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Abstract 

We use all-atom molecular dynamics (MD) simulations to extract ∆𝐺#$%&&,  the free energy of binding of 

potassium salt ions K+ to the partially charged polyelectrolyte poly(acrylic acid), or PAA. Upon 

increase of the charge fraction of PAA, the chains adopt more extended conformations, and 

simultaneously, potassium ions bind more strongly (i.e., with more negative ∆𝐺#$%&&) to the highly 

charged chains to relieve electrostatic repulsions between charged monomers along the chains. We 

compare the simulation results with the predictions of a model that describes potassium binding to PAA 

chains as a reversible reaction whose binding free energy (∆𝐺#$%&&) is adjusted from its intrinsic value 

(Δ𝐺#$) by electrostatic correlations, captured by a random phase approximation (RPA). The bare or 

intrinsic binding free energy Δ𝐺#$, which is an input in the model, depends on the binding species and 

is obtained from the radial distribution function of K+ around the charged monomer of a singly-charged 

PAA chain in dilute solutions. We find that the model yields semi-quantitative predictions for ∆𝐺#$%&& 

and the degree of potassium binding to PAA chains, 𝛼#$, as a function of PAA charge fraction, without 

using fitting parameters. 

1. Introduction 

Polyelectrolytes (PEs) are ionized or ionizable polymers that enable a diverse set of biological and 

technological applications due to their rich physiochemical properties. Examples include the formation of 

membraneless organelles,1–3 chromosome packaging,4 cellular organization,5 virus self-assembly,6 as well as  

DNA transfection into cells,7 stabilization of vaccines,8 delivery of therapeutics into the body, 9,10 and self-

assembly of materials with various morphologies,11 including thin films.12–15 Many of these and other 

applications involve formation of polyelectrolyte complexes (PECs) from the association of oppositely 

charged polyelectrolytes. Given their importance and ubiquity, PEs have attracted extensive attention, but a 

satisfactory theoretical description of their equilibrium behavior in solution has remained elusive. This arises 

from the correlated nature of electrostatic interactions, which are coupled to chain configurations, and also 

from local binding between charge groups that is sensitive to their chemical specificity.  

In this study, we seek to develop a computational method for predicting key parameters needed for 

comprehensive accounting of the thermodynamics of polyelectrolyte solutions, focusing on aqueous solutions 
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of polyanions and their counterions. A simple theory to treat the electrostatic interactions in solutions 

containing charged species is the Debye-Hückel (DH) theory,16 which predicts the distribution of (small) ions 

near a test ion. The DH theory usually works best for electrolyte solutions at low ionic strengths, and, although 

it does not capture the monomer connectivity of polyelectrolyte chains,17,18 it has been applied to 

polyelectrolyte solutions by Voorn and Overbeek.19 To remedy the deficiencies of the DH theory, more recent 

approaches, such as field theoretic simulations (FTS)20–22 and the random phase approximation (RPA),23 have 

included the electrostatic correlations due to chain connectivity and form factor of PE chains. In the RPA 

theories, however, the polyelectrolyte structure, which reflects the PE chain connectivity, is fixed, and does 

not respond to changes in the solution condition, such as the concentrations of species.17,18 Recently, the 

assumption of fixed PE structure was relaxed using a variational approach to the electrostatic free energy of 

polyelectrolytes.17  

Inherent in the aforementioned theories is that counterions (or, salt ions) and PE monomers are modeled as 

generic spheres or point charges interacting through long-range electrostatics at all length scales, despite the 

fact that ion specificity (such as the hydration level of the ions and monomers) impacts the interaction of salt 

ions with oppositely charged monomers at short distances.24–26 For instance, the response to added salt of the 

swelling of PECs27 and the viscosity28 of single-polyelectrolyte solutions show that the more “hydrophobic” 

salt anions, with fewer waters of hydration, tend to localize (or bind) along polyelectrolytes more strongly than 

do highly hydrated ones. In addition, the activity of counterions in the presence of polyelectrolytes deviates 

strongly from that of simple electrolyte solutions at the same ionic strength  due to localization of counterions 

in the vicinity of the polymer chains.29 In fact, these ion-specific effects were manifested through the 

experimental observations of Hofmeister on protein stability over 100 years ago.30 

Manning, who was among the first to model the binding of ions to polyelectrolytes,31–33 suggested that 

when the Coulomb energy between two (neighboring) charged monomers along the PE is higher than the 

thermal energy of a (free) ion in the solution, an ion from the solution condenses onto the PE. This prediction, 

while qualitatively correct, ignores the aforementioned specificity in the localization of ions along 

polyelectrolytes, motivating multiple efforts to incorporate ion-specific effects into the treatment of ion-PE 

interactions.34,35,44–46,36–43 A recent example is that of Sammalkorpi and co-workers, who added an additional 

ion-PE-specific interaction potential to the electrostatic potential in their Poisson-Boltzmann model.34 The 

Sing group, on the other hand, used a “transfer matrix” (TM) to include the effects of neighboring monomer 

correlations along the chain in the probability of binding of oppositely charged groups, where the strength of 

this local correlation was obtained from molecular simulations.37–41 In the theory of Muthukumar and 

coworkers, the degree of salt ion binding to a PE was obtained self-consistently; however, the electrostatic 

correlations were treated using the DH theory.35,36 Ermoshkin and Olvera de la Cruz, on the other hand, used 

a random phase approximation (RPA) to determine the contribution of electrostatic correlations to the 

equilibrium constant of ion binding to polyelectrolytes.42  

More recently, similar to Ermoshkin and Olvera de la Cruz, Friedowitz, Salehi, Larson and co-workers43–

45 developed a theory that treats the electrostatic correlations using a RPA and describes ion-PE binding as a 

reaction with a self-consistently derived equilibrium constant. Within this theory, the binding of ions to 

polyelectrolytes is driven by an intrinsic free energy of binding, ∆𝐺 , and also by a contribution from 
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electrostatic correlations between charged groups, 𝜇*+,,, obtained from the RPA.43,46  The latter contribution 

is non-ion-specific although it does depend on the structure of polyelectrolyte chain and fluctuation of charges, 

within the RPA theory, as discussed later.43,46 The intrinsic binding strength or ∆𝐺, on the other hand, is defined 

as the standard-state free energy of binding of a salt ion to a monomer (of a polyelectrolyte) in infinite 

dilution.44 ∆𝐺 therefore accounts for changes in water structure upon binding, and enhanced electrostatics as 

a result of the low dielectric constant near PE monomers. While this ∆𝐺 is ion-specific, it has to date been 

taken as an adjustable constant for each salt ion-PE monomer pair. To make the theory predictive, a means of 

obtaining the relevant ∆𝐺 values a priori is needed for specific ions and polyelectrolytes. 

In this work, to estimate a priori the value of ∆𝐺 needed for the theories described above, we use molecular 

simulations, here focusing on the binding of potassium ions onto charged poly(acrylic acid), or PAA, chosen 

because of its relatively simple chemical repeat unit. Since PAA is a weak polyelectrolyte whose charge level 

is set by pH, and we use standard molecular dynamics (MD) simulations without reactive forcefields, we 

impose a priori an ionization state onto PAA oligomers (whose charge fraction is related to the experimental 

pH), for which we then compute the degree of salt ion binding. We choose both short, 5-monomer, PAA chains, 

each with only one charged and four neutral monomers, as well as longer PAA chains with varying fractions 

of ionized monomers. At very low ionization fractions in the MD simulations, potassium ions bind only weakly 

along chains, but increasing the charge fraction leads to strong localization (i.e., binding), in agreement with 

the literature.47 We incorporate these results into the RPA theory of Friedowitz et al. for each ionization fraction, 

using either a polyelectrolyte form factor obtained directly from the MD simulations or a pre-determined form 

factor such as that of a rod or a Gaussian coil.43 We find that in the limit of highly ionized PAA chains, the 

aforementioned strong localization of potassium ions relieves the repulsions between charged monomers, 

described through 𝜇*+,,. In this limit and using either the rodlike chain or the chain configuration obtained 

from MD simulations, our model yields quantitatively accurate predictions for the fraction of bound potassium 

ions on PAA, without using any fitting parameter. 

This work is organized as follows: A concise description of the technical details of the MD simulations 

along with the aforementioned theory are presented in Section 2. We discuss the simulation and theoretical 

results in Section 3, and draw conclusions in Section 4.  

2. Methods and Theory 

2.1. Simulation Systems  

The simulation systems investigated in this study are listed in Table 1. Each contains PAA chain(s), potassium 

ions, and water molecules in a cubic box of length 𝐿. Systems A1 through A5 contain different numbers of 

short PAA chains, each with five monomers, with the central one charged. Systems B1 through B5 each contain 

a single, longer, 30-monomer PAA chain with varying charge fraction (see Figure 1). Systems C1 through C3 

include nearly fully charged PAA chains with different degrees of polymerization. Note that, in this work we 

keep neutral the final two monomers at each end of the chain (four monomers in all) to reduce the end chain 



effects, and the charge fraction  of the chain is then based on the remaining  monomers. (For 

instance, the charge fraction of system C1 is 1.)  

 

System     (nm) 

A1 5 5 1 N.A. 31670 9.84 

A2 10 5 1 N.A. 31670 9.84 

A3 20 5 1 N.A. 31670 9.86 

A4 30 5 1 N.A. 31670 9.86 

B1 1 30 5 0.19 23610 8.92 

B2 1 30 6 0.23 23596 8.92 

B3 1 30 7 0.27 23602 8.91 

B4 1 30 9 0.35 23589 8.91 

B5 1 30 14 0.54 32442 9.91 

C1 1 30 26 1 32398 9.90 

C2 1 41 37 1 32597 9.93 

C3 1 56 52 1 56337 11.91 

2.2 Simulation Details   

All MD simulations were performed with GROMACS (version 2019.3),48 in which the GAFF force field49 was 

used to evaluate interactions between PAA chains and K+. The partial charges on PAA were obtained from the 

recent work of Mintis et al.50 The water molecules (SPC/E model), counterions, and PAA chains were 

randomly placed in the simulation box. Then, energy minimization was applied by the steepest descent 

algorithm with a convergence criterion that the maximum force on any atom not exceed 800 kJ mol−1 nm−1.  

Subsequently, a short 60 ps simulation under isothermal−isochoric conditions (NVT ensemble) at temperature 

T = 298.15 K was carried out using the leap-frog algorithm to integrate Newton’s equations of motion with an 



integration time step of 1.5 fs. Production runs with a time step of 2 fs were performed in the isothermal-

isobaric conditions (NPT ensemble) at T = 298.15 K and pressure P = 1.0 atm, kept fixed using the Nose-

Hoover thermostat51 and the Parrinello-Rahman barostat,52 respectively. The total simulation time for each 

case was 100 ns and the trajectories and energies were stored every 5 ps. The last 60 ns were used to calculate 

the structural quantities.  

The simulation box was cubic with periodic boundary conditions in all the three directions. The van der 

Waals interactions were accounted for by Lennard-Jones potentials truncated at  = 1.2 nm. The electrostatic 

interactions were calculated using the particle mesh Ewald (PME) technique53 with a Fourier spacing of 0.12 

nm. All bonds in the polymer chain were constrained using the LINCS algorithm.54 

2.3 Calculation of Static Properties from MD simulations 

The configuration of the PAA chain with different degrees of deprotonation in the solution is quantified by its 

mean-square end-to-end distance: 

 =  (1) 

where  and  denote the positions of the first and last monomers of the chain, respectively.  

The distribution of counterions around a charged PAA monomer are described by the radial distribution 

function (RDF), ,  

 (2) 

where  is the average number of ions in a spherical shell of thickness  and volume  at 

the radial distance, , from the center of mass of each charged monomer, and is the average number density 

of surrounding ions in a sphere of radius half the box dimension, or, almost equivalently, the overall number 

density of ions in the box. 

2.4 Extracting binding fraction and effective binding free energy from MD simulations  

Using an equal molarity  of potassium ions and of charged PAA monomers in the simulation box, the salt 

ions reversibly bind to the charged groups of the PAA chain(s); i.e., 

 (3) 

Here  denotes negatively charged monomers on the PAA chain that are free or unbound by a salt ion,  

 denotes free potassium ions, and •  is a charged monomer paired with a potassium ion. In reaction (3), 

 denotes the effective free energy of salt (i.e., potassium) binding to a charged group of PAA. Species 

and charge conservation gives, 

 (4) 



 (5) 

[ ] represents the molar concentration of . (Clearly, due to the electroneutrality condition, we have [ ]

[ ].) We will discuss how we distinguish between free and bound potassium ions in the Results section. 

One can write the equilibrium constant of the reaction (3), , as,  

 (6) 

However, this equilibrium constant has units (L/mol). To make it dimensionless and normalized, we multiply 

it by the concentration of water at standard conditions,  = 55.5 mol/L,44 leading to, 

 (7A) 

which can be written as, 

 (7B) 

 (7C) 

Here  =  denotes the salt binding fraction, and we have taken  to be the mole ratio of 

free salt to water. Given the incompressibility of polyelectrolyte solutions and high-water content of the 

simulation box (see Table 1), we will relate  to the volume fraction of free salt  later. Equation (7C) also 

resembles closely the equilibrium constant in Langmuir adsorption, with the difference that  is replaced by 

surface coverage and  is replaced by the partial pressure of a free adsorbate. As will be introduced shortly, 

Equation (7C) is, however, a special case of the equilibrium constant of salt binding to PE from our theory,55 

where the ion size is set equal to the size of a water molecule. Upon finding concentrations of free and bound 

potassium from MD simulations, we can use one of Equations (7) to find calculate  and then obtain the 

effective free energy of binding of potassium ions to PAA using  (assuming equality of the 

sizes of ion and water molecules). 

2.5 Theory 

Our theory treats ion binding to PEs as a reversible reaction, whose free energy is adjusted by electrostatic 

correlations. Minimization of free energy in our theory (see refs 43,44,55) with respect to the degree of ion binding 

(to PEs) leads to the following equilibrium constant, 

 (8A)  

 (8B) 

with  and, 



 (9) 

The volume fraction of free ion  is related to its mole ratio  through , where  is the 

normalized size of the ion defined as  with  the molecular volume of species , with  for salt 

ion,  for water.44,55 Here  is the intrinsic binding free energy between the polyanion monomer and 

the K+ salt ion, which is an input into the theory and will be measured in MD simulations in this work.  

captures all specific effects in ion-monomer binding in infinite dilution.44,55 The contribution of electrostatic 

interactions to ion binding is given by  which depends on the chain form factor  within the random 

phase approximation (RPA).43 The form factor in the RPA is fixed and should not in principle be perturbed by 

the electrostatic interactions. We will use either a pre-defined chain form factor (such as rod or Gaussian coil) 

or one obtained from the MD simulations themselves. However, although the chain configurations from the 

MD simulations are obviously affected by electrostatic interactions, feeding such configurations into the RPA 

could improve the deficiency of the RPA due to its inability to capture chain configuration adjustment to 

solution conditions and electrostatic interactions. The form factor from MD simulations itself can be calculated 

in two ways, either using the charged monomer-charged monomer RDF, ,56 

 (10A) 

or using the formula,21,57 

 (10B) 

In the above,  is the wavenumber and  the wave vector  in Fourier space, which are 

normalized by the reference length .  is the number of charged monomers per chain, given in 

Table 1 for different systems. In Equation (10A),  is half the box size (L), and in Equation (10B)  denotes 

the position of the th charged monomer of the PE chain.  

In the expression for (Equation 9),  

 (11) 

is the square of a wavenumber ( )-dependent inverse Debye length.43 The wavenumber  is normalized by the 

reference length , and  is the Bjerrum length, with  the permittivity of space, 

 the unit of charge, and  the dielectric constant of the medium, which we take to be that of water ( ). 

 is the fraction of unpaired charged monomers of polyelectrolyte, calculated as . The 

normalized volume of a monomer  is calculated from the radius of a monomer , using 

which in turn is determined from the first peak of  for a single fully charged chain (i.e., system 

C1, C2, or C3), so that  is the average distance between adjacent charged monomers on the chain, and has 

a value of . We note that the salt size  is obtained from the volume   of a salt ion, 



which is obtained from , whose value can be taken to be unity, as discussed below.  The Gaussian 

smearing function in  space, 1  appearing in the expressions for  and , 

spreads the charge on salt ions and charged monomers across their size, .43,58 

3. Results and Discussion 

For the sake of simplicity, in the theory we here assume that the salt ion size is the same as that of a water 

molecule (i.e., ) so that  and the left-hand side of the theoretical equilibrium constant in 

Equation (8A), i.e., , becomes identical to  in Equation (7).  In the SI, we show that 

the effect of ion size can be simply embedded in , without significantly changing the binding behavior of 

ions.  

We first focus on short PAA chains (i.e., systems A1-A4), each of length five monomers, only one of which 

is charged. The binding of potassium ion to the PAA charged monomer is affected by chemical specificity, 

represented in the MD simulations by the Lennard Jones (LJ) parameters and partial charges of the monomers 

atoms, and the K+ ion. The ion-charged monomer RDF, g(r), exhibits distinct first and second peaks (see Figure 

2a), corresponding to contact of the bare ion and the solvated ion, respectively, with the monomer. Noting the 

sharpness of these peaks, we define “bound” ions to be those within the area encompassed by the two, i.e., 

inside the dashed line at the minimum just beyond the second peak ( ) in Figure 2a, while those beyond 

this distance are considered to be “free”. (To be precise, in the MD simulations, first free ions are determined 

which are at least  distance away from each and every (charged) monomer, and then bound ions are 

determined.) Assuming an equilibrium exchange between bound and free ions according to Equation (3) and 

using their concentrations computed from the simulations, we use Equation (7A) to compute the equilibrium 

constant, , and the free energy  ( ) of potassium-monomer binding.  

                 
g

g  



 g g  

As can be seen in Table 2, the binding free energies  ( ) for systems A1-A4 are nearly 

independent of the number of short chains in the box. Thus, the solution can be regarded as sufficiently dilute 

in charged monomer concentration that one can take the calculated  to be the “intrinsic” binding free 

energy (i.e.,  and ; see Equations 8A and 8B). Hence,  for the 

singly charged chains and . 

System  ( ) SD 

A1 -3.98 0.70 

A2 -3.98 0.15 

A3 -4.05 0.18 

A4 -4.06 0.05 

Now, we explore the longer, 30-monomer PAA chain with varying charge fractions (i.e., systems B and 

C1). It is well-established that the chain conformation of a polyelectrolyte transitions from a coil at low charge 

fraction (characteristic of neutral polymers) into an extended “rod-like” conformation at high charge fraction. 

The root mean-square of the end-to-end distance of the long PAA chain , calculated from MD 

simulations, is plotted in Figure 3a. At the lowest charge fraction of the chain (B1: ), the PAA chain 

adopts a coil configuration with  (see the snapshot in Figure 3b). As the charge fraction 

increases, the chain expands by increasing its end-to-end distance, adopting a rod-like conformation at the 

highest charge fraction (C1: ; see Figure 3b), where the fully-extended length of a PAA chain with 30 

monomers is around 7.6 nm. This chain conformation transitions to an extended state to lower the electrostatic 

repulsion between the COO– groups. The electrostatic repulsions are also relieved by potassium binding to the 

chain, as discussed shortly. 
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Figure 3. (a) Root mean square end-to-end distance,	〈𝑅BC〉H/C, and (b) example chain conformations of the 30-monomer 
PAA chain with various charge fractions 𝛾 (or equivalently, number of charged monomers 𝑁*7): 0.19 (B1), 0.23 (B2), 0.27 
(B3), 0.35 (B4), 0.54 (B5) and 1.0 (C1). Water molecules and counterions are not shown; shown are carboxylic acid 
hydrogen (white), oxygen (red), and aliphatic backbone carbon (cyan) atoms. Note in this and subsequent figures that 
the final two monomers at each end of the chain are kept neutral and these monomers are not included in definition of 
𝛾. 

Figure 4a shows the radial distribution functions g(r) for potassium around charged monomers of the 30-

monomer chain for varying charge fractions, where, as in Figure 2a, there are two distinct peaks. As the charge 

fraction along the chain decreases, the distribution of potassium ions around the charged groups approaches 

that for singly charged short 5-monomer chains (see Figure 4b). The g(r) peaks for the 30-monomer chain with 

the lowest charge fraction of the 30-monomer chain with (B1: 𝛾 = 0.19) almost matches that of the 5-

monomer chains (Figure 4b).  

  
Figure 4. (a) Radial distribution functions, g(r), between the charged monomers and K+ for PAA chains with 30 monomers 
and various PAA charge fractions from 𝛾 = 0.19 (system B1) to unity (system C1); see Table 1 for the specifications of 
each system. The dashed line denotes the location of the second minimum of g(r). (b) The radial distribution functions 
for K+ and the charged monomers in singly-charged short PAA chains with 20 and 30 chains in the simulation box, 
corresponding to systems A3 and A4, respectively. The black curve in (b) is for 30 monomer PAA chain with the charge 
fraction of 𝛾 = 0.19 (system B1). 



As the charge fraction along the chain increases, the two peaks of g(r) grow strongly. This shows that 

potassium ions more strongly localize and bind to the charged monomers of the chain as the charge fraction 

increases.  

Next, to quantify the binding of potassium ions, we use the same criterion to distinguish free and bound 

ions as in short-chain systems; the ions at distances from a charged monomer up to the second minimum in 

g(r) (i.e., the dashed line in Figure 4a) are considered to be bound. Then, using the concentrations of free and 

bound potassium ions, one can employ Equation 7A to calculate the equilibrium constant and from this the 

effective binding free energy  from the MD simulations, which are shown in Figure 5. As can be seen, 

 almost equals that in singly charged, short chains ( ) at the lowest charge fraction of the 

chain (with ). Evidently in this limit, the binding of potassium ions to the charged monomers of the 

long chain are nearly uncorrelated with each other, as inferred from Figure 4b. However, at high charge 

fractions, the ion binding to the charged monomers strengthens greatly, resulting in larger g(r) peaks in Figure 

4a and hence, a greater fraction of bound ions to the charged monomers, , in Figure 5a. 

To test our theory for ion binding to PE chains, we use Equations 8A and 8B to find the binding equilibrium 

constant and effective free energy. Briefly, using the intrinsic binding free energy, ( ) taken 

from the singly-charged short chains, and a form factor for the PAA chain configuration, we calculate the 

binding fraction from Equation 8A and effective free energy from Equation 8B. The contribution of 

electrostatic correlations to ion binding is calculated within the RPA using Equation 9. To approximate the 

chain form factor, we either use a predefined form factor (either a rod or a Gaussian coil), or the form factor 

of the 30-monomer chain from MD simulations (using Equations 10A or 10B). For the rod form factor, the 

length of the chain is set at  (with  being the diameter of a monomer; see Figure 

S1), while the Kuhn length of the Gaussian coil was assumed to be the monomer diameter for simplicity, 

giving a radius of gyration of . Note that the two final monomers at each end of the 

chain do not contribute to electrostatic correlations, so their effect is removed from chain form factors. The 

predictions of the theory in Figure 5 qualitatively resemble the MD results, with predictions of the rodlike 

form factor and from the MD simulations agreeing better than those from the Gaussian form factor. The 

Gaussian coil form factor leads to stronger repulsions along the chain than for the rod form factor, which are 

relieved by attracting ions more strongly to the coil (i.e., more negative  in Figure 5b), yielding higher 

fractions of bound ions (i.e., higher  in Figure 5a).  

At low charge fractions on the 30-monomer PAA chain, the MD results disagree more strongly from the 

predictions, regardless of the method of prescribing the chain structure. However, upon increase of the charge 

fraction, the model predictions for a form factor of a rod, or taken from the MD simulations using either 

Equation 10A or 10B, agree semi-quantitatively with the results of the MD simulations for  and . 

(The charged monomer-charged monomer RDFs used to obtain the form factor in Equation 10A are given in 

Figure S1.) Figure 5 shows that the contribution of electrostatic correlations to ion binding, , nicely 

captures the increased strength of potassium binding needed to relieve the high electrostatic repulsions along 

a highly charged chain. The more accurate predictions from the rod form factor than the Gaussian one at high 



charge fractions is consistent with the extended PAA configurations at high charge fractions depicted in Figure 

3b.  

Next, we investigate the neutralization of fully charged PAA chains (systems C1-C3) as a function of its 

degree of polymerization. Figure S3 shows that in both MD simulations and theory, increasing the degree of 

polymerization of the “fully charged” chains from 30 to 56 slightly increases the binding fraction  and the 

binding strength, . As in Figure 5, the intrinsic binding free energy,  , was set at  in the 

theory.  

Interestingly, however, the rate of change of  and  with the length of (fully charged) chains is 

much slower than with the charge fraction  at fixed chain length (see Figure 6 which merges plots of Figures 

5 and S3). It can be concluded that the electrostatic repulsions between nearest adjacent charged monomers 

have a much stronger effect on ion binding than do the repulsions between non-adjacent charged monomers. 



 

Finally, we note that the ion size can affect its binding behavior, as discussed in our previous study.55 In 

Figure S4 of the SI, we present the results when hydration numbers of potassium ions are taken into account, 

which increases the (effective) size of the ion, . The results in Figure S4 closely mimic those in Figure 6, 

with the difference that the increase of ion size  mainly just shifts the intrinsic binding free energy  

(and therefore ) to more positive values. Note that if  is kept fixed, upon increase of , the mixing 

entropy of the ions decreases, and this leads to more extensive binding of ions to polyelectrolytes.55

4. Conclusions and Prospective 

We studied neutralization of poly(acrylic acid), or PAA, chains by potassium ions using MD simulations and 

theory. Three types of simulation systems were investigated: A) a box containing a few short, singly-charged 

chains, B) a box containing a longer (30-monomer) chain with various numbers of charged monomers (or 

equivalently, with various charge fractions), and C) a box containing a nearly fully charged chain with different 

lengths (  30 monomers). Each system contains potassium ions as the counterions of PAA. We extracted free 



energies of binding of potassium ions to PAA chain, , using the ion-charged monomer radial distribution 

function (RDF) for each of the aforementioned systems. It was found that the potassium binding free energy 

for type A systems does not change with the number of singly-charged chains ( ), and hence, 

one can in this case regard it as the intrinsic free energy of potassium-carboxylic group binding (

). Interestingly, this binding free energy matches that of the 30-monomer chain at the lowest charge 

fraction in the type B systems. However, as the charge fraction of the chain in type B systems increases, the 

chain adopts a more extended configuration. Simultaneously,  becomes more negative, corresponding to 

stronger potassium-PAA binding, and therefore, a higher degree of potassium binding to the chain, .  

Next, we used the intrinsic binding free energy  obtained as described above as input to test the ability 

of our theory to predict salt ion binding to polyelectrolyte chains, including the effects of ion proximity along 

the chain. Our theory is based on a mass action equation that dictates an equilibrium exchange between free 

ions and ions bound to PE chains. The (effective) free energy of ion binding to PE chains  has two 

contributions: the intrinsic free energy, , and the electrostatic correlations , where the latter is 

obtained from a random phase approximation (RPA).  in turn strongly depends on chain configuration 

and the correlations among charged monomers in the chain. Interestingly, we find that using the intrinsic  

obtained from singly-charged chains, and a rodlike chain configuration or a configuration directly from MD 

simulations, the theory yields semi-quantitative predictions for  and  as a function of charge fraction 

without using any fitting parameter. The accuracy of the predictions improves at higher charge fractions of 

PAA chains (i.e., systems B and C). This suggests that a combination of intrinsic binding free energy, which 

captures chemical specificity of charged species, and RPA, which accounts for the effects of chain 

configuration and polyelectrolyte charge fraction on electrostatic correlations, provides reliable predictions of 

neutralization of polyelectrolytes by salt ions. An extension of this theory may be able to predict more complex 

phenomena such as ion pairing, by obtaining intrinsic binding free energies of ion pairing from analogous 

molecular dynamics simulations.  
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System  SD of  

B1 -3.91 1.50 

B2 -5.20 0.55 

B3 -5.22 0.47 

B4 -5.73 0.52 

B5 -6.54 0.23 

C1 -7.61 0.11 

C2 -7.53 0.12 

C3 -8.02 0.07 

    



      

Comparison of theoretical and simulation results for  

Potassium ions carry on average three water molecules in their hydration shell (corresponding to ),55 

however, the number of hydration waters is sensitive on the technique used to measure it. To compare the 

theoretical and simulation results when , the equilibrium constant used to present the MD simulation 

results (i.e., Equation 7C) has to be changed so that it is consistent with theoretical equilibrium constant in 

Equation 8A. To do so, we simply multiply both sides of Equation 7C by ,  

                  (S1a) 

                (S1b) 

As can be seen, Equation S1b is identical to the left-hand side of Equation 8A. Given that 

, one can see that the effective binding free energies from the MD results simply shift by  

when , i.e.,  where  ( ) 

are the effective binding free energies from the MD simulations for . Therefore, the simulation results 

for the box containing short chains (i.e., systems A1-A4) for  shift by  (compared 

to those in Table 2) leading to  for the ion size of  as follows, 

System  ( )  ( ) 

A1 -3.98 -2.88 

A2 -3.98 -2.88 



A3 -4.05 -2.95 

A4 -4.06 -2.96 

 

Given that for singly-charged, short chains the electrostatic correlations play little role in potassium binding 

to PAA chains (i.e., ), we find the intrinsic binding free energy to be . 

Similarly, the effective biding free energies at  for systems B1-B4 and C1-C3 simply shifts by 

 compared to their equivalent values at  (see Figure S4). 

Next, we use the intrinsic binding free energy  and  to find the predicted degree of potassium 

binding  and effective binding free energy  from the theory. Plotted in Figure S4 are  and  

from the theory using various chain structures and also from the simulations for , 

 

At  (i.e., larger effective potassium size compared to ), the dependence of  and  

on the charge fraction  at fixed chain length (in the yellow shaded area) and on the length of (fully charged) 

chains (in the white shaded area) closely resembles that for  in Figure 6: the rate of change of  and 

 with the charge fraction  is much stronger than that with the length of “fully” charged chains. Also, 

similar to Figure 6, the agreement between the simulation results and the predictions improve as the chain 
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charge fraction increases. Note that, 𝛼#$ from the MD simulations obviously do not vary with the effective 

size of potassium, because 𝛼#$ is determined from ion-monomer RDFs. 

 

 

 


