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Abstract

We investigate the transition between the overdamped and underdamped regimes in Langevin
dynamics simulations with significant conservative forces by comparing direct simulations with
theory by Kramers, by Mel’nikov and Meshkov, and by Larson and Lightfoot. The need for
clarification is made evident by noting that the most commonly cited theories of Kramers and of
Mel’nikov and Meshkov (MM) do not apply in the overdamped limit to escape times from a
Lennard-Jones (LJ) potential, because Kramers and MM do not account for the flatness of the LJ
potential at the escape position, which allows for a region of nearly free Brownian diffusion near
the escape position. While the little-known Larson-Lightfoot (LL) approach does consider a
Lennard-Jones potential, it does not properly consider the underdamped regime, and so a complete
description is only achieved by combining the LL and MM results into a single general equation,

which we validate for the first time by explicit comparison with Langevin simulations.

Introduction

Langevin and Brownian dynamics simulations of complex fluids are becoming increasingly
common as computational power increases and these tools are being extended to ever more
complex systems. While simulations of simple monodisperse polymers and suspensions of spheres
have been carried out for many years, such tools can now be applied to more complex systems,
including, for example, mixtures of polymers and colloids', gelling systems?, micellar systems®,
semi-flexible polymers, etc.* Open-source tools for such simulations are often used instead of

homegrown code due to their efficiency, flexibility, and reproducibility. Such open-source



software, including the well-known LAMMPS and HOOMD-blue packages, solve the Langevin

equation,>®

dzri
ml dtZ

= —{ L+ FE+ FF Eq. 1

Here, m; is the mass of i species, i is the particle position, ; is its friction coefficient, F¢ is the
conservative force due to inter- and intra-species interactions, and Ff is the random force due to
solvent interactions (Gaussian noise). This equation is typically solved at constant NVT (canonical
ensemble). In HOOMD-blue, the drag coefficient is directly defined, while in LAMMPS, one

specifies the friction coefficient, {, via an inertial time defined for each species as

m
== Eq. 2
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tin

where the subscript, i, denoting the i"species, is omitted here for clarity. Because t;, is inversely
proportional to the drag coefficient, viscous damping actually becomes weaker as this so-called
“damping parameter,” as defined in LAMMPS, becomes larger. When t « t;,, a free particle (with
Ff = 0) undergoes ballistic motion dominated by inertia due to its mass m, while for ¢ > t;,, it
undergoes diffusive motion dominated by its drag coefficient, ¢. That is, it attains the overdamped
regime at long times, where inertia becomes unimportant. The limit in which particle mass is taken
to be zero is the overdamped /imit, and solutions of corresponding equations, lacking the
acceleration term in Eq. 1, are referred to as “Brownian dynamics,” since apart from conservative

forces only Brownian forces drive particle motion.

Since most problems of interest in such simulations are concerned with behavior in the
overdamped regime, when solving the Langevin equation, one must be careful to choose to achieve
the overdamped regime where particle masses no longer affect the results. A simple “rule of
thumb” for doing so is to make sure that the inertial time ¢;,, is less than any relaxation time relevant
to the physical problem, so that inertial effects present at short times have decayed by the time the

physics of interest emerge in the solution. While choosing a small value for t;,, helps ensure



attainment of the overdamped regime, smaller values can be computationally wasteful, since time

step sizes generally must be on the order of, or smaller than, t;,,, unless the mass is set to zero.

Although the above criterion, t > t;,, for attaining the overdamped limit applies to free particle
diffusion in the absence of a conservative force, it is well known that when a potential is present,
the escape time of the particle from a potential can be affected by inertia even when the particle’s
escape time is much longer than t;,,.” Much literature addresses this escape time in the presence or
absence of inertia, including the classic paper of Kramers,’ the more recent and complete work of
Mel’nikov and Meshkov (MM),? and the little-noticed work of Larson and Lightfoot® (LL, where
this Larson is not an author of our paper). However, we have found that the application of this
literature to complex fluid simulations can be confusing, because of several points that need

clarifying:

1. When an attractive potential is present, attainment of the overdamped regime is not

controlled only by the timescale of the escape relative to the inertial time, t;;,, = ?, but is

influenced by the depth and shape of the potential well.

2. The standard Kramers theory, and even the more complete theory by Mel’nikov and
Meshkov, only apply to the overdamped regime if the escape from a potential well occurs
at a local maximum with downward curvature in the potential. Therefore, these approaches
do not apply to conventional and widely used Lennard-Jones potential wells, which become
flat at the position where the particle escapes the well.

3. The only theory that considers particle escape from a Lennard-Jones potential is the little-
cited work by Larson and Lightfoot. However, their work is also incomplete in its
description of the transition to the fully underdamped regime because it does not account
for the action of the particle or the entire shape of the potential in limit of small friction.

4. The slope of the potential at the point of escape is irrelevant in the underdamped regime,
so that the Mel’nikov-Meshkov (MM) theory correctly describes particle escape in this
regime even for a Lennard-Jones potential. As a result, a complete description of particle
escape from the LJ potential is obtained by combining the LL theory for the overdamped
limit with the MM theory for the underdamped regime.



Because few of those simulating complex fluids seem to be aware all of the above points, as
demonstrated by earlier work in our group which includes errors resulting from this ignorance, it
is useful to review carefully the implications of the key papers by Mel’nikov and Meshkov (MM),
Larson and Lightfoot (LL), and Kramers.”"!° It is also important to compare the predictions of
these theories with Langevin simulations of the escape of a particle from a Lennard-Jones potential
well, so that the various regimes and effects of the different approximations are clearly
demonstrated and the conditions for transition between underdamped and overdamped regimes are
clearly defined. We also seek to provide an expression for the average escape time from a Lennard-
Jones potential well that encompasses all regimes of inertia and well depth that can be used in

mesoscopic simulations.

Evaluating theoretical approaches

One-dimensional transport of a particle in either free space or in a potential well is described by a
Fokker-Planck equation for position and momentum, given in multiple sources.””!! The non-
dimensionalized mean first passage time for particle escape, T4/ 7, 1S defined as the time for first
crossing of a distance criteria, z.,; (typically near or at the upper edge of a potential well), where
T, is a characteristic frictional time defined as 7, = {a?/kgT. Assuming a fixed value of z;,

this dimensionless escape time T,5./7, is a function of two dimensionless groups, namely the

{2 a2

o where a is the
B

dimensionless well depth €/kgT and the dimensionless friction constant ¢ =

distance unit comparable to the width of the well. The classical and best-known solutions to this
problem define the crossing point for escape of the particle to be at the local maximum of the
potential well, denoted as z.,,; in Fig. 1A, providing an unambiguous location for escape beyond

which the potential acts as a barrier to re-entry.

The most complete solutions to this problem are those of Kramers and of Mel’nikov and Meshkov,
both using a pseudo-steady-state (PSS) approximation, but with Kramers’ most “general” solution
also assuming that « is “not so small that energy uptake from the heat bath... is a limiting factor in
determining the escape rate.”’® Kramers handled the limit of “very small” @ with a separate
asymptotic formula, which was not encompassed by his otherwise “general” solution for damping

ranging from moderately damped to overdamped. The Mel’nikov-Meshkov solution, however,



does encompass the case of arbitrarily small @ and provides a solution valid for the entire range of
a. Both the Kramers and Mel’nikov-Meshkov solutions, however, require the presence of a well-
defined potential well U(x) that is sufficiently deep to permit the PSS assumption, with a region
of positive curvature defining its bottom, and a region of negative curvature defining its top, which

is taken as the point z.,,; beyond which the particle has escaped (see Fig. 1A).
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Fig. 1. Schematic of potential curves wherein a Brownian particle is trapped. A) A potential with both a minimum,

Zmin, and a local maximum, z.,;. B) A Lennard-Jones potential with a minimum, z,,;,,, where z.,; is set at some
arbitrary position in the flat part of the potential. C) The same as 1B, except superposing a mirror image of the same

potential shifted so that z.,; of the mirror potential is at the same position as z,,; of the original potential.

Thus, both Kramers and Mel’nikov-Meshkov solutions, and in fact, almost the entirety of the
literature on this problem, exclude one of the most common potentials, the Lennard-Jones (LJ)

potential, which has no local maximum, but only a gradual flattening of the potential at large



distances from its minimum, as shown in Fig. 1B. In this work we consider the 12-6 Lennard-
Jones flat wall potential commonly used in HOOMD-blue, LAMMPS, and other simulation
packages:

AN1Z /506
Uy, (2) = {48 [(Z) B (;) ]' 7 < Zour Eq. 3
0,
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Where in our Langevin and Brownian simulations we take z.,; = 2.5a, 0 = 1.0 a, and the
potential is slightly shifted vertically so that the it smoothly goes to zero at z.,,; = 2.5 a. We are
interested in 7,,., the mean time for a particle to travel from the bottom of the potential well,
Zmin = 21/ a to z,y,. All simulations here are performed using the HOOMD-blue Langevin and

Brownian integrators in the NVT ensemble.

The one comprehensive paper that explicitly considers the LJ case is that of Larson and Lightfoot
(LL), whose solution method is specialized for escape at some arbitrary, relatively large, distance
from the local minimum in the LJ potential, which then sets the cut-off value z.,,; of the potential .’
While Larson and Lightfoot solved the Fokker-Planck equation for the LJ potential, they did so
under the approximation that energy uptake from the heat bath is not limiting, which is not valid
for “very small” values of a, as noted above. However, the Kramers and Mel’nikov-Meshkov
solutions, while not valid for the LJ potential in the overdamped limit, should become accurate for
this potential at small enough a, where only the shape of the potential well around z,,,;,, is relevant.
Therefore, to solve the problem of escape of a particle from an LJ potential in the overdamped
limit, the little-known LL solution is necessary, while to solve the escape problem outside of this
limit, and to determine the transitions between the different limits, the Kramers and especially the
MM solutions are necessary. Our goal is to provide valid solutions for the escape time in each limit
for the LJ potential, to define the conditions necessary for each limit to apply, and to provide a
cross-over formula that would allow one to bridge between the limits. This includes defining the
ranges of a and of €/kgT that distinguish between “small” and of “very small” a, where in the

latter case the escape time is set by the rate of energy uptake from the heat bath.



1. Overdamped particle

We first consider the overdamped regime, where the diffusive behavior of the particle near z.,,; is
dominant. Larson and Lightfoot present two approaches for calculating the escape rate of a particle
from a Lennard-Jones well in the overdamped regime. The first is in the overdamped /imit, using

the Smoluchowski equation, which is valid for t;, = 0, or & = oo.

1/n

1/2 Zeut _ (4_8) 1"(1_1)
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) Ll es/kn Eq. 4

Tesc = TO( e

Here the dimensional escape time is T,4./Ty, and n = 6 is the exponent in the 12-6 LJ potential.

Larson and Lightfoot carried out “exact” calculations confirming these expressions for z.,; =
10 a, which is considerably larger than the more practical and frequently used cutoff value of
2.5 a, where the potential is already quite flat. Therefore, we wish to assess the accuracy of the LL

theory for a range for cutoff values from 2.5 a to 10 a.

Kramers offers a well-known theory for the escape time of a moderately underdamped to
overdamped Brownian particle from a 1-D potential well with upward curved harmonic shape at
the bottom and downward harmonic at the top, as shown in Fig 1A. The predicted result depends
on the curvatures of the potential at both bottom and top. Near the bottom of the well at z = zip,

the harmonic is defined by:’
U(z) = —¢+ %k(z — Zmin)? = —&+ %mﬂz(z — Zmin)?, Eq. 5

where ¢ is the well depth, and k is a “spring” constant defining the curvature at the bottom of the
well. For a particle of mass m, in the above equation we express the constant, k, in terms of a
characteristic oscillation frequency Q as k = m2?, where ( is the frequency of oscillation of the
particle in the well in the underdamped limit where friction is negligible. Similarly, near the top

of the well at z = z.,;, we write



U(z) = —%k,(Z - Zcut)2 = _%m 2(z - Zcut)2 Eq. 6

where k' is the magnitude of the curvature around z.,;. Expressed in terms of these characteristic

frequencies, Kramers’ expression for the escape time is

2 1

Tesc = = - — e/t Eq. 7
14—
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For i > tin, which is the overdamped limit, Eq. 7 can be approximated as:

2w 1
=20~ pe/kT —

2m &/kgT
T = ——(ec/"B Eq. 8
eSC ™ 0w tin ik ¢ q

Eq. 8 is widely known and used in the overdamped regime, where the escape time depends only

on the bead drag coefficient, ¢, and not on the bead mass.
To attempt to apply Eq. 7 to a potential such as the LJ potential that does not have a negative
(downward) curvature at the point of escape, we can artificially create such a region by adding to

the original potential a mirror reflection of the Lennard-Jones potential around z.,,; so that we may

define z,,; as a local maximum, as shown in Fig. 1C:°

uym@=1¢[(2) - () +(52=) - (o) ] Eq. 9

We then can use a Taylor expansion to approximate Uy, (z) around z,,;, as

_ N2
Uy m(2) = —s+%57.155(%) Eq. 10
Zmi 7 . .
so long as (%) « 1. Expanding Uy, (2) around z,,;, gives
cut
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The first term amounts to approximately -0.033¢ at z.,; = 2.50 and decreases for larger z.,;
values, and thus can be neglected. Thus, only the quadratic term required by Kramers’ theory

remains. Therefore, the mirrored LJ potential is approximated near z,,; as:

156 42a°
Upym(2) = —8 [ al Zsa ](Z — Zeyt)? Eq. 12

cut

Comparing Eq. 5 with Eq. 10 and Eq. 6 with Eq. 12, we find that for the mirrored Lennard-Jones

potential:

m0? =k = 57.15— Eq. 13
156012 420

m %=k =8¢ |22 o Zcut] Eq. 14

where for z.; = 25a,m ? = 0.22¢.

2. Underdamped particle

We now will consider the case of an underdamped particle escaping a Lennard-Jones potential
well. Kramers’ presented a solution for a particle in the underdamped /imit, which assumes that

the rate limiting step is energy uptake from the heat bath:

_ 2Ttin _e/kgT
Tesc —Ea e /kp Eq. 15

Here §; is the “action” per oscillation cycle of the particle, defined as

S, =2 [ [[=2mU,; (2)]d= Eq. 16



We obtain Si by numerical integration of Eq. 16 using N-point quadrature with a spacing of & =
0.025a, thus taking the entire shape of the potential-well into account. Eq. 15 can be used to

calculate the escape time for given values of {t;,, m and €} using relationships established above

(Egs. 9-11 and 13-14).

The prediction of Eq. 15 is shown in Fig. 2 by the dot-dashed lines for small values of «, and Eq.
7 (which converges to Eq. 8 at high a) is shown by solid lines for large values of a. Mel’nikov
and Meshkov (MM) proposed a solution to Kramers problem for all damping regimes, which spans
Kramers’ two limits (although does not account for the flatness of the LJ potential near the point
of escape) and is shown by the dotted lines in Fig. 2A. The MM result, given by Eq. 17, is a more
generalized form that encompasses Kramers’ Eqgs. 7, 8, and 15, and includes the prefactor

A(A), which accounts for the coupling of the particle to the heat bath.?

_2m 1 1 e/knT
Tesc = Y me /ks Eq. 17
Tt
4w2t?, 20tin
S1
where A = , Eq. 18
tin kpT

The function A(A) covering all damping regimes is given by:
A(A) = exp [— Yo n"lerfc [@” Eq. 19

Where the sum in Eq. 19 converges within n = 200 for all the cases studied in this work.

This result derived by Mel’nikov and Meshkov (MM) was originally presented as a solution for a
potential with harmonic bottom and harmonic top for all damping regimes. However, it can be
seen that both the MM and Kramers’ solutions fail in the high-a regime, since the harmonic
assumption is a poor approximation for the shape of a LJ well near z.,;. Thus, we will see that a
complete solution to the escape problem for an LJ potential over all friction regimes requires

splicing a low- a solution with the LL solution at high a.
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Fig. 2: Symbols represent simulation results for escape of a particle from the LJ potential given in Eq. 3 using
HOOMD-blue’s Langevin integrator and are the same in each sub-figure. Symbols outlined in black on the far right
of each sub-figure are from simulations using HOOMD-blue’s Brownian integrator (denoted on the x axis by B ).
A) Dot-dashed lines represent Kramers’ theory for an underdamped particle (Eq. 15), solid lines represent Kramers’
theory for an overdamped particle (Eq. 7), and the dotted lines represent Mel’nikov-Meshkov theory for all damping
regimes (Eq. 17). Dashed lines represent the high friction limit of Larson and Lightfoot (Eq. 4). Line and symbol color
designates a given value of € /kgT, shown in the legend. There are no lines corresponding to free diffusion, for which

&/kgT= 0, for which simulation results are denoted by grey symbols.

3. Scaling behavior and solution for all damping regimes

From the LL (Eq. 4), Kramers (Eq. 7 and 8), and MM (Eq. 17) solutions, we can determine scaling
laws for the dimensionless escape time T,4./To in the overdamped and underdamped limits. In
both limits, the dimensionless escape time is proportional to exp(e/kT), with a prefactor of order

unity in the overdamped limit.

In the underdamped limit (@« = 0, or t, — 00), the escape time 7,5, from Kramers “general”
theory, Eq. 7, and from LL’s theory for the underdamped case, approach the scaling of the activated

complex theory (ACT)’, wherein the prefactor is proportional to the inverse of the oscillation

frequency Q in the potential well, and therefore scales as a,/m/¢e, which is independent of the

2
friction coefficient { . The normalized escape time T,q./7,, recalling that 7, = %, therefore has
B

11



m\  ¢a? _ -1/2 ;
a prefactor that scales as (a \[: ) JVkgT /e . It thus scales as the inverse square root

kpT
of a. As discussed above, however, this result fails in the limit of @ — 0, because of lack of
equilibrium with the heat bath, which requires the presence of friction because of the fluctuation-
dissipation theorem. Reducing friction allows one to approach the regime in which ACT is valid,
but one cannot reach this theory at asymptotically small «, because equilibration with the heat
bath is lost as « — 0. Kramers therefore provided a separate equation for this limit, whose results
are given by the dot-dashed line in Fig. 2, but only the MM theory bridges to this result

continuously as @ = 0.

The MM theory in the @ = 0 limit therefore differs from Kramers “general” theory, Eq. 7, by the
additional factor of A(A) (Eq.19) in the denominator, where Ascales as a \[% kLT Thus, the low-
B

a behavior of the MM solution depends on the scaling of A(A) with A at low A. Mel’nikov and
Meshkov report that A(A) A — 0.82A /? at low @, which we can approximate by A(A) A in

. .. Te ¢ m la? £ . . Tec
the asymptotic limit. We thus find that — (a \[;) / (—A) exp (k,TT)’ which 1is —

kT

1

kgT . : . . . :
~(ZE2)a ™t exp (=), where there is scaling of dimensionless escape time with a1, rather than
. PGor g P

1

a~'/2_ This scaling of a~! at low a is consistent with the observed scaling of the MM theory, the

Kramers @ — 0 limit (Eq. 15), and the Langevin simulations, as seen in Fig. 2. In dimensional

terms, in the underdamped limit, 7,4, %%Texp (kLT)’ where ? is the inertial time, and the
B

escape time is inversely proportional to the drag coefficient ¢, while in the overdamped limit

2
, Tesc %exp(e/kT), it is proportional to {. In between these, in the ACT pseudo-limit,

Tose AyJM/EEXp (k%T)’ which is independent of ¢.

When the escape time is scaled by the frictional time 7, the prefactor of exp(e/kgT) from the
LL equation for the overdamped limit (Eq. 4) is independent of a and that from Kramers’ equation
for an underdamped particle (Eq. 15) in the limit of small alpha is proportional to . Combining
these two regimes into a cross-over formula gives (Eq. 22). The prefactor of exp(e/kgT) in the

overdamped limit, B;;(e/kgT), is constant with respect to a, while the prefactor of

12



a~texp(e/kgT) in the underdamped limit, B (¢/kgT) is a constant with respect to a from

Kramers’ Eq. 15. Thus,

2 e () 1)

keT\Y/? ~a
Buu(e/kpT) = (22T) o Eq. 20

wakgT 1
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B (e/kgT) = Eq. 21

Tesc/To = (BLL (e/kgT) + M) e®/ksT Eq. 22

The prediction of Eq. 22 is shown as dashed lines in Fig. 3A. This result reaches the correct
asymptotes for high and very low a , but does not capture the transition between the two accurately
and leaves out the ACT pseudo limit which influences the behavior at intermediate @. The reason
for this deviation in the region of moderately small « is that while the assumption that A(A) = A
holds true in the underdamped /imit, this limit is not reached until  is very small, as shown in Fig.
3B. For a more accurate solution, which also captures the ACT pseudo-limit, we can keep the exact
form of the A(A) correction factor in the denominator, thus using the prefactor from Mel nikov
and Meshkov’s approach in Eq. 10. In this case, the prefactor of exp(e/kgT), which is
B (a,&/kgT), is not independent of a , but still scales as @~ * in the limit of very small a. That

1s,

1

2
B (o e/keT) =3 77 Eq.23
The form of the general equation is then
= (B, (e/ksgT)+B (a,e/kgT))es/*sT Eq. 24

T

whose predictions, shown by the solid lines in Fig. 3A, are in much better agreement with the

simulation data than are those from Eq. 22, given by the dashed lines in Fig. 3A. Eq. 24 is therefore

13



the most complete solution for this case of escape from a Lennard-Jones potential for arbitrary

damping.

This solution also allows us to distinguish within the underdamped regime the conditions for which
the rate of energy uptake from the heat bath is limiting (i.e., “very small” «) from those for which
it is not limiting. To do so, we plot in Fig. 3C the prefactor of Eq. 24, namely B;;(¢/kgT) +
B (a,&/kgT) against a for various values of £/kgzT, noting that a clear regime in which the

1/2 appears only for very high £/kzT, around 10,000 or higher. For smaller

prefactor scales as a~
€/kgT, the rate of energy uptake from the heat bath is not limiting only when « is high enough to
be out of the underdamped limit, and on the way towards overdamping. Only for very high
g/kgT = 10,000, there is a clear @~ /2 underdamped scaling regime between “very small” a (with
scaling a@~1) and the overdamped regime. The huge value of £ /ky T required to obtain this regime,
and the exponential dependence of escape time on &/kgT, imply that this intermediate regime,

described by the “Activated Complex Theory” (ACT), for which the escape time is independent

of the friction coefficient, is therefore essentially always a rough approximation.

14
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Fig. 3: A) All symbols are the same as in Fig. 2. Dashed lines represent Eq. 22, using B (¢/kgT), and solid lines
represent the theory presented in Eq. 24, using B (@, €/kgT). B) Blue line: A(A) as given in Eq. 19 and grey dashed
line: A(A) = A, both for e = 8 kT, z.,; = 2.5 a. C) Prefactor from Eq. 24 for where z.,,;, = 10 a. Black dotted lines

indicate scaling for = and @~*/2, as indicated on the plot.

Now that we’ve shown the ranges of validity of each of the important theories, we consider a
specific problem where attainment of the overdamped limit is important and where ignorance of

the above information led to an error in a paper published earlier by our group.
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Example Problem: Colloid-Polymer Mixtures

Here we demonstrate the relevance of these considerations by noting the need for a correction to
Wang and Larson’s recent report of Langevin dynamics simulations of the multiple relaxation
modes displayed in an aqueous suspension of colloidal particles of radii R=10 a or R=25 a and
telechelic polymers.'? The telechelic polymers were modeled by dumbbells, with each bead able
to bind to the surface of a colloid, where binding was controlled by an attractive potential well
bounding the surface of each colloid. This potential well allowed the formation of polymer loops
on a single colloid particle when both beads of a dumbbell were bound to the same colloid, or of
bridges between neighboring particles, when the two beads were bound to different colloids.!® The
fastest relaxation times in the simulations involved diffusion of a polymer loops across the surface
of the particle, while a slower relaxation process was the breakage of a bridge by escape of one of
the beads from the colloid surface. The colloid radius was large enough that the diffusion of the
loop over the surface of the particle was able to reach the overdamped regime over the time
required for chain relaxation, as demonstrated by changing the dumbbell bead friction. Wang and
Larson naively assumed that all slower relaxation processes would then also be overdamped using

the same Langevin simulator, including the relaxation involving breakage of the bridge.

However, as is evident from our simulations and our above discussion, the slow escape of the bead
from a narrow potential binding a dumbbell bead to the colloid can be underdamped even when a
faster free diffusion of the same particle is overdamped. Fig. 4 shows a correction to Wang and
Larson’s Fig. 5, including the original data from Wang and Larson (blue symbols) along with our
replication of the study using HOOMD-blue’s Langevin and Brownian integrators (orange and
green square symbols, respectively). Our simulations here thus show that the particles’ escape
from the L-J was not overdamped in Wang and Larson’s paper, and as a result, the bridge breakage
process proved to be outside of the overdamped regime, despite the much faster loop diffusion

process being overdamped.
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Fig. 4: Wang and Larson’s times of escape, 7., of a particle of drag coefficient { and diffusivity D = kzT/{ from
a potential well of depth ¢ calculated from Langevin dynamics using LAMMPS (blue circles) compared with escape
times from Brownian dynamics (green squares) and Langevin dynamics (orange squares) using HOOMD-blue.
Simulations are averages of escape times over 100 stickers, initialized on the surface of a colloidal particle with
diameter D, o;q = 20 a, as described in the original paper. Predictions from Pham et a/'? with and without a potential
(blue and green dashed lines) are included for s = (1, —1;,,) = 1. 8 a. Parameters used in these simulations: time

step At =0.0017g, mass m = 1.0 m, and friction coefficient { = 1.0 m; 7.

As a result, as shown in Fig. 5, the predicted results from Wang and Larson for the relaxation
modulus of a network of colloids bridged by dumbbells is sensitive to the dimensionless inertial
time 7;,/Tg down to values of around 107 rather than reaching convergence at unity, as was
naively assumed by Wang and Larson. The slow bridge breakage was not in the overdamped
regime even while the fast loop diffusion was overdamped because the width of the potential well
binding the bead was less than the distance of free diffusion required for loops relaxation. This can
be anticipated by the results in Fig. 3, by noting that the transition from underdamped to
overdamped behavior is only completed when a reaches approximately 10%-10°, regardless of the
well depth, or even the presence of a potential, as shown by the grey symbols for € = 0. For free

diffusion over the surface of the particle, the relevant length scale is comparable to the colloid

2(12

radius, and the length scale a in the expression a = ¢

shown be taken as the colloid radius R,
mkgT

while for escape from the potential well, a is the well width, which was an order of magnitude or
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more smaller than R. Thus, the relevant value of @ was high enough to attain the overdamped limit
for free diffusion, but too low to attain this limit for the much slower escape from the potential
well. Failing to consider the appropriate condition for attaining the overdamped regime when a
conservative force was present, Wang and Larson unwittingly presented results that were

significantly affected by inertia.

t/tg = 1.00 ——
t /g =001 ———

G() (Pa)

10

10" 107 10* 107 10° 10° 107
t(s)
Fig. 5: Effect of dimensionless inertial time tin on relaxation modulus computed by Langevin simulations, for the
problem described in Fig. 4 of Wang and Larson. In the Wang-Larson paper, i‘—" was taken to be 1.0, which is
R

outside of the overdamped limit, as shown by its effect on the result.

Finally, we note that the combined formula for the escape time given above is valuable not only
for determining conditions needed for reaching the overdamped regime in Langevin simulations,
but also gives a good estimate of the escape time in situations where a good estimate of the escape
time is needed. An example is the case of mesoscale population-balance simulations in which the
polymers are included only implicitly and rates of breakage and formation of bridges must be given

by explicit formulas. '3

Conclusion

In Langevin simulations of systems with multiple relaxation processes, especially those involving
escape from potential wells, attainment of the overdamped regime requires careful attention to the
dimensionless damping coefficient, «. We assessed the validity of theories from Kramers,

Mel’nikov and Meshkov (MM), and Larson and Lightfoot (LL) for all damping regimes by
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comparison to Langevin dynamics simulations of a particle escaping from a 12-6 Lennard-Jones
potential. We demonstrate that the standard Kramers theory is not accurate for a Lennard-Jones
potential in the underdamped regime because it does not account for the coupling of the particle
to the heat bath, and in the overdamped regime because it does not apply to a potential that becomes
flat near the escape condition, as is the case for the LJ potential. Because MM theory is accurate
in the underdamped regime for an arbitrary potential, and LL theory is accurate in the overdamped
regime for the LJ potential, we determine prefactors from each of these approaches that allow
presentation of a general equation for arbitrary damping for escape from an LJ potential well. This
general theory also shows that the validity of the Activated Complex Theory (ACT) is limited to

extraordinarily high values of the dimensionless well depth.
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