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Abstract—Reliable automation of smart grids depends on
decisions based on situational awareness extracted via real time
system monitoring and accurate state estimation. The Phasor
Measurement Units (PMU) at distribution and transmission lay-
ers of the smart grid provide high velocity real time information
on voltage and current magnitudes and angles in a three phase
electrical grid. Naturally, the authenticity of the PMU data is
of utmost operational importance. Data falsification attacks on
PMU data can cause the Energy Management Systems (EMS)
to take wrong decisions, potentially having drastic consequences
on the power grid’s operation. The need for an automated
data falsification attack detection and isolation is key for EMS
protection from PMU data falsification. In this paper, we propose
an automated distributed stream mining approach to time series
anomaly based attack detection that identifies attacks while
distinguishing from legitimate changes in PMU data trends.
Specifically, we provide a real time learning invariant that reduces
the multi-dimensional nature of the PMU data streams for
quick big data summarization using a Pythagorean means of the
active power from a cluster of PMUs. Thereafter, we propose a
methodology that learns thresholds of the invariant automatically,
to prove the predictive power of distinguishing between small
attacks versus legitimate changes. Extensive simulation results
using real PMU data are provided to verify the accuracy of the
proposed method.

Index Terms—Smart Grid Security, Phasor Measurement Units
Security, Big Data Management, Anomaly Detection.

I. INTRODUCTION

Traditionally, power grid operators had limited information
about dynamically varying system states in the grid. Many
major faults in the grid are usually preceded by ephemeral
warning signs (e.g., voltage sags) that Supervisory Control
And Data Acquisition (SCADA) measurements (with data
resolution of several seconds) could not capture as shown
in [11]. To alleviate this problem, PMUs are deployed to
capture fine grained high resolution time series data. These
PMUs form the crucial endpoint device for the PMU Infras-
tructure, one of the key cornerstones of the modern smart grid
design. Furthermore, with the increasing market penetration
of Distributed Energy Resources (DERs) (e.g. solar panels),
two-way electricity flows, and novel loads (such as electric
vehicles), the grid requires real time grid monitoring, making
the integrity of PMU data streams of strategic importance.
The PMUs record time-synchronized measurements of volt-

age, current, phase angle and frequency (collectively known
as synchrophasor data) and sends it to an aggregator called

Phasor Data Concentrator (PDC). The PDC, in turn, relays
such data to a control center, allowing grid operators to localize
and infer the type, time and location of a fault or disturbance
as well as support critical control-actuation operations such
as state estimation, maintain optimal power flow, based on
the measured PMU data streams. The architecture of a typical
PMU-PDC infrastructure is shown in Fig. 1.

Figure 1: Architecture of a PMU Infrastructure.

However, in recent years, power distribution systems have
faced cyber-attacks, threatening their security, reliability of
operations. The report of US National Research Council high-
lights potential multi-state blackouts as a result of coordinated
False Data Injection (FDI) attacks on power systems [2]. Such
an attack on the Ukrainian power grid resulted in the loss of
service for approximately 225,000 customers in three different
territories which lasted for several hours [3]. Stuxnet worm has
directly affected more than 100,000 industrial components [4].
However, the widely accepted IEEE C37.118-2 protocol for
synchrophasor communication is highly vulnerable to cyber-
attacks [6], [8]. In fact, most synchrophasor data transmission
happen on non-reliable and insecure IP networks. Heavy
encryption is not possible due to the latency critical nature
of PMU data applications, thus increasing the chances of FDI
attacks. This motivates the need for anomaly based intrusion
detection in PMUs. While some existing research [7], [14]
offer solutions, they have the following limitations: [7] focus
on transmission layer PMUs, where data is very stable, thus
making anomaly detection easy. The [5] considers the problem
of only voltage data falsification, which is stable and hence
easy to detect, ignoring current data falsification.

In this paper, we first discuss multiple attack strategies
for data falsification attacks in PMUs. Then, we propose
a process variable selection that reduces the dimensionality
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of the anomaly detection problem. Then, we use a ratio of
harmonic means to arithmetic means of the active power
derived from the synchrophasor data sent from PMUs as a
data-driven ‘invariant’ for anomaly detection. Specifically, we
find the appropriate spatial and temporal considerations of
the PMU network, such that an ‘invariant’ is highly stable
under no attacks but shows unique changes under various
kinds of data falsification attacks. Then, we propose a two-
tier threshold based detection criterion involving stateless and
stateful residuals of the anomaly detection metric, that better
improve the false alarm versus detection sensitivity trade-off.
The two-tier detector uses the sum of long term residuals
from the median absolute deviation of the ratio based metric
observed over the training phase. Finally, we validate our work
by using real PMU datasets collected from Lawrence Berkley
National Lab across 12 days.
The main benefits of our approach are to provide a practical

framework for compromised PMU identification that (i) real
time, light weight, semi- supervised, (ii) enables quick iden-
tification, and (iii) simultaneously works for a variety of data
falsification attack types.
The rest of this paper is organized as follow. Section II,

discusses related work. Section III discusses PMU dataset
description, system and threat models, Section IV presents
the proposed detection framework, Section V and VI offers
experimental results and conclusions, respectively.

II. RELATED WORK
In [7], a mechanism based on continuous monitoring of

phase-wise equivalent transmission line impedance was pro-
posed, for detecting data falsification on the voltage data from
transmission system PMUs. However, they require two PMUs
deployed at both ends of the transmission line and one of
them needs to be honest. More importantly, we found that the
PMU data streams at transmission level were inherently stable
making anomaly detection a less challenging problem.
In [5] a Support Vector Machine (SVM) was used for detec-

tion, against a mirroring spoof attack strategy on the voltage
data at distribution level PMUs. However, only falsification of
voltage stream was considered which is relatively stable and
makes anomaly detection less challenging.
The [9] proposed a decision tree based anomaly detection

scheme to differentiate between normal tripping and malicious
tripping by training on specific attack samples. However, it is
not feasible to generate 100% of all the possible legitimate
line tripping cases for training in [9].
In [14] a smart Time Synchronization Attack (TSA) based

on GPS spoofing was shown to be equivalent to modifying the
phase angle measurement from PMUs. However, they have not
discussed any defense mechanism.
In [13] a density-based local outlier factor (LOF) analysis

was used to detect the anomalies among the data, to describe
spatio-temporal outliers among all the synchrophasor measure-
ments from the grid. However, this method might not be able
to detect attacks in real time and in their proposed method the
authors have only considered an attack on voltage magnitude.

A critical analysis of all previous works on the detection
of PMU data falsification revealed that current data falsifica-
tion for PMU streams was not investigated. Furthermore, we
found that unlike transmission level PMUs, the distribution
level PMU’s current synchrophasor data shows high dynamic
variations in benign conditions, making anomaly detection
challenging. Finally, all previous defenses are stream specific
in the sense that they only work for either voltage or phase
falsification. Since each PMU contains 4 streams and has 3
phases, a stream specific defense will require 12 different
defense models that need complex cross-coordination.

III. SYSTEM AND THREAT MODELS

A. PMU System Architecture

Here we first describe the PMU infrastructure network
architecture. Most PMUs measure time-stamped voltages and
current magnitudes and their phase angles denoted by Vt(j),
It(j), θVt (j), θIt (j) respectively, where t is the time stamp
and j is the j-th phase. These PMUs are deployed at strategic
points of the transmission and distribution layers of the smart
grid. Each PMU sends its data to a regional decentralized
data aggregator known as PDC. The corresponding PDC in
turn relays the aggregated data from multiple PMUs to a
Local Controller Center (LCC). Various local controller centers
communicate with each other forming a wide network for
synchronizing local and global PMU data. In this paper, we
are specifically interested in a decentralized anomaly detection
that runs on a PDC or a LCC and facilitates early attack
detection from a bunch of PMUs that are geographically
proximate in terms of the PMU network.

Dataset Description: We use a dataset collected from the
Power Standards Lab (PSL) at LBNL in Berkeley, CA, which
developed high-precision µ-PMUs for showing how steps in
our framework related to a real PMU system. The LBNL
dataset contains three µ-PMUs that are deployed at multiple
utility and LBNL campus locations on 12 kV distribution grid.
The µ-PMU devices are named as: Grizzly, A6, and Bank514
in the dataset. Each µ-PMU device produces 12 streams of
120 Hz high-precision values with timestamps accurate to 100
ns (the limit of GPS). The 12 streams of data include both
magnitude and phase angle for both voltage and current for
all three phases on a true distribution network [10].

B. Threat Model
This section describes three features characterizing the threat

model (e.g.,attack types, falsification margins, and falsification
distributions) that can be employed by organized adversaries.

Threat Model Scope: PMU being a comparatively new re-
search area, real malicious data samples from PMUs are hard
to find. Therefore we generated the malicious samples by
applying the three aspects of adversarial strategy over the real
data. We have ensured that the falsification strategies used, do
not favor or suit our proposed defense mechanism.

In simple electrical terms, the term load is equivalent to
the current magnitude in each phase. Typically, in any phase,
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there could be two possibilities of load change. Either there
could be an increase or decrease in current, both creating an
imbalance in the power grid. An increase in the phase current
will cause the phase voltage to drop. If the current increases
too much, then the phase is shed or the load is switched to
other phases. Imbalance can also occur if the current drops in
any phase, making the system inefficient in terms of utilization.
This creates a motivation to falsify current measurements.
Attack Types: Attacks can be categorized in different types

based on how data is changed across multiple PMUs. Or-
ganized adversaries can falsify data from single or multiple
compromised PMU(s) simultaneously. Based on the objective
and intent of the adversary, any of the four streams (Voltage
Magnitude, Voltage Angle, Current Magnitude, Current Angle)
of each phase can be falsified.
We assume the adversary falsify the ‘current magnitude’.

Let Iit(act) be the actual current magnitude of i-th PMU at
time t, while Iit be it’s reported value. Under no attacks, the
actual and reported value Iit = Iit(act), while under attacks
the reported value Iit can be biased by the following ways:
Deductive: In this case Iit from the i-th compromised PMU

at time t is changed to Iit(act) − Iδt , where Iδmin
≤ Iδt ≤

Iδmax
, for Iδmin

> 0 is the false bias. Deductive attacks disrupt
the efficiency of the grid by reducing the power utilization.
Additive: An additive attack can be launched by a rival

utility to make the control center believe in a sudden increase
in load which might lead to load shedding in that particular
phase. Therefore, for additive falsification, the modified attack
sample is Iit = Iit(act) + Iδt from a compromised PMU.
Alternating Attack: The adversary alternates between addi-

tive and deductive falsification for equal time duration over the
time domain with the same average bias value of Iδt . In such
a case, the effect of additive and deductive falsification will
cancel each other’s effect over a particular time period making
it hard over most device specific statistical anomaly detectors
to detect such attacks.
FDI Margin: We consider Iδavg as the average margin of

false data for each compromised PMU. The strategic value of
Iδavg is selected by an adversary as some value that ensures
some minimum damage to the system. We keep this as an
uncontrolled variable to test detection sensitivity since there
could be various applications of PMU data. We consider that
the attack is uniformly distributed Iδt ∈ [Iδmin , Iδmax ] that
does not change the resultant shape of the load distribution
drastically, making it a smarter and less obvious attack.
Attack Strategies: We consider three types of attack strate-

gies: (a) Step attack: In this case the adversary modifies
all samples by Iδavg

in the attack period. (b) Ramp attack:
Here adversary gradually increases the Iδt in each time slots
to reach Iδmax

and then again gradually decreases Iδt [7].
(d) Mirroring: Here attacker captures Iit for some period and
then replaces the actual current measurements with the mirror
image of captured Iit .

IV. PROPOSED FRAMEWORK
The proposed framework is divided into four steps: (1)

Propose a derived process variable (active power from syn-
chrophasor measurements) that will form the basis for the
anomaly detection process; (2) Design the invariant metric by
optimizing spatial and temporal granularities of the process
variable; (3) Design of a stateless and a stateful detection
thresholds that identify the normal region of invariants under
no attacks from the training set, such that false alarms are
not drastically sacrificed for detection sensitivity improvement;
(4) Determine the detection criteria parameters, based on
learning from the training and cross validation steps, and
apply it on the testing set, such that the predictive accuracy
of distinguishing between legitimate changes versus malicious
attacks is improved.
A. Choosing Process Variable for Anomaly Detection

Given the high velocity of the data, quick lightweight ana-
lytical tools are required for big data summarization to ensure
the security and integrity of the dataset. However, due to 12
streams of data per PMU, the variety of data is extremely large.
With multiple data streams per PMU, the anomaly monitoring
of all these streams separately increases the computational cost
and latency in anomaly detection analytics.

Hence, we propose the active power calculated from syn-
chrophasor data streams per PMU, as the process variable over
which the data driven invariant is designed. The active power
(P (j)) per phase from PMU measurements are calculated
using the following standard power equations:

P (j) = V (j)I(j) cos θ(j) (1)

where j ∈ {1, 2, 3} denote the phases and V (j), I(j), θ(j) are
voltage magnitude, current magnitude, and angle difference
between voltage and current phases respectively, for the j-th
phase. This reduces the complexity of the monitoring each
stream separately unlike existing works.

Another advantage is that any deliberate falsification of the
voltage or current (both in terms of magnitude and phase)
will impact the active power, and hence we can potentially
detect an attack on any of the data streams from PMUs.
Therefore, for our anomaly detection, we propose to use the
phase wise monitoring of the active power P (j) as a starting
point. To clean the raw dataset [10] we have also applied 95%
Winsorization before proceeding with our model.

B. Achieving an Invariant for Anomaly Detection Metric

For real time anomaly detection in CPS, it has been estab-
lished that a metric which is invariant under normal operating
conditions (without any attack) is ideal for attack detection.
However, unlike tightly controlled industrial CPS applica-
tions, the distribution level synchrophasor data is affected by
randomness and renewable power outputs and consumption
patterns, causing traditional statistical invariants to have high
randomness. As shown in Fig. 2a the arithmetic mean of the
time series is not stationary. Prior works such as [12] propose
the use of derived smoothing statistics of the arithmetic mean
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Figure 2: Illustrations of AM and HM/AM: Weekdays: Day
1,2,3,6; weekends: 4,5.

(such as ARMA, EWMA, CUSUM control charts) for time
series anomaly detection. However, Fig. 2a shows that time
series of PMUs active power fluctuates greatly over time
windows, making it difficult to distinguish legitimate changes
from a malicious one. Any moving average or smoothing
technique either loses sensitivity for a small margin of attacks
(since the moving average does not reflect the changes beyond
already existing deviations or has large false alarms.
Let Pt = [P 1

t , ..., P
N
t ] denote the active power from N

PMUs at time slot t. We have taken second wise average
of active power for our analysis, thus t = 1 second. Re-
cently, in [1], we have shown that the ratio of harmonic
mean and arithmetic mean of positively correlated variables
exhibit invariance in their time series even when the individual
means show non-stationarity. Additionally, [1] showed that
the data perturbations in any variable cause the ratio to
lose its invariance. However, this stability is guaranteed for
appropriately correlated variables only. Hence, our primary
goal is to investigate how to apply this on active power from
PMUs. To this aim, we need to find the appropriate spatial and
temporal granularity that maximizes the correlation between
active powers on a given phase across different PMUs, which
ensures invariance in the following metric:
Harmonic to Arithmetic Mean Ratio: Let the harmonic

mean (HMt) and arithmetic mean (AMt) of Pt at time slot t
be defined as:

HMt = N(
N∑
i=1

P i
t )

−1 and AMt =
1

N

N∑
i=1

P i
t . (2)

We calculate HMt and AMt for slot t over a time window
T of length n slots. Then we calculate the average HMt to
AMt ratio, Qr(T ), at the end of each window as follows:

Qr(T ) =

∑n
t=1 HMt∑n
t=1 AMt

(3)

where 0 ≤ Qr(T ) ≤ 1, as HMt ≤ AMt.

1) Optimizing the Spatial Granularity: Intuitively,
a group of PMUs connected to the same feeder or
serving proximate geographical areas should exhibit some
interdependence in the synchrophasor data streams. We use
the pairwise Pearson correlation coefficient to identify clusters
that show some level of positive correlation. The higher the
desired level of invariance, the higher is the required level of
positive correlation. We calculate hourly Pearson’s correlation
among all pairs of PMUs in the training set to find groups
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Figure 3: PMU clustering and MAD over time window.
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Figure 4: Stateless and Stateful Residuals for ϵ = 0.85.

having a maximum correlation. In the LBNL dataset, the
mean of hourly correlations between Grizzly, A6 is 0.98;
between Grizzly and Bank514 is 0.54; between A6 and
Bank514 is 0.55 as shown in Fig. 3a. It is evident from the
mean correlations that Grizzly and A6 are connected to the
same feeder and thus can be considered in a single cluster.
The average correlation identifies PMUs to be clustered under
one instance of the anomaly detection technique.

2) Optimizing Temporal Granularity: Now we focus on
choosing the appropriate time granularity over which the ratio
metric is calculated. The time granularity should be such that
the invariance in the ratio metric is maximized (i.e., minimize
the measure of dispersion in the ratio statistic). Therefore, we
solve the following search problem:

T = argmin
T∗

MAD(Qr(T ∗)) (4)

where MAD(Qr(T ∗)) is the median absolute deviation
(MAD) of the resulting ratio time series with candidate time
granularity T ∗ ≤ 360 seconds. We choose T ∗ that minimizes
the MAD of the ratio time series (shown in Fig. 3b).

C. Stateless and Stateful Residual based Threshold Design
Intuitively, The anomaly detection needs to identify a prox-

imate spatial region around the ratio time series that specifies
the behavior of the invariant under no attacks. Usually, a
threshold is calculated by tracking the difference between the
actual time series value and its smoothed value over time.
However, a simple threshold based approach, cannot decrease
both false alarms and missed detections simultaneously [12].
Hence, we put forward a two-tier approach with stateless and
stateful residuals.

1) Stateless Residuals: The stateless residual is an instan-
taneous residual per time window T . Our method computes
the mean µr and median absolute deviation, mQ, from the
probability distribution of ratio values Qr(T ) for each PMU
cluster (shown in Fig. 4a).

Unlike our previous work [1], we propose the use of Median
Absolute Deviation (MAD) as a scale parameter for designing
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the stateless residual rather than the standard deviation (SD),
because MAD is more robust to outliers. Thus, MAD can
automatically adjust the resultant safe margin under errors and
outliers in the training. The MAD is robust than SD since it
is based on a squared error from the mean, so a finite number
of outliers can influence SD easily compared to MAD, thus
reducing sensitivity to small attack strengths.
Stateless residual is parameterized as κ = ϵmQ where

ϵ ∈ (0, 4], such that κ ∈ (0, 4mQ] and mQ is the MAD.
Intuitively, larger κ values produce wider safe margins, thus
reducing false alarms but increasing misdetection and vice-
versa. Hence, a trade-off is necessary for selecting a threshold
that will automatically generalize into lowering false alarms
while not sacrificing the detection sensitivity, which is taken
care of by the stateful residual as shown in Fig. 4b.
Our framework calculates a parameterized ’stateless resid-

ual’ with two values; Γl(T ), and Γh(T ) around the observed
instantaneous ratio values Qr(T ), on every time window on
the training dataset, such that:

Γh(T ) = Qr(T ) + ϵmQ. (5)

Γl(T ) = Qr(T )− ϵmQ. (6)

To first derive, an instantaneous stateless residual ∇(T )
which is the ’signed residual distance’ between the observed
ratio and the stateless residuals as:

∇(T ) =

 Qr(T )− Γh(T ), if Qr(T ) > Γh(T );
Qr(T )− Γl(T ), if Qr(T ) < Γl(T );
0, otherwise.

(7)

The value of ∇(T ) could be positive (or negative) depending
on whether the ratio sample observed is above (or below) the
upper (or lower) safe margin Γh(T ) (or Γl(T )). Thus, ∇(T )
is zero when the ratio observed is within [Γh(T ) , Γl(T )].
2) Stateful Residuals: Our framework now maintains the

sum of residuals between the ratio value and the Γh(T ) and
Γl(T ) over a sliding frame of past K time windows. We
denote this sum as RUC(T ). To calculate this metric. Now,
the framework calculates RUC(T ) over a sliding frame of past
K time windows as:

RUC(T ) =
T∑

j=T−K

∇(j). (8)

D. Optimizing Standard Limits of RUC(T )

We need to calculate an upper and a lower threshold from
the RUC values that prevent underfitting and overfitting and
improves detection performance in the test set. The procedure
for calculating the upper and lower thresholds is similar.
Algorithm 1, shows the method for τmax.
For this, we define a cost C, and penalty P , as the loss

functions. The cost and penalty function represents the loss
due to missed detection and false alarms respectively. One
key consideration in time series attack detection is to minimize
false alarms, since the actual probability of being under attack
is much lesser. Therefore, seemingly low false alarm rates,
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Figure 5: Parameter Selection from Cross Validation.

do not necessarily indicate a good usable attack detector.
Therefore, we need to give more importance to the false
alarms. Hence, the loss due to false alarm (penalty P ) gets
more weight, compared to the loss due to missed detection
(cost C) as is evident in Algorithm 1. In the end, we choose
a threshold τmax (and τmin) which minimizes the absolute
difference between total cost and penalty values for the positive
RUC samples (and negative RUC samples).
Algorithm 1 Calculate τmax

Input: list of τ : [τ ]
Result: τmax

for T, [τ ] do
if RUC(T ) > 0 then

if RUC(T ) < τ then
Cmax :

|τ−RUC(T )|
w

else
Pmax : w|RUC(T ) − τ |

end
end

end
τmax = argminτ |sum(Cmax) − sum(Pmax)|

The frame size K and weight w of C and P can be
determined optimally, by using a small cross validation set
with a few attack samples and test what values of K and w
are best. We plot the Receiver Operating Characteristic (ROC)
curve for the cross validation set (See Figs. 5a and 5b) for
various values of K and w, and choose that combination that
gives the steepest ROC curve.

E. Detection Criterion in Test Set
The main idea behind attack detection is that RUC in the

test set (RUC(TC)) should not deviate from the standard limit
obtained from the training set. We first calculate the stateless
residuals for each time window of the testing set TC such that
Γh(T

C) = Qr(Th)+κopt and Γl(T
C) = Qr(Th)−κopt. κopt

is derived from the set of κ that produces optimal standard
limit. The historical value of the ratio on that time window
Qr(Th), where T c is the current time window and Th is the
corresponding time window in the training set, Γhigh(T

c) and
Γlow(T

c) are the safe margins at T c of the test set.
From Γh(T

C) and Γl(T
C), we calculate the RUC(TC)

using Eqn. 9. Then we check whether RUC(TC) violates the
standard limit range identified during training set.

RUC(T c) :

{
∈ [τmin, τmax],No Anomaly;
/∈ [τmin, τmax],Anomaly. (9)

V. EXPERIMENTAL RESULTS

Using the LBNL PMU dataset (see Sec. III), we conducted
extensive experiments for different falsification margins and
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Figure 6: Anomaly Detection for Additive Attack.
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Figure 7: Anomaly Detection for Ramp and Mirroring Attack.

attack strategies. For our experimental results, the first seven
days are the training set and the next two days of data is used
for cross validation and the remaining data are testing set. We
divide this section into two parts: (1) Snapshot Results that
show how our method works under several attack strategies
and types (2) Performance Evaluation that shows the sensitiv-
ity versus the false alarm across varying attack margins.
Snapshot Results: We randomly selected a period from the

test set and introduced an attack on the current magnitude from
A6 PMU with δavg 1 p.u (which is approximately 0.16 amps).
Tier 1 detection scheme to infer the presence of an attack is
shown in Fig. 6a and subsequently tier 2 is applied to confirm
the presence of the attack as shown in Fig. 6b. The detection
of the ramp and mirroring attacks are shown in Fig. 7a and
Fig. 7b. For both of these types, we have randomly selected a
period of 15 minutes and introduced the respective attacks.
Performance Evaluation: For performance evaluation, we

generate the ROC curve that characterizes the trade-off be-
tween the probability of attack detection vs. the probability of
false alarm. we vary the δavg from 1 p.u to 2.5 p.u (≈ 0.4
amps) using a step strategy to show the ROC for the additive
attacks in Fig. 8a. A comparative analysis of ROCs of additive,
deductive, and alternating attacks for an attack margin of 1 p.u.
is shown in Fig. 8b. A report on accuracy (A), false positive
(FP), and false negative (FN) for different attack margins in
case of deductive and alternating attacks is given in Table I.

0 0.05 0.1 0.15 0.2 0.25
False Positive Rate (FPR)

0

0.5

1

T
ru

e 
Po

si
tiv

e 
R

at
e 

(T
PR

)

avg
 = 1 p.u.

avg
 = 1.5 p.u.

avg
 = 2 p.u.

avg
 = 2.5 p.u.

(a) ROC for Additive Attack.

0 0.05 0.1 0.15 0.2 0.25
False Positive Rate (FPR)

0

0.2

0.4

0.6

0.8

1

T
ru

e 
Po

si
tiv

e 
R

at
e 

(T
PR

)

Additive

Deductive

Alternating

(b) ROCs for δavg = 1 p.u.

Figure 8: Performance Analysis using ROCs.

Table I: Experimental Results.
Attack On Attack Type Margin(p.u.) A(%) FP(%) FN(%)
Curr. Mag. Deductive 1 99 1 1
Curr. Mag. Deductive 1.5 100 1 0
Curr. Mag. Alternating 1 91 1 9
Curr. Mag. Alternating 1.5 99 1 1

VI. CONCLUSIONS
In this work, we presented a real time anomaly based attack

detection for current magnitude falsification in PMU data
streams. We showed that harmonic to arithmetic mean ratios
can be used an effective invariant that is stable without attacks
but show changes during attacks. We showed that even if the
attacker has knowledge about the underlying time series we
are still able to identify anomaly with a low false alarm rate
in real time. Also, unlike many existing bad data detection
methodologies, it does not require the topology of the grid
network. In future, we will extend the idea to capturing voltage
and phase angle falsification, and validate effectiveness against
bigger PMU networks.
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