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Pathological self-assembly is a concept that is classically associated with amyloids,

such as amyloid-β (Aβ) in Alzheimer’s disease and α-synuclein in Parkinson’s disease.

In prokaryotic organisms, amyloids are assembled extracellularly in a similar fashion to

human amyloids. Pathogenicity of amyloids is attributed to their ability to transform into

several distinct structural states that reflect their downstream biological consequences.

While the oligomeric forms of amyloids are thought to be responsible for their cytotoxicity

via membrane permeation, their fibrillar conformations are known to interact with

the innate immune system to induce inflammation. Furthermore, both eukaryotic and

prokaryotic amyloids can self-assemble into molecular chaperones to bind nucleic acids,

enabling amplification of Toll-like receptor (TLR) signaling. Recent work has shown that

antimicrobial peptides (AMPs) follow a strikingly similar paradigm. Previously, AMPs were

thought of as peptides with the primary function of permeating microbial membranes.

Consistent with this, many AMPs are facially amphiphilic and can facilitate membrane

remodeling processes such as pore formation and fusion. We show that various AMPs

and chemokines can also chaperone and organize immune ligands into amyloid-like

ordered supramolecular structures that are geometrically optimized for binding to TLRs,

thereby amplifying immune signaling. The ability of amphiphilic AMPs to self-assemble

cooperatively into superhelical protofibrils that form structural scaffolds for the ordered

presentation of immune ligands like DNA and dsRNA is central to inflammation. It is

interesting to explore the notion that the assembly of AMP protofibrils may be analogous

to that of amyloid aggregates. Coming full circle, recent work has suggested that Aβ and

other amyloids also have AMP-like antimicrobial functions. The emerging perspective

is one in which assembly affords a more finely calibrated system of recognition and

response: the detection of single immune ligands, immune ligands bound to AMPs,
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and immune ligands spatially organized to varying degrees by AMPs, result in different

immunologic outcomes. In this framework, not all ordered structures generated during

multi-stepped AMP (or amyloid) assembly are pathological in origin. Supramolecular

structures formed during this process serve as signatures to the innate immune system

to orchestrate immune amplification in a proportional, situation-dependent manner.

Keywords: antimicrobial peptides, amyloids, self-assembly, Toll-like receptors, innate immunity, autoimmune

diseases, neurodegenerative diseases

INTRODUCTION

Amyloids and antimicrobial peptides (AMPs) are two classes
of proteins that have fascinating biophysical and structural
properties. Until recently, they were thought to be distinct
entities with vastly different functions. Amyloids were strictly
pathologic and accumulation in tissues invariably led to diseases
(1). In comparison, AMPs are considered essential components
of the innate immune system, defending against invasive
microbial infections and sounding the alarm to activate cellular-
mediated immune responses (2, 3). Within the last 5–10
years, emerging work from collaborations between bioengineers,
amyloid biologists, and immunologists has dramatically blurred
the lines between amyloids and AMPs. AMPs and amyloids
have strikingly similar structural and biophysical properties that
enable them to self-assemble with immune ligands like DNA to
amplify immune responses (4–6). Surprisingly, many amyloids
possess hidden antimicrobial activity in addition to their known
cytotoxic properties, suggesting a potential endogenous role in
host defense (7, 8). AMPs and bacterial amyloids have also
been implicated in the pathogenesis of autoimmune diseases like
lupus and psoriasis (5, 9–13), parallel to the proinflammatory
role of amyloids in neurodegeneration (14). Disentangling the
molecular basis for the homeostatic and pathologic functions of
both amyloids and AMPs has proven challenging (15).

The goal of this review is to highlight fundamental studies
that showcase the unexpected similarities between amyloid and
AMP self-assembly and discuss how these findings can transform
our understanding of their functional roles in host defense,
inflammation, and disease. While some effort has been made in
the literature to compare and contrast amyloids and AMPs, it
has been difficult to identify common themes due to the sheer
diversity of sequences and structures in both classes of molecules
(Figure 1). Here, we begin by first providing a short overview of
AMPs and their known antimicrobial and immunomodulatory
functions. We focus on recent work from our group that outlines
a novel emerging paradigm for understanding how AMPs talk
to the innate immune system. We find that AMPs self-assemble
into amyloid-like protofibrils that act as molecular templates
to scaffold canonical immune ligands into spatially periodic
nanocomplexes, which amplify immune responses via pattern-
recognition receptors (PRRs) such as the Toll-like receptors
(TLRs) (Figure 2). We demonstrate how this paradigm is general
to other immune proteins beyond AMPs such as chemokines
as well as other TLRs. We then discuss implications for the
synergistic role of AMPs in normal host defense as well as in

autoimmunity. In the second part of the review, we compare
AMP self-assembly to amyloid self-assembly in the contexts
of antimicrobial and membrane-remodeling activity (Figure 3).
Lastly, we summarize how the functional similarities between
AMPs and amyloids extends to bacterial amyloids as well in the
realm of immunomodulation. By borrowing lessons and tools
from the AMP literature, we find that amyloids potentially have
endogenous functions beyond their pathologic consequences.
We conclude by suggesting future research directions that can
integrate our knowledge of AMP and amyloid biology to uncover
mechanisms of disease and develop new targeted therapies.

AMPs ORGANIZE IMMUNE LIGANDS INTO
SPATIALLY PERIODIC NANOCOMPLEXES
TO AMPLIFY TLR ACTIVATION

AMPs are part of an ancient arm of the innate immune
system that represents the first line of defense against microbial
infections (2). AMPs are found in almost all living organisms
including vertebrates, invertebrates, and plants (16–18), and
can be broadly categorized by their secondary structures:
the α-helical AMPs, β-sheet AMPs, AMPs with cross α-β
structures, and extended linear peptides with specific enriched
amino acids (19–21) (Figure 1). The prototypical human
AMP is cathelicidin (LL37), which is an α-helical AMP with
essential anti-infective and immunomodulatory functions (28,
29). Prototypical human β-sheet AMPs are the defensins. The
mechanisms underpinning the antimicrobial activity of AMPs
are thoroughly reviewed elsewhere but we briefly discuss it
here (3, 30–32). In general, AMPs are cationic (+2 to +9)
and amphiphilic with segregated groups of hydrophobic and
polar/charged residues (2). These properties enable AMPs to
electrostatically bind to negatively charged bacterial membranes
and embed themselves into the membrane via hydrophobic
interactions. Several models have been proposed for membrane
permeation, including the “barrel-stave” model, “carpet” model,
and “toroidal-pore” model (32). In the “barrel-stave” and
“toroidal-pore” models, AMPs self-assemble into bundles that
cylindrically insert into bacterial membranes to form aqueous
pores, whereas in the “carpet” model, AMPs disintegrate the
membrane via micellization (33). We have shown that AMP
antimicrobial function correlates with its ability to induce
negative Gaussian curvature (NGC) in bacterial membranes,
a topological criterion for pore formation and membrane
permeation (34). However, antimicrobial peptides are not only
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FIGURE 1 | Structures of prototypical antimicrobial peptides, cytokines/chemokines, and amyloids. LL37 (22) and human β-defensin 2 (23) are canonical α-helical and

β-sheet AMPs, respectively. CXCL4 (24) and IL-26 [homology model shown based on IL-19 (25)] are representative immune signaling molecules that also have known

direct antimicrobial properties. Amyloid β (26) and α-synuclein (27) are the amyloids implicated in Alzheimer’s disease and Parkinson’s disease. The monomeric

structures were taken from the Protein Data Bank (PDB) and visualized in Chimera (UCSF).

limited tomembrane permeation. AMPs can also kill bacteria and
fungi by disrupting metabolic gradients, inhibiting ribosomes,
and binding to intracellular nucleic acids (35). However, the
most underappreciated aspect of AMP function is their ability to
amplify immune responses by autocrine signaling via PRRs such
as TLRs. AMPs can signal through PRRs via direct binding. LL37
has been shown to be a chemoattractant for leukocytes by binding
to the formyl peptide receptor-like 1 (FPRL1) (36). Furthermore,
β-defensins are known to be chemotactic for monocytes and
macrophages by binding to the CCR6 receptor (37), and β-
defensin 2 is a known ligand for Toll-like receptor 4 (TLR4) (38).
Despite this work, it was not known until recently whether AMPs
could signal to PRRs without being direct ligands, or whether
they could serve as chaperones by binding to immune ligands
such as nucleic acids.

In a series of groundbreaking studies, Lande et al. showed
that LL37 can break immune tolerance to self-DNA in diseases
like lupus and psoriasis by forming insoluble complexes that
are phagocytosed by immune cells. In these diseases, LL37 is
overexpressed in the skin and blood and are predominantly
produced by neutrophils and keratinocytes (39–41). LL37-
DNA complexes are formed extracellularly and are internalized
into the endosomes of plasmacytoid dendritic cells (pDCs),
amplifying type I interferon (IFN-α) production by binding
to Toll-like receptor 9 (TLR9). They also showed that
other cationic AMPs in the skin possess a similar property,
including the β-defensins and lysozyme (42). To understand
the molecular basis for how LL37 and other AMPs signal
through TLR9, we characterized the structures of numerous
AMP-DNA complexes using X-ray scattering and correlated
them with their ability to activate pDCs via TLR9 (43). We
found that LL37 and β-defensins electrostatically self-assemble
with DNA into spatially periodic grill-like nanostructures with
well-defined inter-DNA spacings, and that the inter-DNA
spacing within these complexes correlated directly with the
quantitative degree of cytokine production (Figures 2A–D).
The biophysics of the hierarchical electrostatic self-assembly of
rigid polyelectrolytes like DNA has been well-described in the
literature and is thoroughly discussed elsewhere (45–47). AMP-
DNA complexes with spacings well-matched with the steric

size of TLR9 enabled multivalent binding to clustered TLR9
on the endosomal membrane and IFN-α production orders
of magnitude higher than expected from individual ligands
(45). Surprisingly, this phenomenon was independent of the
degree of endosomal uptake, suggesting that this differential
response was solely due to differences in the nanostructures
of the complexes. This conceptual transformation suggested
that a much broader range of molecules could be predicted
to activate TLR9 if they had the right physicochemical
properties to organize and present DNA at optimal periodic
positions that promotemultivalent interactions with an ensemble
of TLR9.

Inspired by this, we set out to discover general rules for
how α-helical AMPs like LL37 can self-assemble into molecular
templates for DNA binding and amplify immune responses.
Previous work has shown that artificial patchy amphiphiles
can be designed to self-assemble into various unique structures
(48, 49). By combining computer simulations with X-ray
structural characterization, we found that LL37 oligomerizes
into a superhelical amyloid-like protofibril in the presence of
DNA, with hydrophobic residues buried in the interior and
outward-facing cationic residues (4) (Figures 2A,B). The LL37
protofibril cross-links DNA into a 4-fold coordinated lattice
with inter-DNA spacings commensurate with the size of TLR9.
We conducted experiments with other α-helical AMPs with
different charge densities and hydrophobicities such as melittin
(50) and buforin (51). We discovered that formation of this
amyloid-like protofibril requires sufficient hydrophobicity to
enable polymerization into a superhelix and cationic charge
density well-matched to the high anionic charge density of DNA.
Remarkably, we discovered that although melittin was able to
form optimized complexes with DNA for TLR9 activation, its
cytotoxicity to immune cells prevented cytokine production. By
attenuating its cytolytic activity while retaining its ability to self-
assemble into 4-fold coordinated nanocomplexes with DNA at
the optimal inter-DNA spacing, we rescued its ability to activate
TLR9 (4). This highlighted that there exist natural tradeoffs in
antimicrobial and immunomodulatory functions of AMPs, and
that we can deterministically modulate them by altering the
AMP’s physicochemical properties.
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FIGURE 2 | AMPs and amyloids organize immune ligands into spatially periodic nanocomplexes to amplify TLR activation. (A) LL37 self-assembles into a 4-fold

amyloid-like superhelical protofibril in the presence of DNA. Hydrophobic residues are buried in the interior of the protofibril while cationic residues are exposed at the

perimeter. (B) Structure of the LL37-DNA complex showing cross linking of spatially periodic DNA strands by LL37 protofibrils at an inter-DNA spacing of 3.40 nm,

which is optimal for TLR9 binding and amplification of cytokine production. (C) End-on view and (D) top-down view of geometrically organized DNA immune

complexes binding to clustered TLR9 in the endosomal membrane. In addition to the LL37-DNA complex, CXCL4-DNA complexes formed in scleroderma and

curli-DNA complexes from Salmonella biofilms also demonstrate similar structural properties that enable amplification of TLR9 in immune cells and type I interferon

production. (A,B) are adapted with permission from (4). (C,D) are adapted with permission from (44) and (10).

The next natural question to ask is whether this phenomenon
is general to other immune ligands and innate immune
receptors. Gallo and colleagues have previously shown that
LL37 can break immune tolerance to double-stranded RNA
(dsRNA) released from keratinocytes in psoriasis and other
cutaneous diseases (52–55). Given the structural homology of
TLR9 to Toll-like receptor 3 (TLR3) and DNA to dsRNA,
respectively, we decided to map out the structural rules
for immune activation of TLR3 by dsRNA complexes (56).
We characterized the structures of numerous AMP-dsRNA
complexes (LL37 and various truncated variants) and tested their
ability to induce IL-6 production from psoriatic keratinocytes
via TLR3. Cognate to LL37-DNA complexes, we found that
LL37-dsRNA complexes formed nanocrystalline structures with
well-defined inter-dsRNA spacings, and that complexes that
maximally activated TLR3 had spacings perfectly matched
with the steric size of TLR3. A mathematical model and
computer simulation of TLR3 binding to spatially periodic
AMP-dsRNA complexes recapitulated the experimental data
and showed that both the inter-dsRNA spacing and the
number of repeat units within the complexes were primary
determinants of immune activation (56). This validated the

idea that innate immune receptors like TLR9 and TLR3 can
recognize both single ligands, as well as the crystallinity of
spatially periodic, geometrically patterned ligands templated by
molecular chaperones like AMPs.

As it turns out, this phenomenon is not limited to AMPs,
but is rather general to other immune signaling proteins.
Chemokines are a well-studied class of immune signaling
molecules that are known to exert their biological activities
by binding to G-protein coupled receptors (GPCRs) on
the surface of immune cells. We discovered an unexpected
signaling pathway for chemokine (C-X-C motif) ligand 4
(CXCL4)/platelet factor 4 (PF4) and its role in the pathogenesis of
scleroderma. Interestingly, CXCL4 naturally self-assembles into
an oligomeric homotetramer and has a cationic, amphipathic
cross α-β structure that is homologous to that of defensin
antimicrobial peptides (57) (Figure 1). It has also previously
been shown to exert antimicrobial activity (58–62). CXCL4
is typically highly expressed in platelets and plays a key role
in hemostasis and wound healing (63). CXCL4 is known
to bind to anionic heparin, particularly in the context of
heparin-induced thrombocytopenia (64–66), but its causal role
in inflammatory diseases was unclear. We discovered that
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like LL37 and other AMPs, CXCL4 can self-assemble with
microbial and self-DNA to form nanocomplexes to amplify IFN-
α production via TLR9 within skin pDCs (Figures 2C,D). We
identified CXCL4-DNA complexes in the blood and skin of
scleroderma patients, and levels of these complexes correlated
directly with the type I interferon signature (44). Surprisingly,
this activity was independent of the canonical CXCL4 receptor,
CXCR3. We predict that many other chemokines likely possess
similar properties, since they share a structural backbone and
have close physicochemical similarity, including the ability
to self-assemble into oligomers. Taken together, our findings
are consistent with a robust emerging conceptual framework
where diverse classes of molecules can signal to the innate
immune system by scaffolding endogenous immune ligands
into spatially periodic nanocomplexes, rather than being
direct agonists.

SYNERGY BETWEEN THE
ANTIMICROBIAL AND
IMMUNOMODULATORY PROPERTIES OF
AMPs AND CHEMOKINES

Thus far, we have demonstrated that AMPs and chemokines
are multifunctional, and can exert direct antimicrobial activity
and modulate immune responses via PRRs. Due to their
cationicity and amphipathicity, AMPs are capable of directly
killing microbes through membrane permeation, inhibition of
metabolic machinery, and disruption of electrostatic gradients.
However, the same physicochemical features allow them to
also self-assemble into ordered nanocrystalline complexes with
immune ligands such as DNA and dsRNA by functioning
as structural scaffolds. These complexes can potently induce
inflammation by amplifying Toll-like receptor activation via
receptor clustering, and the crystallinity of these complexes can
determine the degree of immune amplification (43).What are the
consequences of this multifunctionality for host defense?

Synergy between the dual antimicrobial and
immunomodulatory functions of many AMPs and chemokines
enables them to play an important role in protection
against infections and in mediating autoimmune disease
and inflammation. Certain AMPs and chemokines are capable of
lysing and killing bacteria and presenting fragments of bacteria
such as DNA to innate immune receptors. For instance, Meller
et al. demonstrated that interleukin 26 (IL-26), a cytokine
secreted by human interleukin-17 producing helper T cells
(TH17), both kills bacteria and promotes immune sensing of
bacterial and host cell death, driving the potent antimicrobial
and proinflammatory function of TH17 cells (67) (Figure 1).
IL-26 is a highly cationic and amphipathic protein that possess
broad-spectrum antimicrobial activity against several gram-
negative bacterial strains including P. aeruginosa, E. coli, and K.
pneumoniae, and gram-positive bacteria S. aureus (67, 68). IL-26,
like AMPs, can oligomerize into multimers and lyse bacteria by
forming pores in their membranes. The antimicrobial properties
of TH17 cell-derived IL-26 helps explain why patients defective
in TH17 cells are highly susceptible to S. aureus infections

(69), and why depletion of TH17 cells during infection by
simian immunodeficiency virus results in the dispersal of gut
bacteria (70).

Upon bacterial killing, TH17 cell-derived IL-26 triggers potent
immune activation. IL-26 forms nanocrystalline complexes with
bacterial DNA released during the antimicrobial response. These
complexes are internalized into the endosomal compartments
of pDCs and induce an amplified production of IFN-α via
recruitment and super-selective binding of TLR9 receptors. Type
I interferons are responsible for driving many proinflammatory
responses, including CD8+ T cell activation (71, 72), TH1 cell
differentiation (72), NK cell activation, dendritic cell maturation
(73, 74), and promotion of antibody-secreting plasma cells (75).
Consequently, their production has been shown to be beneficial
in the context of extracellular bacterial infections, including the
resolution and control of infections caused by P. aeruginosa, S.
pneumoniae, and E. coli (76, 77), and reducing inflammation in
mouse models of bacterial sepsis (78). In addition to serving as
a direct antimicrobial, IL-26 has evolved the ability to amplify
and regulate innate and adaptive responses to extracellular
bacteria. Its dual functionality allows our immune system tomore
effectively clear bacterial infections. Modulating the endogenous
activity of IL-26 may offer promising strategies to enhance our
natural host defense against microbes.

IL-26 and CXCL4 are likely several of many examples
of multifunctional molecules that play a synergistic role
in host defense against microbes via direct killing and
immunomodulation, in addition to their other homeostatic
functions. Recently, other interferons like IFN-β (79) and IFN-
γ (80) were shown to exhibit direct antimicrobial properties in
addition to their known immunomodulatory functions. These
findings suggest that the nature has evolved a way to bioconjugate
multiple distinct functions into the same amino acid sequence
(81), and that understanding how the immune system works
requires us to examine these hidden functions.

COMPARISON OF AMP AND AMYLOID
SELF-ASSEMBLY

Here, we draw comparisons between the self-assembly of AMPs
and the classical self-assembly of amyloids. Amyloids constitute
a broad class of proteins that have the unique ability to
aggregate into fibrils with characteristic secondary structures.
The structural, physicochemical, and biological properties of
AMPs are similar to those of many amyloid proteins. The
majority of amyloids have a β-sheet secondary structure, but
recently a subset of α-helical amyloids was identified (82, 83).
Amyloids can be broadly categorized into those of eukaryotic and
prokaryotic origins. Human endogenous amyloids are associated
with over 50 distinct disease processes, the most famous of
which is amyloid β-peptide (Aβ) in Alzheimer’s disease (AD)
(Figure 1). More and more proteins are being discovered to have
amyloidogenic properties. Whether amyloids play a causal role in
disease or are merely a consequence of disease is hotly debated.
However, amyloids have unequivocally been shown to exhibit
direct cytotoxic activity against human cells. The best data is
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FIGURE 3 | Supramolecular self-assembly of AMPs and amyloids enables membrane remodeling activity and immunomodulation. Monomers of AMPs and amyloids

sequentially self-assemble into oligomers and protofibrils or fibrils. Oligomeric forms are predominantly responsible for mediating membrane permeation, including

pore formation and membrane fusion leading to direct antimicrobial activity and cytotoxicity. Protofibrils and fibrils can signal to the innate immune system either by

direct receptor binding or by the geometric scaffolding of immune ligands such as DNA and dsRNA. Both AMPs and amyloids can engage a broad range of immune

receptors including TLR2, TLR3, TLR4, TLR9, FPR2, FPRL1, and NLRP3.

available for Aβ, but many other amyloids have been shown to
self-assemble into structures that can disrupt membranes (84)
and signal to the immune system (Figure 3).

Aβ is the main component of amyloid plaques found
within neurons in AD brains and is thought to induce
cytotoxicity leading to neuronal cell death (85) via multiple
mechanisms (86–89). Traditionally, Aβ has been characterized
as a functional catabolic byproduct of amyloid precursor protein
(APP) without much evidence for a possible endogenous
homeostatic function (90). However, recent in vitro studies have
shown that Aβ can exhibit AMP-like direct antimicrobial activity
by disrupting membranes (91) and may play a role as an effector
molecule of innate immunity, exhibiting broad-spectrum activity
against several common and clinically relevant organisms (92)
(Figure 3). In a directly related study, Kumar et al. highlighted
the potent antimicrobial activity of Aβ and demonstrated its
biological relevance in host defense through in vivo models
of infection. Aβ expression is associated with increased host
survival in both nematode and mouse models of bacterial (93)
and viral infection (94). Low Aβ expression resulted in greater
death of APP-KO mice after infection. The protective role of
Aβ can be attributed to classic AMP mechanisms characterized
by reduced microbial adhesion, bacterial membrane disruption,
and entrapment of microbes by Aβ fibrils (93). Alternatively,
low levels of fibrillar Aβ may signal to the immune system and
elicit inflammation to keep the immune system or the infection
in check. Low levels of Aβ can get cleared without amyloid
deposition. Nonetheless, these data imply that Aβ possesses a

normally protective role in host defense that, when dysregulated,
can lead to neurodegenerative disease. Aβmay normally function
as an endogenous inducible AMP that is cleared upon resolution
of inflammation. However, when dysregulated in the right
of genetic or environmental context, Aβ instead forms toxic
amyloid oligomers leading to neuronal cell death and eventually
deposits leading to chronic inflammation (95).

It is important to note that genetic factors may also be
involved in the dysregulation of Aβ production in addition to
environmental factors like bacterial and viral infections (96, 97).
Overexpression of APP on chromosome 21 is associated with
AD, and individuals with Down syndrome (Trisomy 21) are at a
higher risk of AD relative to the population (96). In addition, Aβ

from individuals with the “Arctic” mutation (E693G 669 on APP)
tends to self-assemble into protofibrils at a much higher rate than
the wild type protein (98). A larger number of additional genetic
polymorphisms have been identified which affect Aβ cytotoxicity
(99), but their consequences on Aβ in host defense is currently
unknown. It is also possible that genetic polymorphisms in other
immune and inflammatory genes can alter Aβ production and
contribute to AD. For example, the apolipoprotein gene ApoE4 is
another major genetic risk factor for AD (100, 101), and deficient
clearance of Aβ is associated with disease (102). Further work
will be required to elucidate how these genetic changes affect the
function of Aβ in host defense and inflammation.

Similarly, while AMPs are typically protective, dysregulation
of AMP expression can lead to host cell toxicity, degenerative
pathologies, and chronic inflammation and autoimmunity as
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for host defense and immune signaling. Both AMPs and amyloids are involved

in antimicrobial defense, immunomodulation, and homeostasis, but

dysregulation can lead to adverse outcomes such as cytotoxicity, chronic

inflammation, and autoimmune diseases like lupus, and degenerative diseases

like Alzheimer’s disease and Parkinson’s disease. Further work will be required

to elucidate the mechanisms of how such a delicate balance is attained.

described above (103–105) (Figure 4). For example, LL37 is a
human cathelicidin AMP essential for normal immune function
and protection against lethal infections (106). However, at
elevated physiological concentrations, it is cytotoxic to host
smooth muscle cells (107) and implicated in the pathogenesis
of late-stage diseases including atherosclerosis, rheumatoid
arthritis, and systemic lupus erythematosus (29). Interestingly,
certain AMPs are deposited as amyloids in common human
amyloidopathies including isolated atrial and senile seminal
vesicle amyloidosis (7, 92, 108). In fact, a large number of
naturally occurring AMPs including LL37 (4, 109), lysozyme
(110), protegrin-1 (111), plant defensins (112), temporins (113,
114), histatin 5 (115), HAL-2 (116), uperin 3.5 (117), dermaseptin
S9 (118), Cn-AMP2 (119), and longipin (120) and apolipoprotein
A-I (121) from invertebrates form amyloids or amyloid-like
fibrils in vitro and in vivo. A number of synthetic amyloid-
inspired peptides have been designed primarily as novel broad-
spectrum antibiotics (83, 122), and many AMPs are known
to oligomerize before or upon membrane binding and pore
formation (123, 124).

The potential protective effects of host-generated amyloids
have only recently emerged (7, 8, 125) despite recognition of the
association between chronic bacterial infections and amyloidosis
for nearly a century (1). Findings related to the role Aβ plays
in neuronal innate immune defense may extend to proteins
associated with amyloidopathies other than AD, several of which
have been shown to exhibit antimicrobial activity (18, 108,
126–129). Pathways that regulate innate immunity in AD and
other amyloidopathies may serve as novel targets for therapeutic
intervention. Parkinson’s disease (PD)-associated α-synuclein
has been long-studied as a model system for amyloid-mediated
cytotoxicity (130–134) due to its propensity for membrane
interactions (135, 136) via its N-terminal helix (137, 138)
(Figure 1). Recently, it was shown to be antimicrobial against a
variety of bacteria and fungi (139). Unexpectedly, it was found
to be also involved in the chemoattraction of immune cells,

suggesting a potential endogenous role in host defense (140). In
human patients with chronic gut inflammation, α-synuclein was
found to be upregulated in enteric neurons (141), a fascinating
finding given that PD often begins in the gut as constipation
before neurologic symptoms appear (142, 143). Disruption of the
ability of α-synuclein to self-assemble into oligomers on neuronal
membranes appears to be a potential therapeutic strategy in
a nematode model of PD (144). Beyond Aβ and α-synuclein,
several other amyloids or their fragments have been shown to
have antimicrobial or membrane-lytic properties, including tau
(145), islet amyloid polypeptide (IAPP) (146–148), human prion
protein (128), superoxide dismutase (127), and endostatin (149).
The functional bacterial amyloid curli, which is a key stromal
component of Salmonella biofilms (150), was also shown to form
cytotoxic oligomeric intermediates (151).

Interestingly, a recent machine learning tool originally
trained to identify antimicrobial activity in α-helical AMPs
identified a subset of naturally occurring amyloid peptides that
possess predicted membrane-permeating activity (33, 152–154),
among numerous other classes of molecules (155, 156). This
demonstrates that data-driven approaches may be helpful in
further identifying amyloids that are involved in host defense, but
it is clear that much more work needs to be done to validate the
extent and relevance of that function.

IMMUNOMODULATORY ASPECTS OF
AMYLOIDS AND SIMILARITY TO AMPs

The functional similarities between AMPs and Aβ amyloids
extend to bacterial amyloids as well. In bacterial biofilms,
bacterial amyloids form the building blocks of the biofilm
extracellular matrix alongside extracellular DNA (eDNA) (157).
In a series of landmark papers, Tükel and colleagues showed that
the biofilm amyloid curli from Salmonella and E. coli activated
TLR2 (158–160) (Figure 3). Subsequent studies have shown that
TLR2/TLR1 heterocomplex recognized the fibrillar structure of
amyloids from both prokaryotic and eukaryotic origin including
curli, Aβ and serum amyloid A (SAA) (158, 160–162). In the
case of curli, the adaptor molecule CD14 further enhanced the
recognition of curli via the TLR2/TLR1 heterocomplex (163).
These data instigated further studies investigating whether the
conserved fibrillar structure of amyloids serve as a pathological
molecular signature for the innate immune system. Consistent
with this idea, fibrillar curli (164), Aβ (14), serum amyloid A
(165), and IAPP (166) elicited IL-1β cytokine production by
directly activating the NLRP3 inflammasome in macrophages.
This process impacts the innate immune system in multiple
ways: (1) TLR2 activation initiated the pre-IL-1β production and
amyloid internalization, (2) NLRP3 inflammasome activation
by cytosolic fibrils activated caspase1 and cleaved the pre-IL-
1β into mature IL-1β (164). In addition to TLR2, possible
activation of TLR4 and TLR6 by Aβ was also reported (167, 168).
However, it is not known whether the observed activation of
TLR4 and TLR6 was due to the generation of additional Aβ

structural conformations during in vitro fibrillization or any
other contaminating factors. In invertebrates, amyloid formation
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is key to activation of the innate immune system and host
defense. SAA from marine bivalves resembling SAA from
vertebrates is a potent acute phase protein and are induced upon
bacteria infection (169). In insects such as Heliothis virescens, the
functional amyloid P102 is synthesized and released to protect
against pathogens such as bacteria and parasites. This can occur
in response to lipopolysaccharide stimulation (170). The secreted
amyloid layer acts as a molecular scaffold to promote localized
melanin synthesis and immune cell adhesion to foreign invaders
(171). However, it is unknown whether they play a role in direct
receptor binding.

Previously, we showed that AMPs like LL37 can self-assemble
into an amyloid-like superhelical protofibril to present spatially
ordered DNA to TLR9, and that AMP self-assembly with
immune ligands can enable signaling through a broad range of
PRRs without being direct agonists. Interestingly, nucleic acids
have previously been shown to accelerate amyloid fibrillation
and serve as molecular templates for self-assembly (172, 173).
AD amyloids like Aβ in particular have a propensity to bind
to DNA (174) and co-localize within nuclei of affected cells
(175, 176). Autoimmune responses to Aβ-containing amyloid
structures have been described in AD patients (177). PD-
associated α-synuclein fibrils have the ability to self-assemble
with DNA (178). Surprisingly, another endogenous amyloid
serum amyloid P component (SAP) was shown to be protective
against lupus by binding to DNA to prevent formation
of anti-DNA antibodies (179, 180), suggesting that perhaps
different amyloids are involved in regulating inflammation
and recognition of immune ligands. Previously, we showed
how structural scaffolding of immune ligands like DNA by
AMPs and amyloids dramatically affects immune outcomes (10,
43, 56). AMP-DNA complexes with inter-DNA spacings well-
matched with the size of TLR9 amplifies cytokine production,
but those with spacings that are much smaller or larger can
actually inhibit TLR9 activation and inflammation (4, 43, 45).
SAP may potentially regulate inflammation by out-competing
binding of proinflammatory amyloids to DNA. This challenges
the notion that amyloid assembly is strictly proinflammatory
or pathologic.

The ability of amyloids to act as a carrier for nucleic
acids to promote endosomal TLR signaling was only recently
discovered. Di Domizio et al. showed that artificially formed
amyloid fibrils bound to DNA to form amyloid-DNA complexes
(181). When administered systemically, these amyloid-DNA
promoted systemic autoimmunity, autoantibody production,
and lupus-like syndromes in mice by amplifying TLR9
activation in pDCs (6) (Figure 3). A similar observation
was made with curli proteins and eDNA found at close
proximity in the extracellular matrix of the biofilm. Curli
and eDNA formed irreversible complexes together. Similar to
what was observed with human amyloids, DNA accelerated
the self-assembly process of bacterial amyloid curli (182).
Incorporation of DNA into curli rendered DNA resistant
to enzymatic degradation. Systemic administration of curli-
DNA complexes induced autoantibody production and type I
interferon production (12) suggesting that complexes of curli-
like bacterial amyloids with DNA may promote inflammatory

disorders (183). These findings are fascinating in the setting
of our previous work showing that LL37 self-assembles into
amyloid-like protofibrils to amplify TLR9 activation. We set
out to examine the structures of curli-DNA complexes and
found that, similar to LL37 and other AMPs and chemokines,
curli was able to organize DNA into geometrically optimal
nanostructures to amplify TLR9 activation (Figures 2C,D).
Immune activation occurred via a two-step process—curli-
DNA complexes were first internalized into immune cells
via binding to TLR2 (158–160) and then activated TLR9
once inside the endosome leading to the generation of
type I interferons (5). Engagement of TLR2 and TLR9
also contributed to the autoantibody production through
unknown mechanisms.

For the longest time, it has been known that infections
initiate and/or exacerbate autoimmune diseases. However, the
mechanisms of how infections trigger autoimmunity remained
a mystery. Besides curli producing enteric bacteria, many
important human pathogens such as Borrelia burgdorferi (184),
Mycobacterium tuberculosis (185), Pseudomonas aeruginosa
(186, 187), and Staphylococcus aureus (188) also produce
amyloids. Individuals infected with these pathogens develop
some form of autoimmune sequelae such as inflammatory
arthritis (13). Phenol soluble modulins (PSMs) from
Staphylococcus biofilms (189–191) and Fap amyloids from
Pseudomonas biofilms (186) have been studied concisely,
but at present, the mechanisms of DNA binding by other
functional amyloids remain unclear, and it remains to be seen
whether this has consequences for immune signaling and
inflammation. Nevertheless, extracellular DNA is known to
facilitate the formation of functional amyloids in Staphylococcus
biofilms (192), and PSMs are known to bind directly to
human formyl peptide receptor 2 (FPR2) (193). Together,
these studies strongly suggests a link between chronic bacterial
infections, biofilms, and autoimmune diseases (13, 194)
(Figure 4). By therapeutically targeting curli amyloid fibers
(195), disruption could potentially eradicate bacterial biofilms
and secondary autoimmunity.

Formation of amyloid deposits by subunits of different
amyloid fibrils is termed as cross-seeding. The co-existence
of combinations of α-synuclein, tau, prion protein, and Aβ

have all been observed in amyloid deposits in humans (144).
In the past several years, few studies also investigated cross-
seeding events and a possible link between neurodegenerative
diseases and bacterial amyloids. Cross-seeding between SAA
and curli was reported in a mouse model of secondary
amyloidosis (147). Recent studies have shown that curli can
also seed the self-assembly of human α-synuclein (6, 196–
198). Colonization of α-synuclein-overexpressing mice with
curli-producing E. coli exacerbates motor impairment and
GI dysfunction, and promotes α-synuclein deposition in
the brain (199). However, the spatial interactions between
bacterial and host amyloids that would allow for cross-
seeding and how these interactions could be influenced by
binding to nucleic acids to induce inflammation still remains
unknown. We feel that this is an area that should attract and
reward attention.
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CONCLUSIONS AND OUTLOOK

In this review, we discussed the unique functional reciprocity of
amyloids and antimicrobial peptides, and how supramolecular
self-assembly changes our understanding of their respective roles
in host defense and immune activation. We outlined recent work
highlighting novel molecular mechanisms for AMP-mediated
immunomodulation via TLRs, and implications for antimicrobial
responses and inflammatory diseases. We then compared AMP
and amyloid self-assembly in the contexts of antimicrobial
and membrane-remodeling activity, cytotoxicity, and immune
signaling using LL37, Aβ, and curli as fundamental examples.

By critically examining the AMP and amyloid literature
together, we discover several convergent themes. First, the
amphiphilic properties unique to AMPs and amyloids enable
them to cooperatively self-assemble into supramolecular
nanostructures to modulate the innate immune system and
defend against microbial infections. AMPs, which were thought
of as only having antimicrobial function, are now known to
modulate innate immune receptors by forming amyloid-like
protofibrils and scaffolding canonical immune ligands like DNA
and RNA into geometrically organized patterns (Figure 2).
Recognition of these complexes by the immune system drives
autoimmunity in diseases like lupus, psoriasis, and scleroderma.
In a parallel direction, functional bacterial amyloids such as curli
from Salmonella has shown how these stromal biofilm proteins
organize eDNA into cognate spatially ordered complexes to
induce autoimmunity in diseases like lupus. Further studies
will be required to map out the immune activation landscape
of both eukaryotic and prokaryotic amyloids and their distinct
mechanisms (Figure 3). For example, exploring how amyloids
bind to other immune ligands and identifying the structural
rules for immune activation would be incredibly fascinating,
analogous to our work with AMP self-assembly. Can we adapt
this paradigm to explain autoimmune sequelae of other bacterial
infections? We imagine that lessons learned from work on
the α-helical AMPs can inform new research directions for
α-helical amyloids such as the Staphylococcus PSMs, and vice
versa. Similarly, our strong understanding of the self-assembly
of β-sheet amyloids may inform a better understanding about
how β-sheet rich AMPs and AMP-like molecules such as
chemokines oligomerize.

Second, the revolutionary work demonstrating that Aβ, which
has no known primary function, is an AMP that protects
the nervous system against bacterial and fungal infections
fundamentally challenges our view of endogenous human
amyloids as solely pathologic. This model of Aβ activity suggests
that excessive β amyloid deposition in AD and pathogenesis may
not necessarily arise from an intrinsic abnormal propensity for
Aβ to aggregate, but rather as a consequence of dysregulation

of the brain’s normal host defense system against invasive
infections, similar to how dysregulation of AMP expression and

production in tissues can adversely lead to autoimmune diseases
(Figure 4). The discovery that α-synuclein, which also has no
previous known primary function, is a chemoattractant and
is induced to alert the immune system during gut infections
opens up incredible opportunities for discovery. Are there
other amyloids with hidden antimicrobial activity with potential
roles in host defense? What are the primary roles of other
endogenous amyloids?

We are just beginning to elucidate the role of supramolecular
assembly in immune recognition and modulation. Recent studies
have shown that innate immune receptor adaptor proteins
like melanoma differentiation-associated protein 5 (MDA5),
which senses cytosolic dsRNA, can self-assemble into amyloid-
like helical filaments in the presence of dsRNA (200, 201).
Helical filament assemblies can also be observed in the signaling
pathways of the RIG-I-like receptors (RLRs), AIM2-like receptors
(ALRs), and mitochondrial antiviral-signaling protein (MAVS)
(202–204). Given that we know how AMPs and amyloids
self-assemble with nucleic acids to talk to TLRs, further
work will be required to illuminate how they interact with
filamentous assemblies of cytoplasmic immune receptors. In
summary, we hope that this review will serve to highlight the
advances, opportunities, and outlook for the AMP and amyloid
communities, and stimulate collaborations between AMP and
amyloid biologists, immunologists, as well as bioengineers.
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