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Abstract. Deployment of sensors in hard-to-access locations can
improve data gathering for scientific studies. We have developed a sensor
emplacement system that can be mounted to unmanned aircraft systems
with vertical takeoff and landing capabilities to autonomously auger a
sensor into the ground. Various techniques can be chosen to enhance the
augering process when certain characteristics of the soil are known. Mois-
ture content and compressive strength are the soil characteristics that
most impact the augering process, yet directly measuring them would
require additional sensors to an already-burdened airframe. We address
this through a novel means of predicting these soil characteristics within
the first 30 s of an average 85 s augering evolution using onboard sensors
and a Gaussian process regression scheme that predicts the soil moisture
content and compressive strength with accuracy of 86.53% and 90.53%
of the respective measured values.
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1 Motivation and Problem Statement

Remote deployment of sensors in hard-to-access locations can enable improved
data gathering for scientific study. Some sensors, such as seismic or soil moisture
sensors, function best when placed into the soil. We have developed an in-ground
sensor emplacement system for an unmanned aircraft system (UAS) capable of
remotely augering these types of sensors into the soil (Fig. 1).
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Fig. 1. Sensor emplacement system. a) Auger-
ing b) Emplaced sensor

The general concept of oper-
ations for our system is as fol-
lows. The UAS arrives in the
area where the sensor is to be
placed and lands. It then uses
a custom augering mechanism to
drill a sensor into the ground [8,
13]. If the system cannot success-
fully emplace the sensor into the
ground, then it relocates to a new
location and tries again. If sensor
emplacement is successful, then
the UAS departs the area.

Fig. 2. Auger with internal sensor

The sensor is housed inside the
body of the auger which is left behind
at the completion of the emplace-
ment sequence. The sensor can be
any sort of generic device that can
fit inside the 100mm long by 35mm
diameter hollow section of the auger
body (see Fig. 2). The emplacement
system is mechanically robust and
allows for fine control of the down-
force delivered on bit as well as the
revolutionary speed of the auger itself.
The auger’s vertical position in the
soil column and the downforce on bit
is controlled by an advanced eleva-
tor platform that allows for rapid up
and down movement enabling us to
employ a technique known as “peck-
ing” [4,6]. The upward movement of
the pecking motion allows soil that
has been broken up and potentially clogging the lower portions of the auger
flutes to be transported up and out of the hole. This creates space for the soil
in the bottom of the hole to move into the newly vacant flute areas when the
auger is pushed back down into the hole. Soil parameters determine the choice
of an effective pecking profile, i.e. the speed and distance of the peck.

Augering and, if necessary, relocating to a new location place considerable
demand on the available energy stored in the system’s batteries. Therefore, effi-
ciently emplacing the sensor or rapidly determining that a new a location must
be tried are two key factors in the overall success of our system. Emplacing the
sensor as fast as possible and with the greatest chance of success requires contin-
uous adjustment of the auger’s rotational speed, downward force, and pecking
motions but is highly dependent upon key soil parameters (e.g., water content).
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As a result, knowledge of soil parameters, especially during augering activities,
greatly increases the chance of a fast and successful sensor emplacement or deter-
mination of imminent failure.

In this paper, we describe a novel, online soil classification strategy that takes
information from the on-board sensor suite and determines key soil parameters,
enabling us to adjust our augering strategy in real time or quickly determine that
a new location must be tried. Previous work has estimated the relative hardness
of a surface with a UAS [2,3,11], although these methods did not leverage an in-
ground emplacement augering system that makes direct contact with lower layers
of the soil. This capability, including direct interaction with the soil, provides a
rich dataset from which an online classifier can be trained.

Soil classification covers a wide range of parameters [1], however, for the
purposes of in-ground sensor emplacement to 150mm, we have found water
content and soil compressive strength are the characteristics that most greatly
impact the chance of successful emplacement. These key characteristics help us
determine how much downforce, torque, and speed to apply, whether or not to
engage higher level augering strategies (e.g., pecking), and predict whether or
not the current digging effort will be successful. However, direct measurement
of these parameters is difficult and would require additional equipment to be
mounted to the UAS, which cannot be done with current size, weight, and power
restrictions. As a result, we leverage auger RPM, motor current use, downward
force on the auger, and system vibration levels on the UAS, alongside a custom
classifier to determine the water content and compressive strength of the soil.

Rocks, tree roots, or other impediments can prevent emplacement of the sen-
sor. However, the highly stochastic nature of their locations in soil make predic-
tion especially difficult. Here, we focus on regularly predictable soil parameters
that impact emplacement in the absence of significant halting impediments. This
paper makes the following contributions:

– A novel classifier for soil water content and compressive strength through
indirect means

– A comparison of various machine learning technique in their application to
classifying soil water content and compressive strength

– A large, expansive data set of 2.8 million points of data over 150 augering
evolutions

The on-board sensors used to classify a soil in terms of its water content and
compressive strength are not the respective purpose-built moisture sensors and
penetrometers, but rather the sensors used for monitoring the system perfor-
mance of the auger mechanism: auger motor RPM, auger motor current use,
weight on auger bit, system vibration (via accelerometers), and time. The data
from these sensors is analyzed using machine learning techniques such as decision
trees, linear discriminant analysis, naive Bayesian analysis, k-nearest neighbor
(knn) analysis, and Gaussian process regression. We also examine the effective-
ness of each technique in assessing the soil composition within the first 30 s of
an emplacement operation. Barring any stoppages of the emplacement process,
it takes a minimum of 60 s to emplace a sensor. This minimum time is increases
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with an increase in sensor (and subsequent auger) size. We show that Gaussian
process regression outperforms the other methods at the 30 s mark with an over-
all average predictive accuracy of 86.53% when determining moisture content
and 90.53% when determining soil compressive strength.

2 Related Work

Machine learning can be used to classify or predict new data based on previously
observed values. Our work examines the effectiveness of decision trees, linear
discriminant analysis, naive Bayes prediction, k-nearest neighbor, and Gaussian
process regression to predict the current values of moisture and soil compressive
strength based on the sensor data available to our sensor emplacement system
while engaged in an augering evolution. These particular algorithms have been
previously employed in the analysis of soil composition.

Pekel examined the use of decision trees to predict soil moisture using atmo-
spheric measurements obtained from stationary HOBO U30 weather data loggers
as predictors [7]. The loggers are left in the field and gather data over several
days. Suthar used eight soil-specific predictors, to include moisture content and
the amoung of lime sludge present, to predict the compressive strength of stabi-
lized pond ash [14]. Gathering these parameters from a given soil sample required
transport of the sample to a lab and upwards of seven days of curing. Valaee
et al. have used linear discriminant analysis and the magnetic properties of soil
measured by external instruments such as Kappameters to predict its moisture
content [15]. Yamaç et al. predicted moisture content of soil using k-nearest
neighbor analysis with lime content, organic matter, soil particle size, and bulk
density as predictors [16]. Rajeswari and Arunesh used naive Bayesian analysis
to classify soil in terms of iron content versus organic content [9]. For these last
two, organic content was analyzed using a LECO CN-2000 combustion oven that
was not located at the sample site.

In all of the aforementioned works, measuring the parameters to be used in
the prediction schemes required either equipment or facilities not available for
a UAS-sized platform. Additionally, these methods often require the sampling
and removal of material from the environment. The material must be analyzed
external to the device using the predictive policy in order to provide inputs for
that policy [9,14,16]. This is where our approach differs from the above. While,
like the other approaches, we generate our policy offline, our system is able to
gather the required data in situ and use it in our predictive policy as it is being
gathered. Our approach to analyzing soil moisture and compressive strength is
unique in that we use the sensors internal to our emplacement system during
the physical act of drilling into the soil to determine our predictions.

3 Technical Approach

3.1 Description of the Emplacement System

The sensor emplacement system is a modular design that can be mounted to the
underside of unmanned aircraft systems that have vertical takeoff and landing
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capability. The system is housed in an aluminum chassis that can be adapted to
fit on any applicable air frame capable of operating with a 2.7 kg payload and
supplying the system with 24V DC.

Fig. 3. Emplacement mechanism: model (left) and system (right)

The emplacement system (Fig. 3) consists of an auger with a 150mm long
shaft and diameter of 75mm. It is attached to a T-Motor A80-6 24V brushless
motor with an integral planetary gear transmission and rotary encoder used
for measuring auger RPM. During augering operations, a proportional control
law is used to maintain auger rotational speed at 200 RPM. In difficult soil
conditions where maintaining 200 RPM causes excessive current draw, auger
RPM is allowed to decrease in order to maintain safe operating conditions for
the auger motor. The auger motor is capable of outputting continuous 6Nm
of torque under a 12A load. The motor/auger combination is mounted to an
aluminum plate that advances downward at a rate of 0.1375 cm/s during augering
operations. Strain gauges mounted to the elevator plate measure vertical force
applied during augering. An inertial measurement unit (IMU) mounted to the
aluminum plate provides data for vibration analysis. The elevator consists of a
smaller T-Motor MN3520 brushless motor, driving a belt connected to pulleys
on each corner of the aluminum plate to raise or lower the aluminum platform on
four lead screws. A rotary encoder is calibrated to measure the vertical distance
the platform travels. An Odrive Robotics motor controller is used to control the
auger and elevator motors, while an ATMega-based microcontroller is used as
the primary computing device that manages communications with the Odrive
controller and outputs the various measured parameters via serial connection.

For this work, the emplacement system is mounted to an aluminum frame
for ease of testing, although normally the system is attached to an unmanned
aircraft as shown in Fig. 1.
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3.2 Measured Parameters

The following parameters are continuously monitored by the emplacement sys-
tem and output to a serial communications line at a rate of 10Hz. Their values
provide quantitative insight into the augering process and are aggregated to
classify the type of soil.

– Revolutions per minute of the auger motor - measured in RPM
– Current draw of the auger motor - measured in Amps
– Weight on auger bit (WOB) - measured by the strain gauges in kg
– Elevator position relative to top - measured in cm
– Acceleration in the X, Y , and Z axes - measured in m/s2
– Time - each line of logged output is timestamped in seconds

3.3 Soil Parameters of Interest

Soil can be described by various parameters ranging from its particle sizes to
its organic material content [1]. In our case, we are concerned with the physical
properties that have the most impact on successfully augering into the soil. In
our previous work, we have determined that higher moisture content and/or
higher compressive strength coincide with a reduced chance of success for an
augering evolution [8,13]. An increase in moisture leads to an increase in friction
between the soil and the auger surfaces. Higher compressive strength means the
soil is more compact and requires that more force be applied in order to loosen
the soil for transport up the auger’s flutes.

4 Experimental Setup

Fig. 4. Representative soil types - a) shows the higher
clay content of the Nebraska testing area (with Penn-
sylvania being similar), and b) shows the relatively
more sandy soil of the Virginia testing area (with Ken-
tucky being similar)

We conducted 150 trials
of our emplacement sys-
tem in order to gather the
required data for our anal-
ysis. 110 trials were con-
ducted in the silty clay soil
commonly found in eastern
Nebraska with an additional
40 trials conducted between
north central Pennsylvania,
western Virginia, and north
central Kentucky. The soils
in Nebraska and Pennsylva-
nia exhibited similar characteristics to each other, with each having a higher
clay content than the soils in Virginia and Kentucky. Figure 4 shows the relative
differences in the soils.

To obtain truth data, we manually measured the soil moisture content and
soil compressive strength with tools and techniques accepted in the pedology
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community: a capacitive moisture sensor, volumetric analysis, and pocket pen-
etrometer [1,10,12]. Specifically, the percentage of soil moisture was measured
with a capacitive device for each trial, with every tenth trial verifying the mois-
ture content by volumetric means (i.e., weighing the soil before and after baking
the moisture out in an oven). The moisture values over the 150 trials ranged from
5% to 80%. Measurements were taken in the upper, middle, and lower thirds of
the soil column at the completion each augering operation (see Fig. 5).

Fig. 5. Soil measurement locations in
the upper, middle, and lower thirds of
an excavated soil column

The unconfined compressive strength
of soil is defined as the amount of force
required to crush or displace the soil
within a given area [10,12] and is mea-
sured in kg/cm2. The soil in our trials
was measured with a pocket penetrome-
ter by probing the side wall of the resul-
tant hole left by the auger. Measure-
ments were taken near the surface, in the
middle third of hole, and at the bottom
(Fig. 5). The compressive strength values
over the 150 trials ranged from 0.5 kg/cm2

to 4.6 kg/cm2. Figure 6 shows the distri-
bution of these measurements.

The initial 4 trials were conducted indoors using an 18 liter bucket filled with
soil that was compressed to the desired soil strength using a hydraulic press.
The remaining 146 trials were conducted outdoors in areas where soil moisture
content and compressive strength varied in order to gather data over a range
of soil conditions. Figure 7 shows the indoor testing area and a representative
outdoor testing area.

Fig. 6. Distribution of soil measurements taken over the 150 trials

Auger RPM, auger current, auger depth, weight on bit, and acceleration val-
ues were logged at a rate 10Hz during each augering evolution. These parameters
were then used as predictors in the following machine learning algorithms:
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(a) Indoor testing (b) Outdoor testing

Fig. 7. Testing areas

– Decision tree
– Linear discriminant
– Naive Bayes
– K-Nearest neighbor
– Gaussian process

5 Experimental Results

Figure 8 shows a representative plot of the parameters we monitored during
each trial of our system: auger RPM, auger motor current, weight on bit, depth,
acceleration, and time. These parameters are used as the predictor variables in
following survey of classification/regression schemes: decision tree, linear dis-
criminant, naive Bayes, k-nearest neighbor, and Gaussian process regression.
The responses in these schemes are our desired soil moisture content and soil
compressive strength. We use Matlab R©’s “fitctree(),” “fitcdiscr(),” “fitcnb(),”
“fitcknn(),” and “fitrgp()” methods to generate our predictive models [5]. We
randomly chose 50 of our trials to provide the training data for our classification
schemes. We then simulated our predictive models against the data from our
remaining 100 trials.

As one of our main goals is to determine the soil moisture content and com-
pressive strength as quickly as possible, we examine the predictive accuracy of
our models at 5, 10, 20, and 30 s into an augering evolution. We define predictive
accuracy as how closely a model calculates the soil moisture content or compres-
sive strength compared to the actual measured value for that trial at the auger
depth for the given point in time. Table 1 shows the results of our simulations.
Gaussian process regression was the most accurate prediction method during all
phases of an augering evolution.
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Table 1. Prediction scheme accuracy

Accuracy Decision
tree

Linear
discriminant

Naive
bayes

k-Nearest
neighbor

Gaussian
process

5 s Moisture content
Soil strength

82.29%
86.34%

83.54%
89.59%

84.66%
85.25%

84.85%
87.44%

86.86%
89.92%

10 s Moisture content
Soil strength

86.34%
88.03%

84.44%
86.57%

86.40%
84.58%

85.81%
87.40%

88.86%
90.02%

20 s Moisture content
Soil strength

85.96%
88.63%

82.07%
85.11%

84.98%
88.00%

85.83%
87.36%

87.90%
90.65%

30 s Moisture content
Soil strength

76.36%
88.18%

70.99%
90.02%

80.59%
90.70%

76.85%
87.38%

82.51%
91.51%

Average Moisture content
Soil strength

82.74%
87.79%

80.26%
87.82%

84.16%
87.15%

83.34%
87.39%

86.53%
90.53%

Table 2. Prediction accuracy with original system parameters (3rd column), compared
with new system parameters (4th column).

Accuracy RPM, Current,
Depth, Time

RPM, Current, Depth,
Time, WOB, Acceleration

5 s Moisture content
Soil strength

84.29%
89.11%

86.86%
89.92%

10 s Moisture content
Soil strength

86.07%
89.60%

88.86%
90.02%

20 s Moisture content
Soil strength

87.34%
90.96%

87.90%
90.65%

30 s Moisture content
Soil strength

82.20%
91.31%

82.51%
91.51%

Average Moisture content
Soil strength

84.98%
90.24%

86.53%
90.53%

Additionally, we examine how the choice of predictors can influence the accu-
racy of the chosen classification/regression schemes. In our previous work we used
auger RPM, auger motor current, auger depth, and time to predict whether an
augering evolution would succeed or not [8]. For that work, we were limited to
those four parameters as a function of the system design. Our current emplace-
ment system is a complete redesign of our initial system and allows for the addi-
tion of recording weight on bit and acceleration values. Table 2 shows an increase
in predictive accuracy for our Gaussian process regression when incorporating
weight on bit and x, y, and z axis acceleration values.
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Fig. 8. Example of parameters gathered during system trials. The top graph shows
auger RPM, motor current, weight on bit, and depth over time. The bottom graph
show accelerations in the x, y, and z axes and depth over time

6 Conclusion and Future Work

We show that it is possible to predict soil moisture content and compressive
strength using the available sensor that provide auger RPM, auger motor current,
auger depth, weight on bit, and acceleration data. Gaussian process regression
generates the most accurate policy of the schemes that were tested. It can predict
within the first 30 s of an average 85 s augering evolution the soil moisture content
within 86.53% of the actual value and soil compressive strength within 90.53%
of the actual value.

Encoding this policy on the hardware that controls the augering mecha-
nism is the next step in our research. Additionally, this will allow us to use the
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real-time predicted soil composition to adjust our augering technique in order
to optimally drill our sensor into the soil.
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