
2 0 2 0 I E E E I nt er n ati o n al C o nf er e n c e o n Bi g D at a (Bi g D at a)

9 7 8- 1- 7 2 8 1- 6 2 5 1- 5/ 2 0/ $ 3 1. 0 0 © 2 0 2 0 I E E E 2 8 8

O v er S k et c h e d N e wt o n: F ast C o n v e x O pti mi z ati o n
f or S er v erl ess S yst e ms

Vi p ul G u pt a 1 , S w a n a n d K a d h e1 , T h o m as C o urt a d e1 , Mi c h a el W. M a h o n e y2 a n d K a n n a n R a m c h a n dr a n 1

1 D e p art m e nt of E E C S, U C B er k el e y
2 I C SI a n d St atisti cs D e p art m e nt, U C B er k el e y

E m ail: { vi p ul g u pt a, s w a n a n d. k a d h e, c o urt a d e, k a n n a nr } @ e e cs. b er k el e y. e d u, m m a h o n e y @st at. b er k el e y. e d u

A bstr a ct — M oti v at e d b y r e c e nt d e v el o p m e nts i n s e r v e rl ess s ys-
t e ms f o r l a r g e-s c al e c o m p ut ati o n as w ell as i m p r o v e m e nts i n s c al-
a bl e r a n d o mi z e d m at ri x al g o rit h ms, w e d e v el o p O v e r S k et c h e d
N e wt o n, a r a n d o mi z e d H essi a n- b as e d o pti mi z ati o n al g o rit h m
t o s ol v e l a r g e-s c al e c o n v e x o pti mi z ati o n p r o bl e ms i n s e r v e rl ess
s yst e ms. O v e r S k et c h e d N e wt o n l e v e r a g es m at ri x s k et c hi n g i d e as
f r o m R a n d o mi z e d N u m e ri c al Li n e a r Al g e b r a t o c o m p ut e t h e
H essi a n a p p r o xi m at el y. T h es e s k et c hi n g m et h o ds l e a d t o i n b uilt
r esili e n c y a g ai nst st r a g gl e rs t h at a r e a c h a r a ct e risti c of s e r v e rl ess
a r c hit e ct u r es. D e p e n di n g o n w h et h e r o r n ot t h e p r o bl e m is
st r o n gl y c o n v e x, w e p r o p os e diff e r e nt it e r ati o n u p d at es usi n g
t h e a p p r o xi m at e H essi a n. F o r b ot h c as es, w e est a blis h c o n v e r-
g e n c e g u a r a nt e es f o r O v e r S k et c h e d N e wt o n, a n d w e e m pi ri c all y
v ali d at e o u r r es ults b y s ol vi n g l a r g e-s c al e s u p e r vis e d l e a r ni n g
p r o bl e ms o n r e al- w o rl d d at as ets. E x p e ri m e nts d e m o nst r at e a
r e d u cti o n of ∼ 5 0 % i n t ot al r u n ni n g ti m e o n A W S L a m b d a,
c o m p a r e d t o st at e- of-t h e- a rt dist ri b ut e d o pti mi z ati o n s c h e m es.

I n d e x Ter ms —s e r v e rl ess c o m p uti n g, s e c o n d- o r d e r o pti mi z a-
ti o n, m at ri x s k et c hi n g, c o d e d c o m p uti n g

I. I N T R O D U C T I O N

I n r e c e nt y e ars, t h er e h as b e e n tr e m e n d o us gr o wt h i n
us ers p erf or mi n g distri b ut e d c o m p uti n g o p er ati o ns o n t h e
cl o u d, l ar g el y d u e t o e xt e nsi v e a n d i n e x p e nsi v e c o m m er ci al
off eri n gs li k e A m a z o n We b S er vi c es (A W S), G o o gl e Cl o u d,
Mi cr os oft A z ur e, et c. S er v erl ess pl atf or ms —s u c h as A W S
L a m b d a, Cl o u d f u n cti o ns a n d A z ur e F u n cti o ns — p e n etr at e a
l ar g e us er b as e b y pr o visi o ni n g a n d m a n a gi n g t h e s er v ers o n
w hi c h t h e c o m p ut ati o n is p erf or m e d. T h es e pl atf or ms a bstr a ct
a w a y t h e n e e d f or m ai nt ai ni n g s er v ers, si n c e t his is d o n e
b y t h e cl o u d pr o vi d er a n d is hi d d e n fr o m t h e us er — h e n c e
t h e n a m e s er v erl ess . M or e o v er, all o c ati o n of t h es e s er v ers is
d o n e e x p e diti o usl y w hi c h pr o vi d es gr e at er el asti cit y a n d e as y
s c al a bilit y. F or e x a m pl e, u p t o t e n t h o us a n d m a c hi n es c a n b e
all o c at e d o n A W S L a m b d a i n l ess t h a n t e n s e c o n ds [1] –[4].

T h e us e of s er v erl ess s yst e ms is g ai ni n g si g ni fi c a nt r es e ar c h
tr a cti o n, pri m aril y d u e t o its m assi v e s c al a bilit y a n d c o n v e-
ni e n c e i n o p er ati o n. It is f or e c ast e d t h at t h e m ar k et s h ar e
of s er v erl ess will gr o w b y U S D 9. 1 6 billi o n d uri n g 2 0 1 9-
2 0 2 3 (at a C A G R of 1 1 %) [5]. I n d e e d, a c c or di n g t o t h e
B er k el e y vi e w o n S er v erl ess C o m p uti n g [6], s er v erl ess s yst e ms
ar e e x p e ct e d t o d o mi n at e t h e cl o u d s c e n ari o a n d b e c o m e
t h e d ef a ult c o m p uti n g p ar a di g m i n t h e c o mi n g y e ars w hil e
cli e nt-s er v er b as e d c o m p uti n g will wit n ess a c o nsi d er a bl e
d e cli n e. F or t h es e r e as o ns, usi n g s er v erl ess s yst e ms f or l ar g e-

A v er a g e	 R u nti m es	 o n	 A W S	 L a m b d a

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0

W or k er s r et ur n e d

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

Ti
m
e

(s
ec

o
n
ds

)

3 4 5 0 3 5 0 0 3 5 5 0 3 6 0 0

1 4 0

1 4 5

1 5 0

1 5 5

1 6 0

1 6 5

1 7 0

1 7 5

~ 2 %	 str a g gl ers

Fi g. 1: A v er a g e j o b ti m es f or 3 6 0 0 A W S L a m b d a n o d es o v er 1 0
tri als f or distri b ut e d m atri x m ulti pli c ati o n. T h e m e di a n j o b ti m e is
ar o u n d 1 3 5 s e c o n ds, a n d ar o u n d 2 % of t h e n o d es t a k e u p t o 1 8 0
s e c o n ds o n a v er a g e.

s c al e c o m p ut ati o n h as g ar n er e d si g ni fi c a nt att e nti o n fr o m t h e
s yst e ms c o m m u nit y [3], [4], [7] –[1 2].

D u e t o s e v er al cr u ci al diff er e n c es b et w e e n t h e tr a diti o n al
Hi g h P erf or m a n c e C o m p uti n g (H P C) / s er v erf ul a n d s er v er-
l ess ar c hit e ct ur es, e xisti n g distri b ut e d al g orit h ms c a n n ot, i n
g e n er al, b e e xt e n d e d t o s er v erl ess c o m p uti n g. First, u nli k e
s er v erf ul c o m p uti n g, t h e n u m b er of i n e x p e nsi v e w or k ers i n
s er v erl ess pl atf or ms is fl e xi bl e, oft e n s c ali n g i nt o t h e t h o us a n ds
[3], [4]. T his h e a v y g ai n i n t h e c o m p ut ati o n p o w er, h o w e v er,
c o m es wit h t h e dis a d v a nt a g e t h at t h e c o m m o dit y w or k ers i n
s er v erl ess ar c hit e ct ur e ar e e p h e m er al a n d h a v e l o w m e m or y. 1

T h e e p h e m er al n at ur e of t h e w or k ers i n s er v erl ess s yst e ms
r e q uir es t h at n e w w or k ers s h o ul d b e i n v o k e d e v er y f e w it er a-
ti o ns a n d d at a s h o ul d b e c o m m u ni c at e d t o t h e m. M or e o v er, t h e
w or k ers d o n ot c o m m u ni c at e a m o n gst t h e ms el v es, a n d i nst e a d
t h e y r e a d/ writ e d at a dir e ctl y fr o m/t o a si n gl e hi g h-l at e n c y d at a
st or a g e e ntit y (e. g., cl o u d st or a g e li k e A W S S 3 [3]).

S e c o n d, u nli k e H P C/s er v erf ul s yst e ms, n o d es i n t h e s er v er-
l ess s yst e ms s uff er d e gr a d ati o n d u e t o w h at is k n o w n as s yst e m
n ois e . T his c a n b e a r es ult of li mit e d a v ail a bilit y of s h ar e d
r es o ur c es, h ar d w ar e f ail ur e, n et w or k l at e n c y, et c. [1 3], [1 4].
T his r es ults i n j o b ti m e v ari a bilit y, a n d h e n c e a s u bs et of
m u c h sl o w er n o d es, oft e n c all e d str a g gl ers . T h es e str a g gl ers
si g ni fi c a ntl y sl o w t h e o v er all c o m p ut ati o n ti m e, es p e ci all y i n

1 F or e x a m pl e, s er v erl ess n o d es i n A W S L a m b d a, G o o gl e Cl o u d F u n cti o ns
a n d Mi cr os oft A z ur e F u n cti o ns h a v e a m a xi m u m m e m or y of 3 G B, 2 G B a n d
1. 5 G B, r es p e cti v el y, a n d a m a xi m u m r u nti m e of 9 0 0 s e c o n ds, 5 4 0 s e c o n ds
a n d 3 0 0 s e c o n ds, r es p e cti v el y (t h es e n u m b ers m a y c h a n g e o v er ti m e).

20
20

 I
E

E
E
In

te
rn

at
io

na
l

Co
nf

er
en

ce
 o

n
Bi

g
Da

ta
 (

Bi
g

Da
ta

) |
 9

78
-1

-7
28

1-
62

51
-5

/2
0/

$3
1.

00

©2
02

0
I

E
E

E |

D
OI

:
10

.1
10

9/
Bi

g
Da

ta
50

02
2.

20
20

.9
37

82
89

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v of C alif B er k el e y. D o w nl o a d e d o n S e pt e m b er 2 9, 2 0 2 1 at 2 1: 1 4: 0 7 U T C fr o m I E E E X pl or e. R e stri cti o n s a p pl y.

289

large or iterative jobs. In Fig. 1, we plot the running times
for a distributed matrix multiplication job with 3600 workers
on AWS Lambda and demonstrate the effect of stragglers
on the total job time. In fact, our experiments consistently
demonstrate that at least 2% workers take significantly longer
than the median job time, severely degrading the overall
efficiency of the system.

Due to these issues, first-order methods, e.g., gradient
descent and Nesterov Accelerated Gradient (NAG) methods,
tend to perform poorly on distributed serverless architectures
[15]. Their slower convergence is made worse on serverless
platforms due to persistent stragglers. The straggler effect
incurs heavy slowdown due to the accumulation of tail times as
a result of a subset of slow workers occurring in each iteration.

Compared to first-order optimization algorithms, second-
order methods—which use the gradient as well as Hessian
information—enjoy superior convergence rates. For instance,
Newton’s method enjoys quadratic convergence for strongly
convex and smooth problems, compared to the linear con-
vergence of gradient descent [16]. Moreover, second-order
methods do not require step-size tuning and unit step-size
provably works for most problems. These methods have a
long history in optimization and scientific computing (see,
e.g., [16]), but they are less common in machine learning and
data science. This is partly since stochastic first order methods
suffice for downstream problems [17] and partly since naive
implementations of second order methods can perform poorly
[18]. However, recent theoretical work has addressed many of
these issues [19]–[23], and recent implementations have shown
that high-quality implementations of second order stochastic
optimization algorithms can beat state-of-the-art in machine
learning applications [24]–[28] in traditional systems.

A. Main Contributions

In this paper, we argue that second-order methods are highly
compatible with serverless systems that provide extensive
computing power by invoking thousands of workers but are
limited by the communication costs and hence the number
of iterations; and, to address the challenges of ephemeral
workers and stragglers in serverless systems, we propose and
analyze a randomized and distributed second-order optimiza-
tion algorithm, called OverSketched Newton. OverSketched
Newton uses the technique of matrix sketching from Sub-
Sampled Newton (SSN) methods [19]–[22], which are based
on sketching methods from Randomized Numerical Linear Al-
gebra (RandNLA) [29]–[31], to obtain a good approximation
for the Hessian, instead of calculating the full Hessian.

OverSketched Newton has two key components. For
straggler-resilient Hessian calculation in serverless systems,
we use the sparse sketching based randomized matrix mul-
tiplication method from [32]. For straggler mitigation during
gradient calculation, we use the recently proposed technique
based on error-correcting codes to create redundant computa-
tion [33]–[35]. We prove that, for strongly convex functions,
the local convergence rate of OverSketched Newton is linear-
quadratic, while its global convergence rate is linear. Then, go-

ing beyond the usual strong convexity assumption for second-
order methods, we adapt OverSketched Newton using ideas
from [22]. For such functions, we prove that a linear conver-
gence rate can be guaranteed with OverSketched Newton.

We extensively evaluate OverSketched Newton on AWS
Lambda using several real-world datasets obtained from the
LIBSVM repository [36], and we compare OverSketched
Newton with several first-order (gradient descent, Nesterov’s
method, etc.) and second-order (exact Newton’s method [16],
GIANT [24], etc.) baselines for distributed optimization. We
further evaluate and compare different techniques for straggler
mitigation, such as speculative execution, coded computing
[33], [34], randomization-based sketching [32] and gradient
coding [37]. We demonstrate that OverSketched Newton is
at least 9x and 2x faster than state-of-the-art first-order and
second-order schemes, respectively, in terms of end-to-end
training time on AWS Lambda. Moreover, we show that
OverSketched Newton on serverless systems outperforms ex-
isting distributed optimization algorithms in serverful systems
by at least 30%.2

B. Related Work

Our results tie together three quite different lines of work,
each of which we review here briefly.

Existing Straggler Mitigation Schemes: Strategies like
speculative execution have been traditionally used to mitigate
stragglers in popular distributed computing frameworks like
Hadoop MapReduce [39] and Apache Spark [40]. Speculative
execution works by detecting workers that are running slower
than expected and then allocating their tasks to new workers
without shutting down the original straggling task. The worker
that finishes first communicates its results. This has several
drawbacks, e.g., constant monitoring of tasks is required and
late stragglers can still hurt the efficiency.

Recently, many coding-theoretic ideas have been proposed
to introduce redundancy into the distributed computation for
straggler mitigation (e.g., see [33]–[35], [37], [41], [42]). The
idea of coded computation is to generate redundant copies of
the result of distributed computation by encoding the input
data using error-correcting-codes. These redundant copies are
then used to decode the output of the missing stragglers.
Our algorithm to compute gradients in a distributed straggler-
resilient manner uses codes to mitigate stragglers, and we
compare our performance with speculative execution.

Approximate Second-order Methods: In many machine
learning applications, where the data itself is noisy, using
the exact Hessian is not necessary. Indeed, using ideas from
RandNLA, one can prove convergence guarantees for SSN
methods on a single machine, when the Hessian is com-
puted approximately [19]–[21], [23]. To accomplish this, many
sketching schemes can be used (sub-Gaussian, Hadamard,
random row sampling, sparse Johnson-Lindenstrauss, etc. [29],
[30]), but these methods cannot tolerate stragglers, and thus
they do not perform well in serverless environments.

2A longer technical report version of this paper is available at [38].

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

290

This motivates the use of the OverSketch sketch from our
recent work in [32]. OverSketch has many nice properties,
like subspace embedding, sparsity, input obliviousness, and
amenability to distributed implementation. To the best of our
knowledge, this is the first work to prove and evaluate con-
vergence guarantees for algorithms based on OverSketch. Our
guarantees take into account the amount of communication at
each worker and the number of stragglers, both of which are
a property of distributed systems.

There has also been a growing research interest in design-
ing and analyzing distributed implementations of stochastic
second-order methods [24], [43]–[46]. However, these imple-
mentations are tailored for serverful distributed systems. Our
focus, on the other hand, is on serverless systems.

Distributed Optimization on Serverless Systems: Opti-
mization over the serverless framework has garnered signif-
icant interest from the research community. However, these
works either evaluate and benchmark existing algorithms (e.g.,
see [9]–[11]) or focus on designing new systems frameworks
for faster optimization (e.g., see [12]) on serverless. To the
best of our knowledge, this is the first work that proposes a
large-scale distributed optimization algorithm that specifically
caters to serverless architectures with provable convergence
guarantees. We exploit the advantages offered by serverless
systems while mitigating the drawbacks such as stragglers and
additional overhead per invocation of workers.

II. NEWTON’S METHOD: AN OVERVIEW

We are interested in solving on serverless systems in a dis-
tributed and straggler-resilient manner problems of the form:

f(w∗) = min
w∈Rd

f(w), (1)

where f : Rd → R is a closed and convex function bounded
from below. In the Newton’s method, the update at the (t+1)-
th iteration is obtained by minimizing the Taylor’s expansion
of the objective function f(·) at wt, that is

wt+1 = arg min
w∈Rd

{
f(wt) +∇f(wt)

T (w −wt)

+
1

2
(w −wt)

T∇2f(wt)(w −wt)
}
. (2)

For strongly convex f(·), that is, when ∇2f(·) is invertible,
Eq. (2) becomes wt+1 = wt − H−1t ∇f(wt), where Ht =
∇2f(wt) is the Hessian matrix at the t-th iteration. Given a
good initialization and assuming that the Hessian is Lipschitz,
the Newton’s method satisfies the update ||wt+1 − w∗||2 ≤
c||wt − w∗||22, for some constant c > 0, implying quadratic
convergence [16].

One shortcoming for the classical Newton’s method is that
it works only for strongly convex objective functions. In
particular, if f is weakly-convex3, that is, if the Hessian matrix
is not positive definite, then the objective function in (2)
may be unbounded from below. To address this shortcoming,

3For the sake of clarity, we call a convex function weakly-convex if it is
not strongly convex.

authors in [22] recently proposed a variant of Newton’s
method, called Newton-Minimum-Residual (Newton-MR). In-
stead of (1), Newton-MR considers the following auxiliary
optimization problem:

min
w∈Rd

||∇f(w)||2.

Note that the minimizers of this auxiliary problem and (1) are
the same when f(·) is convex. Then, the update direction in
the (t+ 1)-th iteration is obtained by minimizing the Taylor’s
expansion of ||∇f(wt + p)||2, that is,

pt = arg min
w∈Rd

||∇f(wt) + Htp||2.

The general solution of the above problem is given by p =
−[Ht]

†∇f(wt) + (I − Ht[Ht]
†)q, ∀ q ∈ Rd, where [·]† is

the Moore-Penrose inverse. Among these, the minimum norm
solution is chosen, which gives the update direction in the t-th
iteration as pt = −H†t∇f(wt). Thus, the model update is

wt+1 = wt + pt = wt − [∇2f(wt)]
†∇f(wt). (3)

OverSketched Newton considers both of these variants.

III. OVERSKETCHED NEWTON

We present OverSketched Newton, a stochastic second order
algorithm for solving—on serverless systems, in a distributed,
straggler-resilient manner—problems of the form (1).

Distributed straggler-resilient gradient computation:
OverSketched Newton computes the full gradient in each
iteration using tools from error-correcting codes [33], [34].
Our key observation is that, for several commonly encountered
optimization problems, gradient computation relies on matrix-
vector multiplications (see Sec. IV for examples). We leverage
coded matrix multiplication technique from [34] to perform
the large-scale matrix-vector multiplication in a distributed
straggler-resilient manner. The idea of coded matrix multipli-
cation is explained in Fig. 2; detailed algorithm is provided in
the technical report version of this paper [38].

Distributed straggler-resilient approximate Hessian
computation: For several commonly encountered optimiza-
tion problems, Hessian computation involves matrix-matrix
multiplication for a pair of large matrices (see Sec. IV
for several examples). For computing the large-scale matrix-
matrix multiplication in parallel in serverless systems, we use
a straggler-resilient scheme from [32] called OverSketch. It
uses a sparse sketching matrix based on Count-Sketch [29]. It
has similar computational efficiency and accuracy guarantees
as that of the Count-Sketch, with two additional properties: it
is amenable to distributed implementation; and it is resilient
to stragglers. More specifically, the OverSketch matrix is
constructed as follows.

Recall that the Hessian ∇2f(·) ∈ Rd×d. First choose the
desired sketch dimension m (which depends on d), block-size
b (which depends on the memory of the workers), and straggler
tolerance ζ > 0 (which depends on the distributed system).
Then, define N = m/b and e = ζN , for some constant ζ > 0.
Here ζ is the fraction of stragglers that we want our algorithm

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

291

S3

S3

W1

W2

W3

!

"1

"2

"1 + "2

M

Decode

"!

"1!

"2!

("1 + "2)!

"1!, ("1 + "2)!

" = "1
"2

Fig. 2: Coded matrix-vector multiplication: Matrix A is divided
into 2 row chunks A1 and A2. During encoding, redundant chunk
A1+A2 is created. Three workers obtain A1,A2 and A1+A2 from
the cloud storage S3, respectively, and then multiply by x and write
back the result to the cloud. The master M can decode Ax from the
results of any two workers, thus being resilient to one straggler (W2

in this case).

x =

!"# $%

b

m +	b
m+b

b d

d

m

#"!
Fig. 3: OverSketch-based approximate Hessian computation: First,
the matrix A—satisfying ATA = ∇2f(wt)—is sketched in parallel
using the sketch in (4). Then, each worker receives a block of each of
the sketched matrices ATS and STA, multiplies them, and commu-
nicates back its results for reduction. During reduction, stragglers can
be ignored by the virtue of “over” sketching. For example, here the
desired sketch dimension m is increased by block-size b for obtaining
resiliency against one straggler for each block of Ĥ.

to tolerate. Thus, e is the maximum number of stragglers per
N + e workers that can be tolerated. The sketch S is given by

S =
1√
N

(S1,S2, · · · ,SN+e), (4)

where Si ∈ Rn×b, for all i ∈ [1, N+e], are i.i.d. Count-Sketch
matrices4 with sketch dimension b. Note that S ∈ Rn×(m+eb),
where m = Nb is the required sketch dimension and e is
the over-provisioning parameter to provide resiliency against
e stragglers per N + e workers. We leverage the straggler
resiliency of OverSketch to obtain the sketched Hessian in a
distributed straggler-resilient manner. An illustration of OverS-
ketch is provided in Fig. 3; see the technical report version of
this paper [38] for a detailed algorithm.

Model update: Let Ĥt = AT
t StS

T
t At, where At is the

square root of the Hessian ∇2f(wt), and St is an independent
realization of (4) at the t-th iteration. For strongly-convex

4Each of the Count-Sketch matrices Si is constructed (independently of
others) as follows. First, for every row j, j ∈ [n], of Si, independently
choose a column h(j) ∈ [b]. Then, select a uniformly random element
from {−1,+1}, denoted as σ(i). Finally, set Si(j, h(j)) = σ(i) and set
Si(j, l) = 0 for all l 6= h(j). (See [29], [32] for details.)

Algorithm 1: OverSketched Newton: An Outline

Input: Convex function f ; Initial iterate w0 ∈ Rd;
Line search parameter 0 < β ≤ 1/2; Number
of iterations T

1 for t = 1 to T do
2 Compute full gradient gt in a distributed

straggler-resilient manner
3 Compute sketched Hessian matrix Ĥt in a

distributed fashion using OverSketch
4 if f is strongly-convex then
5 Compute the update direction at the master as:

pt = −[Ĥt]
−1∇f(wt)

6 Compute step-size αt satisfying the line-search
condition (5) in a distributed fashion

7 else
8 Compute the update direction at the master as:

pt = −[Ĥt]
†∇f(wt)

9 Find step-size αt satisfying the line-search
condition (6) in a distributed fashion

10 end
11 Compute the model update wt+1 = wt + αtpt at

the master
12 end

functions, the update direction is pt = −Ĥ−1t ∇f(wt). We
use line-search to choose the step-size, that is, find

αt = max
α≤1

α such that

f(wt + αpt) ≤ f(wt) + αβpTt ∇f(wt), (5)

for some constant β ∈ (0, 1/2]. For weakly-convex func-
tions, the update direction (inspired by Newton-MR [22]) is
pt = −Ĥ†t∇f(wt), where Ĥ†t is the Moore-Penrose inverse
of Ĥt. To find the update wt+1, we find the right step-
size αt using line-search in (5), but with f(·) replaced by
||∇f(·)||2 and ∇f(wt) replaced by 2Ĥt∇f(wt), according
to the objective in ||∇f(·)||2. More specifically, for some
constant β ∈ (0, 1/2], find

αt = max
α≤1

α such that

||∇f(wt + αpt)||2 ≤ ||∇f(wt)||2 + 2αβpTt Ĥt∇f(wt). (6)

Note that for OverSketched Newton, we use Ĥt in the line-
search since the exact Hessian is not available. The update in
the t-th iteration in both cases is given by

wt+1 = wt + αtpt.

Note that line-search in Eq. (5) can be solved approximately
using Armijo backtracking line search (see [16] for a general
algorithm and [24] for a distributed implementation). OverS-
ketched Newton is concisely described in Algorithm 1. Next,
we prove convergence guarantees for OverSketched Newton.

A. Convergence Guarantees
First, we focus our attention to strongly convex functions.

We consider the following assumptions. We note that these

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

292

assumptions are standard for analyzing approximate Newton
methods, (e.g., see [19], [20], [23]).

Assumptions:
1. f is twice-differentiable;
2. f is k-strongly convex (k > 0), that is, ∇2f(w) � kI;
3. f is M -smooth (k ≤M <∞), that is, ∇2f(w) �MI;
4. The Hessian is L-Lipschitz continuous, that is, for any ∆∆∆ ∈
Rd, we have ||∇2f(w + ∆)−∇2f(w)||2 ≤ L||∆||2, where
|| · ||2 is the spectral norm for matrices.

We can prove the following “global” convergence guarantee
which shows that OverSketched Newton would converge from
any random initialization of w0 ∈ Rd with high probability.5

Theorem III.1 (Global convergence for strongly-convex f).
Consider Assumptions 1, 2, and 3 and step-size αt given by
Eq. (5). Let w∗ be the optimal solution of (1). Let ε and µ be
positive constants. Then, using the sketch in (4) with a sketch
dimension Nb + eb = Ω(d

1+µ

ε2) and the number of column-
blocks N + e = Θµ(1/ε), the updates for OverSketched
Newton, for any wt ∈ Rd, satisfy

f(wt+1)− f(w∗) ≤ (1− ρ)(f(wt)− f(w∗)),

with probability at least 1 − 1/dτ , where ρ = 2αtβk
M(1+ε) and

τ > 0 is a constant depending on µ and constants in Ω(·)
and Θ(·). Moreover, αt satisfies αt ≥ 2(1−β)(1−ε)k

M .

Theorem III.1 guarantees the global convergence of OverS-
ketched Newton starting with any initial estimate w0 ∈ Rd to
the optimal solution w∗ with at least a linear rate.

Next, we can also prove an additional “local” convergence
guarantee for OverSketched Newton, under the assumption
that w0 is sufficiently close to w∗.

Theorem III.2 (Local convergence for strongly-convex f).
Consider Assumptions 1, 2, and 4 and step-size αt = 1.
Let w∗ be the optimal solution of (1) and γ and β be the
minimum and maximum eigenvalues of∇2f(w∗), respectively.
Let ε ∈ (0, γ/(8β)] and µ > 0. Then, using the sketch in
(4) with a sketch dimension Nb + eb = Ω(d

1+µ

ε2) and the
number of column-blocks N + e = Θµ(1/ε), the updates
for OverSketched Newton, with initialization w0 such that
||w0 −w∗||2 ≤ γ

8L , follow

||wt+1 −w∗||2 ≤
25L

8γ
||wt −w∗||22 +

5εβ

γ
||wt −w∗||2,

for t = 1, 2, · · · , T , with probability ≥ 1−T/dτ , where τ > 0
is a constant depending on µ and constants in Ω(·) and Θ(·).

Theorem III.2 implies that the convergence is linear-quadratic
in error ∆t = wt − w∗. Initially, when ||∆t||2 is large, the
first term of the RHS will dominate and the convergence will
be quadratic, that is, ||∆t+1||2 . 25L

8γ ||∆t||22. In later stages,
when ||wt−w∗||2 becomes sufficiently small, the second term
of RHS will start to dominate and the convergence will be
linear, that is, ||∆t+1||2 . 5εβ

γ ||∆t||2. At this stage, the sketch
dimension can be increased to reduce ε to diminish the effect

5Due to space, proofs are deferred to the technical report version [38].

of the linear term and improve the convergence rate in practice.
Note that, for second order methods, the number of iterations
T is in the order of tens in general, while the number of
features d is typically in thousands. Hence, the probability
of failure is generally small (and can be made negligible by
choosing τ appropriately).

Finally, we consider the case of weakly-convex functions.
For this case, we consider two more assumptions on the
Hessian matrix, similar to [22]. These assumptions are a
relaxation of the strongly-convex case.

Assumptions:
5. There exists some η > 0 such that, ∀ w ∈ Rd,
||(∇2f(w))†||2 ≤ 1/η. This assumption establishes regularity
on the pseudo-inverse of ∇2f(x).
6. Let U ∈ Rd×d be any arbitrary orthogonal basis for
Range(∇2f(w)), there exists 0 < ν ≤ 1, such that,

||UT∇f(w)||2 ≥ ν||∇f(w)||2 ∀ w ∈ Rd.

This assumption ensures that there is always a non-zero com-
ponent of the gradient in the subspace spanned by the Hessian,
and, thus, ensures that the model update −Ĥ†t∇f(wt) will
not be zero. Note that these assumptions are always satisfied
by strongly-convex functions. Under these assumptions, we
prove global convergence of OverSketched Newton when the
objective is weakly-convex.

Theorem III.3 (Global convergence for weakly-convex f).
Consider Assumptions 1,3,4,5 and 6 and step-size αt given
by Eq. (6). Let ε ∈

(
0, (1−β)νη2M

]
and µ > 0. Then, using

an OverSketch matrix with a sketch dimension Nb + eb =
Ω(d

1+µ

ε2) and the number of column-blocks N + e = Θµ(1/ε),
the updates for OverSketched Newton, for any wt ∈ Rd, satisfy

||∇f(wt+1)||2 ≤
(

1− 2βαν
(1− ε)η
M(1 + ε)

)
||∇f(wt)||2,

with probability at least 1−1/dτ , where α = η
2Q

[
(1−β)νη−

2εM
]
, Q = (L||∇f(w0)||+M2), w0 is the initial iterate of

the algorithm and τ > 0 is a constant depending on µ and
constants in Ω(·) and Θ(·).

IV. OVERSKETCHED NEWTON: EXAMPLES

Here, we describe several examples where our general
approach can be applied.

Logistic Regression: The optimization problem for super-
vised learning using Logistic Regression takes the form

min
w∈Rd

{
f(w) =

1

n

n∑
i=1

log(1 + e−yiw
Txi) +

λ

2
‖w‖22

}
. (7)

Here, x1, · · · ,xn ∈ Rd×1 and y1, · · · , yn ∈ R are training
sample vectors and labels, respectively. The goal is to learn
the feature vector w∗ ∈ Rd×1. Let X = [x1,x2, · · · ,xn] ∈
Rd×n and y = [y1, · · · , yn] ∈ Rn×1 be the example and label
matrices, respectively.

It is straightforward to see that the calculation of ∇f(w)
involves two matrix-vector products,ααα = XTw and∇f(w) =

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

293

Algorithm 2: OverSketched Newton: Logistic Regres-
sion on Serverless Systems

1 Input Data (stored in cloud storage): Example Matrix
X ∈ Rd×n and vector y ∈ Rn×1 (stored in cloud
storage), regularization parameter λ, number of
iterations T , Sketch S as defined in Eq. (4)

2 Initialization: Define
w1 = 0d×1,βββ = 0n×1, γγγ = 0n×1, Encode X and XT
as illustrated in Fig. 1

3 for t = 1 to T do
4 ααα = Xwt ; // Compute in parallel
5 for i = 1 to n do
6 βi = −yi

1+eyiαi ;

7 end
8 g = XTβββ ; // Compute in parallel
9 ∇f(wt) = g + λwt;

10 for i = 1 to n do
11 γ(i) = eyiαi

(1+eyiαi)2 ;

12 end
13 A =

√
diag(γγγ)XT

14 Ĥ = ATSSTA ; // Compute in parallel
15 H = 1

n Ĥ + λId;
16 wt+1 = wt −H−1∇f(wt);
17 end

Result: w∗ = wT+1

1
nXβββ + λw, where βi = −yi

1+eyiαi ∀ i ∈ [1, · · · , n]. When
the example matrix is large, these matrix-vector products are
performed distributedly using codes. Faster convergence is
obtained by second-order methods which will additionally
compute the Hessian H = 1

nXΛΛΛXT + λId, where ΛΛΛ is a
diagonal matrix with entries given by Λ(i, i) = eyiαi

(1+eyiαi)2 . The
product XΛΛΛXT is computed approximately in a distributed
straggler-resilient manner using the sketch matrix in (4). Using
the result of distributed multiplication, the Hessian matrix
H is calculated at the master and the model is updated as
wt+1 = wt−H−1∇f(wt). In practice, an efficient algorithm
like conjugate gradient, that provides a good estimate in a
small number of iterations, can be used locally at the master
to solve for wt+1 [47].6

We provide a detailed description of OverSketched Newton
for large-scale logistic regression for serverless systems in
Algorithm 2. Steps 4, 8, and 14 of the algorithm are computed
in parallel on AWS Lambda. All other steps are simple vector
operations that can be performed locally at the master. Steps
4 and 8 are executed in a straggler-resilient fashion using
the coding scheme in [34], as illustrated in Fig. 1. Since the
example matrix X is constant in this example, the encoding of
X is done only once before starting the optimization algorithm.

6For simplicity, we assume here that the number of features is small enough
to perform the model update locally at the master. This is not necessary, and
straggler resilient schemes, such as in [35], can be used to perform distributed
conjugate gradient in serverless systems when the assumption does not hold.

Thus, the encoding cost can be amortized over iterations.
Decoding over the resultant product vector requires negligible
time and space, even when n is scaling into the millions.

The same is, however, not true for the matrix multiplication
for Hessian calculation (step 14 of Algorithm 2), as the matrix
A changes in each iteration. Thus, encoding costs will be
incurred in every iteration if error-correcting codes are used.
Moreover, encoding and decoding a huge matrix stored in
the cloud incurs heavy communication cost and becomes
prohibitive. Motivated by this, we use OverSketch in step 14,
as illustrated in Fig. 3, to calculate an approximate matrix
multiplication, and hence the Hessian, efficiently in serverless
systems with inbuilt straggler resiliency.7

Softmax Regression: We take unregularized softmax re-
gression as an illustrative example for the weakly convex case.
The goal is to find the weight matrix W = [w1, · · · ,wK]
that fits the training data X ∈ Rd×N and y ∈ RK×N . Here
wi ∈ Rd represents the weight vector for the k-th class for all
i ∈ [1,K] and K is the total number of classes. Hence, the
resultant feature dimension for softmax regression is dK. The
optimization problem is

f(W) =
N∑
n=1

[
K∑
k=1

yknwT
k xn − log

K∑
l=1

exp
(
wT
l xn

)]
. (8)

The gradient vector for the i-th class is

∇fi(W) =
N∑
n=1

[
exp

(
wT
i xn

)∑K
l=1 exp

(
wT
l xn

) − yin]xn, (9)

which can be written as matrix products αiαiαi = XTwi and
∇fi(W) = Xβββi, where the entries of βββi ∈ RN are given by
βin =

(
exp(αin)∑K
l=1 exp(αln)

− yin
)

. Thus, the full gradient matrix
is given by ∇f(W) = Xβββ where the entries of βββ ∈ RN×K
are dependent on ααα ∈ RN×K as above and the matrix ααα is
given by ααα = XTW. We assume that the number of classes
K is small enough such that tall matrices ααα and βββ are small
enough for the master to do local calculations on them.

Since the effective number of features is d×K, the Hessian
matrix is of dimension dK × dK. The (i, j)-th component of
the Hessian, say Hij , is

Hij(W) =
d

dwj
∇fi(W) =

d

dwj
Xβiβiβi = X

d

dwj
βββi = XZijX

T

(10)

where Zij ∈ RN×N is a diagonal matrix whose n-th diagonal
entry is

Zij(n) =
exp(αin)∑K
l=1 exp(αln)

(
I(i = j)− exp(αjn)∑K

l=1 exp(αln)

)
, (11)

for all n ∈ [1, N], where I(·) is the indicator function and ααα =
XW was defined above. The full Hessian matrix is obtained

7We also evaluate the exact Hessian-based algorithm with speculative
execution, i.e., recomputing the straggling jobs, and compare it with OverS-
ketched Newton in Sec. V.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

294

by putting together all such Hij’s in a dK × dK matrix. It
can be expressed in a matrix-matrix multiplication form as

∇2f(W) =

 H11 · · · H1K

...
. . .

...
HK1 · · · HKK


=

 XZ11X
T · · · XZ1KXT

...
. . .

...
XZK1X

T · · · XZKKXT

 = X̄Z̄X̄T , (12)

where X̄ ∈ RdK×NK is a block diagonal matrix that contains
X in the diagonal blocks and Z̄ ∈ RNK×NK is formed
by stacking all the Zij’s for i, j ∈ [1,K]. In OverSketched
Newton, we compute this multiplication using sketching in
serverless systems for efficiency and resiliency to stragglers.
Assuming d×K is small enough, the master can then calculate
the update pt using efficient algorithms such the minimum-
residual method [22], [48].

Other common problems where OverSketched Newton is
applicable include linear Regression, lasso, linear program-
ming via interior point methods, support vector machines,
semidefinite programs, etc. (see the technical report version
of this paper [38] for more details).

V. EXPERIMENTAL RESULTS

In this section, we evaluate OverSketched Newton on AWS
Lambda using real-world and synthetic datasets, and we
compare it with state-of-the-art distributed optimization algo-
rithms. We use the serverless computing framework Pywren
[3]. Our experiments are focused on logistic and softmax
regression, which are popular supervised learning problems,
but they can be reproduced for other problems such as linear
program, lasso, linear regression, etc. We present experiments
on the following datasets:

Dataset Training Samples Features Testing samples
Synthetic 300, 000 3000 100, 000
EPSILON 400, 000 2000 100, 000

WEBPAGE 48, 000 300 15, 000
a9a 32, 000 123 16, 000

EMNIST 240, 000 7840 40, 000

For comparison of OverSketched Newton with existing dis-
tributed optimization schemes, we choose recently-proposed
Globally Improved Approximate Newton Direction (GIANT)
[24]. The reason is that GIANT boasts a better convergence
rate than many existing distributed second-order methods for
linear and logistic regression, when n � d. In GIANT, and
other similar distributed second-order algorithms, the training
data is evenly divided among workers, and the algorithms
proceed in two stages. First, the workers compute partial
gradients using local training data, which is then aggregated by
the master to compute the exact gradient. Second, the workers
receive the full gradient to calculate their local second-order
estimate, which is then averaged by the master.

For straggler mitigation in such server-based algorithms,
[37] proposes a scheme for coding gradient updates called
gradient coding, where the data at each worker is repeated

0 200 400 600 800 1000
Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 E
rr

or

Logistic regression on synthetic data

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

Fig. 4: Convergence comparison of GIANT (employed with dif-
ferent straggler mitigation methods), exact Newton’s method and
OverSketched Newton for Logistic regression on AWS Lambda. The
synthetic dataset considered has 300,000 examples and 3000 features.

multiple times to compute redundant copies of the gradient.
We implement GIANT with three different ways of dealing
with stragglers: (1) we use gradient coding to mitigate strag-
glers; (2) we wait for all the workers to return; and (3) we
simply ignore the stragglers. We compare the convergence
of OverSketched Newton and GIANT with these straggler
mitigation schemes. We further evaluate and compare the con-
vergence exact Newton’s method (employed with speculative
execution, that is, reassigning and recomputing the work for
straggling workers).

A. Comparisons with Second-Order Methods on AWS Lambda

In Figure 4, we present our results on a synthetic dataset
with n = 300, 000 and d = 3000 for logistic regression on
AWS Lambda. Each column xi ∈ Rd, for all i ∈ [1, n],
is sampled uniformly randomly from the cube [−1, 1]d. The
labels yi are sampled from the logistic model, that is, P[yi =
1] = 1/(1 + exp(xiw + b)), where the weight vector w and
bias b are generated randomly from the normal distribution.

The orange, blue and red curves demonstrate the conver-
gence for GIANT with the full gradient (that waits for all
the workers), gradient coding, and mini-batch gradient (that
ignores the stragglers while calculating gradient and second-
order updates) schemes, respectively. The purple and green
curves depict the convergence for the exact Newton’s method
and OverSketched Newton, respectively. The gradient coding
scheme is applied for one straggler, that is the data is repeated
twice at each worker. We use 60 Lambda workers for executing
GIANT in parallel. Similarly, for Newton’s method, we use 60
workers for matrix-vector multiplication in steps 4 and 8 of
Algorithm 2, 3600 workers for exact Hessian computation and
600 workers for sketched Hessian computation with a sketch
dimension of 10d = 30, 000 in step 14 of Algorithm 2.

Remark 1. In our experiments, we choose the number of
workers in such a way that each worker receives approxi-
mately the same amount of data to work with, regardless of
the underlying scheme. This is motivated by the fact that the
limited memory at each worker is the bottleneck in serverless

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

295

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Tr
ai

ni
ng

 e
rr

or
Training error on EPSILON dataset

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(a) Training error for logistic re-
gression on EPSILON dataset

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Te
st

in
g

er
ro

r

Testing error on EPSILON dataset

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(b) Testing error for logistic re-
gression on EPSILON dataset

Fig. 5: Training and testing errors for logistic regression on EP-
SILON dataset with several Newton based schemes on AWS Lambda.
OverSketched Newton outperforms others by at least 46%.

0 100 200 300 400 500
Time (seconds)

0.2

0.3

0.4

0.5

0.6

Tr
ai

ni
ng

 E
rr

or

Training error on WEBPAGE dataset
Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(a) Logistic regression on WEB-
PAGE dataset

0 50 100 150 200
Time (seconds)

0.35

0.4

0.45

0.5

0.55

0.6
0.65

Tr
ai

ni
ng

 E
rr

or

Training error on a9a dataset

Uncoded GIANT with full gradient
GIANT with gradient coding
GIANT with ignoring stragglers
Exact Newton's method
OverSketched Newton

(b) Logistic regression on a9a
dataset

Fig. 6: Logistic regression on WEBPAGE and a9a datasets with
several Newton based schemes on AWS Lambda. OverSketched
Newton outperforms others by at least 25%.

systems. Note that this is unlike serverful/HPC systems, where
the number of workers is the bottleneck.

In all cases, unit step-size was used to update the model.8

An important point to note from Fig. 4 is that the uncoded
scheme (that is, the one that waits for all stragglers) has the
worst performance. The implication is that good straggler/fault
mitigation algorithms are essential for computing in the server-
less setting. Secondly, the mini-batch scheme outperforms the
gradient coding scheme by 25%. This is because gradient
coding requires additional communication of data to serverless
workers (twice when coding for one straggler, see [37] for
details) at each invocation to AWS Lambda. On the other
hand, the exact Newton’s method converges much faster than
GIANT, even though it requires more time per iteration.

The number of iterations needed for convergence for OverS-
ketched Newton and exact Newton (that exactly computes
the Hessian) is similar, but OverSketched Newton converges
in almost half the time due to an efficient computation of
(approximate) Hessian (which is the computational bottleneck
and thus reduces time per iteration).

1) Logistic Regression on EPSILON, WEBPAGE and a9a
Datasets: In Figure 5, we repeat the above experiment with
EPSILON classification dataset obtained from [36], with n =
400, 000 and d = 2000. We plot training and testing errors for

8Line-search in Section III was mainly introduced to prove theoretical
guarantees. In our experiments, we observe that constant step-size works well
for OverSketched Newton.

logistic regression for the schemes described in the previous
section. We use 100 workers for GIANT, and 100 workers
for matrix-vector multiplications for gradient calculation in
OverSketched Newton. We use gradient coding designed for
three stragglers in GIANT. This scheme performs worse than
uncoded GIANT that waits for all the stragglers due to the
repetition of training data at workers. Hence, one can conclude
that the communication costs dominate the straggling costs. In
fact, it can be observed that the mini-batch gradient scheme
that ignores the stragglers outperforms the gradient coding and
uncoded schemes for GIANT.

During exact Hessian computation, we use 10, 000 server-
less workers with speculative execution to mitigate stragglers
(i.e., recomputing the straggling jobs) compared to OverS-
ketched Newton that uses 1500 workers with a sketch di-
mension of 15d = 30, 000. OverSketched Newton requires
a significantly smaller number of workers, as once the square
root of Hessian is sketched in a distributed fashion, it can
be copied into local memory of the master due to dimension
reduction, and the Hessian can be calculated locally. Testing
error follows training error closely, and important conclusions
remain the same as in Figure 4. OverSketched Newton out-
performs GIANT and exact Newton-based optimization by at
least 46% in terms of running time.

We repeated the above experiments for classification on the
WEBPAGE (n = 49, 749 and d = 300) and a9a (n = 32, 561
and d = 123) datasets [36]. For both datasets, we used 30
workers for each iteration in GIANT and any matrix-vector
multiplications. Exact hessian calculation invokes 900 workers
as opposed to 300 workers for OverSketched Newton, where
the sketch dimension was 10d = 3000. The results for training
loss on logistic regression are shown in Figure 6. Testing error
closely follows the training error in both cases. OverSketched
Newton outperforms exact Newton and GIANT by at least
∼ 25% and ∼ 75%, respectively, which is similar to the trends
witnessed heretofore.

Remark 2. Note that conventional distributed second-order
methods for serverful systems—which distribute training ex-
amples evenly across workers (such as [24], [43]–[46])—
typically find a “localized approximation” (localized to each
machine) of second-order update at each worker and then
aggregate it. OverSketched Newton, on the other hand, uses
the massive storage and compute power in serverless systems
to find a more “globalized approximation” (globalized in the
sense of across machine). Thus, it performs better in practice.

B. Softmax Regression on EMIST

In Fig. 7, we solve unregularized softmax regression, which
is weakly convex. We use the Extended MNIST (EMNIST)
dataset [49] with N = 240, 000 training examples, d = 784
features for each of the K = 10 classes. Note that GIANT
cannot be applied here as the objective function is not strongly
convex. We compare the convergence rate of OverSketched
Newton, exact Hessian and gradient descent based schemes.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

296

0 500 1000 1500 2000 2500

Time (seconds)

0.4

0.6

0.8

1

1.2
1.4
1.6
1.8

2
2.2

Tr
ai

ni
ng

 E
rr

or
Softmax Regression on EMNIST dataset

Gradient Descent
Exact Hessian based
OverSketched Newton

Fig. 7: Convergence compar-
ison of different schemes for
Softmax regression.

0 50 100 150 200 250 300 350 400 450

Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Tr
ai

ni
ng

 E
rr

or

Newton-type methods on EPSILON dataset

Exact Hessian
(with recomputed gradient)
Exact Hessian
(with coded gradient)
OverSketched Newton
(with recomputed gradient)
OverSketched Newton
(with coded gradient)

Fig. 8: Speculative execution
versus coded computing for dis-
tributed computation.

0 200 400 600 800 1000
Time (seconds)

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Tr
ai

ni
ng

 E
rr

or

Comparison with First-order methods
Gradient descent
OverSketched Newton
NAG

Fig. 9: Convergence of dis-
tributed gradient descent, NAG
and OverSketched Newton.

0 100 200 300 400 500

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 e
rr

or

Comparison with server-based systems

GIANT on Amazon EC2
OveSketched Newton
on AWS Lambda

Fig. 10: Comparison of GIANT
on AWS EC2 and OverSketched
Newton on AWS Lambda.

For gradient computation in all three schemes, we use
60 workers. However, exact Newton scheme requires 3600
workers to calculate the dK × dK Hessian and recomputes
the straggling jobs, while OverSketched Newton requires only
360 workers to calculate the sketch in parallel with sketch
dimension 6dK = 47, 040. The approximate Hessian is then
computed locally at the master using its sketched square root,
where the sketch dimension is 6dK = 47, 040. The step-size
is fixed and is determined by hyperparamter tuning before
the start of the algorithm. Even for the weakly-convex case,
second-order methods tend to perform better. Moreover, the
runtime of OverSketched Newton outperforms both gradient
descent and Exact Newton based methods by ∼ 75% and
∼ 50%, respectively.

C. Coded computing versus Speculative Execution

In Figure 8, we compare straggler mitigation schemes,
namely speculative execution and coded computing, on the
convergence rate of logistic regression on the EPSILON
dataset. We regard OverSketch based matrix multiplication
as a coding scheme in which some redundancy is introduced
during “over” sketching for matrix multiplication. There are
four different cases, corresponding to gradient and Hessian
calculation using either speculative execution or coded com-
puting. For speculative execution, we wait for at least 90%
of the workers to return (this works well as the number of
stragglers is generally less than 10%) and restart the jobs that
did not return till this point.

For both exact Hessian and OverSketched Newton, us-
ing codes for distributed gradient computation outperforms
speculative execution based straggler mitigation. Moreover,
computing the Hessian using OverSketch is significantly better
than exact computation in terms of running time as calculating
the Hessian is the computational bottleneck.

D. Comparison with First-Order Methods on AWS Lambda

In Figure 9, we compare gradient descent and Nesterov
Accelerated Gradient (NAG) (while ignoring the stragglers)
with OverSketched Newton for logistic regression on EP-
SILON dataset. We observed that for first-order methods, there
is only a slight difference in convergence for a mini-batch
gradient when the batch size is 95%. Hence, for gradient
descent and NAG, we use 100 workers in each iteration while

ignoring the stragglers.9 These first-order methods were given
the additional advantage of backtracking line-search, which
determined the optimal amount to move in given a descent
direction.10 Overall, OverSketched Newton with unit step-
size significantly outperforms gradient descent and NAG with
backtracking line-search.

E. Comparison with Serverful Optimization

In Fig. 10, we compare OverSketched Newton on AWS
Lambda with existing distributed optimization algorithm GI-
ANT in serverful systems (AWS EC2). The results are plotted
on synthetically generated data for logistic regression. For
serverful programming, we use Message Passing Interface
(MPI) with one c3.8xlarge master and 60 t2.medium
workers in AWS EC2. In [4], the authors observed that many
large-scale linear algebra operations on serverless systems take
at least 30% more time compared to MPI-based computation
on serverful systems. However, as shown in Fig. 10, we
observe a slightly surprising trend that OverSketched Newton
outperforms MPI-based optimization (that uses existing state-
of-the-art optimization algorithm). This is because OverS-
ketched Newton exploits the flexibility and massive scale at
disposal in serverless, and thus produces a better approxima-
tion of the second-order update than GIANT.11

REFERENCES

[1] I. Baldini, P. C. Castro, K. S.-P. Chang, P. Cheng, S. J. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. M. Rabbah, A. Slominski, and P. Suter,
“Serverless computing: Current trends and open problems,” CoRR,
vol. abs/1706.03178, 2017.

[2] J. Spillner, C. Mateos, and D. A. Monge, “Faaster, better, cheaper: The
prospect of serverless scientific computing and HPC,” in Latin American
High Performance Computing Conference, pp. 154–168, Springer, 2017.

9We note that stochastic methods such as SGD perform worse that gradient
descent since their update quality is poor, requiring more iterations (hence,
more communication) to converge while not using the massive compute power
of serverless. For example, 20% minibatch SGD in the setup of Fig. 9 requires
1.9× more time than gradient descent with same number of workers.

10We remark that backtracking line-search required ∼ 13% of the total
time for NAG. Hence, as can be seen from Fig. 9, any well-tuned step-size
method would still be significantly slower than OverSketched Newton.

11We do not compare with exact Newton in serverful sytems since the data
is large and stored in the cloud. Computing the exact Hessian would require
a large number of workers (e.g., we use 10,000 workers for exact Newton in
EPSILON dataset) which is infeasible in existing serverful systems.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

297

[3] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: distributed computing for the 99%,” in Proceedings of the 2017
Symposium on Cloud Computing, pp. 445–451, ACM, 2017.

[4] V. Shankar, K. Krauth, Q. Pu, E. Jonas, S. Venkataraman, I. Stoica,
B. Recht, and J. Ragan-Kelley, “numpywren: serverless linear algebra,”
ArXiv e-prints, Oct. 2018.

[5] Technavio, “Serverless architecture market by end-
users and geography - global forecast 2019-2023.”
https://www.technavio.com/report/serverless-architecture-market-
industry-analysis.

[6] E. Jonas et al., “Cloud programming simplified: A berkeley view on
serverless computing,” arXiv preprint arXiv:1902.03383, 2019.

[7] L. Feng, P. Kudva, D. D. Silva, and J. Hu, “Exploring serverless
computing for neural network training,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), vol. 00, pp. 334–341, Jul
2018.

[8] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform,” arXiv e-prints, p. arXiv:1710.08460,
Oct. 2017.

[9] A. Aytekin and M. Johansson, “Harnessing the Power of
Serverless Runtimes for Large-Scale Optimization,” arXiv e-prints,
p. arXiv:1901.03161, Jan. 2019.

[10] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a
serverless architecture,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, pp. 1288–1296, IEEE, 2019.

[11] L. Feng, P. Kudva, D. Da Silva, and J. Hu, “Exploring serverless
computing for neural network training,” in 2018 IEEE 11th International
Conference on Cloud Computing (CLOUD), pp. 334–341, IEEE, 2018.

[12] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: a
serverless framework for end-to-end ml workflows,” in Proceedings of
the ACM Symposium on Cloud Computing, pp. 13–24, 2019.

[13] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
pp. 74–80, Feb. 2013.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine, “Characterizing the influ-
ence of system noise on large-scale applications by simulation,” in Proc.
of the ACM/IEEE Int. Conf. for High Perf. Comp., Networking, Storage
and Analysis, pp. 1–11, 2010.

[15] J. M. Hellerstein, J. Faleiro, J. E. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One step
forward, two steps back,” arXiv preprint arXiv:1812.03651, 2018.

[16] J. Nocedal and S. Wright, Numerical optimization. Springer Science &
Business Media, 2006.

[17] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” Siam Review, vol. 60, no. 2, pp. 223–311, 2018.

[18] N. S. Wadia, D. Duckworth, S. S. Schoenholz, E. Dyer, and J. Sohl-
Dickstein, “Whitening and second order optimization both destroy
information about the dataset, and can make generalization impossible,”
arXiv e-prints, p. arXiv:2008.07545, Aug. 2020.

[19] F. Roosta-Khorasani and M. W. Mahoney, “Sub-Sampled New-
ton Methods I: Globally Convergent Algorithms,” arXiv e-prints,
p. arXiv:1601.04737, Jan. 2016.

[20] F. Roosta-Khorasani and M. W. Mahoney, “Sub-Sampled Newton Meth-
ods II: Local Convergence Rates,” arXiv e-prints, p. arXiv:1601.04738,
Jan. 2016.

[21] P. Xu, F. Roosta, and M. W. Mahoney, “Newton-type methods for non-
convex optimization under inexact hessian information,” 2017.

[22] F. Roosta, Y. Liu, P. Xu, and M. W. Mahoney, “Newton-MR:
Newton’s method without smoothness or convexity,” arXiv preprint
arXiv:1810.00303, 2018.

[23] M. Pilanci and M. J. Wainwright, “Newton sketch: A near linear-time
optimization algorithm with linear-quadratic convergence,” SIAM Jour.
on Opt., vol. 27, pp. 205–245, 2017.

[24] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “GIANT:
Globally improved approximate Newton method for distributed op-
timization,” in Advances in Neural Information Processing Systems,
pp. 2332–2342, 2018.

[25] C.-H. Fang, S. B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney, and
A. Grama, “Distributed Second-order Convex Optimization,” ArXiv e-
prints, July 2018.

[26] Z. Yao, A. Gholami, K. Keutzer, and M. Mahoney, “Pyhessian:
Neural networks through the lens of the hessian,” arXiv preprint
arXiv:1912.07145, 2019.

[27] Z. Yao, A. Gholami, S. Shen, K. Keutzer, and M. W. Mahoney,
“Adahessian: An adaptive second order optimizer for machine learning,”
arXiv preprint arXiv:2006.00719, 2020.

[28] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, “Second order
optimization made practical,” arXiv preprint arXiv:2002.09018, 2020.

[29] D. P. Woodruff, “Sketching as a tool for numerical linear algebra,”
Found. Trends Theor. Comput. Sci., vol. 10, pp. 1–157, 2014.

[30] M. W. Mahoney, Randomized algorithms for matrices and data. Founda-
tions and Trends in Machine Learning, Boston: NOW Publishers, 2011.

[31] A. Gittens, A. Devarakonda, E. Racah, M. Ringenburg, L. Gerhardt,
J. Kottalam, J. Liu, K. Maschhoff, S. Canon, J. Chhugani, et al., “Matrix
factorizations at scale: A comparison of scientific data analytics in
spark and c+ mpi using three case studies,” in 2016 IEEE International
Conference on Big Data (Big Data), pp. 204–213, IEEE, 2016.

[32] V. Gupta, S. Wang, T. Courtade, and K. Ramchandran, “Oversketch:
Approximate matrix multiplication for the cloud,” IEEE International
Conference on Big Data, Seattle, WA, USA, 2018.

[33] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, 2018.

[34] T. Baharav, K. Lee, O. Ocal, and K. Ramchandran, “Straggler-proofing
massive-scale distributed matrix multiplication with d-dimensional prod-
uct codes,” in IEEE Int. Sym. on Information Theory (ISIT), IEEE, 2018.

[35] V. Gupta, D. Carrano, Y. Yang, V. Shankar, T. Courtade, and K. Ram-
chandran, “Serverless straggler mitigation using local error-correcting
codes,” IEEE International Conference on Distributed Computing and
Systems (ICDCS), Singapore, 2020.

[36] C.-C. Chang and C.-J. Lin, “Libsvm: a library for support vector
machines,” ACM transactions on intelligent systems and technology
(TIST), vol. 2, no. 3, p. 27, 2011.

[37] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
coding: Avoiding stragglers in distributed learning,” in Proceedings
of the 34th International Conference on Machine Learning, vol. 70,
pp. 3368–3376, PMLR, 2017.

[38] V. Gupta, S. Kadhe, T. Courtade, M. W. Mahoney, and K. Ramchan-
dran, “Oversketched Newton: Fast convex optimization for serverless
systems,” arXiv preprint arXiv:1903.08857, 2019.

[39] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[40] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing, pp. 10–
10, 2010.

[41] Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Inf. Processing Systems 30, pp. 4403–4413, 2017.

[42] Y. Yang, P. Grover, and S. Kar, “Coded distributed computing for inverse
problems,” in Advances in Neural Information Processing Systems 30,
pp. 709–719, Curran Associates, Inc., 2017.

[43] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate Newton-type method,” in
Proceedings of the 31st International Conference on International
Conference on Machine Learning - Volume 32, ICML’14, pp. II–1000–
II–1008, JMLR.org, 2014.

[44] Y. Zhang and X. Lin, “Disco: Distributed optimization for self-
concordant empirical loss,” in Proceedings of the 32nd International
Conference on Machine Learning (F. Bach and D. Blei, eds.), vol. 37 of
Proceedings of Machine Learning Research, (Lille, France), pp. 362–
370, PMLR, 07–09 Jul 2015.

[45] S. J. Reddi, A. Hefny, S. Sra, B. Pöczos, and A. Smola, “On variance
reduction in stochastic gradient descent and its asynchronous variants,”
in Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’15, (Cambridge, MA, USA),
pp. 2647–2655, MIT Press, 2015.

[46] C. Duenner, A. Lucchi, M. Gargiani, A. Bian, T. Hofmann, and M. Jaggi,
“A distributed second-order algorithm you can trust,” in Proceedings
of the 35th International Conference on Machine Learning, vol. 80,
pp. 1358–1366, PMLR, 10–15 Jul 2018.

[47] J. R. Shewchuk et al., “An introduction to the conjugate gradient method
without the agonizing pain,” 1994.

[48] J. Levin, “Note on convergence of minres,” Multivariate behavioral
research, vol. 23, no. 3, pp. 413–417, 1988.

[49] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: an extension
of mnist to handwritten letters,” arXiv preprint arXiv:1702.05373, 2017.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 29,2021 at 21:14:07 UTC from IEEE Xplore. Restrictions apply.

