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Crime is a costly societal issue. While many factors influence urban crime, one less-studied but potentially important factor is 

neighborhood greenspace. Research has shown that greenspace is often negatively associated with crime. Measuring residents’ use 

of greenspace, as opposed to mere physical presence, is critical to understanding this association. Here, we used cell phone 

mobility data to quantify local street activity and park visits in Chicago and New York City. We found that both factors were 

negatively associated with crime, while controlling for socio-demographic factors. Each factor explained unique variance, 

suggesting multiple pathways for the influence of street activity and greenspace on crime. Physical tree canopy had a smaller 

association with crime, and was only a significant predictor in Chicago. These findings were further supported by exploratory 

directed acyclic graph modeling, which found separate direct paths for both park visits and street activity to crime. 
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INTRODUCTION 

Crime is a serious and costly challenge to many urban areas. 
There is a large heterogeneity in crime rates observed across and 
within cities. Much work has focused on economic factors, such 
as education, job opportunities, and poverty1,2, and sociological 
factors, such as social control and collective efficacy3,4. Impor- 
tantly, as proposed by environmental criminology theory5, some 
of this heterogeneity may be due to the characteristics of the 
physical environments of different neighborhoods. For example, 
how individuals in a neighborhood engage with their physical 
environment in the sense of where they choose to spend time 
may also influence crime. In this study, we analyze neighborhood 
networks constructed through cell phone mobility data to test 
sociological and psychological hypotheses on the relationship 
between specific physical environment variables, e.g., tree 
canopy, and sociological variables, e.g., local street activity, and 
their relationship with crime. 

A growing body of research examines the impact of the physical 
environment on crime, through such features as climate6, vacant lots 
or buildings7, ambient and artificial light8, or disorder9. Another 
factor that has been much less studied is the impact of urban 
greenspace10. Some research has demonstrated a negative relation- 
ship between crime levels and various types of urban greenspace, 
such as tree canopy11, vegetation levels12, and greened lots13, while 
others have failed to find a relationship between greenspace and 
crime at all14. In at least one case, researchers found a significant 
positive relationship between parks and crime, as crime was found to 
be clustered in and around greenspace15. Relatedly, Troy and 
colleagues16 found a mostly negative relationship between tree 
canopy and crime across an urban-rural gradient, except for in 
certain areas at the interface between residential and industrial 
areas, where the association was positive. A potential problem is 
that these studies  have  used  the static physical  presence  of 

greenery, either binary or as a quantified amount, as their 
independent variable. This coarse measure may be leading to 
equivocal results, as it is uncertain how residents interact with the 
available greenspace. Accounting for differences in experiential 
engagement may be critical in determining the efficacy of urban 
greenspace17. As such, it becomes important to quantify how 
individuals interact with greenspace in their city in terms of quality, 
type, and amount of interaction because such variations likely affect 
the relationships between greenspace and crime. However, doing so 
is not trivial and requires unique data and analyses that allow 
researchers to monitor, en masse, how individuals interact with 
different physical environments in their cities. 

The actual mechanisms by which greenspaces affect crime 
remain uncertain. One potential sociological mechanism is that 
urban greenspaces could increase residential street activity. For 
example, trees and grass can create pleasant public spaces where 
neighbors can interact and spend time outside18,19 and are 
associated with more walking trips20. Thus, urban greenspace can 
motivate individuals to spend more time on the streets of their 
neighborhood. This increase of “eyes on the street” then can help 
prevent criminal behavior21–23, which is in accordance with the 
theory of crime prevention through environmental design24. 
Through the lens of routine activity theory, residents spending 
time outside within their neighborhood may be effective 
guardians against crime25. Interactions with urban parks have 
been shown to increase feelings of place attachment, which in 
turn increases guardianship19. Additionally, busy streets have 
been proposed to empower communities by helping promote 
social cohesion26, which leads to safer neighborhoods27,28. 

Another potential mechanism relating crime and greenspace is 
psychological, by restoring attentional functioning29. Long-term 
and acute exposures to greenspace are associated with improve- 
ments in cognitive functioning30. These improvements in atten- 
tional functioning resulting from experiencing urban greenspace 

 
 

1Department of Psychology, The University of Chicago, Chicago, IL 60637, USA. 2Harris School of Public Policy, The University of Chicago, Chicago, IL 60637, USA. 3Center for 

Spatial Data Science, The University of Chicago, Chicago, IL 60637, USA. 4Mansueto Institute for Urban Innovation, The University of Chicago, Chicago, IL 60637, USA. 5Department 

of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA. 6Santa Fe Institute, Santa Fe, NM 87501, USA. 7Department of Computer Science, The University of 

Chicago, Chicago, IL 60637, USA. 8Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, The University of Chicago, Chicago, IL 60637, USA. 
✉email: kschertz@uchicago.edu; bermanm@uchicago.edu 

https://doi.org/10.1038/s42949-020-00005-7
http://www.nature.com/npjurbansustain
mailto:kschertz@uchicago.edu
mailto:bermanm@uchicago.edu


Published in partnership with RMIT University npj Urban Sustainability (2021) 19  

 

K.E. Schertz et al. 
 

 

2 
led to reduced aggression for adults living in public housing 
projects31. These results are in accordance with theory, suggesting 
that attention is an underlying psychological resource that 
influences self-control29. Therefore, any intervention that might 
increase attentional capacity, such as interactions with nature, 
would increase self-control and subsequently reduce criminal 
behavior. Additionally, reduced attentional fatigue throughout a 
group of co-located people may allow them the cognitive 
resources to be more vigilant or social, both of which can help 
create a safer neighborhood, as described above. This cognitive 
mechanism suggests that urban greenspaces may contribute two 
mechanisms to predict crime: (1) at an individual level, an effect of 
enhancing cognitive resources required for self-control, which 
then would lead to reduced crime and (2) at a neighborhood level, 
an effect of increasing social interaction and street activity, which 
would then also lead crime reductions. 

An alternative hypothesis is that the causal direction for an 
association between crime and greenspace runs in the opposite 
direction. According to this hypothesis, interactions with green- 
space do not cause less crime, but rather more crime prevents 
individuals from interacting with greenspace as they do not feel 
safe visiting their neighborhood parks. Conversely, less crime 
would cause increases in park visits. Additionally, under this 
hypothesis, high crime neighborhoods may have less physical 
greenspace if tree maintenance and planting are neglected in 
these areas due to concerns for worker safety, for example. In this 
way, fear of crime could also decrease local street activity. 

Here, we approach this problem using unique cell phone-based 
mobility datasets from tens of thousands of residents where we can 
measure the amount of street activity in a neighborhood and the 
amount of active engagement that residents have with greenspace 
through visits to parks. This makes it possible to tease apart each of 
these factors’ associations with crime. Smartphone penetration is 
extremely high in American cities. Virtually all smartphones include a 
GPS chip, as well as applications that can retrieve the device’s 
physical coordinates. This allows for the recording of human 
mobility with high granularity and volume32. By identifying park 
visits within such data, our study interrogates the impact of realized 
access to parks, as distinct from their potential of use captured by 
more traditional sources like park area or land use. In this study, we 
are able to determine if: (1) street activity and exposure to urban 
greenspace add unique information to a model predicting crime, 
and (2) if intentional greenspace contact (i.e., park visits) and 
incidental greenspace contact (i.e., tree canopy) have unique 
associations with crime. To achieve this, we analyzed crime data in 
two large, diverse, urban locations in the US. We first analyzed crime 
data over a 1-year period in Chicago. We then independently 
repeated the same analysis in New York City to confirm that the 
relationships found were not specific to Chicago. It is possible that 
visiting any cultural amenity may be related to less crime, which 
would indicate no special role for a park visit. As such, we also 
investigated whether museum visits would have the same 
association as park visits. In both cities, we found that park visits 
and street activity uniquely and significantly predicted reduced 
crime (controlling for income, education, and other demographic 
factors), with these variables having similar size associations in most 
models. Tree canopy was only significant in models for Chicago. In 
contrast, we failed to find a significant relationship between 
museum visits and crime in either city. 

We also conducted an exploratory directed acyclic graph 
analysis to determine if there were direct or indirect relationships 
between crime and these variables. We found direct relationships 
between park visits and crime, as well as local street activity and 
crime. These results suggest important, independent, and 
significant roles for the physical and social environments of cities 
in potentially reducing crime in urban areas. 

 
 
 

RESULTS 

Chicago 

Figure 1 shows choropleth maps for the number of park visits, tree 
canopy, street activity, and crime rates for the City of Chicago. We 
ran four spatial error models, individually adding our independent 
variables of interest, with non-violent crime as the dependent 
variable. The first model only included tree canopy, the second 
model included tree canopy and park visits, the third model 
included tree canopy and street activity, and the fourth model 
included all three variables of interest (see Table 1). The models 
controlled for a number of socioeconomic variables including: 
unemployment, income, poverty, crowded housing, residential 
stability, foreign born population, size of the resident population, 
working population, and educational attainment, after first regres- 
sing out percent Black and percent Hispanic. We found that tree 
canopy, park visits, and street activity all had significant, and 
negative associations with non-violent crime in each of the models. 
The model that included all of the predictor variables had the best 
fit, as indicated by the lowest Akaike Information Criteria (AIC). 

For violent crime, controlling for all of our confounding 
variables, tree canopy, park visits, and street activity all showed 
significant negative associations with violent crime across all 
models (see Table 2). Again, the model of best fit was the model 
that included all three of these variables. 

As crime was log-transformed and the independent variables 
were standardized, we can determine the percent change in crime 
associated with each of the significant predictor variables. In the 
models with all variables included, a 5% increase in street activity 
was associated with 6.9% and 9% less non-violent and violent crime, 
respectively. An increase in park visits equal to 25% of the average 
number of visits was associated with 4.9% and 6.8% less non-violent 
and violent crime, respectively. An increase of 5% tree canopy was 

associated with 3.3% less violent and non-violent crime. As a 
comparison, 9.9% less poverty was associated with the same 
amount less violent crime as a 5% increase in street activity, while 
7.4% less poverty was associated with the same amount less as an 
increase in park visits equal to 25% of the average number of visits. 

We then investigated whether museum visits have the same 
association with crime as park visits, in order to determine if 
different types of amenities may be interchangeable. We failed to 
find a significant relationship for museum visits with either violent 
or non-violent crime, in models both with and without park visits 

(see Supplementary Table 1 for models). 

 
New York City 

Figure 2 shows the choropleth maps for number of park visits, tree 
canopy, street activity, and total crime rate for New York City at 
the census tract level. Controlling for all of our confounding 
variables we found that park visits and street activity had 
significant, negative associations with non-violent crime, while 
tree canopy was not significant (see Table 3). Park visits and street 
activity each added unique information to the model, and the 
model with all variables had the lowest AIC. For violent crime, park 
visits and street activity had significant, negative associations with 
crime (see Table 4), and provided unique information to the 
model. Tree canopy, again, was not significant. In the models with 
all variables included, a 5% increase in street activity was 
associated with 5.0% and 2.7% less non-violent and violent crime 
respectively. An increase in park visits equal to 25% of the average 
number of visits was associated with 4.8% and 5.7% less non- 
violent and violent crime respectively. To compare the strength of 
association, 7.6% less poverty was associated with the same 
amount less violent crime as an increase in park visits equal to 
25% of the average number of visits, while 3.6% less poverty was 
associated with the same amount less crime as 5% increase in 
street activity. As in Chicago, we examined if museum visits would 
have similar associations with crime, however, we failed to find a 
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Fig. 1 Choropleth maps of Chicago. a Number of monthly park visits, b Percent tree canopy, c Local street activity (as percentage), d Total 
crime rate (per 1000 resident population, log-transformed). Airports and census tracts with missing data have been removed. Total crime rate 
shown for visualization purposes only; all linear model analysis was done separately for violent and non-violent crime using crime counts 
while adjusting for residential and working population. 

 

significant relationship between museum visits and crime in New 
York City, in models both with and without park visits included 
(see Supplementary Table 2 for models). 

 
Exploratory directed acyclic graph analysis 

Directed acyclic graph (DAG) models can be used to determine 
direct and indirect relationships between variables from observa- 
tional data33. We used the fast causal inference (FCI) algorithm34 to 
determine if our variables of interest had direct or indirect 
relationships with crime. Unlike other DAG algorithms, FCI does 
not assume that there are no hidden or latent variables. Given that 
crime is a complex social phenomenon, it is likely that our model 
does not include all variables that influence crime, making FCI a 
reasonable approach. As our models for violent and non-violent 
crime were similar across linear regressions within the two cities, we 
combined violent and non-violent crime into one measure of total 

crime (log(violent crime + non-violent crime)). Figure 3 shows the 
direct connections to or from total crime in Chicago (Fig. 3a) and 
New York City (Fig. 3b). We found direct relationships between park 

 

visits and crime, and street activity and crime in both cities. 

Population also showed a direct relationship with crime in both 
cities, while poverty and percent foreign born population showed 

direct relationships with crime in Chicago, and percent unemployed 

and working population showed direct relationships with crime in 
New York City. Most relationships were found to be bidirectional, 

indicating that the relationship is influenced in both directions. 

Bidirectional arrows can also indicate that a hidden variable is 
directly related to each of the nodes. We did not find a direct 

relationship between tree canopy and crime or museum visits and 

crime in either city, nor did the models show direct relationships in 
between park visits, tree canopy, and local street activity. 

Supplementary Figs. 1 and 2 show connections found between all 

variables for Chicago and New York City, respectively. 

 

DISCUSSION 

We used an extensive dataset on human mobility from mobile 

devices to find significant, negative associations between tree 
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Table 1. Spatial error models for non-violent crime in Chicago. 

 
(1) Only physical 
greenspace 

(2) With park use (3) With street activity (4) With park use and street 
activity 

Intercept −0.03 (−0.09, 0.03) −0.03 (−0.08, 0.03) −0.03 (−0.09, 0.03) −0.03 (−0.09, 0.03) 

Tree canopy −0.06 (−0.10, −0.02)** −0.06 (−0.09, −0.02)** −0.06 (−0.09, −0.02)** −0.05 (−0.09, −0.02)** 

Grass coverage 0.02 (−0.01, 0.06) 0.03 (0, 0.06) 0.02 (−0.01, 0.05) 0.02 (−0.01, 0.06) 

Park visits — −0.09 (−0.13, −0.05)*** — −0.08 (−0.12, −0.04)*** 

Distance traveled to parks — 0.03 (−0.02, 0.07) — 0.01 (−0.03, 0.05) 

Street activity — — −0.1 (−0.14, −0.07)*** −0.09 (−0.13, −0.06) *** 

Population (log) 0.37 (0.34, 0.40)*** 0.38 (0.35, 0.41) *** 0.36 (0.33, 0.39)*** 0.37 (0.34, 0.4)*** 

Working population (log) 0.23 (0.19, 0.26)*** 0.22 (0.18, 0.25)*** 0.19 (0.15, 0.23)*** 0.19 (0.15, 0.22)*** 

Median household income (log) 0.01 (−0.06, 0.08) 0 (−0.07, 0.06) 0.01 (−0.06, 0.08) 0 (−0.07, 0.06) 

Percent unemployed 0.004 (−0.04, 0.04) 0 (−0.04, 0.04) −0.01 (−0.04, 0.03) −0.01 (−0.05, 0.03) 

Percent below poverty line 0.07 (0.02, 0.13)** 0.07 (0.02, 0.12)** 0.08 (0.03, 0.13)** 0.08 (0.03, 0.13)** 

Percent living in crowded housing −0.007 (−0.04, 0.03) −0.01 (−0.05, 0.02) −0.01 (−0.04, 0.03) −0.01 (−0.05, 0.02) 

Percent w/ less than high-school 
diploma 

0.04 (−0.02, 0.10) 0.04 (−0.02, 0.1) 0.04 (−0.02, 0.1) 0.03 (−0.02, 0.09) 

Percent w/ bachelor’s degree 
or higher 

−0.02 (−0.11, 0.06) 0.04 (−0.04, 0.13) 0.03 (−0.05, 0.12) 0.08 (0, 0.17) 

Percent residential stability −0.04 (−0.07, −0.01)* −0.04 (−0.07, −0.01)* −0.04 (−0.07, −0.01)* −0.04 (−0.07, −0.01)* 

Percent foreign born −0.14 (−0.19, −0.09)*** −0.13 (−0.18, −0.09)*** −0.11 (−0.16, −0.06)*** −0.11 (−0.16, −0.06)*** 

Lambda 0.60 0.58 0.62 0.61 

AIC 661 641 631 616 

Δ AIC from model (1) — −20 −30 −45 
     

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 95% CI shown in parentheses. Lambda is the spatial correlation of error terms. 

 
 

Table 2. Spatial error models for violent crime in Chicago. 

 
(1) Only physical 
greenspace 

(2) With park use (3) With street activity (4) With park use and street 
activity 

Intercept −0.03 (−0.09, 0.04) −0.02 (−0.08, 0.04) −0.03 (−0.09, 0.04) −0.02 (−0.08, 0.04) 

Tree canopy −0.06 (−0.1, −0.02)** −0.06 (−0.1, −0.02)** −0.06 (−0.1, −0.01)** −0.05 (−0.09, −0.01)** 

Grass coverage 0.03 (−0.01, 0.06) 0.03 (0, 0.07) 0.02 (−0.02, 0.06) 0.03 (−0.01, 0.06) 

Park visits — −0.12 (−0.17, −0.08)*** — −0.12 (−0.16, −0.07)*** 

Distance traveled to parks — −0.01 (−0.06, 0.04) — −0.02 (−0.07, 0.02) 

Street activity — — −0.14 (−0.18, −0.09)*** −0.13 (−0.17, −0.09)*** 

Population (log) 0.35 (0.31, 0.39)*** 0.36 (0.32, 0.39)*** 0.34 (0.3, 0.37)*** 0.35 (0.31, 0.38)*** 

Working population (log) 0.23 (0.19, 0.27)*** 0.22 (0.18, 0.26)*** 0.18 (0.14, 0.23)*** 0.18 (0.14, 0.22)*** 

Median household income (log) 0 (−0.08, 0.08) −0.02 (−0.1, 0.06) 0 (−0.08, 0.08) −0.02 (−0.1, 0.06) 

Percent unemployed 0.02 (−0.02, 0.07) 0.02 (−0.03, 0.07) 0.01 (−0.03, 0.06) 0.01 (−0.03, 0.06) 

Percent below poverty line 0.13 (0.06, 0.19)*** 0.12 (0.06, 0.19)*** 0.14 (0.07, 0.2)*** 0.13 (0.07, 0.19)*** 

Percent living in crowded housing −0.01 (−0.05, 0.03) −0.01 (−0.05, 0.03) −0.01 (−0.05, 0.03) −0.01 (−0.05, 0.03) 

Percent w/ less than high-school 
diploma 

−0.01 (−0.08, 0.06) −0.02 (−0.09, 0.04) −0.01 (−0.08, 0.06) −0.02 (−0.09, 0.05) 

Percent w/ bachelor’s degree 
or higher 

−0.09 (−0.18, 0.01) −0.01 (−0.11, 0.08) −0.02 (−0.11, 0.08) 0.04 (−0.06, 0.14) 

Percent residential stability −0.06 (−0.1, −0.02)** −0.06 (−0.1, −0.02)** −0.06 (−0.1, −0.02)** −0.06 (−0.1, −0.02)** 

Percent foreign born −0.05 (−0.11, 0.01) −0.05 (−0.1, 0.01) −0.02 (−0.07, 0.04) −0.02 (−0.07, 0.04) 

Lambda 0.55 0.51 0.58 0.55 

AIC 923 900 885 866 

Δ AIC from model (1) — −23 −38 −57 

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 95% CI shown in parentheses. Lambda is the spatial correlation of error terms. 
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Fig. 2 Choropleth maps of New York City. a Number of monthly park visits, b Percent tree canopy, c Local street activity (as percentage), 
d Total crime rate (per 1000 resident population, log-transformed). Airports and census tracts with missing data have been removed. Total 
crime rate shown for visualization purposes only; all linear model analysis was done separately for violent and non-violent crime using crime 
counts while adjusting for residential and working population. 

 

canopy, park visits and street activity with crime in two large US 
cities. We first conducted a pilot analysis in Chicago, and then 
replicated the results in New York City in a preregistered report. By 
comparing the models, which included park visits, local street 
activity, or both, we saw that interactions with greenspace and 
street activity accounted for unique variance in predicting crime. 
This lends support to the idea that multiple pathways are at work 
to explain the associations of greenspace and street activity with 
reduced crime and suggests that the influence of greenspace may 
be due, in part, to psychological/cognitive mechanisms (i.e., 
attentional functioning) and not only to sociological mechanisms. 
The DAG models also indicated separable, direct paths for parks 
visits and local street activity to crime, while no direct relationship 
was observed between tree canopy and crime. The observation of 
multiple pathways for these relationships will help design future 
research on interventions to reduce crime that focus on both 
individual and neighborhood factors. We also found that park 
visits are more associated with crime than museum visits in both 
cities, suggesting that these amenities are not interchangeable. 
Additionally, park visits showed a direct relationship with crime, 
while museum visits did not. 

Our results are in line with previous research findings, which 
uncovered negative associations between greenspace and 
crime10,11,16,35,36. However, our “physical presence of greenspace” 
variables (i.e., Tree Canopy, Grass Coverage) had weaker and less 
consistent associations with reduced crime, compared to our “use of 
greenspace” variable (i.e., Park Visits). By including this variable, we 
show the importance of determining residents’ realized access to, or 
engagement with, greenspace in order to investigate its relationship 
with crime. Our findings of negative associations between street 
activity and crime are also consistent with prior theoretical and 

empirical work21,22,28,37. As greenspace usage and street activity 
added unique information to our models, and both showed direct 
relationships to crime in the DAGs, more studies are needed to 
investigate how these two neighborhood-level characteristics may 
work together and separately to influence crime levels. 

The strength of associations for each of these independent 
variables was stronger in Chicago, where overall crime levels are 
also higher at the time of the study compared to New York City. 
This could be for several reasons: The parks in Chicago and New 
York City may have different facilities, sizes, and landscaping. 
Proportions of trees lining streets compared to on private property 
may also vary, and these may drive differences in the strength of 
associations as well. While both cities showed negative correla- 
tions between tree canopy and both violent and non-violent 
crime, only in Chicago did tree canopy stay significant in models 
controlling for socio-demographic variables. These two cities have 
very different populations, geographies, and baseline crime levels 
so the convergence of results for park visits and street activity in 
our analysis provides substantial evidence for the consistent 
influence of these neighborhood characteristics across environ- 
ments. Future work should include additional cities to further test 
the generalizability of these associations. Additionally, given prior 
work showing that various neighborhood characteristics, such as 
social cohesion and walkability, had different associations with 
crime in cities outside of the US and Western Europe38–41, 
conducting similar research for cities around the world is critical to 
deepen our understanding of how physical and social environ- 
ments influence crime around the world. 

Given the observed strength of associations, the results suggest 
that support for green infrastructure—and importantly its use, 
including community programs to facilitate local street activity— 



Published in partnership with RMIT University npj Urban Sustainability (2021) 19  

 

K.E. Schertz et al. 

6 

Table 3. Spatial error models for non-violent crime in New York City. 

 
(1) Only physical 
greenspace 

(2) With park use (3) With street activity (4) With park use and street 
activity 

Intercept −0.03 (−0.07, 0.01) −0.03 (−0.06, 0.01) −0.03 (−0.07, 0.02) −0.02 (−0.06, 0.02) 

Tree canopy −0.02 (−0.04, 0.01) −0.02 (−0.05, 0.01) −0.02 (−0.04, 0.01) −0.02 (−0.04, 0.01) 

Grass coverage 0.02 (−0.01, 0.05) 0.03 (0, 0.06) 0.01 (−0.02, 0.04) 0.02 (−0.01, 0.05) 

Park visits — −0.07 (−0.09, −0.04)*** — −0.07 (−0.1, −0.05)*** 

Distance traveled to parks — −0.01 (−0.04, 0.02) — −0.02 (−0.05, 0.01) 

Street activity — — −0.06 (−0.08, −0.04) *** −0.06 (−0.09, −0.04)*** 

Population (log) 0.24 (0.22, 0.27)*** 0.24 (0.22, 0.26)*** 0.24 (0.22, 0.26)*** 0.24 (0.21, 0.26)*** 

Working population (log) 0.34 (0.31, 0.36)*** 0.34 (0.31, 0.36)*** 0.32 (0.29, 0.34)*** 0.32 (0.29, 0.35)*** 

Median household income (log) −0.08 (−0.13, −0.03)** −0.08 (−0.13, −0.03)** −0.09 (−0.14, −0.04)*** −0.08 (−0.13, −0.03)** 

Percent unemployed 0.02 (0, 0.04) 0.02 (0, 0.05) 0.02 (−0.01, 0.04) 0.02 (−0.01, 0.04) 

Percent below poverty line 0.07 (0.03, 0.12)** 0.07 (0.02, 0.11)** 0.07 (0.03, 0.12)** 0.07 (0.02, 0.11)** 

Percent living in crowded housing −0.01 (−0.04, 0.02) −0.02 (−0.05, 0.01) −0.01 (−0.04, 0.02) −0.02 (−0.05, 0.02) 

Percent w/ less than high-school 
diploma 

−0.03 (−0.08, 0.01) −0.04 (−0.08, 0.01) −0.03 (−0.07, 0.01) −0.03 (−0.08, 0.01) 

Percent w/ bachelor’s degree 
or higher 

0.11 (0.05, 0.16)*** 0.13 (0.07, 0.18)*** 0.12 (0.07, 0.17)*** 0.13 (0.08, 0.19)*** 

Percent residential stability −0.03 (−0.05, 0)* −0.02 (−0.05, 0) −0.02 (−0.05, 0) −0.02 (−0.05, 0) 

Percent foreign born 0 (−0.03, 0.03) −0.01 (−0.04, 0.03) 0 (−0.04, 0.03) −0.01 (−0.04, 0.02) 

Lambda 0.55 0.52 0.56 0.53 

AIC 2674 2652 2651 2626 

Δ AIC from model (1) — −22 −23 −48 

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 95% CI shown in parentheses. Lambda is the spatial correlation of error terms. 

 
 
 

Table 4. Spatial error models for violent crime in New York City. 

 
(1) Only physical (2) With park use (3) With street activity (4) With park use and street 

 greenspace   activity 

Intercept −0.02 (−0.07, 0.02) −0.02 (−0.06, 0.02) −0.02 (−0.07, 0.02) −0.02 (−0.06, 0.02) 

Tree canopy −0.02 (−0.05, 0.01) −0.02 (−0.05, 0.02) −0.02 (−0.05, 0.02) −0.02 (−0.05, 0.02) 

Grass coverage 0.01 (−0.03, 0.05) 0.02 (−0.02, 0.05) 0 (−0.03, 0.04) 0.01 (−0.02, 0.05) 

Park visits — −0.08 (−0.12, −0.05)*** — −0.09 (−0.12, −0.05)*** 

Distance traveled to parks — 0 (−0.03, 0.04) — 0 (−0.04, 0.03) 

Street activity — — −0.03 (−0.06, 0)* −0.03 (−0.06, 0)* 

Population (log) 0.24 (0.21, 0.26)*** 0.23 (0.2, 0.26)*** 0.23 (0.2, 0.26)*** 0.23 (0.2, 0.26)*** 

Working population (log) 0.28 (0.25, 0.32)*** 0.29 (0.25, 0.32)*** 0.28 (0.24, 0.31)*** 0.28 (0.24, 0.31)*** 

Median household income (log) −0.08 (−0.15, −0.02)** −0.08 (−0.14, −0.01)* −0.09 (−0.15, −0.02)** −0.08 (−0.14, −0.02)* 

Percent unemployed 0.02 (−0.01, 0.05) 0.02 (−0.01, 0.05) 0.01 (−0.02, 0.05) 0.01 (−0.02, 0.04) 

Percent below poverty line 0.1 (0.04, 0.16)*** 0.09 (0.03, 0.15)** 0.1 (0.04, 0.16)*** 0.09 (0.03, 0.15)** 

Percent living in crowded housing −0.02 (−0.06, 0.02) −0.02 (−0.06, 0.02) −0.02 (−0.06, 0.02) −0.02 (−0.06, 0.02) 

Percent w/ less than high-school 
diploma 

0.02 (−0.03, 0.08) 0.03 (−0.03, 0.08) 0.03 (−0.03, 0.08) 0.03 (−0.03, 0.08) 

Percent w/ bachelor’s degree 0.13 (0.06, 0.2)*** 0.16 (0.09, 0.23)*** 0.14 (0.07, 0.21)*** 0.17 (0.1, 0.23)*** 

or higher     

Percent residential stability −0.04 (−0.07, −0.01)** −0.04 (−0.07, −0.01)* −0.04 (−0.07, −0.01)** −0.04 (−0.07, −0.01)* 

Percent foreign born 0.08 (0.04, 0.12)*** 0.08 (0.03, 0.12)*** 0.08 (0.04, 0.12)*** 0.07 (0.03, 0.11)*** 

Lambda 0.46 0.45 0.46 0.45 

AIC 3708 3687 3706 3684 

Δ AIC from Model (1) — −21 −2 −24 

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001. 95% CI shown in parentheses. Lambda is the spatial correlation of error terms. 
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Fig. 3 Direct relationships to and from crime found in DAG models. a Chicago; b New York City. Note: Regular arrowhead indicates positive 
relationship. Black triangle indicates negative relationship. Open circle indicates that the algorithm cannot tell whether the edge is one- 
directional or bidirectional. 

 

could provide cost-effective ways to address crime, while 
additionally providing many other socioeconomic and health co- 
benefits. For those measures to be most effective, it will also be 
important to understand sociocultural elements that influence 
how people voluntarily engage with greenspace42. The cost of 
crime is difficult to calculate, however one method estimates that 
the direct and indirect costs for violent crime in Chicago were 
$5.31 billion in 201043. Thus, for example, the 6.8% less violent 
crime associated with a 25% of average park visits increase per 
month is equivalent to approximately $361 million total savings, 
although the amount actually saved would likely be lower due to 
the bidirectionality of the relationship. 

While we were able to conduct an exploratory DAG analysis to 
investigate direct and indirect relationships in our observational data, 
future research is needed to investigate the causal nature of the 
relationships between urban greenspace and crime. There are some 
limitations to these models. First, the FCI algorithm does not account 
for the spatial nature of our data. Additionally, FCI can only find 
equivalent classes of ancestral graphs, or possible graph structures, as 
opposed to the exact true DAG that explains the data. It is also 
difficult to speculate about the possible latent variables that could be 
causing some of the dependencies. Thus, future work using 
interventions remains critical for examining true causal relationships. 
For example, while our models did not find a direct relationship 
between tree canopy and crime, longitudinal studies examining the 
physical presence of greenspace lend support to a causal relationship 
between greenery and lower crime, with less crime being observed 
after increased greening or tree planting13, and more crime being 
observed after a natural event that led to a reduction in trees (e.g., 
the Emerald Ash Borer infestation that killed many Ash trees35). The 
detailed mechanism behind these observations remains unclear44. A 
tree-lined street may indicate cues of social order or property that is 
cared for, indicating territoriality, which could lead to less crime45,46. 
Alternatively, the cognitive benefits attained after exposure to natural 
elements may lead to less crime, as increased attention functioning 
has been shown to mediate reduced aggression29–31. Natural 
environments also have been shown to increase positive affect47 
as well as pro-social behavior48, both of which could translate to 

lower crime levels in neighborhoods where residents visit parks more 
or there is greater tree canopy. Future research could also explore 
what neighborhood characteristics are associated with high levels of 
street activity28. Given that our exploratory DAG models showed 
bidirectional relationships between crime and park visits in both 
cities, longitudinal studies could possibly be used to determine how 
much of the effects are due to one direction. For example, studies 
could compare crime levels before and after interventions to 
improve accessibility or localized campaigns to increase park usage, 
after verifying the effectiveness of such interventions. 

While the theories that guided the design of this study suggest 
that it is park visits and local street activity that cause less crime, it 
is also important to recognize that there remain practical impacts 
for individuals if future studies show the opposite causal direction 
between these factors. That is, individuals living in high crime 
areas are thus disadvantaged in ways beyond the direct effects of 
crime exposure49, meaning that they are disproportionately 
unable to take advantage of the benefits that both urban 
greenspace and local street activity can provide to indivi- 
duals18,23,30, due to crime or fear of crime, in addition to other 
barriers to greenspace use, such as lack of time or transit access. In 
this way, crime prevention may help open paths to more 
equitable, realized access to greenspace17, for example. 

While exploring a large dataset, this study is limited by the 
sample of smartphone users that create our mobility data in 
Chicago and New York City. During the study period over four 
fifths of US adults in cities had a smartphone50. The educated and 
wealthy are modestly more likely to own a smartphone, while 
children and the elderly are less likely to. However, these data 
have been shown to be reasonably representative across census 
tract populations and constitute a substantial subset of the 
residents for each of these major cities51. Additionally, our 
measure of local street activity could be improved as it does not 
measure the quality or type of social interactions that residents 
may engage in while being active in their neighborhood. Certain 
street activity behaviors, and the resulting social interactions, may 
be more or less influential on crime levels. Being able to quantify 
the nature of local social interactions would be of great utility, but 
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is also a very difficult proposition empirically that would require 
the use of additional datasets. 

In addition to providing insights into the relationship between 
greenspace, street activity, and crime, this study demonstrates how 
cell phone mobility data – a large scale data source that will keep 
improving in the near future—can be leveraged to quantify 
neighborhood characteristics at scales previously impossible to 
access52. These near-continuous empirical measures of mobility 
behavior can be used to address questions from a range of fields, 
including urban planning, health sciences, sociology, geography, and 
psychology and can help to revolutionize how social scientists 
conduct research. 

In conclusion, utilizing cell phone trace data to study human 
mobility presents a framework for examining intentional behaviors in 
cities that have practical implications for urban planners and policy 
makers, and theoretical implications for how greenspace and local 
street activity influence crime and other social behaviors. Realized 
park access, tree canopy and local street activity are all associated 
with safer neighborhoods. Our results support multiple pathways for 
the associations between greenspace and local street activity with 
crime. These data also support the notion that much of our behavior 
is determined by environmental factors and is not solely attributable 
to individual choices44. Ensuring equitable access to urban green- 
space and support for neighborhood amenities to promote local 
street activity may be ways to help cities reduce crime, leading to 
more sustainable and inclusive cities, ecologically and socially. 

 
METHODS 

Experimental design 

To assess the relationships of physical greenspace, use of greenspace, and 
local street activity with crime, we analyzed cell phone trace data, LiDAR 
land cover data, and open source crime and demographics data, all 
aggregated to the census tract level, in spatially appropriate linear models 
in Chicago and New York City. Data analysis for Chicago served as a pilot 
analysis, and preregistration was completed for the New York City analysis 
(https://osf.io/3thza). Several changes to the experimental design were 
introduced during peer review, including the addition of percent foreign 
born and residential stability as independent variables, and shifting the 
years of crime data to more closely align to the cell phone mobility data. 
Directed acyclic graph analysis was completed to investigate the presence 
of direct or indirect connections between our variables of interest. This 
analysis is exploratory (i.e., not preregistered). 

 
Statistical models 

All models were run using census tracts as the spatial units of measurement. 
Our dependent variable was either violent or non-violent crime. The 
independent variables were tree canopy, grass coverage, park visits, distance 
traveled to parks, museum visits, local street activity, population, working 
population, median household income, percent unemployed, percent living 
below the poverty line, percent living in crowded housing, percent foreign 
born, percent residential stability, percent with less than a high-school diploma, 
percent with a bachelor’s degree or higher, percent Black, and percent 
Hispanic. Detailed descriptions of these variables and their sources are given in 
the following paragraphs of this section. All independent variables were z- 
scored, with median household income, population and working population 
first being log-transformed due to their positive skew. See Supplementary Figs. 
3 and 4 for the correlation tables of all variables in Chicago and New York City, 
respectively. Non-violent and violent crime were also log-transformed, and as 
some census tracts had no reported violent crimes in both Chicago and New 
York City, violent crime counts were increased by 1 before completing log- 
transformation. We used a two-step regression for all our models. We first 
regressed out percent Black population and percent Hispanic population from 
crime, either non-violent or violent, using a simple linear model. This allows us 
to statistically adjust for previously shown associations between race/ethnicity 
and crime, for which there is no theoretical justification, but rather are proxies 
that can indicate forms of residential inequality, which are unable to be directly 
measured. Given the spatial nature of the data, we then ran all models as 
hierarchical linear models with census tract as the unit of measurement and 
neighborhood as a random intercept, using the residuals of the first linear 
regression as the dependent variable. In Chicago, neighborhoods are officially 

 
 

 
called Community Areas, while in New York City the equivalent areas are 
defined as Neighborhood Tabulation Areas. Thus, this hierarchical model places 
a census tract within its larger neighborhood in an attempt to account for its 
spatial location. However, if the hierarchical model had significant spatial 
autocorrelation as indicated by global Moran’s I, we then conducted Lagrange 
multiplier diagnostics using a queen contiguity spatial weights matrix to 
determine whether a spatial lag model or spatial error model was more 
appropriate. In most cases, a spatial error model was the most appropriate. 

 
Directed acyclic graphs (DAGs) 

DAGs were computed using the fast causal inference (FCI) algorithm34. FCI 
allows for the discovery of direct and indirect relationship structure in 
observational data while allowing for the presence of an unknown number of 
hidden, or confounding, variables, as opposed to other DAG algorithms, such 
as PC or Greedy Equivalence Search, which do not allow for hidden variables33. 

 
Land cover data 

Light detection and ranging (LiDAR) data for Chicago and New York City were 
downloaded from the University of Vermont’s Spatial Analysis Lab website. 
LiDAR data, collected in 2010 at 2 ft resolution, were classified into seven land 
cover variables—trees, grass, road/rail, building, bare soil/sand, water, and 
pavement (other than road). Percent tree canopy and percent grass coverage 
was calculated for each census tract in ArcGIS, version 10.5.1. 

 
Cell phone trace data 

Location data for this study were recorded in May 2017 by applications on 
users’ phones, and provided by Carto. Each data record or “ping” consists 
of a latitude/longitude coordinate, with a timestamp, an estimated 
precision, and a unique device identifier. While specific apps are not 
identified, the provider does provide product categories. These cover 
photos, texting, navigation, weather, music, dating, and many others. The 
largest share of data comes through Software Development Kits (SDKs) 
that are themselves embedded in other applications. All variables were 
constructed at the census tract level in order to mitigate risk and prevent 
the identification of individual behaviors. Carto collected cell phone trace 
data in accordance with privacy laws and no identifiable information on 
the participants was provided to the authors. 

OpenStreetMaps data define the locations of roads, parks, and museums. 
Roads and railways are used to identify individuals in transit (and not 
“actively” in a park or neighborhood). For this purpose, only highways and 
arterials are used. These are identified using OSM tags: motorway, trunk, 
primary, and secondary highways (and their links), and rail and subways 
railways. Similarly, park boundaries are defined when the leisure tag is park, 
playground, garden, dog_park, nature_reserve, recreation_ground, or golf 
course, or if land_use is recreation_ground, natural is beach, or boundary is 
protected area. Museums are identified as tourism tags of museum, 
aquarium, or zoo, or the amenity of planetarium. 

Points within 10 km of the Census Bureau’s “place” definition of New 
York City and Chicago are selected for analysis. These are associated with 
census tracts, parks, museums, and major roads and railways as already 
defined. This is achieved through point-in-polygon merges. Road 
centerlines are converted to polygons using a 10 m buffer. Locations can 
be recorded simultaneously by multiple apps and so duplicates are 
dropped. Pings with precision that is either undefined (often from the Wi- 
Fi network) or worse than half a kilometer are also removed. To avoid 
imputing “visits” to parks or neighborhoods as seen from the freeway, 
locations flagged along major roads and railways are removed. Home 
locations are then defined for each device as the modal census tract 
location between midnight and 6 a.m. local time. In Chicago, this location 

could be defined for N = 95,000 users. In New York City, this location could 

be defined for N = 191,000 users. Each device is thus associated with a 
residence, and has a series of other locations—each within a defined 
census tract, and possibly within a park or museum. Data were processed 
using Open Science Grid53. 

The location data are used to derive three variables: park and museum 
visitation rates, and street activity. Park and museum visits were defined as 
the number of times over the month that a device records a location in a 
park or museum. One visit is counted per resource, per day. This means 
that short or long stays, or multiple visits on a single day are not 
distinguished. To suppress spurious visits to parks adjacent to the place of 
residence, visits within 100 meters of the home location were not counted. 
For this purpose only, the home location is defined as the centroid of all 
nighttime locations in the home tract. Each variable is averaged over users 

https://osf.io/3thza
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at the level of the census tract. In this way, park and museum visits account 
for how often residents of a census tract visit parks and museums located 
anywhere in the city, as opposed to how often the parks within a particular 
census tract are visited. This methodology accounts for the appeal, safety, 
and accessibility of a resource, and the ability of residents to use it. 

Local street activity is derived following Saxon23 to quantify residents’ 
use of their own neighborhoods. It is the share of residents’ recorded ping 
coordinates in the immediate vicinity of their home, averaged by census 
tract. To express this formally, we denote the share of coordinates 
recorded by user u in census tract ℓ by Au. Aggregate users by home 
location h, averaging the visitation rates over the set of users Rh resident 
there.  If   Rh    is  the  cardinality  of  Rh,  this  is  Âh‘ u  R   A

u=  Rh  .  Next 
define the vicinity Vh of h, as the k nearest neighbors to the home tract (not 
including the home itself). The local street activity would then be naively 
defined as the sum over locations ℓ in the vicinity, local ‘   Vh  

Âh‘ . 
However, census tracts vary in population, and the vicinity should not 

depend on the Census Bureau’s definitions of tracts. The number of k is 
therefore defined separately for each home location as the maximum 
number of tracts containing less than N = 40,000 total people. Index tracts by 
their distance from the reference tract, and denote a tract’s population by nk 
and the cumulative population by Nk. Then k is the smallest number such that 
Nk + nk+1 > N = 40,000. This allows the local street activity to be defined as 
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(rgdal package). Spatial error regressions used the errorsarlm function 
(spatialreg package). For the spatial models, neighbors were defined using 
the poly2nb function with queen set to TRUE, and the spatial weights 
matrix was defined using the nb2listw function with style set to “W.” Spatial 
autocorrelation was tested using moran.mc and Lagrange multiplier tests 
were conducted using lm.LMtests. DAG models were run using the fci 
function (pcalg package) with indepTest set to “gaussCItest”, skel.method 
set to “stable”, and alpha equal to 0.05. Figures 1 and 2 were generated 
using RcolorBrewer and spplot. Supplementary Figs. 1 and 2 were 
generated outside of R using an online implementation of GraphViz. 
Supplementary Figs. 3 and 4 were generated using corrplot. 

 
Reporting summary 

Further information on research design is available in the Nature Research 
Reporting Summary linked to this article. 

 

DATA AVAILABILITY 

The data generated and/or analyzed during the related study are described in the 

figshare metadata record: https://doi.org/10.6084/m9.figshare.1317717554. The land cover, 

demographics and crime data files are openly available in the Open Science Framework 

 
local ¼ 

.P
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2Vh  Âh‘ 
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(1) 

repository at https://doi.org/10.17605/OSF.IO/DX5CE55. The cell phone mobility data files 

are proprietary and thus not openly available. Interested parties should contact the 

1 — Âhh 

In this expression, the naive sum within Vh is corrected for the fraction of 
activity in tract k + 1 required to reach the N = 40,000 person threshold. 
The overall street activity is then the share of out-of-home locations 1 
Âhh  that happen within the local space. Previous work has found that these 
specific constructed variables are not sensitive to either the selection 
criteria of devices entering the sample, or the rate at which users generate 
data through the location-based services23. 

 
Crime                                                                          data 
Crime data for 2017 in Chicago and New York City were obtained from each 

city’s open data portal. This year was chosen to coincide with the cell phone 
mobility data. Crime data was also analyzed separately for only May of 
2017, to precisely match the timeframe of the cell phone trace data 
(Supplementary Tables 3 and 4). Crimes were categorized as violent or non- 
violent and then aggregated to the census tract level. Any crime without 
location data, or with location listed as the precinct headquarters, was 
removed. In Chicago, violent crimes included assault, battery, criminal 
sexual assault, homicide, kidnaping, robbery, and sex offense (31.6% of total 
crime). In New York City, violent crimes included murder and non-negligent 
manslaughter, homicide, robbery, felony assault, and kidnaping & related 
offenses (7.5% of total crime). Locations are not reported for rape and other 
sex-related crimes in New York City data and were thus not included in the 
crime count. As some census tracts had no reported violent crimes in both 
Chicago and New York City, all violent crime counts were increased by 1 
before completing log-transformation. In Chicago, the mean violent crime 

count was 105 (SD = 92.8) and the mean non-violent crime count was 227 

(SD = 225). In New York City, the mean violent crime count was 16 (SD = 
16.6) and the mean non-violent crime count was 198 (SD = 178). 

 
Demographic data 

Demographic data were downloaded from the U.S. Census Bureau using 
the American Community Survey 5-year estimates (2012–2017). Working 
population was computed as the total number of jobs in the census tract 
from the Workplace Area Characteristics table of the Longitudinal 
Employer-Household Dynamics Origin-Destination Employment Statistics 
for 2017. Census tracts with no resident population (e.g., airports) and 
those missing other demographic data were removed. Seven-hundred 
ninety-two census tracts in Chicago and 2098 census tracts in New York 
City were included in the models. 

 
Statistical analysis 

All analysis was completed in R, version 3.6.3. R packages used for data 
processing, visualization, and analysis were: corrplot, lme4, pcalg, 
RColorBrewer, rgdal, spdep, spatialreg, tidycensus, tidyverse, and tigris. 
Linear regressions to adjust for race and ethnicity used the lm function. 
Hierarchical linear model regressions used the lmer function (lme4 
package) with REML set to FALSE. Shapefiles were read using readOGR 

corresponding authors, K. E. Schertz (kschertz@uchicago.edu) and M. G. Berman 

(bermanm@uchicago.edu), for Carto (https://carto.com/) contact information. 

 
 

CODE AVAILABILITY 

Sample regression and directed acyclic graph code corresponding to the shared 

available data is available on the Open Science Framework repository55. 

 
Received: 5 May 2020; Accepted: 4 December 2020; 

 

 

 

 
 

REFERENCES 

1. Machin, S., Marie, O. & Vujić, S. The crime reducing effect of education. Econ. J. 

121, 463–484 (2011). 

2. Patterson, E. B. Poverty, income inequality, and community crime rates. Crimin- 

ology 29, 755–776 (1991). 

3. Sampson, R. J. & Groves, W. B. Community structure and crime: testing social- 

disorganization theory. Am. J. Sociol. 94, 774–802 (1989). 

4. Taylor, R. B., Gottfredson, S. D. & Brower, S. Block crime and fear: defensible space, 

local social ties, and territorial functioning. J. Res. Crime Delinquency 21, 303–331 

(1984). 

5. Brantingham, P. J. & Brantingham, P. L. Environmental Criminology (Sage Pub- 

lications, 1981). 

6. Hsiang, S. M., Burke, M. & Miguel, E. Quantifying the influence of climate on 

human conflict. Science 341, 1235367 (2013). 

7. Spelman, W. Abandoned buildings: Magnets for crime? J. Crim. Justice 21, 

481–495 (1993). 

8. Doleac, J. L. & Sanders, N. J. Under the cover of darkness: how ambient light 

influences criminal activity. Rev. Econ. Stat. 97, 1093–1103 (2015). 

9. Keizer, K., Lindenberg, S. & Steg, L. The spreading of disorder. Science 322, 

1681–1685 (2008). 

10. Shepley, M., Sachs, N., Sadatsafavi, H., Fournier, C. & Peditto, K. The impact of 

green space on violent crime in urban environments: an evidence synthesis. Int. J. 

Environ. Res. Public. Health 16, 5119 (2019). 

11. Schusler, T., Weiss, L., Treering, D. & Balderama, E. Research note: Examining the 

association between tree canopy, parks and crime in Chicago. Landsc. Urban Plan. 

170, 309–313 (2018). 

12. Wolfe, M. K. & Mennis, J. Does vegetation encourage or suppress urban crime? 

Evidence from Philadelphia, PA. Landsc. Urban Plan. 108, 112–122 (2012). 

13. Branas, C. C. et al. Citywide cluster randomized trial to restore blighted vacant land 

and its effects on violence, crime, and fear. Proc. Natl. Acad. Sci. 115, 2946–2951 

(2018). 

14. Gorham, M. R., Waliczek, T. M., Snelgrove, A. & Zajicek, J. M. The impact of 

community gardens on numbers of property crimes in urban Houston. Hort- 

Technology 19, 291–296 (2009). 

15. Groff, E. & McCord, E. S. The role of neighborhood parks as crime generators. 

Secur. J. 25, 1–24 (2012). 

https://doi.org/10.6084/m9.figshare.13177175
https://doi.org/10.17605/OSF.IO/DX5CE
https://carto.com/


Published in partnership with RMIT University npj Urban Sustainability (2021) 19  

 

K.E. Schertz et al. 
 

 

10 
16. Troy, A., Grove, J. M. & O’Neil-Dunne, J. The relationship between tree canopy and 

crime rates across an urban–rural gradient in the greater Baltimore region. 

Landsc. Urban Plan. 106, 262–270 (2012). 

17. Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. 

Sci. Adv. 5, eaax0903 (2019). 

18. Kuo, F. E. Social aspects of urban forestry: the role of arboriculture in a healthy 

social ecology. J. Arboric. 29, 148–155 (2003). 

19. Peters, K., Elands, B. & Buijs, A. Social interactions in urban parks: Stimulating 

social cohesion? Urban For. Urban Green. 9, 93–100 (2010). 

20. Tilt, J. H. Walking trips to parks: Exploring demographic, environmental factors, 

and preferences for adults with children in the household. Prev. Med. 50, S69–S73 

(2010). 

21. Jacobs, J. The Death and Life of Great American Cities (Random House, 1961). 

22. Browning, C. R. & Jackson, A. L. The social ecology of public space: active streets 

and violent crime in urban neighborhoods. Criminology 51, 1009–1043 (2013). 

23. Saxon, J. The local structures of human mobility in Chicago. Environ. Plan. B Urban 

Anal. City Sci. https://doi.org/10.1177/2399808320949539 (2020). 

24. Jeffery, C. R. Crime Prevention through Environmental Design. (Sage Publications, 

Incorporated, 1971). 

25. Cohen, L. E. & Felson, M. Social change and crime rate trends: a routine activity 

approach. Am. Sociol. Rev. 44, 588–608 (1979). 

26. Durkheim, E. The Division of Labor in Society. (Simon and Schuster, 2014). 

27. Sampson, R. J., Raudenbush, S. W. & Earls, F. Neighborhoods and violent crime: a 

multilevel study of collective efficacy. Science 277, 918–924 (1997). 

28. Aiyer, S. M., Zimmerman, M. A., Morrel-Samuels, S. & Reischl, T. M. From broken 

windows to busy streets: a community empowerment perspective. Health Educ. 

Behav. 42, 137–147 (2015). 

29. Kaplan, S. & Berman, M. G. Directed attention as a common resource for 

executive functioning and self-regulation. Perspect. Psychol. Sci. 5, 43–57 (2010). 

30. Schertz, K. E. & Berman, M. G. Understanding nature and its cognitive benefits. 

Curr. Dir. Psychol. Sci. 28, 496–502 (2019). 

31. Kuo, F. E. & Sullivan, W. C. Aggression and violence in the inner city: effects of 

environment via mental fatigue. Environ. Behav. 33, 543–571 (2001). 

32. Phillips, N. E., Levy, B. L., Sampson, R. J., Small, M. L. & Wang, R. Q. The social 

integration of american cities: network measures of connectedness based on 

everyday mobility across neighborhoods. Sociol. Methods Res., https://doi.org/ 

10.1177/0049124119852386 (2019). 

33. Glymour, C., Zhang, K. & Spirtes, P. Review of causal discovery methods based on 

graphical models. Front. Genet. 10, 524 (2019). 

34. Spirtes, P., Glymour, C. N., Scheines, R. & Heckerman, D. Causation, Prediction, and 

Search. (MIT Press, 2000). 

35. Kondo, M. C., Han, S., Donovan, G. H. & MacDonald, J. M. The association between 

urban trees and crime: evidence from the spread of the emerald ash borer in 

Cincinnati. Landsc. Urban Plan. 157, 193–199 (2017). 

36. Burley, B. A. Green infrastructure and violence: do new street trees mitigate 

violent crime? Health Place 54, 43–49 (2018). 

37. Browning, C. R., Calder, C. A., Boettner, B. & Smith, A. Ecological networks and 

urban crime: the structure of shared routine activity locations and neighborhood- 

level informal control capacity. Criminology 55, 754–778 (2017). 

38. Villarreal, A. & Silva, B. F. A. Social cohesion, criminal victimization and perceived 

risk of crime in brazilian neighborhoods. Soc. Forces 84, 1725–1753 (2006). 

39. Jiang, S., Land, K. C. & Wang, J. Social ties, collective efficacy and perceived 

neighborhood property crime in Guangzhou, China. Asian J. Criminol. 8, 207–223 

(2013). 

40. Hedayati Marzbali, M., Abdullah, A., Razak, N. A. & Maghsoodi Tilaki, M. J. 

Examining social cohesion and victimization in a Malaysian multiethnic neigh- 

borhood. Int. J. Law Crime Justice 42, 384–405 (2014). 

41. De Nadai, M., Xu, Y., Letouzé, E., González, M. C. & Lepri, B. Socio-economic, built 

environment, and mobility conditions associated with crime: a study of multiple 

cities. Sci. Rep. 10, 13871 (2020). 

42. Byrne, J. & Wolch, J. Nature, race, and parks: past research and future directions 

for geographic research. Prog. Hum. Geogr. 33, 743–765 (2009). 

43. McCollister, K. E., French, M. T. & Fang, H. The cost of crime to society: New crime- 

specific estimates for policy and program evaluation. Drug Alcohol Depend. 108, 

98–109 (2010). 

44. Berman, M. G., Kardan, O., Kotabe, H. P., Nusbaum, H. C. & London, S. E. The 

promise of environmental neuroscience. Nat. Hum. Behav. 3, 414–417 (2019). 

45. Newman, O. Defensible Space; Crime Prevention through Urban Design. (Macmillan, 

1972). 

46. Troy, A., Nunery, A. & Grove, J. M. The relationship between residential yard 

management and neighborhood crime: an analysis from Baltimore City and 

County. Landsc. Urban Plan. 147, 78–87 (2016). 

 
 
 
 

47. McMahan, E. A. & Estes, D. The effect of contact with natural environments on 

positive and negative affect: a meta-analysis. J. Posit. Psychol. 10, 507–519 (2015). 

48. Zelenski, J. M., Dopko, R. L. & Capaldi, C. A. Cooperation is in our nature: Nature 

exposure may promote cooperative and environmentally sustainable behavior. J. 

Environ. Psychol. 42, 24–31 (2015). 

49. Margolin, G. & Gordis, E. B. The effects of family and community violence on 

children. Annu. Rev. Psychol. 51, 445–479 (2000). 

50. Demographics of Mobile Device Ownership and Adoption in the United States. 

https://www.pewresearch.org/internet/fact-sheet/mobile/ (2019). 

51. Saxon, J. Empirical measures of park use in american cities, and the demographic 

biases of spatial models. Geogr. Anal, https://doi.org/10.1111/gean.12265 (2020). 

52. Bettencourt, L. M. A. The uses of big data in cities. Big Data 2, 12–22 (2014). 

53. Pordes, R. et al. The open science grid. J. Phys. Conf. Ser. 78, 012057 (2007). 

54. Schertz, K. E. et al. Metadata record for the manuscript: neighborhood street 

activity and greenspace usage uniquely contribute to predicting crime. figshare, 

https://doi.org/10.6084/m9.figshare.13177175 (2020).. 

55. Schertz, K. E. et al. Neighborhood street activity and greenspace usage uniquely 

contribute to predicting crime. Open Science Framework https://doi.org/10.17605/ 

OSF.IO/DX5CE (2020). 

 
 

ACKNOWLEDGEMENTS 

This work was supported by the National Science Foundation (DGE-1746045 to K.E.S.; 

CCF-1439156, CCF-1823032, and CNS-1764039 to H.H.; BCS-1632445 and S&CC- 

1952050 to M.G.B.), a U.S. Department of Energy Early Career Award to H.H., the Open 

Science Grid, which is supported by the National Science Foundation and the U.S. 

Department of Energy’s Office of Science, the Mansueto Institute for Urban 

Innovation at the University of Chicago, USA, and the Agency for Healthcare 

Research and Quality (T32 HS000084 to C.C.I., PI: Kathleen Cagney). 

 
 

AUTHOR CONTRIBUTIONS 

K.E.S., C.C.I., and M.G.B. conceptualized the study. K.E.S., J.S., C.C.I., L.M.A.B., Y.D.,  H.H., 

and M.G.B. designed the study. K.E.S. and J.S. analyzed the data. L.M.A.B., H.H., and M. 

G.B. provided supervision. K.E.S. wrote the first draft. J.S., C.C.I., L.M.A.B., Y.D., H.H., and 

M.G.B. provided critical revisions. All authors approved the final version of the 

manuscript for submission. 

 
 

COMPETING INTERESTS 

The authors declare no competing interests. 

 
 

ADDITIONAL INFORMATION 

Supplementary information is available for this paper at https://doi.org/10.1038/ 

s42949-020-00005-7. 

 
Correspondence and requests for materials should be addressed to K.E.S. or M.G.B. 

 
Reprints and permission information is available at http://www.nature.com/reprints 

 
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims 

in published maps and institutional affiliations. 

 
 
 

Open Access This article is licensed under a Creative Commons 

Attribution 4.0 International License, which permits use, sharing,          

adaptation, distribution and reproduction in any medium or format, as long as you give 

appropriate credit to the original author(s) and the source, provide a link to the Creative 

Commons license, and indicate if changes were made. The images or other third party 

material in this article are included in the article’s Creative Commons license, unless 

indicated otherwise in a credit line to the material. If material is not included in the 

article’s Creative Commons license and your intended use is not permitted by statutory 

regulation or exceeds the permitted use, you will need to obtain permission directly 

from the copyright holder. To view a copy of this license, visit http://creativecommons. 

org/licenses/by/4.0/. 

 
 

© The Author(s) 2021 

https://doi.org/10.1177/2399808320949539
https://doi.org/10.1177/0049124119852386
https://doi.org/10.1177/0049124119852386
https://doi.org/10.1177/0049124119852386
https://www.pewresearch.org/internet/fact-sheet/mobile/
https://doi.org/10.1111/gean.12265
https://doi.org/10.6084/m9.figshare.13177175
https://doi.org/10.6084/m9.figshare.13177175
https://doi.org/10.17605/OSF.IO/DX5CE
https://doi.org/10.17605/OSF.IO/DX5CE
https://doi.org/10.17605/OSF.IO/DX5CE
https://doi.org/10.1038/s42949-020-00005-7
https://doi.org/10.1038/s42949-020-00005-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

