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20. Artificial intelligence and behavioral geography

Paul M. Torrens

I pointed out that his copy of Binary File Transfer Monthly was possibly the most boring docu-
ment I had ever seen in my life. (Coupland 1995: 167)

20.1. INTRODUCTION

Artificial intelligence (AI) and behavioral geography have long enjoyed a symbiotic 

relationship. While AI was initially viewed as a tool that geographers could use to 

automate their work, that vista is shifting. Indeed, many authors—among them, Thrift 

and French (2002), Graham (2005), and Stephenson (1993)—have suggested that AI has 

become an autonomous producer, of a sort, of geography. This new view, of AI creat-

ing and shaping geography, is profound, in its suggestion that we have somehow ceded 

geography-making to machines and software. In this chapter, I will make the argument 

that the geography-smithing capabilities of AI are perhaps set to have the most significant 

impact in behavioral geography. In this chapter, I will review the growing fusion between 

AI and behavioral geography, beginning in the 1980s, when it was hoped that AI would 

help geographers do geography with greater efficiency, speed, and accuracy, and when 

there was significant enthusiasm for the technology ahead of something of a retreat from 

the community’s good graces in the 1990s and 2000s. From there, I will pivot the discus-

sion to the early 21st century, when the development of AI took off  against a backcloth 

of ubiquitous computing and matured consumer AI products that made use of spatial 

data and geographical context to ascribe intelligence to devices and software. I will also 

discuss a range of potential applications in which AI and behavioral geography are closely 

intertwined, in the milieu of machine and computer vision, virtual worlds, agent-based 

models, human–computer interaction, and cyber–physical systems. The motivation, in 

highlighting these applications of behavioral geography and AI over other uses, relates 

partially to my own vantage on the topic, as well as to near-future developments for AI 

and behavioral geography. This latter topic serves as the focus for concluding remarks.

20.2. BACKGROUND

The development of AI can be traced back to the very beginnings of the age of digital 

computers. Alan Turing was among the first to sketch the tableau for AI while outlin-

ing his ideas for intelligent machines. After years working on the problem of whether 

machines could be fashioned to compute, Turing (1936, 1938) posited the simple and 

provocative question of whether machines could think (Turing 1950). This set into motion 

decades of deliberation about what might be considered as intelligent in a machine, and 

how machine AI may compare with or contrast to human intelligence.
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A first criterion for intelligence in AI generally wavers around a central idea that the 

machines involved should display human-like intelligence, or at least that they should 

do things that a human would regard as being intelligent (Simon 1977: 1059). (Indeed, 

the premise that the machine should convince a human interpreter of  its intelligence 

was at the heart of  the imitation game that Turing (1950) used as an allegory in his 

seminal paper.) A second, popular notion is that machine intelligence might be a moving 

benchmark (Kurzweil 1990: 12). Under this conceptualization, machines are envisaged 

with the capacity to grow more and more intelligent, advancing toward some future level 

of  sophistication (usually referred to as a technological singularity; Ulam 1958) in which 

machines become self-aware, conscious, as intelligent as humans, more intelligent than 

humans, or some combination of  these conditions that propels us into a post-human 

era (Vinge 1993). A third, perhaps interim, criterion between Turing’s computers and 

civilization-running artificial minds (Banks 1996) is that AI should endow machines 

with the ability to do things that humans do (Simon 1977), albeit with tireless capacity 

and precision that human effort might lack. Under this consideration, AI assumes 

some of  the attributes of  intelligent automata (von Neumann 1951) or perhaps robots 

(Asimov 1941), with independence and automation factoring as important defining 

criteria.

20.3.  ARTIFICIAL INTELLIGENCE AND 20TH CENTURY 
GEOGRAPHY

The potential for AI as a medium for automating human analytical tasks seems to have 

been the initial avenue through which geographers began to use AI. Initially, it was hoped 

that AI would energize geography by assuming the day-to-day tasks of geographical 

analysis that were amenable to automation: aspects of the geographer’s job that took a 

long time, required duplication of effort, or were grand in their analytical burden. This 

view is well articulated in Dobson’s (1983) paper on automated geography, in which he 

outlined scenarios in which computer cartography, geographic information systems 

(GIS), remote sensing, and visualization (which were then still relatively novel) could 

supplement manual techniques in geographic problem solving to bolster the scale and 

speed of analysis. (Interestingly, in the same paper, Dobson cautioned that a predominant 

focus on measurement and objects that were easily accessible to automation might sway 

geographers from “other important phenomena, such as the behavioral aspects of many 

problems”; Dobson 1983: 139.)

Smith’s (1984) paper on the pertinence of AI for geographical problem solving intro-

duced the important distinction between what he termed an engineering approach and 

a cognitive approach to using AI in geography. Indeed, in AI research (Brooks 1991), 

a similar distinction is often made between AI for computers and AI for thought. The 

engineering view of AI in geography considers machine intelligence in its most obvious 

form, as a set of machine procedures (usually algorithms and heuristics) that work to 

perform tasks. Image processing to unveil spatial patterns in data is a typical example of 

the engineering approach (Bernstein 1976). An alternative view, the cognitive approach, 

pitches AI in geography as a mimetic medium for representing human processes of 

intelligent tasks. Symbolic reasoning on spatial relationships or objects is perhaps best 
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representative of the cognitive approach to AI in geography as it was considered in the 

1980s (Kuipers 1982).

Smith’s characterization of the engineering approach to AI in geographical analysis 

echoes Dobson’s assertions that AI might be productively used to automate many of the 

things that geographers do, such as interpretation, monitoring, planning, and translation 

(Smith 1984: 149). Referenced, in Smith’s depiction, is the idea of AI as an expert system 

(Feigenbaum et al. 1971) that contains a corpus of domain knowledge as well as the 

functions to apply it to a given task, resembling perhaps how humans use their knowledge 

to inform their actions. Openshaw’s “Geographical Analysis Machine” (Openshaw et al. 

1987), for example, is an early example of the engineering approach to AI in geography, 

used to automate a battery of spatial analysis tasks by brute-force heuristic computing. 

Fisher et al. (1988) saw the potential use of AI, particularly expert systems and computer 

vision, in automating the interpretive tasks of geography relative to physical landscapes 

and phenomena. Estes et al. (1986) also discussed the idea of using AI as expert systems 

to automate exhaustive data searches over remotely sensed data, using heuristics relative 

to a knowledge base (a classification scheme, for example). Armstrong made a similar 

and salient point in arguing that computational science (which would include applied AI 

in most definitions) comes into particular usefulness when brought to bear on “problems 

that heretofore were either intractable, or, in some cases, unimagined” (Armstrong 2000: 

146). Again, here, we see the argument that AI might leverage human talents for analysis, 

but that it would do so at scale, with the implication that new questions might be posed 

or that new insight might be gained beyond the reach of human operators.

Smith’s discussion of AI in geography also invoked what Simon distinguished as artifi-

cial thinking (as distinct from AI), with the addendum that the machines involved would 

exhibit “similarity of process as well as similarity of product” (Simon 1977: 159). This 

argument bridges some of the gap between the engineering and cognitive approaches of 

AI. It is in the invocation of artificial thinking that we see the seeds of AI and behavioral 

geography, in which machines assume some of the analysis abilities of  geographers, 

alongside their analysis tasks. In other words, there is an argument to be made that the 

types of problem solving (Newell and Simon 1972) that geographers engage in (and that 

machines could take on, or take over) might invoke behaviors that are geographical. Smith 

(1984) lists several examples—acquiring knowledge, organizing it, and reasoning relative 

to decisions—that we might regard as adjuring special geographic activities (Freundschuh 

and Egenhofer 1997). For example, the ways in which we go about acquiring geographic 

information may be distinct relative to schemes for gathering other information types 

(Golledge 1978; Gould 1975). Similarly, geographic knowledge may be stored in the 

brain in physical structures that are special, such as dedicated place cells (Brun et al. 

2002; O’Keefe et al. 1998), or in memory as cognitive and perceptual structures such as 

mental maps (Gould and White 1974; Vishton and Cutting 1995). Spatial decisions may 

be structured via criteria, such as spatial hierarchies, that diverge from other decisions 

(Clark 1993; Kuipers 2000). By extension, if  machines could be programmed to mimic, 

replicate, or improve these human processes, then those machines might come to be 

regarded as intelligent geographical machines, in part by assuming spatial abilities to 

accomplish tasks.

In hindsight, the use of AI in geography took off  quite successfully after the late 1980s, 

in large part owing to its usefulness in supporting GIS. Initially, at least, the introduction 
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of AI into geography met with some skepticism along a few significant lines of critique. 

Some in geography seemed to grapple with what AI could introduce to the field. At the 

time, the concept of AI might have seemed quite far afield from the topical pursuits of 

many geographers. For example, in a commentary on Smith’s (1984) paper introducing 

AI to geography, Nystuen (1984: 359) remarked that, “AI programs take a great deal of 

expert intellectual effort and financial (computer) support. Few geographical problems 

command such attention . . . Smith should reflect on the resource realities of a small 

social science discipline like geography.” Couclelis (1986: 2) at the time phrased, very well, 

another popular apprehension, rooted in “resistance to the underlying ‘human computer’ 

metaphor” that AI presented. Her argument, which is well taken, speaks to the perhaps 

lofty claims for AI in the 1970s and 1980s (Hendler 2008; Lighthill 1972), which went as 

far as to suggest that AI might model the mind, mimic human thought, or teach machines 

to learn.

In the last 30–40 years, of course, computers and computing have become much more 

essential to the work that geographers do, particularly in facets of the discipline for which 

machines can automate routine tasks and in areas that allow geographers to do their work 

with greater reach, with more precision, and in less time than they would otherwise be 

able to accomplish (Dobson 1983). Along the same lines, as AI has been woven into the 

backcloth of our everyday lives and experiences (Dodge and Kitchin 2005) and into the 

things that we do to accomplish our research, our growing exposure to AI technology 

(and in some cases our inability to understand its artificiality) has diluted at least some 

of the skepticism and naysaying around its potential use. However, the automation 

of geography has never dodged controversy (Thrift and French 2002), and legitimate 

concerns still persist around differential access to computing, to the knowledge that it 

produces, and to the data that it invariably casts as a by-product of analysis trained on 

geographic behavior.

20.4. BEHAVIORAL GEOGRAPHY AND NEW WAVE AI

Many people now rely on AI to do geography, whether to accentuate their geographical 

thinking or to enhance (or to supplant) their spatial abilities with machines and software 

that are quicker, more thorough, safer, or often simply more usable than other media that 

they might use. As a result, AI has had ample opportunity to analyze and train upon 

humans’ spatial behavior and its geographic context. The interactivity between AI and 

behavioral geography is upfront in some cases, as in use of in-dash navigation systems and 

software. In other arenas, the connection between AI and behavioral geography is much 

more subtle. For example, when one swipes a customer loyalty card at a point of purchase 

and is rewarded with a set of coupons, various types of AI are released to wash over 

the data that the behavior reveals or implies (space–time shopping rhythms, response to 

place-based marketing, location-based sensitivity to price, etc.) to merchants, marketers, 

and finance providers.

Still further threads, from behavioral geography to AI (and vice-versa), continue to 

unfurl as much of our personal, social, and commercial activity continues to be mediated 

by the Web. For example, as GIS and geocomputation moved to the Web, and as user 

behavior moved to browsers and then to Web-based social platforms, elements of the 
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geography that we had built for a world of desktop computing followed. On the Web, that 

geography took on new relevance to a range of AI-based classifiers, big data processing 

schemes, and ontology that was shaping the semantic web (Berners-Lee et al. 2001). In the 

early phases of the development of the Internet and the Web, geography had consistently 

lagged behind most innovations by a gap of 5–10 years, adopting these technologies and 

adding a “spatial spin” to them after a significant lag. That gap soon closed, however, and 

geography led the development of many of the innovations that characterized “Web 2.0” 

(the social and mobile Web), where a long tradition of spatial reasoning on symbols and 

knowledge domains that was well developed in behavioral geography and formalized in 

GIS could easily be ported to the new platforms (Couclelis and Golledge 1983).

Geography has almost concurrently turned out to be one of the most robust frameworks 

for adding structure to the massive streams and silos of unstructured data that many busi-

nesses and fields of study now manage. Much early work in geographic information sci-

ence grappled with the problem of unifying spatial data across varying conceptualizations 

of geography, object types, scales of analysis, levels of uncertainty, tolerance for precision, 

and so forth. The work that geographers invested in uniting spatial data, a large portion 

of which was centered on human factors of data collection and use as well as behavioral 

factors (Dykes et al. 2005), produced very robust schemes for data-mining and knowledge 

discovery. A number of these schemes have taken on new relevance relative to big data, as 

reliable “glue” for binding disparate data fragments.

More recently, efforts to develop AI components of human-centered computing have 

begun to take on attributes of behavioral geography. Computers have shrunk in size 

and form factors, to the point that they are now routinely placed into the artifacts and 

substrate of our daily lives. The initial phase of this embedding centered on ubiquitous 

computing (Weiser 1991, 1993), in which computers became part of the fabric of non-

computational things. Recently, however, ubiquitous computing has begun to spread to 

us, to people, with the result that computing is developed for both sides of interactions 

between the person and the things that we manipulate, use, value, pass by, and so on. These 

developments bring people’s use of computing into sharper focus around the medium in 

which the computing presents. For example, for wearable computers, there is now a need 

to understand locomotion and interactions between people and things, often relative to 

small spaces such as tabletops and the body itself  (Zhang 2012). For mobile computing, 

there is renewed interest in motifs of human movement at urban and intra-urban scales, 

such as trips, paths, areas and points of interest, spaces of access and accessibility, and 

so on (Mishra et al. 2015; Sun et al. 2012). For urban computing, there is a strong con-

nection to aspects of behavioral geography that relate to environmental cognition and 

the affordances that built spaces provide for activity and interaction (Zheng et al. 2014).

Increasingly, behavioral geography is also used to generate efficiencies in the actual 

informatics of AI. This is a very interesting turn, as it places behavioral geography in the 

center of efforts to enhance AI in computation, reversing the original vision of AI as a way 

to speed up routine human labor for geographical tasks. The most noticeable instantiation 

of behavioral geography’s influence in AI for informatics has been its use for crawling 

the huge troves of behaviorally indexed spatial data that are now cast by our interactions 

with each other, things, and events (Torrens 2010). In information search, behavioral 

geography is invoked by heuristics that leverage geographic-like behavior and strategies 

for browsing, crawling, indexing, relating, spanning, traversing, classifying, choosing, 
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structuring, deciding, and so on (Hjaltason and Samet 2003). In these ways, behavioral 

geography and AI are beginning to connect as cyberinfrastructure, as algorithms and 

heuristics for thinking and reasoning about information as it presents in computational 

spaces, network spaces, information spaces, and tangible spaces.

20.5. EXAMPLES OF BEHAVIORAL GEOGRAPHY AI

In this section, I will turn to discussion of how behavioral geography and AI have 

developed synergies in several key areas to a point in which they are largely coupled. 

In particular, developments in machine and computer vision, robotics, virtual worlds 

and virtual geographic environments, computer–human interaction, and cyber–physical 

systems are noteworthy examples that explain the significant synergy between AI and 

behavioral geography.

20.5.1. Machine and Computer Vision

The popular use of computer vision (Szeliski 2010) in devices and software has been 

particularly influential in allying behavioral geography and AI. Machine vision, i.e. the 

use of hardware imaging to provide visual “awareness” to devices, is going through many 

of the advantageous changes that catalyzed the proliferation of Geographic Positioning 

Systems (GPS) (Abler 1993). For example, high-resolution cameras are now relatively 

cheap to make and are small-sized, with the result that they may be embedded quite easily 

in a range of devices. The data that such cameras generate, which are often rapid in their 

supply and high resolution in their detail, are usually easily integrated with processors and 

software across diverse platforms, with the result that AI can be brought to bear quickly 

and efficiently on data as they are produced. For example, cameras on phones initially had 

little to do with the main use-scenario for the phone (voice telephony). However, when 

paired to the platform that the phone as a device affords (mobility, social networking, 

shopping, tagging encountered objects), cameras became a main feature, in part because 

the vistas they afforded could be allied to users’ general behavior on the device. Much of 

this behavior is geographical: using the camera to scan barcodes in particular places and 

time, tagging images with activities and place names, building overlapping vantages of 

points of interest as images are uploaded to photo-sharing silos, and so on. Mobile phones 

are often carried everywhere, piggy-backing on the user’s activity space, and so on-board 

positioning sensors can provide a relatively tireless and high-resolution location signal 

to dock that behavior across a variety of tangible spaces and cyberspaces. This docking 

is significant because it provides a pathway between real space and cyberspace, easing 

the potential formation of data shadows cast from behavior in one space to behavior in 

another space, or to many other spaces. When this docking takes place across millions 

of phones around the clock, individual behavioral geographies may be allied to broader 

profiles of behavior and behavioral geography, developed from aggregates of the data 

cast by the technology, with aggregation mediated by AI. For example, algorithms such as 

Structure from Motion (Koenderink and van Doorn 1991; Snavely et al. 2008) and Scale-

Invariant Feature Transform (Lowe 2004) can use behavioral geography to build structure 

in (and across) image and positional data, often with minimal localization. There is also a 
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broad range of work in computer vision that analyzes the behavioral geography of people 

as they appear in images and video. These schemes are often based on recognition schemes 

that use behavioral geography alongside AI techniques such as hidden Markov models 

(Nguyen, Phung, Venkatesh, and Bui 2005) to quickly and exhaustively benchmark signals 

and patterns in images to a knowledge base that can tag those data to classes of behavior 

(tagged as states with associated confidence in a hidden Markov model, for example).

20.5.2. Robots

Turing’s (1950) initial vision for intelligent machines kick-started decades of developing 

robotic machines (Matarić 2007). Much effort in robotics has focused on providing 

machines with behavioral geography, via AI. Behavioral geography is important for robots 

because they are required to sense the geography of their surroundings, to proactively plan 

for the geography that they encounter or might encounter, to move through space and time 

relative to often-complex ambient conditions and complicated instructional goals, and 

to engage in tasks that require human-like activities and abilities. Behavioral geography 

is particularly important in robot-motion planning (Latombe 1991), which requires that 

robots measure space and time relative to goals (Ferguson and Stentz 2007; Fujimura 

1996), that they move (Latombe 1999), detect collisions (Mezouar and Chaumette 2002), 

avoid collisions (Badler et al. 1994), and coordinate their locomotion (Reynolds 1993).

Associations between robotics and behavioral geography are likely to grow closer. The 

access that AI-driven autonomous machines have to spatial data is now unprecedented, 

and in many arenas of their development, robotic machines can make use of big data, 

knowledge domains, semantics, data-mining, and computer vision advances to “be 

geographical” in incredibly sophisticated and life-like ways. For example, recently, there 

has been considerable work to develop mental mapping abilities in robotics, i.e. to develop 

robot understanding of encountered events and things in space and time, and to build 

knowledge bases from that understanding, either for a task at hand or for longer-term 

skill acquisition. These developments have been realized, popularly, in robotic products 

that make use of robot-generated maps to actuate and impel machines in the real world. 

Consider that we are now about to share our days with semi-autonomous cars that self-

drive while also sensing and avoiding pedestrians (Thrun et al. 2006), and that we already 

have cause to dodge robotic vacuums that can map and navigate dirty floors (Jones 2006).

20.5.3. Virtual Worlds and Virtual Geographic Environments

Many geographies now present beyond the realm of the tangible, as information spaces 

(Mitchell 1995) and cyberspaces (Dodge and Kitchin 2000). In some cases, the virtual 

geography (Batty 1997) those digital spaces represent is mapped to real-world spaces, 

such that the virtual space manifests as an analog of a physical space (Shiode 2001). We 

might refer to these as virtual worlds because we can inhabit them, vicariously, as avatars 

(Bainbridge 2007; Rheingold 1993; The Economist 2006); or we might more specifically 

refer to them as virtual geographic environments (Lin et al. 2013, 2015). In the case 

of virtual geographic environments, there is often a deliberate emphasis on faithfully 

 representing reality in digital, virtual form, so that the virtual environment is fashioned 

from real data that correspond to real places and spaces.
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The question of how behavioral geography remains the same or differs when one 

moves from the tangible world to virtual geography looms large in research on virtual 

worlds (Spiers and Maguire 2006; Zyda 2005). Much work has been done to explore how 

people move (Crooks et al. 2009), judge distances (Thompson et al. 2004), mediate per-

sonal space (Bailenson et al. 2001), plan paths (Salomon et al. 2003), wayfind (Golledge 

et al. 1996), navigate (Richardson et al. 1999), interact (Lamarche and Donikian 2004), 

and build (Hudson-Smith 2002; Shiode and Torrens 2008) in virtual geographic settings. 

Because the spaces and geographies in virtual worlds are digital, it can often be relatively 

straightforward to extract plentiful and meaningful data directly from the world (El-Nasr 

et al. 2013); as models of  things that have been constructed (Hudson-Smith 2002); as 

sequences of  events, actions, reactions, and interactions (Thawonmas and Iizuka 2008; 

Wallner and Kriglstein 2015); as movement paths (Kang et al. 2013); as mental maps 

(Torrens 2015a), and so on. Indeed, many benchmarks for massively multiplayer online 

worlds, role-playing games, and multiplayer online battle arenas rely on the behavioral 

geography of players and teams within the virtual setting (Pedersen et al. 2010). Similarly, 

many “serious games” are played out in virtual worlds as proxies for tangible forms of 

behavioral geography or as what-if  experiments (Barnes et al. 2009; von Ahn 2006).

When real humans interact with each other in virtual worlds, we can make use of the 

digital manifestation of their behavioral geography to build a knowledge base, which can 

then be used to fashion AI representations of that behavior (Torrens 2007). This can be 

done through trial. In computer games, for example, game developers go through delibera-

tive testing phases to build worlds and gameplay that entertain, that advance a story, that 

present challenges, and so on. In testing, the game designers often evaluate the behavioral 

geography that a particular virtual world or story or challenge produces, and they use 

analytics to code aspects of this geography into what is often termed “game engine AI,” 

i.e. the mechanics of the game behavior and phenomena that it supports (Baillie-deByl 

2004; Champandard 2003; Millington 2006; Nareyek 2004). The use of AI from behavioral 

geography in gaming, in particular, is perhaps best reflected in recurring data structures 

for computer games. Examples include navigation graphs that map players to particular 

geographies of activity, interaction, and events in the game (Nieuwenhuisen et al. 2007; 

Sud et al. 2008), and around non-player characters (NPCs) that are often required to move, 

run away, give chase, and collaborate with realistic behavioral geography (Laird and van 

Lent 2001). Indeed, the fidelity of NPC behavioral geography is often a selling point of 

many commercial games (Cass 2002). In some cases, movement in gameplay is built directly 

from real-world data of human movement (Lee and Lee 2006). Indeed, machine learning 

of movement for virtual characters is increasingly sourced in real-world data from behavior 

in physical and social geographies (Lee et al. 2007; Torrens and Griffin 2013; Torrens et al. 

2011, 2012). And locomotion data for avatar representations of human users and for NPCs 

in virtual worlds and games are increasingly built atop motion-capture data recorded from 

real people (Arikan and Forsyth 2002; Torrens 2014, 2015b).

20.5.4. Computer–Human Interaction

Behavioral geography and AI have recently become very closely intertwined in the realm 

of information geography, particularly in information search in and across databases. 

Spatial data access on databases has long mimicked aspects of behavioral geography 
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that pertain to how humans collect and collate data, particularly the human behaviors 

of abstraction, clustering, and hierarchy in sorting data, in organizing data for efficient 

access and recall, and in classifying data into knowledge bases (Samet et al. 2014). This 

functionality is commonly encountered on the Web, for example. Various pieces of your 

online behavior (queries with particular toponyms in them, searches with persistent 

address indices, goods purchased for delivery to home locations, and so on) may be 

referenced and composited by AI while you use the Web, to generate a likely location 

for you as a user (Fu et al. 2014; Lieberman et al. 2010; Samet et al. 2014). This location 

can be used to tailor content such as language (Lieberman and Samet 2012; Zhang and 

Gelernter 2014), maps (Samet et al. 2014), marketing (Rand and Rust 2011), and so on. 

For instances in which the information is being accessed via mobile devices, the AI may 

have direct access to the GPS hardware on a user’s phone so that the location can be read 

rapidly and directly. As more and more AI-driven schemes for analyzing human interac-

tion with databases develop, a growing corpus of semantic knowledge is developing 

around search and data technology. Indeed, there is a convincing argument to be made 

that a secondary, location-aware and location-enabled, instance of the web (and the 

“internet of things”) is being formed around these technologies (Crampton et al. 2013; 

Zhang and Tsou 2009). Egenhofer (2002), for example, has suggested that a geosemantic 

web may have emerged, in which AI and behavioral geography have enabled the develop-

ment of large and useful knowledge bases atop the substrate of web-based internet and 

communications technologies. Egenhofer’s (2002) thesis regarding the geosemantic web 

echoes earlier arguments that he and Mark (Egenhofer and Mark 1995) made regarding 

the potential for GIS to build computer-based naïve geographies, as formal models of 

everyday geographic knowledge.

20.5.5. Cyber–physical Systems

It is worth noting that behavioral geography, AI, and machines are becoming coupled in 

new and innovative ways as cyber–physical systems. Cyber–physical systems are physical 

systems that rely in some large part on computing to determine their behavior. The term 

“cyber,” in this context, relates to the thinking capabilities of the systems, which we usually 

delegate to AI. We might also consider people and things as elements of cyber–physical 

systems, with the inference that those systems may have opportunities (or cause, or leeway, 

or authority) to support our behavior, to supplement our behavior, or to supplant our 

behavior (Nechyba and Xu 1997).

In many instances, cyber–physical systems hold sway over our everyday lives, and medi-

ate (perhaps even dictate) our behavioral geography across a wide range of activities. The 

emergence and proliferation of smart highways (Collier and Weiland 1994) and related 

intelligent transportation systems is a relatively recent and prominent development of 

cyber–physical systems that impacts behavioral geography. For example, some smart 

highways are designed to produce traffic-calming effects on travel, by linking data output 

from embedded sensors that monitor traffic volume and speed to behavioral models of 

expected driver reaction and knock-on effects that scale from individual road segments 

up to entire transportation networks (Cetin et al. 2002; Raney et al. 2003). Consider 

e-commerce platforms for ordering household goods as another example. Warehouses 

and store rooms are now almost overwhelmingly built and operated as cyber–physical 
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systems in which human users order goods by interfacing either directly or through 

some intermediary system with the storage facility’s inventory databases (see Castells’ 

(2001) detailed treatment of the global flow of information and material that makes this 

happen in the fashion industry, for example). Data access schemes are commonly used to 

match user demand (and estimated demand) to provider locations around the world, by 

modeling expected availability of components and products, relative to the rhythms and 

motifs of user buying habits and tastes in particular places and times (Chan et al. 2004). 

The logistics of how to assemble goods and components efficiently and cheaply can be 

determined using AI that models pricing behavior of merchants and suppliers, where 

economic geography often factors strongly in the determinative mechanisms, particularly 

when speed (“just in time”) is a major pricing factor (Mair et al. 1988). Even within 

stores and warehouses, AI-driven robots are often deployed to search the geography of 

shelves and aisles to grab and ship items for delivery and packaging (Guizzo 2008). Once 

shipped, AI routines monitor traffic and fleet operations to determine delivery schedules 

and routes (Ran et al. 2012), relying on positioning systems (Liao 2003) as well as activity-

based models of likely traffic patterns and reactions to traffic events (Crainic et al. 2009). 

For delivery drivers, in-car navigation systems provide trip directions, while also providing 

customers with updates regarding the goods’ arrival timing and location of delivery on a 

given property (Skog and Händel 2009).

20.6. CONCLUSIONS

In this chapter, I have presented an overview of the origins of strong ties between AI and 

behavioral geography, as originally conjured in the 1980s, when computing was relatively 

novel to the geographical sciences. Since that period, computers have become much more 

closely intertwined with everything that we do, and as we have relied upon AI to accentu-

ate our behavior, we have perhaps become more reliant on AI to do that for us, thereby 

begetting more dependence on and credence in AI. Nevertheless, the potential pitfalls of 

growing connectivity between behavioral geography and AI have not been masked from 

geographic inquiry.

Many of the technologies produced at the intersection of AI and behavioral geography 

have the potential to enrich our lives, by making things easier, cheaper, broadly accessible, 

and more usable. Many location-based services that assist us in our everyday tasks fall into 

this category. Others, such as predictive AI atop location-aware technologies in evolving 

smart homes (Marco et al. 2008), could help us in profound ways, by monitoring and 

mediating our behavioral geography as we age in place, for example. Yet the downside to 

continued and strengthening synergy between behavioral geography and AI is perhaps 

equally profound. As we offload important aspects of our behavioral geography to 

hardware, systems, and software, we risk sidelining important components of human 

expertise (see Chapters 7 and 11). Many in the geography community have also decried 

the loss of locational and activity privacy that has emerged as AI has grown more finely 

attuned to behavioral geography (Dobson and Fisher 2003). Others see the potential (and 

actual) pitfalls in ceding real access and real space to algorithms and heuristics that tag, 

like, price, and validate our lives (Curry 1997), while openly pondering why so many of 

us voluntarily “feed” AI big spoonsful of our private data (Graham and Shelton 2013).
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