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Abstract: The Chicago Array of Things (AoT) project, funded by the US National Science Foundation, 

created an experimental, urban-scale measurement capability to support diverse scientific studies. Initially 

conceived as a traditional sensor network, collaborations with many science communities guided the project 

to design a system that is remotely programmable to implement Artificial Intelligence (AI) within the 

devices—at the “edge” of the network—as a means for measuring urban factors that heretofore had only 

been possible with human observers, such as human behavior including social interaction. The concept of 

“software-defined sensors” emerged from these design discussions, opening new possibilities, such as stronger 

privacy protections and autonomous, adaptive measurements triggered by events or conditions. We provide 

examples of current and planned social and behavioral science investigations uniquely enabled by 

software-defined sensors as part of the SAGE project, an expanded follow-on effort that includes AoT. 

Key words: sensors; edge computing; computer vision; urban science 
 
 

1 Introduction: A New Approach to 

Measuring Cities 

In 2012, the City of Chicago announced plans to 

replace 300 000 street lights with Light Emitting  

Diode (LED) systems, potentially with sensors and a 

wireless data network. To computer scientists developing 

experimental sensor networks, this seemed to be an 

opportunity to explore the potential for an urban-scale 
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measurement system. What new science might be 

possible with hundreds or even thousands of devices 

deployed throughout a major city? What would scientists, 

policymakers, community groups, or individual residents 

want to measure? Would other capabilities be useful, 

such as beacons for precise positioning or to provide 

cryptographic tokens that would work with applications 

to validate the location of a device at  a  particular  

point in time or perhaps to design entirely new mobile 

services and applications? Could we get a sense for the 

volume and flow of people in public spaces by counting 

Bluetooth devices? How would such a system publish 

data in ways that would be useful not only to scientists 

but also to students, educators, city managers, residents, 

and businesses in the city? With these questions in 

mind, we organized a series of workshops[1] including 

both interdisciplinary  and  discipline-specific,  asking 

a common set of questions. In these workshops and 

separate discussions, we  engaged  scientists  as  well 

as city planners and managers from multiple City of 

Chicago agencies and departments (transportation, parks, 

building and fleet management, public health, and 

information technology) and open data teams. Each 

workshop began with a question: “if we could deploy 
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some form of electronic device in hundreds of locations 

throughout Chicago, what would those devices do to 

help you answer the questions you are investigating?” 

These and many other engagements identified two 

broad classes of measurement: traditional measurements 

(for which electronic sensors are available, such as 

temperature or light levels) and what we termed 

“observations”. For traditional measurements, the 

workshops produced a list of several dozen sensors 

including air quality (gases, particulate matter), 

meteorology (temperature, humidity, and pressure), 

vibration, sound, and light. For observations, suggestions 

were based on measurements typically done infrequently 

by human observers, either systematically, such as 

counting vehicle or pedestrian traffic at intersections, or 

through ad hoc mechanisms, such as residents reporting 

street flooding. 

What began as a sensor network project[2], then, 

evolved into an intelligent measurement project 

emphasizing new measurements that could be supported 

with edge computing, in turn requiring Artificial 

Intelligence (AI) and Machine Learning (ML) support, 

or “AI-at-the-Edge”. In order to engage the broadest 

community of developers and experimenters, this meant 

using an open computing platform that would support 

current and envisioned AI/ML software frameworks used 

by those communities. The resulting system combines 

traditional sensors with measurements that are defined 

by the software interpreting those sensors (e.g., image 

processing with a camera). We term this new type of 

measurement system a “software-defined ” sensor[3]. 

We named the project Array of Things[4] (AoT) 

combining the underlying technology approach, 

leveraging technology trends in embedded computers 

and wireless networks—or “Internet of Things (IoT)”— 

with the strategy of deploying many identical detectors 

aimed at the sky, as with an array telescope[5]. AoT 

comprises individual devices, or “nodes”, focused on 

the city, which some have also described as a fitness 

tracker[6] for the city. 

With systems deployed in over 130 locations 

throughout Chicago (Fig. 1) and smaller pilot 

deployments in other cities, AoT[7] and the underlying 

platform, called Waggle[8], have catalyzed partnerships 

between computer scientists (in  particular,  AI/ML  

and computer vision experts) and researchers and 

practitioners in fields ranging from transportation to 

social and behavioral sciences to civil and environmental 

engineering. 

 

 

Fig. 1 Since 2016 over 250 AoT nodes have been installed, 

including upgrades to existing locations. Shown here are 130 

nodes in Chicago as of 2020. Map created with Google Maps. 

In this paper, we discuss early, emerging, and 

envisioned use of software-defined sensors providing 

measurements for social and behavioral science 

questions that were heretofore only possible with human 

observers. Moreover, by removing the limitations of 

human observation—chief among  them  is  the  need 

to sample rather than continuously measure—an even 

broader set of measurement opportunities can be 

envisioned, including measurements across much larger 

spatial and temporal scales. Indeed the advantage of 

software-defined sensors is that one need not define all 

possible measurements prior to building and installing 

devices. Section 2 discusses AoT in context of deploying 

an urban-scale intelligent measurement system, privacy 

and ethics considerations, and how these along with 

practical matters, such as installation, were coordinated. 

Section 3 introduces the concept of software-defined 

sensors, focusing on the application of software-defined 

sensors to understand urban activity patterns and support 

social and behavioral science investigations. Section 4 

provides a brief overview of the underlying technology 

platform and the associated software and hardware 

architecture necessary to move from bespoke systems 

like AoT to a more general-purpose user-programmable 

experimental infrastructure. Finally, in Section 5, we 

conclude with directions of future work, including the 

current follow-on and expansion of the AoT project, 
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SAGE: A Software-Defined Sensor Network[9], with 

examples of the potential for increased autonomy in 

software-defined sensors and for understanding, and 

ultimately improving urban life. 

2 Array of Things: A Research Instrument 

in Public Way 

Common sensor networks are relatively straightforward 

to build and scale, but the AoT user community needed 

both traditional sensor measurements and new types   

of measurements—observations—that would require 

edge computing capabilities. Sending images or video 

streams to a central server for analysis would  have 

been cost-prohibitive for hundreds of  locations,  thus  

it was necessary to process images within the devices. 

Even if free network access was available, some 

scientists requested programmable devices that could 

process data and act on that data in some fashion—     

in near-real time. For instance, experiments with 

intelligent traffic controls coordinating with vehicles to 

make instantaneous decisions. These factors—cost and 

latency—ruled out doing all data processing on central 

servers. 

With each science workshop, the number of traditional 

sensors accumulated, and atmospheric scientists (the 

first workshop we held) emphasized that a multi-sensor 

approach is essential given the need for the context     

of each measurement. For instance, interpreting a 

temperature reading requires knowing not just the sensor 

characteristics but how and where that measurement 

was taken.   Was  it under the shade of a building or   

an oak tree? In the middle of a concrete parking lot? 

Near a large body of water? Similarly, does an air 

pollutant measurement come from a sensor in a park? At 

a congested intersection? Near a factory? The need for 

context to each requested measurement was reinforced 

throughout our interactions with science communities, 

leading to a device design with several dozen sensors 

(Fig. 2). 

2.1 Capability and scale 

What scale would make sense for such an urban 

measurement system? Tens of devices? Hundreds? 

Thousands? Many traditional measurements, for 

instance air quality, were at the time primarily done 

regionally. In the area within roughly 50 miles of 

downtown Chicago, there are only two dozen regulatory 

air quality monitors, providing hourly readings for 

criteria air pollutants[10]. Yet we know that air 

 

 

Fig. 2 An AoT node. Computers, camera, and light 

(Ultraviolet (UV), Infrared (IR), and visible) sensors are in 

the blue enclosure; a cellular modem, camera, environmental 

(vibration, sound, magnetic field, temperature, relative 

humidity, and barometric pressure), and air quality (CO, 

NO2, SO2, PM2.5, and O3) sensors are in the white enclosure. 

pollution is highly variable over geography and time   

in urban areas[11], with significant impact to human 

health and behavior even on short timescales[12–14]. 

Hourly measurements representing hundreds of square 

kilometers, while valuable for many studies, do not 

offer the spatial or temporal resolution necessary to 

understand factors such as the impact of traffic on air 

quality in individual communities. Noise is another 

environmental factor that impacts human health and 

well being[15, 16], yet few cities have measurement 

systems  providing  noise  levels  at  all,  much  less   

on a neighborhood scale.  A  notable  exception  is  

New York University (NYU)’s Sounds of New York 

City (SONYC[17]), which involves over 100 sound 

sensors in selected neighborhoods. Many cities, Chicago 

included, also have microphone-based systems that 

detect gunshots and use trilateration to locate the source 

of the sound, but these are special-purpose, closed 

systems that do not measure other sounds. 

Equally important to the overall system architecture 

was the continuous improvement of low-cost 

components including sensors, processors, storage,  

and communications. We thus targeted a roughly  2-

year life span for the systems, expecting to replace 

them with upgraded systems. Consequently, while the 

selection of particular sensors and other components 

was important, the more central objective was to develop 

the underlying software, protocols, management tools, 
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data management and access capabilities, and device 

deployment partnerships and strategies, that could 

support multiple generations of devices[4]. 

2.2 Creating an urban-scale “laboratory” 

Although AoT was primarily a technology prototyping 

effort to explore the feasibility of an urban-scale 

measurement instrument, embedding  such  a  system 

in the public way required partnerships with local 

government and the residents of the city. We worked 

with Mayor Rahm Emanuel’s office to include the 

concept of such an instrument in the city’s 2013 

Strategic Technology Plan[18, 19]. In addition to science 

and stakeholder partnerships, policies and governance 

structures were needed along with a feasible and 

affordable plan to install and communicate with 

hundreds of devices in the city. Devices had to be 

prototyped, stress-tested for outdoor harsh conditions, 

packaged, and mass-produced.  The  architecture  had 

to be reasonably secure with respect to cyber (e.g., 

Internet-based) or physical threats. Mechanisms were 

also required to provide  data  to  a  diverse  audience 

of scientists, policymakers, and residents. We briefly 

describe these topics below, and they are covered in 

much greater detail in Refs. [4, 8]. 

Placing scientific instruments—particularly those with 

cameras and microphones—in the public way required 

taking initiative to engage residents and community 

groups on issues such as privacy and governance. At 

the same time, a shared objective between the project 

team, the National Science Foundation (NSF) and the 

City of Chicago was to stimulate interest in science  

and technology among Chicago’s youth. This suggested 

that the devices should be visually conspicuous, inviting 

curiosity or even engagement. To this end, the physical 

form and appearance of the nodes were explored with 

artists, designers, and behavioral and social scientists. 

Although some behavioral science research suggested 

that the appearance of the devices would have an impact 

on behavior[20], this was not an objective for the project. 

The goal of the bright and inviting design was to draw 

attention and ideally foster a sense of ownership by using 

the blue and red colors similar to Chicago’s city flag[21]. 

To explore the design options, faculty members from 

the School of the Art Institute of Chicago created a 

special course for masters of fine arts students in fall 

2013. Students developed multiple prototypes in and 

around the University of Chicago, leading to the design 

shown in Fig. 2[22]. 

To engage residents and community groups, we 

partnered with the Smart Chicago Collaborative[23], now 

part of the CityTech Collaborative[24]. Smart Chicago’s 

mission is to engage residents, especially youth, to 

leverage technology to improve lives in Chicago. The 

Collaborative worked with our team and Chicago’s 

Department of Innovation and Technology to organize a 

series of open public town halls in different Chicago 

neighborhoods where residents were briefed on the 

project and its objectives, with open discussion regarding 

their interests and concerns. 

2.3 Ethics, privacy, and policy 

Many private entities, such as businesses and even 

universities, have live cameras in and around their 

property, including those trained on public spaces (e.g., 

sidewalks in front of a café).  Because AoT involved 

partnership with  local  government  and  installation  

of devices with cameras on public infrastructure, 

residents would understandably have concerns about 

potential government surveillance. Anticipating this, we 

begin the public dialog well in advance of deploying 

systems, presenting the concept to  Chicago’s  civic 

data community at the weekly ChiHackNight[19, 25]. 

These weekly gatherings draw hundreds of  people  

who are active in civic data analytics in support of  

open data and transparent government. The ensuing 

discussions, including both skeptical and supportive 

media coverage, helped to guide subsequent and ongoing 

public engagement activities. 

At the time (2014), we found no examples of 

published privacy policies regarding public cameras. 

The prevailing view from ethics and privacy law experts, 

as well as the University of Chicago’s Institutional 

Review Board (IRB) confirmed that there were no 

ethical or legal restrictions on  capturing  images  in  

the public way given there is “no expectation of 

privacy”. However, a central goal of the AoT project 

was to provide open data about the city for use by 

students, scientists, businesses, the city, and the general 

public. Thus we collaborated with Trusted CI,  the  

NSF Cybersecurity Center of Excellence[26] to develop 

privacy and governance policies. With drafts in hand, 

we convened experts from academia, industry and 

government privacy law, and privacy advocacy groups 

including the Electronic Frontier Foundation (EFF) and 

American Civil Liberties Union (ACLU) to review and 

improve the policies. A subsequent series of public 

town halls, along with online feedback and discussion 
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forums, were used to improve and finalize the AoT 

privacy policies and governing principles[27]. After a 

six-month public comment period, the policies as well 

as all questions and concerns with responses from the 

team, were published in early 2016, prior to the first 

installations. 

Here, edge computing and software-defined sensing 

also provide a means for stronger privacy protections 

than  traditional  camera  networks,  which  transmit 

and store all images, because all of the images are 

analyzed within the node and then deleted, in contrast 

to being sent to central servers for processing (and 

saving). Moreover, a list of all image and sound 

processing functions and associated research objectives 

are maintained at the AoT website, thus publishing the 

exhaustive list of what is done with images, rather than 

a list of prohibited uses (implying an infinite number  

of other potential uses). AoT nodes only save sample 

images—typically one every fifteen minutes—which 

are kept in a protected repository for research use only. 

Access to this library of images, necessary for training 

AI/ML algorithms, is provided to academic researchers 

under a data use agreement that defines the specific 

intended use and prohibits, for instance,  publishing 

any images with visible identification, such as faces or 

license plates. 

All of these training images are owned by the 

University of Chicago, and the nodes are managed and 

operated by the University of Chicago and Argonne 

National Laboratory. The City of Chicago provides 

power and installation services, but the city has no 

special access to the limited volume of training images, 

which are only available for scientific research within 

the data use agreement. 

2.4 Practical matters 

A common question early in the AoT project was  

“how will you decide where to place AoT nodes, with 

only a few hundred nodes and a city of nearly 600 

square kilometers?” Through the policy discussions 

noted above, a rubric was developed for node placement, 

requiring three factors. Firstly, it is essential that 

residents are interested in an issue for which AoT devices 

can provide relevant data, such as air quality, traffic 

safety, or noise. Secondly, one or more scientists must 

be interested in using AoT data to study that issue. 

Thirdly, a representative from local government, such 

as a commissioner or  department  head,  must  share 

the interest in understanding and potentially acting on 

the insight from scientific analysis of AoT data. In 

some cases, the locations were suggested by scientists 

as illustrated by the line of nodes along the 18-mile 

shoreline of Lake Michigan in Fig. 1, which is intended 

to support the study of lake-effect on air quality and 

weather. In other cases, locations were requested by city 

officials. For example, Chicago’s Vision Zero safety 

program[28] requested nodes in the forty intersections 

and corridors with the greatest number of traffic-related 

fatalities. In at least a half dozen instances, the requests 

came from residents or community groups (for example, 

a school crossing guard concerned about illegal heavy 

truck traffic). 

Most nodes were installed by the Chicago Department 

Of Transportation (CDOT), and discussions regarding 

electrical safety and ease-of-installation began with 

CDOT electricians two years before the first installation. 

In addition to electrical safety reviews, this collaboration 

led to design changes to streamline installation in order 

to enable crews to swap (i.e., upgrade) units in under  

15 min—roughly the time it takes to change holiday 

decorations. 

The most common AoT installation is on a traffic 

signal light pole, roughly 8 m above  the  sidewalk, 

with the unit (and thus the downward-facing camera) 

facing the center of the intersection (see Fig. 3). In 

most cases, this provides a field of view covering the 

entire intersection including sidewalks and crosswalks. 

Additional partners also installed nodes, including 

Crown Castle Communications and ComEd/Exelon. 

AoT nodes have dedicated electrical circuits to reduce 

the possibility of being confused with operational traffic 

signal systems during routine city maintenance work. 

Though not legally required, AoT nodes were also tested 

for susceptibility to power surges and for radio frequency 

emissions to provide evidence (if requested) that the 
 

Fig. 3 A typical view from an AoT camera showing object 

recognition results from edge software. 
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devices would not interfere with other services. 

Corporate partners also participated in the project. 

Intel designed, developed, and prototyped the air 

quality sensor board; Cisco and Schneider Electric 

brought engineering insight into packaging electronics 

for outdoor installation; AT&T provided initial cellular 

data service; and Microsoft prototyped an education 

portal for students to analyze AoT data. 

3 Software-Defined Sensors for Urban 

Social Sciences 

AoT introduced new capabilities for measuring the 

urban environment, with rudimentary software-defined 

measurements, such as river  water  levels,  cloud 

cover, or pedestrian and vehicle flows (e.g., Fig. 4). 

The AoT devices—still used today to develop such 

measurements—nonetheless have very limited edge 

compute capacity relative to what is available now, four 

years after the first units were built.  AoT is now one  

of several measurement instruments, or observatories, 

participating in the NSF-funded SAGE: A Software- 

Defined Sensor Network project[29]. Below we discuss 
 

Fig. 4 Software-defined sensor to measure crosswalk usage. 

Images courtesy P. Bharti, D. Koop, and M. E. Papka, 

Northern Illinois University. 

the SAGE project, the basics of software defined sensing, 

and applications in social and behavioral sciences. 

Fundamentally, AoT is a distributed system of 

independent computing and sensing devices with a 

central service (as detailed in Section 2) to publish 

measurements. Such a system allows for software- 

defined sensors—measurements defined by software 

running within the nodes based on analysis of data from 

the node’s sensors, including cameras, microphones, etc. 

SAGE builds on lessons learned from AoT[7] to extend 

the Waggle platform in several directions.  The first is  

a modular design to support independently developed 

(or purchased) sensor packages, commercially-packaged 

cameras, and edge processing functions. Thus, different 

projects can develop or purchase commercial sensor 

packages necessary for their investigations. The second 

involves extensions to the software infrastructure to 

enable scientists to develop, test, and deploy edge 

functions as discrete modules, similar to the virtual 

machines that can be developed, managed, and operated 

as units in cloud services, such as Amazon Web Services. 

3.1 SAGE: Cyberinfrastructure for software- 

defined sensing 

With today’s edge computing power, scientists can 

design software-defined sensors ranging from image 

processing (e.g., count the number of people wearing 

face masks) to fully autonomous behaviors,  such as   

to learn what are “typical” values for measurements 

and increase the sampling rate when atypical events   

or conditions are detected. For example, if the typical 

pedestrian count at 3 am is fewer than 5 people but 50 are 

detected, an autonomous software defined sensor could 

begin to analyze the aggregate movements of the crowd 

to determine the nature of the gathering. 

For AoT, the significantly increased edge computing 

power of SAGE nodes will enable more nuanced 

measurements heretofore requiring trained human 

observers. These will in turn catalyze new research into 

human interactions in public spaces, such as not only the 

trajectories of people moving through a public square, 

but how those movements are influenced by other people 

and groups. Combining these visual analyses with 

sound analysis capabilities[30], researchers  can  begin 

to explore whether it is possible to determine stress, 

depression[31], fear, or social cohesion[32] from ambient 

measurements of human movement. For example, speed 

or gait measurements—extrapolating from nonhuman 

animal research[33–35] and also from research on the pace 
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of life and movement in cities[36, 37]—could be used to 

measure individual and group level factors (e.g., mood, 

stress, and neighborhood cohesion). Auditory data, 

such as the volume and pace of speech[38, 39], as well  

as physical activity, exposure to human voice, ambient 

audio amplitude, phone usage, and location data[40], 

could also be used to further elucidate specific features of 

people in these spaces to predict their internal emotional 

states. 

The central objective of the AoT and SAGE software- 

defined sensor work is to provide a platform with 

which scientists can define  these  and  other  new  

types of measurements about the urban or natural 

environment. For instance, new protocols, such as the 

Gehl Institute’s Public Life Protocol[41] for measuring 

the use of public spaces, are ideal for implementing  

via software-defined sensors. The work of a computer 

science team at Northern Illinois University (NIU) 

shown in Fig. 4 demonstrates exactly the kind of 

software-defined measurements necessary for the Gehl 

Public Life Protocol. Similarly, these types of new 

measurements are needed in order to explore the impact 

that different urban and  natural  environments  have  

on cognitive performance[42, 43] or more generally how 

urban morphology affects human decision-making[44]. 

3.2 Observation with computer vision 

Computer Vision (CV) systems seek to obtain high- 

level information from digital images or video. A 

computer vision technique  may  produce  numerical  

or symbolic information, e.g., there are  6  cars,  or,  

this is a coyote,  not a dog.  CV has been an active   

area for computer scientists since the 1960s, and 

includes tasks, such as object detection and recognition, 

event detection and recognition, motion tracking, and 

3D scene reconstruction. Many techniques have been 

developed using geometry, physics, statistics, and 

signal processing (electrical engineering), but recent 

CV systems often rely heavily on ML. These ML- 

based approaches have outperformed earlier methods 

for many tasks, especially object/event detection and 

recognition. Object recognition or object classification is 

the task of identifying that the image contains a specific 

object (from a set of possible objects). Similarly, event 

recognition is applied to video to classify the video into 

one of a set of pre-specified activities (e.g., person is 

playing guitar, brushing teeth, etc.). Tracking involves 

locating the same object in a sequence of images (or 

video). While object recognition could be applied in 

every image of the sequence, more effort is involved to 

“connect” the object across images. For example, if two 

people cross by each other, simply recognizing that there 

are two people is not sufficient. Tracking algorithms 

typically also use various techniques to measure the 

similarity between objects across images in the sequence 

and assign unique IDs to objects, as is illustrated in 

Figs. 3 and 4, which shows the output of a tracking 

approach to record movements of pedestrians. 

Computer vision techniques can thus be developed 

to address a large variety of applications. For example, 

object recognition could be used to recognize animals 

and measure occurrences of urban wildlife. AI-based 

methods in CV can also classify images along axes, such 

as natural-vs-built or ordered-vs-disordered (Fig. 5). CV 

might improve traffic control by adjusting traffic signal 

timing to improve flow. Likewise, CV methods could 

 

 

Fig. 5 Use of AI to extract straight edges (magenta) and curved edges (green) from scenes for characterization of different 

features of the scene (e.g., more ordered vs. more disordered[45–48] as well as providing privacy protection). Figures adapted 

from Ref. [49]. 
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make it straightforward to understand, for instance, the 

impact of at-grade rail crossings on different types of 

roadway traffic. By recognizing and counting the number 

of types of vehicles (public transit, private, emergency, 

etc.) affected by an at-grade rail crossing, decisions can 

be made as to which crossing should be prioritized for 

replacement with under- or over-passes. 

Pedestrians interact in a variety of ways that can be 

observed even from a distance. Observing pedestrians, 

isolating individual bodies in motion, and tracking this 

motion in space as just described can yield information 

about body velocity and acceleration, distribution of 

spatial distance among bodies, and collisions. These 

basic measures could be used, with an appropriate 

ground-truth database of motion-related to behavior, to 

infer social relationships among the bodies. For example, 

a group of bodies sharing velocity with a defined 

spatial distribution would constitute a group. Vectors 

for different groups that come together or have different 

trajectories could form an observational basis for 

inferring social relationships among groups. Similarly, 

two vectors for individuals coming together and stopping 

before collision could serve to make inferences about   

a social interaction between individuals. To the extent 

that the major axis of a body can be observed, some 

aspects of posture or body inclination can be classified 

and possibly serve as the basis for inferring more  

about the nature of the social interaction (see Fig. 6). 

Similarly, sound recording, if sufficient to capture speech 

envelope information of proximal pedestrians,  could 

be used to model the prosodic aspects of pedestrian 

speech. Combined with spatial vector modeling of 

motion and body inclination, these observations could 

provide the first naturalistic measurements of real-life 

social interaction including the affective tone of the 

communication. 

In principle, this information could be used as the 

basis for classifying the nature of the social interaction. 

Are groups or individuals that come together interacting 

in a positive or negative way? How does the frequency of 

such interactions vary with environmental, sociological, 

and cultural factors? Is it possible to predict an adverse 

or threatening interaction from the trajectory of motion 

of a group or person prior to the interaction? Does the 

prediction based on particular motion parameters change 

based on heat index, air quality, proximity of green 

space, Social-Economic Status (SES), neighborhood 

crime statistics, or population diversity? By observing 

pedestrian movement at street level, measuring sound 

 

 

Fig. 6 Use of edge computing in Ref. [53] to detect a 

pedestrian crossing during a red-light (top) and analyze body 

language (bottom). Images courtesy of Potdar and Torrens, 

used with permission. 

properties and spatializing those to particular pedestrians, 

and combining these visual observations with acoustic 

measurements, it is possible to address a large number 

of questions about social interaction including physical- 

social interaction within and between different social 

groups, such as  race  or  SES,  or  amongst  friends  

and strangers. Although previous research has used 

certain physical observations of individuals, such as gait, 

proximity, and speech envelope, as markers of social 

interaction, most of the prior work has taken place in 

laboratory settings. While individuals in these studies 

have been characterized by group membership (race, 

SES, age, etc.) or relationships among group constituents 

have been characterized (friends or strangers, same or 

different races, same or difference SES, etc.), SAGE 

software-defined sensing capabilities offer the possibility 

to make these observations in the wild, in natural 

environments, and at unprecedented scales, thereby 

increasing the power of data to address fundamental 

questions about behavior, mind, and society. 

Observation of human location distributions has also 

been used as the basis for inferences about behavior, 

particularly in combination with other sources of data. 

For example, predictive policing[50] has used statistical 

distributions of crime locations and event data to predict 

crime hotspots. In other words, criminal behavior is 

predictable from past behavior-history data. But of 

course this only predicts behavior probability and 
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collecting such statistics is coarsely limited to the grain 

of reporting. Using geotagged Twitter data can provide 

more specific location and movement information[51], 

but activities that are not fully Twitter-reportable (e.g., 

crime or just a chance social interaction) will not be 

observed. Direct street-level physical movement can 

augment such information and potentially provide, on 

the basis of observed movement trajectories information 

about the nature of the social interaction. Meng et al.[52] 

used ego-motion from body mounted cameras to show 

that physical body movements of different kinds have 

different  spectra.  Although  the  egocentric  motions 

of looking and turning may not be easily detectable 

from a third-person camera observation, small steps, 

walking, and running have discernible spectra. This is 

clear evidence that SAGE should support recognition  

of aspects of motion trajectory and characteristics of 

movement from an analysis of the visual record. Further, 

Potdar and Torrens[53]  showed that it is possible from  

a street-level third-person camera to determine aspects 

of pedestrian behavior, such as crossing a street at a  

red light (Fig. 6). While the kind of modeling of limbs 

that can be carried out shown in Fig. 6 from a street- 

level view is not possible from a bird’s eye perspective 

above the street, other inferences can be made. Hands 

moving in front of the body, body changing orientation, 

and bending will be observable. From these images, it is 

possible to infer aspects of face-to-face social interaction 

when taken together with changes in movement allowing 

the possibility of classification as confrontation, greeting, 

or conversation. 

4 Underlying Technology: Waggle Platform 

Ultimately, all of these software-defined sensor 

applications require a robust, programmable platform 

installed outdoors. Here we describe the Waggle 

platform. Designing a device to support edge 

computation and associated challenges, such as 

packaging for severe weather conditions, increases 

device complexity and requirements for security and 

resilience. The edge computers must be well-secured 

and require a high level of resilience, with the ability to 

recover from common types of hardware and software 

failures without physical intervention as they are 

typically located beyond convenient reach on city poles 

and buildings. When the AoT project was conceived, no 

commercial devices provided the functionality defined 

by scientific input from an expanding science and 

education community[54]. A hardware/software platform 

was necessary to support edge computation, reliable 

data transmission, and protocols for keeping track of 

continual streams of sensor readings from hundreds of 

nodes. The Waggle platform that the team had begun  

to develop at Argonne National Laboratory provided a 

starting point. 

We have elsewhere described the architecture and 

details of the Waggle platform[8], which employs special- 

purpose resilience and recovery hardware and software, 

foundational architecture features to minimize security 

vulnerabilities, and open protocols for communication, 

management, and data publication. Designed to support 

remote sensing, Waggle borrows its name from the 

elaborate dance that honeybees perform to communicate 

with the hive regarding the location of food sources[55]. 

Naturally then, the central servers that support AoT and 

SAGE nodes are collectively called Beehive. 

4.1 Platform at the edge: What is a node 

AoT nodes comprise both computing and sensing 

hardware, and are programmed to report all sensor 

values at specific intervals (typically 30 s), transmitting 

these to a central database (discussed below). Each 

node has sensor packages (see Fig. 2), communications 

(typically a cellular modem, though WiFi and other 

options have been used in other Waggle projects), and 

two fully programmable Linux computers. Because 

they are typically installed high on utility poles or in 

remote locations that make physical access impractical, 

Waggle nodes include multiple hardware and software 

components to enable recovery from common faults 

(e.g., a power or network outage) without human 

intervention. 

One of the Linux computers functions as the “node 

controller”, which  performs  system  functions,  such 

as data integrity checking, reading simple sensors, 

reporting data, and managing security and reliability. 

The node controller is only accessed by system support 

staff. The second Linux computer is used as an “edge 

processor”, which runs user-provided software for 

analysis of images, sound, and other sensor data. 

Software running on the edge processor is reviewed to 

ensure its functionality aligns with its description and 

that it complies with privacy policies. This includes a 

specification of what data will be recorded and reported 

with other sensor data. User software running on the 

edge processor has no way to transmit data—it places 

data into a common data cache for the node controller to 
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validate and transmit to the central database. 

4.2 Waggle Beehive: Data and management 

All AoT nodes (and Waggle nodes in other projects) 

regularly transmit sensor readings, data from software- 

defined sensors (e.g., the number of vehicles seen in 

the past reporting interval), and internal management 

data for system administration and troubleshooting. 

Three central services are collectively called “Beehive”. 

A registration service manages node registration, 

secure credentials, and a database with node manifests 

(node-specific data, such as location, street address, and 

sensor hardware configuration). A management server 

maintains encrypted (node-initiated) connections to 

nodes along with information and tools for maintaining 

software updates and configuration data. The third 

service is a parallel database scalable to support 

thousands of concurrent node connections for reporting 

data. At each reporting interval, each node sends a set 

of sensor readings. After injection into appropriate 

databases, the sensor data are decoded, processed, and 

exported as comma-delimited text. Each line includes  

a node identifier, date and timestamp, metadata (such 

as the sensor board, firmware version, and exact part 

number of the sensor), and the  raw  data  read  from 

the sensor (typically a voltage or current level). Each 

line also includes the converted value of the raw 

reading in appropriate units, such as temperature, light 

levels, or sound pressure. With some sensors, this 

conversion is a simple mapping while others involve 

sensor-specific calculations, in some cases including 

data from other sensors. For instance, some gas sensors 

are temperature-sensitive or cross-sensitive to multiple 

gases, thus conversion requires temperature data and 

data from other sensors. For software-defined sensors, 

the metadata include information to enable data users to 

examine the software used to create the measurement. 

The Beehive database does not provide access directly 

to external users, but rather uses a periodic data push to 

provide data through two public-facing services. First 

is a data download service. Every 24 h all data are 

exported to a bulk download server, where users can 

download bundles ranging from a single day to  all 

data from the first installations in 2016. Downloads 

include instructions and additional information, such 

as where to find sensor data sheets and how to map     

a node identifier to a geographic location. Waggle 

supports multiple “projects” so that, for instance, the 

Chicago AoT nodes and associated data services are 

distinct from those associated with deployments in other 

cities or deployments by other scientific teams, such  

as environmental sensing projects. Secondly, Beehive 

supports the AoT Application Programming Interface 

(API)[56] by exporting data to a process that caches data 

and handles API calls in Amazon Web Services.  With 

a latency of 3–5 min from measurement to availability 

(not real-time, yet relevant for questions about what is 

happening “at the moment”), the API supports mobile 

applications and integrating AoT data into other data 

systems. 

4.3 Security 

Primary node security risks identified through numerous 

security reviews are (1) service disruption and (2) the 

introduction of unauthorized functions, such  as  the 

use of the cameras and microphones for surveillance. 

These threats typically involve unauthorized access. To 

reduce the potential for unauthorized access, Waggle 

nodes have no software enabled to “listen” for,  and 

thus respond to, any network connection requests (even 

from system administrators). This requires that the nodes 

operate autonomously, initiating an encrypted Internet 

connection back to the central servers to enable remote 

access for management functions discussed above. 

5 Conclusion and Future Work 

In discussions with social scientists seeking to 

understand cities, two challenges seem to recur. The 

first is that experiments in laboratory settings are very 

difficult to conduct “in the wild”, that is, in natural 

urban settings. For instance, multiple  studies  show 

that people tend to sit near others who look like 

them[57], yet does this hold true with the movement of 

people in public spaces? Are such principles limited   

to seating in some contexts (e.g., a classroom) but not 

others (e.g., on public transit)? Physical distance and 

interpersonal movement have been used in relatively 

restricted settings as measures of social interaction and 

attitudes. Instrumenting public spaces with software- 

defined sensors opens the potential for testing these 

hypotheses in the real world, in natural human movement 

and interaction,  and provides an important basic test  

of the interpretations of these findings. A second 

challenge identified is a paucity of opportunities for 

repeatable experiments, for instance to examine social 

interaction theories in similar public venues across cities 

of different populations and densities, cultures, climates, 

or topology. 
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To address the first of these challenges, a SAGE 

laboratory is being deployed at the University of Chicago 

in collaboration with its Environmental Neuroscience 

Laboratory[58]. In order to interpret pedestrian motion 

vectors, spatial distribution, postural inclination, and 

acoustic properties of vocal behavior including speech, 

it will be necessary to develop a database of defined 

measurements. Firstly, from large scale data collection 

with SAGE software-defined sensors, over a broad 

range of pedestrian behaviors and interactions at street 

level, after computing motion, spatial distribution, and 

acoustic properties, multivariate statistical classification 

of observations will yield sets of categories that can   

be reviewed by human researchers. Taking examples 

from each category, researchers can review and code 

these examples for inferred social behavior (commercial 

transaction, friendly greeting, threat, social affiliates 

walking together, etc.). The reliability of this coding, 

given software-defined observations, can be assessed 

over the database. It will be important to have raters 

come from diverse backgrounds and experiences to 

reduce bias in the labeling. In fact, similar assessments 

will need to be made on the initial training data to 

ensure that we obtain a representative sample of social 

interactions to avoid bias. Secondly, for a subset of 

locations with SAGE nodes installed, higher resolution 

instrumentation at ground level can produce a “ground- 

truth” database that can be used to validate the coding 

of the social interaction categories. The coding of the 

high resolution audio-video recordings at ground level 

can be registered against the coding of the software- 

defined observation data, making it possible to test the 

validity of the classifications against the ground-level 

data. This strategy is being used in an installation at 

Argonne National Laboratory to improve vehicle type 

recognition. Traditional training images for vehicle 

type are taken from ground-level rather than from 8 m 

above, thus images from both vantage points are used to 

improve the accuracy of vehicle recognition from such 

angles. 

For the second challenge—repeatable experiments— 

the SAGE team is exploring the potential for a 

collaborative, multi-city instrument—a set of software- 

defined sensor deployments in common venues (e.g.,   

a marketplace, public park, or rail station) across a 

diverse set of cities in order to support these types of 

investigations (Fig. 7). 

Ultimately, software-defined sensing infrastructure, 

which SAGE is developing, allows for the creation of a 

new kind of social science laboratory. At any location, 

in any city, where SAGE nodes are installed, it will be 

possible to “stage” specific kinds of social interactions 

(with or without ground-level recording). Confederates, 

such as actors, can meet, travel in groups, or interact in 

various “staged” ways as another means of producing 

“ground-truth” data. These interactions, recorded in 

high-resolution and through SAGE nodes, can be  

coded as prototypes for categories of social interaction. 

Similarly,  such a laboratory would allow researchers  

to set up experimental situations using human subjects 

who are not confederates,  that  is,  participants  who 

are not explicitly instructed to behave in particular 

ways, but  who  are  participants  in  studies  designed 

to elicit different kinds of behavior, such as helping, 

challenging, greeting, ignoring, etc. These participants 

would not know the purpose of their behavior when 

acting,  but would be primed to  act in a specific way  

by virtue of context or expectations. In  this way,  it  

will be possible to elicit more natural social interaction 

behavior than explicit instruction to actor-confederates 

to further validate the classification of social interactions. 

We have described the origins and development of 

software-defined measurement systems to support new, 

diverse scientific questions, focusing here on social and 

 

 

Fig. 7 SAGE social and urban science partners are exploring a network of software-defined sensor deployments at common 

venues in diverse cities (for example, public parks in (left-to-right) New York City, Chicago, San Francisco). Images from 

Wikimedia Commons, used without modification[59]. 
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behavioral sciences. 

Fueled with significant advances in AI/ML hardware 

and software capabilities, the underlying objective of 

this work is to empower domain scientists to “define” 

the measurements they require. To this end, the SAGE 

project is focused on  supporting  teams  of  AI/ML  

and domain scientists developing their own software- 

defined functions, and on providing a general-purpose 

platform, Waggle, that allows such teams to focus on 

measurements required for scientific insights without 

first having to design and build bespoke instrumentation. 
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West, Growth, innovation, scaling, and the pace of life in 

cities, Proceedings of the National Academy of Sciences, 

vol. 104, no. 17, pp. 7301–7306, 2007. 

[37] D. J. Walmsley and G. J Lewis, The pace of pedestrian 

ows in cities, Environment and Behavior, vol. 21, no. 2, pp. 

123–150, 1989. 

[38] H. J. M. Steeneken and J. H. L. Hansen, Speech under stress 

conditions: Overview of the effect on speech production 

and on system performance, presented at 1999 IEEE 

International Conference on Acoustics, Speech, and Signal 

Processing. Proceedings. ICASSP99 (Cat. No. 99CH36258), 

volume 4, 1999, pp. 2079–2082. 

[39] L. A. Streeter, N. H. Macdonald, W. Apple, R. M. Krauss, 

and K. M. Galotti, Acoustic and perceptual indicators of 

emotional stress, The Journal of the Acoustical Society of 

America, vol. 73, no. 4, pp. 1354–1360, 1983. 

[40] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. 

Wang, A survey on mobile edge networks: Convergence of 

computing, caching and communications, IEEE Access, vol. 

5, pp. 6757–6779, 2017. 

[41] Public Life Protocol, https://gehlinstitute.org/tool/public- 

life-data-protocol/, 2019. 

[42] M. G. Berman, J. Jonides, and S. Kaplan, The cognitive 

benefits of interacting with nature, Psychological Science, 

vol. 19, no. 12, pp. 1207–1212, 2008. 

[43] M. G. Berman, O. Kardan, H. P. Kotabe, H. C. 

Nusbaum, and S. E. London, The promise of environmental 

neuroscience, Nature Human Behaviour, vol. 3, pp. 414–

417, 2019. 

[44] E. Stern and J. Portugali, Environmental cognition and 

decision making in urban navigation, in Wayfinding 

Behavior: Cognitive Mapping and Other Spatial Processes, 

R. G. Golledge, ed. Washingion, DC, USA: JHU Press, 

1999, pp. 99–119. 

[45] H. Kotabe, O. Kardan, and M. G. Berman, Can the high- 

level semantics of a scene be preserved in the low-level 

visual features of that scene? A study of disorder and 

naturalness, presented at the 38th Annual Meeting of the 

Cognitive Science, Philadelphia, PA, USA, 2016. 

[46] H. Kotabe, O. Kardan, and M. G. Berman, The nature- 

disorder  paradox:  A  perceptual  study  on  how  nature  

is disorderly yet aesthetically preferred, Journal of 

Experimental Psychology: General, vol. 146, no. 8, p. 1126, 

2017. 

[47] A. Coburn, O. Kardan, H. Kotabe, J. Steinberg, M. Hout, 

A. Robbins, J. MacDonald, G. Hayn-Leichsenring, and M. 

G. Berman, Psychological responses to natural patterns in 

architecture, Journal of Environmental Psychology, vol. 62, 

pp. 133–145, 2019. 

[48] K. Schertz, S. Sachdeva, O. Kardan, H. Kotabe, K. Wolf, 

and M. G. Berman, A thought in the park: The influence 

of naturalness and low-level visual features on expressed 

thoughts, Cognition, vol. 174, pp. 82–93, 2018. 

http://www.cct.org/about/partnerships
http://www.citytech.org/


Charlie Catlett et al.: Measuring Cities with Software-Defined Sensors 27 
 

 

[49] K. Schertz and M. G. Berman, Understanding nature and 

its cognitive benefits, Current Directions in Psychological 

Science, vol. 28, no. 5, pp. 496–502, 2019. 

[50] P. J. Brantingham, M. Valasik, and G. O. Mohler, Does 

predictive policing lead to biased arrests? Results from a 

randomized controlled trial, Statistics and Public Policy, 

vol. 5, no. 1, pp. 1–6, 2018. 

[51] T. R. Meyer, D. Balague, M. Camacho-Collados, H. Li, 

K. Khuu, P. J. Brantingham, and A. L. Bertozzi,  A year  

in madrid as described through the analysis of geotagged 

twitter data, Environment and Planning B: Urban Analytics 

and City Science, vol. 46, no. 9, pp. 1724–1740, 2019. 

[52] Z. Y. Meng, J. Sánchez, J. M. Morel, A. L. Bertozzi, and P. 

J. Brantingham, Ego-motion classification for body-worn 

videos, presented at International Conference on Imaging, 

Vision and Learning based on Optimization and PDEs, 

Cham, Germany, 2016, pp. 221–239. 

[53] K. Potdar and P. Torrens, Modelling spatio-temporal 

patterns in pedestrian behavior at the edge with Jetson 

SOMs, presented at NVIDIA 2019 GPU Technology 

Conference (GTC), Washington, DC, USA, 2019. 

[54] C. Catlett, K. Cagney, P. Beckman, K. Galvin, M. Papka, M. 

Potosnak, D. Work, D. Pancoast, W. Barbour, J. Dunn, 

et al., Array of things user workshop 2018, Report, 

University of Chicago, https://www.urbanccd.org/s/AoT- 

User-Workshop-Final-compressed.pdf, 2018. 

[55] A. M. Wenner, Sound production during the waggle dance 

of the honey bee, Animal Behaviour, vol. 10, nos. 1æ2, pp. 

79–95, 1962. 

[56] V. Forgione and C. Catlett, Documentation for the 

plenario api to access time series sensor data from the 

array of things and other waggle platform deployments, 

https://plenario.docs.apiary.io/#, 2018. 

[57] S. P. Mackinnon, C. H. Jordan, and A. E. Wilson, Birds of 

a feather sit together: Physical similarity predicts seating 

choice, Personality and Social Psychology Bulletin, vol. 37, 

no. 7, pp. 879–892, 2011. 

[58] M. G. Berman, A. J. Stier, and G. N. Akcelik, 

Environmental neuroscience, American Psychologist, vol. 

74, no. 9, p. 1039, 2019. 

[59] Creative Commons Attribution 2.0 Generic license, https:// 

creativecommons.org/licenses/by/2.0/deed.en, 2020. 

[60] C. Catlett, P. Beckman, K. Cagney, D. Work, and M. 

Papka, MRI: Development of an urban-scale instrument 

for interdisciplinary research, Report NSF 1532133, US 

National Science Foundation, Alexandria, VA, USA, 2015. 

 

Charlie Catlett is a senior research scientist at the University  

of Illinois Discovery Partners Institute. His research focus is 

currently on measuring and analyzing the dynamics of cities, 

building on 35 years of research in high-performance computing, 

Internet technologies, and distributed systems. He led the Array of 

Things project at Argonne National Laboratory and the University 

of Chicago. He was chief technology officer at the National 

Center for Supercomputing Applications during the creation of 

the Mosaic web browser and open web server infrastructure. 

 
Pete Beckman is a senior computer scientist at Argonne 

National Laboratory and co-director of the Northwestern 

University–Argonne Institute for Science and Engineering. He 

leads the Sage project funded by the National Science Foundation 

to build a nationwide infrastructure for AI at the edge to support 

ecological research for the National Ecological Observatory 

Network and urban research for the Array of Things. 

 
Nicola Ferrier is a senior computer scientist at Argonne National 

Laboratory. Her research interests include computer vision and 

artificial intelligence. Her projects include AI for edge computing, 

vision-based control of robots, computer vision for biology 

materials, and manufacturing. She  was  faculty  at  University 

of Wisconsin-Madison during 1995–2013. She received  the 

PhD degree from Harvard University in 1992, followed by a 

postdoctoral fellowship at Oxford University. 

 
Howard Nusbaum is the Stella M. Rowley Professor of 

Psychology at the University of Chicago. He has previously 

served as an associate editor of Brain and Language and PLoS 

One and on the John Templeton Foundation Board of Advisors 

and a division director for Behavioral and Cognitive Sciences   

at the NSF. His research interests include wise reasoning, 

language use, attention, learning, memory consolidation and 

sleep, working memory, understanding, affect, categorization, 

cognitive neuropharmacology, cognitive engineering, and human 

factors. 

 
Michael E. Papka is a senior scientist at Argonne National 

Laboratory; the laboratory’s Deputy Associate Laboratory 

Director for Computing, Environment, and Life Sciences; the 

director of the  Argonne  Leadership  Computing  Facility;  and 

a Presidential  Research,  Scholarship,  and  Artistry  Professor 

at Northern Illinois University. He specializes in the use of 

high-performance computing for scientific visualization and data 

analysis. 

 
Marc G. Berman is an associate professor at the Department  

of Psychology, University of Chicago and a director of the 

Environmental Neuroscience Lab. He is involved in the University 

of Chicago Cognition, Social and Integrative Neuroscience 

programs. His research centers on understanding the relationship 

between individual psychological and neural processing and 

environmental factors. 

 
Rajesh Sankaran received the PhD degree in electrical and 

computer engineering from Louisiana State University in 2011. 

He is a member of the technical staff at Argonne National 

Laboratory where he co-leads the Waggle Edge-Computing 

research program. His interests include edge computing, AI/ML, 

sensing, and distributed and embedded computing systems. 

http://www.urbanccd.org/s/AoT-

