonical Ensemble. Molecular Physics 52,
255-268 (1984).

Parrinello, M. & Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method.
Journal of Applied Physics 52, 7182—7190 (1981).

Darden, T., York, D. & Pedersen, L. Particle Mesh Ewald: An N -log( N ) Method for Ewald Sums in Large
Systems. The Journal of Chemical Physics 98, 10089-10092 (1993).

Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molecular Simulation. Journal of Chemical Theory
and Computation 4, 116122 (2008).

Ghasemi, M., Friedowitz, S. & Larson, R. G. Analysis of Partitioning of Salt Through Doping of
Polyelectrolyte Complex Coacervates. Macromolecules 53, 6928—6945 (2020).

Bergsma, J., Leermakers, F. A. M., Kleijn, J. M. & van der Gucht, J. A Hybrid Monte Carlo Self-Consistent
Field Model of Physical Gels of Telechelic Polymers. Journal of Chemical Theory and Computation 14, 6532—
6543 (2018).

Liu, H. & Paddison, S. J. Direct Calculation of the X-Ray Structure Factor of lonic Liquids. Physical Chemistry
Chemical Physics 18, 11000-11007 (2016).

Wang, Z.-G. Fluctuation in Electrolyte Solutions: The Self Energy. Physical Review E 81,21501/1-12 (2010).

Supporting Information (SI)

Extracting Free Energies of Salt Ion Binding to Polyelectrolytes by

Molecular Dynamics Simulations
17



Wen-de Tian,!> Mohsen Ghasemi,? and Ronald G. Larson®*

! Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
2 Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109

150 18
= L
125 125
10 Un -
— o
T oa| hﬁ- -
E. H
h o
L B -
25 23
:, L L i |.| 1 1 L ! !
LT PR Y TR ) (R B N { I OO 8 ¢ L TR (RS IR T O 1 T R N
™ |:.'.'.'.l|:| T [7tm|
] 1401
EE) B=
-an -
b e -
_\_I_ [
| B o
q, % n
o m
R 50 -
o 25 - JL(
o ons 8 1E EIZ 23 ZC 35 AL a0 "2 s 20 ES O30 3E 40
b Lrures) r [eeen]
T
[ |
ars |
afEn
152
oS 625
el Aioann L
[ b
¥
[ 5 120 F
- fa-]
= 175 F |,
-
t 1001
[ )
By EL S
il ‘-
& = u'ﬂ
3 . . , ] 1 I"I'ﬂrﬂ"\-r\-— N N N
coops 1ot 2 25 i3 35 41C g o0& "o 15 20 $E 10 35 40

=
¥ i) T {roer)

Figure S1. Charged monomer-charged monomer RDF, gp_cp(7), for 30-monomer chains with varying charged fractions
from the MD simulations, as described in Table 1 of the main text. The first peak of system C1 (“fully” charged, 30-
monomer chain) lies at a distance of ay = 038 (n ).
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Table S1. The effective free energy and standard deviation (SD) calculated from MD simulation for systems of type B and
C.

System AGSE ( T) SD of AGSHf
Bl -3.91 1.50
B2 -5.20 0.55
B3 -5.22 0.47
B4 -5.73 0.52
B35 -6.54 0.23
Cl -7.61 0.11
C2 -7.53 0.12
C3 -8.02 0.07
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Figure S2. a) Binding fraction aag and b) effective binding free energy AGﬁgf (in units of kgT) as functions of the charge

fraction y (or equivalently, number of charged monomers N_p) of 30-monomer PAA chains, from MD simulations and
theory based on chain structure from the simulations, using Egs. 10A and 10B in the main text. Note that two monomers
at each end of the chain are kept neutral and these monomers are not included in definitions of a,s.
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Figure S3. a) Binding fraction asg and b) effective binding free energy AGﬁgf (in units of kgT) as functions of the number

of charged monomers along “fully” charged PAA (Np), from MD simulations and theory. Note that two monomers at
each end of the chain are kept neutral and these monomers are not included in definitions of a,g. For the rod form
factors, the length of the chainissetat L, = Npa, (witha, = 038n  being the diameter of a monomer; see Figure
S1), while the Kuhn length of the Gaussian coil was assumed to be the monomer diameter for simplicity, giving a radius

2,05
NcPaA)

of gyration of R, = ( .

Comparison of theoretical and simulation results for wg > 1

Potassium ions carry on average three water molecules in their hydration shell (corresponding to wg = 3),”
however, the number of hydration waters is sensitive on the technique used to measure it. To compare the
theoretical and simulation results when wg > 1, the equilibrium constant used to present the MD simulation
results (i.e., Equation 7C) has to be changed so that it is consistent with theoretical equilibrium constant in

Equation 8A. To do so, we simply multiply both sides of Equation 7C by wg,

_ KM _ [MAeK]
Kb,z = ws  [MA-]MEwg (Sla)
aAS
= AS S1b
(1-aps) ¢f ( )

As can be seen, Equation S1b is identical to the left-hand side of Equation 8A. Given that AGf\folz =

—In Kup 2, one can see that the effective binding free energies from the MD results simply shift by In wg
when wg > 1, i.e., AG§a, = —InKyvp, = —InKyp + Inws = AGLE + In ws where AG4T (= —InKup)
are the effective binding free energies from the MD simulations for wg = 1. Therefore, the simulation results
for the box containing short chains (i.e., systems A1-A4) for wg = 3 shiftbyIn3 0 = +1 1 (kgT) (compared

to those in Table 2) leading to AGf\folz ~ —2 kgT for the ion size of wg = 3 as follows,

Table S2. The effective free energy and its standard deviation (SD) calculated from MD simulation for the short 5-

monomer PAA chains when wg =1, giving AGﬁgf = —InXKyp (also presented in Table 2), and when wg = 3, and

eff __
AGps, = —InKyp,.

System  AGSE (kgT)  AGSS? (kgT)

Al -3.98 -2.88
A2 -3.98 -2.88
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A3 -4.05 -2.95
A4 -4.06 -2.96

Given that for singly-charged, short chains the electrostatic correlations play little role in potassium binding
to PAA chains (i.e., AGf\folz — AGpg, — 1), we find the intrinsic binding free energy tobe AGas, =~ —1  kgT.
Similarly, the effective biding free energies at wg = 3 for systems B1-B4 and C1-C3 simply shifts by

+11 kgT compared to their equivalent values at wg = 1 (see Figure S4).

Next, we use the intrinsic binding free energy AGps, and wg = 3 to find the predicted degree of potassium
binding @ g and effective binding free energy AGf\folz from the theory. Plotted in Figure S4 are apg and AGf\folz

from the theory using various chain structures and also from the simulations for wg = 3,
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Figure S4. a) Binding fraction @, and b) effective binding free energy AGﬁgf (in units of kgT) for 30-monomer PAA chains

with varying charge fraction (in the yellow-shaded region) and for fully charged PAA chains with varying chain length (in
the white-shaded region) at wg = 3. The legend is the same as in Figure 5. Note that two monomers at each end of each
chain are kept neutral and are not included in definitions of a5 and y.

At wg = 3 (i.e., larger effective potassium size compared to wg = 1), the dependence of asg and AGf\fo’z

on the charge fraction y at fixed chain length (in the yellow shaded area) and on the length of (fully charged)
chains (in the white shaded area) closely resembles that for wg = 1 in Figure 6: the rate of change of a5 and
AGf\folz with the charge fraction y is much stronger than that with the length of “fully” charged chains. Also,

similar to Figure 6, the agreement between the simulation results and the predictions improve as the chain
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charge fraction increases. Note that, asg from the MD simulations obviously do not vary with the effective

size of potassium, because a5g is determined from ion-monomer RDFs.
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