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Computer vision-based research has shown that scene 
semantics (e.g., presence of meaningful objects in a 
scene) can predict memorability of scene images. Here, 
we investigated whether and to what extent overt 
attentional correlates, such as fixation map consistency 
(also called inter-observer congruency of fixation maps) 
and fixation counts, mediate the relationship between 
scene semantics and scene memorability. First, we 
confirmed that the higher the fixation map consistency 
of a scene, the higher its memorability. Moreover, both 
fixation map consistency and its correlation to scene 
memorability were the highest in the first 2 seconds of 
viewing, suggesting that meaningful scene features that 
contribute to producing more consistent fixation maps 
early in viewing, such as faces and humans, may also be 
important for scene encoding. Second, we found that 
the relationship between scene semantics and scene 
memorability was partially (but not fully) mediated by 
fixation map consistency and fixation counts, separately 
as well as together. Third, we found that fixation map 
consistency, fixation counts, and scene semantics 
significantly and additively contributed to scene 
memorability. Together, these results suggest that 

eye-tracking measurements can complement computer 
vision-based algorithms and improve overall scene 
memorability prediction. 

 
 

Some visual scenes are more memorable than 
other scenes (Isola, Xiao, Torralba, & Oliva, 2011). 
Investigating scene memorability not only is important 
for understanding human vision and memory but 
is also useful for  people interested  in predicting 
and maximizing it for practical purposes. Computer 
vision-based research (Isola, Xiao, Torralba, & Oliva 
et al., 2011; Khosla, Raju, Torralba, & Oliva, 2015) 
has shown that intrinsic features of a scene, such as 
its semantics, global descriptors, object counts or 
areas, interestingness, and aesthetics, can affect scene 
memorability in a similar manner across different 
viewers. However, scene memory can also be modulated 
by factors extrinsic to a scene, such as the other scenes 
that were presented with it (Bylinskii, Isola, Bainbridge, 
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Torralba, & Oliva, 2015) and the viewing tasks that 
were performed while each scene was presented 
(Choe, Kardan, Kotabe, Henderson, & Berman, 2017; 
Wolfe, Horowitz, & Michod, 2007). Despite great 
research interest, factors that could contribute to scene 
memorability are not fully understood. 

Eye tracking enables the investigation of underlying 
attentional mechanisms of scene memory. Particularly, 
fixation count has been repeatedly demonstrated to 
be associated with scene memory. For example, an 
increased fixation count during encoding is associated 
with better recognition on a trial-by-trial basis for 
scenes (Choe et al., 2017) and objects (Tatler & Tatler, 
2013), suggesting that trial-level fixation counts signals 
viewers’ elaborate inspection of a scene and that 
elaborate inspection can enhance scene encoding 
(Winograd, 1981). Moreover, more preferred scenes 
produce more fixations and are better remembered later 
than less preferred scenes (Loftus, 1972), suggesting 
that population-level fixation counts (i.e., the averaged 
fixation counts across viewers) can be a proxy for an 
intrinsic property of a scene, such as interestingness 
(e.g., the more interesting a scene is, the more elaborate 
inspection viewers do). Together, these results suggest 
that fixation count is still a very important source of 
information for studying the attentional mechanisms of 
scene encoding, despite its simplicity. 

Eye tracking also enables the investigation of the 
relationship between where viewers look in scenes 
(i.e., fixation maps) (Henderson, 2003; Pomplun, 
Ritter, & Velichkovsky, 1996; Wooding, 2002) and 
how scene memory is formed (Choe et al., 2017; 
Hollingworth, 2012; Olejarczyk, Luke, & Henderson, 
2014; Ramey, Henderson, & Yonelinas, 2020; Tatler 
& Tatler,  2013). For  example, the fixation map from 
a scene during intentional memorization is different 
from that during visual search (Castelhano, Mack, & 
Henderson, 2009), and the degree of difference in the 
fixation maps during memorization versus visual search 
in the same scene could explain how visual search 
impaired incidental scene memory on a trial-by-trial 
basis (Choe et al., 2017). Similar to these approaches, 
one can also examine the consistency of fixation maps 
across viewers, also called inter-observer congruency or 
inter-subject consistency (i.e., fixation map consistency) 
(Dorr, Martinetz, Gegenfurtner, & Barth, 2010; 
Torralba, Oliva, Castelhano, & Henderson, 2006), 
which is a scene-specific, population-level measure (i.e., 
averaged over a group of participants for each scene) 
and often used in evaluating computational fixation 
prediction models by providing an upper bound of the 
performance that those models can achieve (Wilming, 
Betz, Kietzmann, & König, 2011). Importantly, two 
previous papers briefly reported that it is positively 
associated with scene memorability (Khosla et al., 2015; 
Mancas & Le Meur, 2013). 

In this study, we used two different eye-tracking 
datasets, the Edinburgh dataset (Luke, Smith, Schmidt, 
& Henderson, 2014; Nuthmann & Henderson, 2010; 
Pajak & Nuthmann, 2013) and the FIGRIM dataset 
(Bylinskii et al., 2015) to investigate the relationships 
among fixation map consistency, fixation counts, scene 
semantics, and scene memorability. Both datasets 
included eye-tracking data from a group of participants 
engaged in scene encoding, and the measures of 
scene memorability came from a different group of 
participants engaged in scene recognition tasks (i.e., 
averaged recognition accuracy  across  participants 
in these tasks). An advantage of the Edinburgh 
dataset was the 8 seconds of scene viewing duration 
(vs. 2 seconds in the FIGRIM dataset). An advantage 
of the FIGRIM dataset was its extensive object 
annotations, which can be used to obtain proxies of 
scene semantics (Isola et al., 2011; Xu, Jiang, Wang, 
Kankanhalli, & Zhao, 2014). We exploited both 
commonalities and unique strengths of these two 
datasets to ask the following questions. 

First, using both the Edinburgh and FIGRIM 
datasets, we examined whether and to what extent 
fixation map consistency and fixation counts, 
respectively, are associated with scene memorability. 
Second, using the FIGRIM dataset, we asked whether 
and to what extent fixation map consistency and 
fixation counts mediate the relationship between scene 
semantics and scene memorability, after confirming that 
scene semantics and scene memorability were associated 
as expected. Third, using the FIGRIM dataset, we 
tested whether there were additive and/or interactive 
effects of fixation map consistency, fixation count, 
and scene semantics on scene memorability.  Fourth, 
using the Edinburgh dataset, we examined the effects 
of viewing time on fixation map consistency (Buswell, 
1935; Tatler, Baddeley, & Gilchrist, 2005)—that is, 
the temporal consistency of fixation maps across 
participants and within the same participant and how 
fixation maps may be related to scene memorability. 
Finally, we quantified center bias in both the Edinburgh 
and the FIGRIM scenes (Bindemann, 2010; Hayes & 
Henderson, 2020; Tatler, 2007; Tseng, Carmi, Cameron, 
Munoz, & Itti, 2009) using low-level visual saliency 
(Harel, Koch, & Perona, 2007) and examined its effect 
on fixation map consistency and scene memorability. 

Consistent with previous studies (Khosla et al., 2015; 
Mancas & Le Meur, 2013), we confirmed a robust 
relationship between fixation map consistency and scene 
memorability in both datasets. Importantly, we also 
found that the relationships between scene semantics 
and scene memorability were partially (but not fully) 
mediated by fixation map consistency and fixation 
counts, separately as well as together. Additionally, we 
found that fixation map consistency, fixation counts, 
and scene semantics additively contribute to scene 
memorability where each contributes unique variance 
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Methods 

in explaining scene memorability. These results suggest 
that eye-movement data add signal beyond scene 
semantics in the prediction of scene memorability. 

 

 

Overview 

This study is a re-analysis of two previously collected 
eye-tracking datasets, the sample sizes of which were 
determined for different purposes. All of our data and 
analysis codes are available at https://osf.io/hvgk6/. 

The Edinburgh dataset (Luke et al., 2014; Nuthmann 
& Henderson, 2010; Pajak & Nuthmann, 2013) has 
been used in prior publications (Choe et al., 2017; 
Einhäuser & Nuthmann, 2016; Kardan, Berman, 
Yourganov, Schmidt, & Henderson, 2015; Kardan, 
Henderson, Yourganov, & Berman, 2016; Nuthmann, 
2017) and is available from the author J.M.H. upon 
request. This dataset has the fixation map patterns of 
135 scenes under three different encoding tasks 
(intentional memorization, visual search, and aesthetic 
preference evaluation) from 72 participants and 
memorability scores of these scenes from a subset of 
the participants (36). Out of 135 scenes, we analyzed 
only the 132 scenes that were used in both the encoding 
tasks and memory test (the scenes are available at 
https://osf.io/hvgk6/). In addition, we analyzed only the 
fixation data during the intentional memorization task 
from the 24 participants who performed this task on the 
132 scenes, resulting in 24 fixation maps per scene and 
recognition accuracy from 12 participants per scene. 
For experimental details, please see Supplementary 
Note S1. 

Second, the FIGRIM dataset (Bylinskii et 
al., 2015), which is freely available at https: 
//github.com/cvzoya/figrim, has eye movement data 
from 67 in-lab participants viewing 630 scenes across 
21 different categories (30 scenes per category) and 
memorability scores from 74 Amazon Mechanical Turk 
(AMT) participants. For experimental details, please  
see Bylinkskii et al. (2015). 

 

Scene memory tasks and scene memorability 
definition 

The Edinburgh study used a surprise scene memory 
test after completing all three scene encoding task 
blocks (intentional memorization, visual search, and 
preference evaluation). Before the task, participants 
were informed that their memory would be tested for 
all of the scenes that they had previously encountered, 
not just the scenes they had been instructed to 

remember in the memorization block. In each trial of 
the memory test, a scene was shown for 3 seconds, 
and participants were asked to identify whether 
the scene was “old” (encountered in the encoding 
phase during any block, not just the memorization 
block, and presented in an identical form), “altered” 
(encountered in the encoding phase but presented in  
a horizontally mirrored form), or “new.” Whether or 
not a scene was horizontally flipped in the recognition 
test (i.e., scene orientation) was found to affect 
recognition accuracy (Choe et al., 2017), so it was 
included in our analyses. In the 132 scenes we analyzed, 
66 scenes were “old,” 66 scenes were “altered,” and 
none was “new.” Scene memorability was calculated as 
the average recognition accuracy in the memory test: 
the number of hit (correctly recognized) trials divided 
by the number of hit and miss trials, which equaled the 
number of participants (12) who saw these scenes. 

The FIGRIM study used a continuous scene 
recognition task (Isola et al., 2011), in which 
participants were shown a series of new and repeated 
scenes and asked to press a key whenever they 
recognized a repeat scene. Scene memorability was 
calculated as the number of hit trials (trials where 
participants correctly pressed a button to a repeat 
scene) divided by the sum of both hit trials and miss 
trials (trials where participants did not press a button to 
a repeat scene) across participants. 

 
Eye movement analysis 

Edinburgh dataset 

The raw eye movement data, sampled at 
1000 Hz, were preprocessed using Eyelink Data Viewer 
(SR Research, Kanata, Canada) to identify discrete 
fixations and fixation durations during 8 seconds of 
scene viewing. Fixations were excluded from analysis 
if they were preceded by or co-occurred with blinks, 
were the first or last fixation in a trial, or had durations 
less than 50 ms or longer than 1200 ms. Fixation counts 
are the number of discrete fixations, regardless of their 
duration, that landed on the scenes. 

 
FIGRIM dataset 

Bylinkskii et al. (2015) “processed the raw eye 
movement data using standard settings of the EyeLink 
Data Viewer to obtain discrete fixations, removed all 
fixations shorter than 100 ms or longer than 1500 ms, 
and kept all others that occurred within the 2000 ms 
recording segment (from image onset to image offset).” 
The sampling rate was 500 Hz. The openly available 
FIGRIM dataset does not contain fixation duration 
information. Fixation counts are the number of discrete 
fixations on the scenes. 

https://osf.io/hvgk6/
https://osf.io/hvgk6/
https://github.com/cvzoya/figrim
https://github.com/cvzoya/figrim
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Figure 1. Individual fixation maps of two example scenes during intentional memorization from the Edinburgh dataset. (a) A scene 
that produced highly consistent fixation maps. The filled square on the left is used in Figure 3a to indicate this scene. (b) Fixation 
maps of 12 G1 participants, who were asked to memorize the scene and tested for their scene memory in the following recognition 
test (see Methods). The average recognition accuracy of these participants was used as scene memorability. (c) Fixation maps of 12 
G2 participants, who were asked to memorize the scene but were not tested for their memory. (d) Individual fixation maps from G1 
(middle panel) and G2 (right panel) for another scene (left panel) that produced less consistent fixation maps. The triangle on the left 
is in Figure 3a to indicate this scene. 

 
 

Fixation map analysis 

We used custom MATLAB (MathWorks, Natick, 
MA) scripts to do following. An individual fixation 
map of  a participant viewing a scene (Figure 1)  
was constructed by convolving a Gaussian kernel 
over its duration-weighted fixation locations during 
8 seconds of viewing (the Edinburgh dataset) or over 
equal-weighted fixation locations during 2 seconds 
of viewing (the FIGRIM dataset). The full width at 
half maximum of the Gaussian kernel was set to 2° 
(i.e., σ 0.85°) to simulate central foveal vision 
and to take into account the measurement errors of 
video-based eye trackers (Choe, Blake, & Lee, 2016; 
Wyatt, 2010). 

 

Fixation map consistency 

The similarity of individual fixation maps across 
multiple viewers was quantified as in previous research 
(Dorr et al., 2010; Torralba et al., 2006). For each 
individual fixation map, its similarity to the averaged 
fixation map of the other leave-one-out fixation maps 
was calculated; then, the similarity values of all fixation 
maps were averaged to yield fixation map consistency. 
For example, in Figure 1b, 12 similarity values were 
obtained by comparing each individual fixation map 
versus the average of the other 11 fixation maps; those 
12 values were then averaged to produce a fixation map 

consistency score. For the similarity metric, we opted 
for the Fisher z-transformed Pearson’s correlation 
coefficient (Choe et al., 2017), among several metrics on 
fixation and saliency maps (see Dorr et al., 2010, and 
Le Meur & Baccino, 2013), because it is invariant to 
linear transformations, such as scaling. 

 
Multivariate object presence score analysis 

We  relied on the extensive object annotations in 
the FIGRIM dataset for this  analysis.  Among  the 
707 objects that were included in the dataset, we 
selected 98 objects that appeared in at  least 10 (out  
of  630) scenes, as Isola and colleagues (2011) did. 
We checked whether each object was present in each 
scene and coded its presence as 1 and absence as 0  
for that scene. Then, we used the presence of  these  
98 annotated objects to predict scene memorability 
(i.e., AMT recognition accuracy) with a leave-one-out 
multivariate regression analysis. Specifically, for each 
test scene, we left out the object presence information 
of that scene, used the information of the remaining 
629 scenes to train a regression model for predicting 
scene memorability, and used the leave-one-out model 
to predict scene memorability of the test scene, dubbed 
the multivariate object presence score (MOPS). We 
obtained MOPS for all of the 630 scenes by repeating 
the leave-one-out analysis. The correlation between 



Journal of Vision (2020) 20(9):2, 1–17 Lyu et al. 5 

Downloaded from jov.arvojournals.org on 09/29/2021 

 

 

× 
× 

∼ 

the MOPS and AMT recognition accuracy was 
0.37 (95% CI, 0.30–0.44; p < 0.001). 

To examine whether the relationship between MOPS 
and scene memorability was mediated by fixation map 
consistency and fixation count, we conducted a parallel 
mediation analysis using the mediate function with 
5000 bootstrap resampling in the Psych Package 
(Revelle, 2020) in R (R Core Team, 2017). Scene 
memorability, MOPS, fixation map consistency, and 
fixation counts were all z-scored before conducting 
the mediation analysis. The mediation effect occurs 
when the indirect effect is significant (i.e., its confidence 
interval does not include zero). Full mediation occurs 
when the direct effect of the predictor variable is 
no longer significant (p > 0.05) by introducing the 
mediating variable(s), and partial mediation occurs 
when the direct effect of the predictor variable is still 
significant (p < 0.05) but significantly weakened by 
introducing the mediating variable(s). 

 
Individual object presence analysis 

In addition to the presences of 98 objects appearing 
in at least 10 FIGRIM scenes, we manually coded three 
scene semantic features: the presences of face/human, 
motion, and watchability in each scene (i.e., 1 if present, 
0 if absent), following Xu et al. (2014). Specifically, 
the presence of face/human was based on whether a 
scene had humans or the faces of humans, animals, or 
objects that have facial features in a coherent manner 
like a giant face on the building or Thomas the train. 
One hundred fifty-eight FIGRIM scenes included 
face/human. The presence of motion was based on 
whether a scene contained moving or flying objects 
including humans or animals with meaningful gestures. 
One hundred nineteen FIGRIM scenes included 
motion, and 70 out of the 119 scenes also included 
face/human. The presence of watchability was based on 
whether a scene contained man-made objects designed 
to be watched (e.g., a display screen). Two hundred 
seventy-six FIGRIM scenes included watchability. We 
next examined whether or not the presence of each 
object/feature affected scene memorability significantly 
after correcting for multiple comparisons (correcting 
for 101 tests; 98 objects and three manually coded 
face/human, motion, and watchability) by using 
the unequal variance t-test and Holm–Bonferroni 
procedure. Supplementary Table S1 shows the top 
20 objects/features in the descending order of mean 
difference (t-score) in scene memorability. The presences 
of face/human, person, pilot, and motion significantly 
increased scene memorability after correcting for 
multiple comparisons. Because the presence of 
face/human had the most scenes, mostly overlapped 
with person, pilot, and motion (91 out of 101 scenes 
with person, 10 out of 10 pilot scenes, and 70 out of 

119 scenes with motion were also coded as face/human) 
and explained away the effect of motion on scene 
memorability, we examined only the presence of 
face/human. After seeing that it significantly increased 
both fixation map consistency and fixation count, we 
conducted a parallel mediation analysis to examine 
whether and to what extent these eye-tracking measures 
could mediate the relationship between the presence of 
face/human and scene memorability. 

 
Center bias analysis 

We calculated center bias for each scene, following 
Hayes and Henderson (2020). First, saliency 
maps for each scene (Figure 2b) were computed  
using the Graph-Based Visual Saliency (GBVS) 
algorithm (Harel, Koch, & Perona, 2007) with default 
settings and then normalized to make the total 
sum of all pixel values equal the number of pixels 
(800 600 pixels for  the Edinburgh scenes and  
1000 1000 pixels for the FIGRIM). The MATLAB 
code for the GBVS algorithm was obtained from 
http://www.vision.caltech.edu/ harel/share/gbvs.php. 
Next, an element-wise multiplication was performed 
between the saliency map and a Gaussian kernel 
(Figure 2c) with the σ of 10% of the scene height (i.e., 
60 pixels for the Edinburgh scenes and 100 pixels for 
the FIGRIM scenes), which was done to downweight 
the saliency scores in the periphery pixels to account 
for the central fixation bias (Bindemann, 2010; Hayes 
& Henderson, 2020; Tatler, 2007; Tseng et al., 2009). 
The center bias of each scene (the white numbers in the 
right bottom in Figure 2d) was calculated by adding up 
the downweighted scores of all its pixels, which could 
differentiate the scenes with strong center bias from 
those with weak center bias. Figures 2e and 2f  show 
the distributions of center bias in the Edinburgh and 
FIGRIM datasets, respectively. 

 
Statistical software 

The fixation map and center bias analyses were 
performed using MATLAB R2015b and custom 
MATLAB scripts, available at https://osf.io/hvgk6/. The 
fitlm function was used to perform linear regression 
analyses, the anova1 function was used to perform 
one-way analysis of variance (ANOVA), and the 
corrcoef function was used to calculate the effect size 
(95% CI) of Pearson’s correlations. The MOPS and 
individual object presence analyses were performed 
using R (R Core Team, 2017) and the custom R 
scripts, also available at https://osf.io/hvgk6/. The t.test 
function was used to perform the independent samples 
t-test with unequal variance and the p.adjust function 
was used to perform the Holm–Bonferroni correction 

http://www.vision.caltech.edu/harel/share/gbvs.php
http://www.vision.caltech.edu/harel/share/gbvs.php
https://osf.io/hvgk6/
https://osf.io/hvgk6/
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Figure 2. Calculation of center bias. (a) Two exemplar Edinburgh scenes with high and low center bias. (b) GBVS maps. (c) Center bias 
kernel. (d) The results of element-wise multiplication of parts b and c. (e–f) The distribution of center bias of the Edinburgh and 
FIGRIM datasets, respectively. 

 

 

procedure. The lm function and predict function were 
used to perform linear regression analyses and predict 
MOPS in the leave-one-out multivariate regression 
analysis. The scale function was used to z-score the data. 
The mediate function with 5000 bootstrap resampling 
in Psych Package (Revelle, 2020) was used to perform 
mediation analyses. 

 

 
 

Relationships among fixation map consistency, 
fixation count, and scene memorability in the 
Edinburgh dataset 

We tested whether population-level eye-tracking 
measures from one group can predict the population- 
level scene memorability measured from an entirely 
different group of participants. Specifically, we 
obtained fixation counts and fixation map consistency 
measures from group 2 (G2) and used  those  to 
predict scene memorability from group 1 (G1; see 
Supplemental Note S1 for the definition of participant 
groups G1 and G2). 

As a sanity check, we first tested the reliability of 
the eye-tracking measures across the different groups 
of participants. We obtained fixation map consistency 
and fixation counts for each scene from G1 and 
G2 participants who performed the memorization 
task (see Methods) and examined the correlation of 
these measures between G1 and G2. The correlation 
values were significantly positive for fixation count, 
Spearman’s ρ(130) 0.64; 95% CI, 0.55–0.72; 
p < 0.001, and for fixation map consistency, ρ(130) 
0.69; 95% CI, 0.6, 0.75; p < 0.001, suggesting that these 
eye-tracking measures are reliable. 

Next, we examined the effects of fixation counts 
and fixation map consistency on scene memorability 
by conducting a scene-level linear regression analysis. 
The dependent variable was recognition accuracy from 
the G1 participants who performed the memorization 
task on the scene (scene memorability), and the 
predictors were fixation map consistency and fixation 
count, both z-scored, from the G2 participants who 
viewed these scenes on the memorization task. Scene 
orientation (whether or not a scene was horizontally 
flipped in the recognition test; see Methods) was also 
included as a predictor. The correlation plots of the 
continuous variables are presented in Supplementary 
Figure S1. Model EBoth (df 128), which included 
both fixation map consistency and fixation count, 

explained 24.4% of the variance (adjusted R2). It 
confirmed significant positive effects of fixation map 

consistency (β 0.05; 95% CI, 0.02–0.08]; p < 0.001) 
and scene orientation (β –0.17; 95% CI, –0.23 
to 0.11; p < 0.001) on scene memorability and a 
nonsignificant effect of fixation counts (β 0.02; 95% 
CI, –0.01 to 0.05; p 0.150). Figure 3a illustrates these 
results. Consistent with the linear regression results,  
the correlation between G2 fixation map consistency 
and G1 recognition accuracy was significantly positive, 
ρ(130) 0.23; 95% CI, 0.09–0.36; p 0.007. However, 
the correlation between G2 fixation counts and G1 
recognition accuracy was not significant, ρ(130) 0.11; 
95% CI, –0.03 to 0.25; p 0.234. 

We then examined whether fixation map consistency 
and fixation counts differently contribute to scene 
memorability. The correlation values between fixation 
map consistency and fixation counts were not 
significantly different from zero: for G1, ρ(130) 
–0.09; 95% CI, –0.23 to 0.05; p 0.31; for G2: ρ(130) 

0.08; 95% CI, –0.07, 0.22; p 0.365 (Figure 3b). 
To examine the extent to which these measures can 
complement in predicting scene memorability, we 
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Figure 3. Relationships among fixation map consistency, fixation count, and scene memorability. (a) The Edinburgh results. Scene 
memorability (“recog accuracy”) was obtained from G1. Fixation map (“fixmap”) consistency and fixation counts were obtained from 
G2. Raw values were plotted in the scatterplots. The filled square and triangles indicate the scenes presented in Figure 1. The solid 
line represents a significant correlation, ρ(130) 0.23; 95% CI, 0.09–0.36; p 0.007. The dashed line represents a nonsignificant 
correlation, ρ(130) 0.11; 95% CI, –0.03 to 0.25; p 0.234, The gray shades represent the 95% confidence bands. (b) Relationship 
between fixation map consistency and fixation counts in the Edinburgh dataset. The dashed line represents a nonsignificant 
correlation, ρ(130) 0.08; 95% CI, –0.07 to 0.22; p 0.365. (c) Explained variance of the linear regression models for predicting 
scene memorability in the Edinburgh dataset. Models EFcnt and EFMC used z-scored fixation counts and fixation map consistency as the 
predictor, respectively. Model EBoth used both z-scored variables as the predictor. (d) The FIGRIM results. Scene memorability was 
obtained from AMT participants. Fixation map consistency and fixation counts were obtained from the lab participants. The solid lines 
represent significant correlations. For recognition accuracy and fixation map consistency, ρ(628) 0.21; 95% CI, 0.15–0.27, and for 
recognition accuracy and fixation count, ρ(628)  0.18; 95% CI, 0.12–0.25 (both p < 0.001). (e) Relationship between fixation map 
consistency and fixation counts in the FIGRIM dataset. The solid line represents a significant correlation, ρ(628) –0.13; 95% CI, –0.2 
to –0.07; p < 0.001. (f) Explained variance of the linear regression models for predicting scene memorability in FIGRIM dataset. 

Models FFcnt and FFMC used z-scored fixation counts and fixation map consistency as the predictor, respectively. Model FBoth used both 
z-scored variables as the predictor. 

 

conducted scene-level regression analyses using simpler 
models, where the dependent variable was recognition 
accuracy from the G1 participants. The base model 
(Model EBase; df 130) included only scene orientation 
as a predictor, and we compared it to the models with 
only fixation counts (Model EFcnt; df 129), with only 
fixation map consistency (Model EFMC; df 129), and 
with both fixation counts and fixation map consistency 
(Model EBoth; df  128). The explained variances 
were 16.8%, 17.9%, 23.8%, and 24.4% for Models 
EBase, EFcnt, EFMC, and EBoth, respectively, resulting in  an 
additional 1.2%, 7.0%, and 7.6% of the variance 
explained by fixation count, fixation map consistency, 
and both, respectively (Figure 3c). In both Models EFcnt 
and EBoth, however, including fixation counts did not 
significantly improve the model fits: F(2, 129) 15.31, 

p < 0.001 and F(3, 128) 15.1, p < .001, respectively 
(Supplementary Table S1). 

Relationships among fixation map consistency, 
fixation count, and scene memorability in the 
FIGRIM dataset 

We repeated the analysis in an independent, 
larger dataset, the FIGRIM dataset (Bylinskii 
et al., 2015). We obtained fixation counts and fixation 
map consistency from the FIGRIM dataset using the 
same methods as in the Edinburgh dataset, but with 
one exception; the FIGRIM dataset did not contain 
fixation duration, so we assigned equal weights for all 
fixations in generating individual fixation maps. The 
fixation counts and fixation map consistency of the 
FIGRIM dataset (viewing duration 2 seconds) were  
not significantly different from those of the Edinburgh 
dataset (viewing duration 8 seconds) that were obtained 
during the first 2 seconds of viewing (Supplementary 
Note S2; Supplementary Figs. S2a, S2b). We then 
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Model Predictor β t p 

Model FBoth
a (df = 606) 

Model FBoth + MOPSb (df = 605) 

Fixation map consistency 
Fixation count 
Fixation map consistency 
Fixation count 

0.043 
0.036 
0.04 
0.031 

6.64 
5.62 
6.37 
4.83 

<0.001 
<0.001 
<0.001 
<0.001 

MOPS 0.034 4.81 <0.001 
Model FBoth face/human, motionc (df 604) Fixation map consistency 0.035 5.74 <0.001 

Fixation count 0.025 3.98 <0.001 
Face/human 0.137 8.46 <0.001 
Motion 0.010 0.55 0.58 

Model FBoth MOPS, face/humand (df 604) Fixation map consistency 0.035 5.68 <0.001 
Fixation count 0.024 3.81 <0.001 
MOPS 0.015 2.10 0.036 
Face/human 0.128 7.85 <0.001 

Table 1. Contributions of fixation map consistency, fixation count, and MOPS to scene memorability in the FIGRIM dataset. Notes: 
Model comparison results are presented in Supplementary Table S2. Dependent variable: AMT recognition accuracy of 630 scenes. 
aModel FBoth included z-scored fixation map consistency, z-scored fixation count, scene category, and object counts as predictors. 
bThe z-scored MOPS (see Methods) was added to Model FBoth. cThe presence of face/human (0, absent; 1, present) and the presence 
of motion in each scene were added to Model FBoth. dThe presence of face/human in each scene and z-scored MOPS were added to 
Model FBoth. 

 
conducted a scene-level regression analysis in which the 
dependent variable was recognition accuracy from the 
AMT participants (i.e., scene memorability), and the 
predictors were fixation map consistency and fixation 
counts of the same scenes, both z-scored, from the 
lab participants. Scene category, which affects scene 
memorability (Bylinskii, Isola, Bainbridge, Torralba, 
& Oliva, 2015), was also included as a categorical 
predictor. We did not include its interaction terms, 
because scene category did not significantly interact 
with fixation map consistency or fixation counts in 
predicting scene memorability (Supplementary Note 
S3). Also included as a predictor was the number of 
objects, which was negatively associated with scene 
memorability: ρ(628) –0.09; 95% CI, –0.16 to –0.03; 
p 0.019) (Supplementary Figure S3). The correlation 
plots of the continuous variables are presented in 
Supplementary Figure S3. 

Model FBoth (df 607), which included both fixation 
map consistency and fixation count, explained 18.0% 
of the variance (adjusted R2) and showed significant 
positive effects of both fixation map consistency 
(β 0.04; 95% CI, 0.03–0.06; p < 0.001) (Table 1) 
and fixation counts (β 0.03, 95% CI, 0.02–0.05; 

p < 0.001). Figure 3d illustrates these results. Consistent 
with the linear regression results, the correlation values 
were significantly positive between recognition accuracy 
and fixation map consistency, ρ(628) 0.21; 95% CI, 
0.15–0.27; p < 0.001, and between recognition accuracy 
and fixation count, ρ(628) 0.18; 95% CI, 0.12–0.25; 
p < 0.001, which were not significantly different from 
those of the Edinburgh dataset that were obtained 
during the first 2 second of viewing (Supplementary 
Note S2; Supplementary Figs. S2d, S2e). 

 
We also examined whether fixation map consistency 

and fixation counts differently contribute to scene 
memorability. We found that fixation map consistency 
and fixation counts were significantly negatively 
correlated in the FIGRIM dataset (Figure 3e), 
ρ(628) 0.13, 95% CI, –0.2 to –0.07; p < 0.001. Then, 
we conducted scene-level regression analyses using 
simpler models, where the dependent variable was AMT 
recognition accuracy. The base model (Model FBase; 
df 608) included only scene category as a categorical 
predictor, and we compared it to the  models  with 
only fixation counts and scene category as predictors 
(Model FFcnt; df 607) and with only fixation map 
consistency and scene category as predictors (Model 
FFMC; df 607). Model FBoth contained fixation 
map consistency, fixation count, and scene category 
as predictors. The explained variances were 11.09%, 
13.99%, 15.64%, and 19.7% for Models FBase, FFcnt, 
FFMC, and FBoth, respectively, resulting in additional 
2.9%, 4.5%, and 8.6% of the variance explained by 
fixation count, fixation map consistency, and both, 
respectively (Figure 3f). Further model comparison 
results are presented in Supplementary Table S2. In 
both datasets, fixation map consistency better predicted 
scene memorability than fixation count, and using both 
eye-tracking measures increased the predictive power. 

 

Examination of scene semantics in the FIGRIM 
dataset 

Scene semantics, such as the presence of these 
nameable objects, has been shown to affect scene 
memorability (Isola et al., 2011). Capitalizing on the 
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Figure 4. MOPS analysis. (a) The relationships among MOPS, scene memorability (left), fixation map consistency (middle), and fixation 
counts (right), respectively. The circles represent each image, and the gray shades represent the 95% confidence intervals. Raw values 
were plotted in the scatterplots. The dashed line represents a non-significant correlation, whereas the solid line represents a 
significant correlation, with their correlation values written at the right bottom. (b) The parallel mediation model to explain the 
relationship between the z-scored MOPS and scene memorability, with z-scored fixation map consistency and z-scored fixation counts 
as mediators. 

 

extensive object annotations in the FIGRIM dataset 
and using the combined and individual presences of a 
range of objects in each scene, respectively, as proxies 
for scene semantics, we asked how object presence 
contributes to scene memorability. Specifically, we 
used mediation analysis to examine whether and to 
what extent eye-tracking measures, such as fixation 
map consistency and fixation count, could explain the 
relationship between object presence and recognition 
accuracy. 

First, we created the MOPS as in Isola et al. (2011), 
in which the presence of 98 selected objects (1 if 
present, 0 if absent) was weighted-summed to predict 
scene memorability (see Methods for details about the 
object selection and leave-one-out MOPS calculation), 
and we examined its relationships to fixation map 
consistency and fixation count. As expected, MOPS 
and AMT recognition accuracy were significantly 
positively correlated, ρ(628) 0.36; 95% CI, 0.3–0.41; 
p < 0.001 (Figure 4a). We also found that MOPS was 
significantly positively correlated with and fixation 
count, ρ(628) 0.18; 95% CI, 0.11–0.24; p < 0.001. 
The relationship between MOPS and fixation map 
consistency was not significant, ρ(628) 0.06; 95% CI, 
–0.001 to 0.13; p 0.107. So, we conducted a mediation 
analysis (see Methods) to investigate the relationships 
among MOPS, fixation count, and scene memorability 
(Figure 4b). We found a significant indirect mediation 
effect (a b, 0.02; 95% CI, 0.01–0.04) and a significant 
direct effect, indicating a partial mediation. The results 
suggest that fixation counts partially mediated the 
relationship between MOPS and scene memorability. 

Second, we inspected all 98 nameable objects and 
three manually defined semantic features (face/human, 
motion, watchability) following Xu et al. (2014) (see 
Methods) individually to identify objects/features 
that increased scene memorability significantly after 
correcting for multiple comparisons. Supplementary 
Table S3 shows the top 20 objects/features in the 
descending order of mean difference (t-score) in 

Figure 5. Parallel mediation analysis among face/human, 
fixation map consistency, fixation count, and scene 
memorability. This model examined to what extent the 
presence of face/human was mediated by both z-scored 
fixation map consistency and z-scored fixation counts in 
predicting scene memorability. *p < 0.05 (bootstrap test). 

 
scene memorability, obtained with the independent 
samples t-test with unequal variance. We found that the 
presences of face/human, person, pilot,  and  motion, 
all of which are related to face/human, significantly 
increased scene memorability after correcting for 
multiple comparisons. We decided to further examine 
only the presence of face/human because it had the 
most scenes (158) and mostly overlapped with the 
presences of person, pilot, and motion (91 out of 
101 scenes with person, 10 out of 10 pilot scenes, 
and 70 out of 119 scenes with motion were coded as 
face/human). In addition, face/human could explain 
away the effect of motion on scene memorability 
(Table 1). We found that the presence of face/human 
increased both fixation map consistency, t(229) 
–3.21, p 0.002, and fixation count, t(246) –3.86, 
p < 0.001. After seeing that it was associated with 
scene memorability, fixation map consistency, and 
fixation count, we conducted a parallel mediation 
analysis (Figure 5) to examine whether and to what 
extent fixation map consistency and fixation counts 
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could mediate the relationship between face/human  
and scene memorability. We found a significant total 
indirect mediation effect (a b, 0.12; 95% CI, 0.07–0.19) 
and a significant direct effect, indicating a partial 
mediation. When individually testing for fixation map 
consistency path and fixation counts path, respectively, 
we found significant indirect effects for both fixation 
map consistency (0.06; 95% CI, 0.02–0.11) and fixation 
counts (0.06; 95% CI, 0.03–0.11). Together, these results 
also suggest that both fixation map consistency and 
fixation counts partly (but not fully) contribute to 
the relationship between semantic features and scene 
memorability. 

 

 

Additive contributions of fixation map 
consistency, fixation count, and scene semantics 
to scene memorability in the FIGRIM dataset 

To examine whether fixation map consistency, 
fixation count, and scene semantics additively 
contribute to scene memorability, we conducted 
additional scene-level linear regression analyses using 
MOPS, with the presences of face/human, and the 
presence of motion as the proxies of scene semantics. 
Model FBoth (Figure 3f) included scene category, 
fixation map consistency, and fixation counts as 
predictors and explained 18.0% of the variance in scene 
memorability (adjusted R2). By adding z-scored MOPS 
to Model FBoth, the explained variance increased to 
22.5%, and the effects of fixation map consistency, 
fixation count, and MOPS were all significantly positive 
(Table 1). By adding the presences of face/human 
and motion to Model FBoth, the explained variance 
increased to 29.1%, and the effects of fixation map 
consistency, fixation count, and the presences of 
face/human were significantly positive. However, the 
effect of motion was not significant, suggesting that 
it was explained away by face/human. Further model 
comparison results also demonstrated that adding 
motion to Model FBoth with face/human did not 
significantly increase model accuracy, F(1, 604) 0.30, 
p 0.584 (Supplementary Table S2). Finally, by adding 
both MOPS and the presence of face/human to Model 
FBoth, the explained variance increased to 29.6%, and 
the effects of fixation map consistency, fixation count, 
MOPS, and the presence of face/human all remained 
significantly positive. Because MOPS included the 
person category in its scoring, adding the presence 
of face/human in the regression model decreased the 
effect of MOPS. However, as MOPS also represented 
other object categories, its effects remained significantly 
positive after adding face/human (Table 1), and 
model comparison also confirmed a significant result, 
F(1, 604) = 4.42, p = 0.036 (Supplementary Table  S2). 

To further explicate the relationship between all 
predictors, we examined the four-way interaction 
effect of fixation map fixation count MOPS 

face/human (Supplementary Note S4). We 
found no interaction effect among all of the 
variables, indicating their additive contributions 
in predicting memorability. Together, these 
results suggest that fixation map consistency, 
fixation count, and proxies of scene semantics 
all contribute differently and additively to scene 
memorability. 

 

 
Examination of attention deployment across 
time in the Edinburgh dataset 

Fixation map consistency was significantly associated 
with scene memorability in both the Edinburgh and 
FIGRIM datasets despite their differences, particularly 
the viewing duration: 2 seconds in the FIGRIM dataset 
versus 8 seconds in the Edinburgh dataset. The longer 
viewing duration in the Edinburgh dataset allowed us  
to examine the effects of viewing time on attention 
deployment, such as the temporal consistency of 
fixation maps across participants and within the same 
participant, and how these may be related to scene 
memorability. Specifically, we cut the 8-second fixation 
data into four 2-second intervals (0–2, 2–4, 4–6, and 6–
8 seconds) (Figure 6a) and examined fixation map 
consistency across G1 and G2 participants in the four 
intervals (black numbers under the individual fixation 
maps in Figure 6a, such as G2 FMC: 0.847) and fixation 
map similarity (i.e., the same Fisher z-transformed 
Pearson’s correlation coefficient used for calculating 
fixation map consistency; see Methods) between the 0- 
to 2-second fixation map and the 2- to 4-second, 4- to 
6-second, and 6- to 8-second fixation maps within the 
same participant (blue numbers inside the individual 
fixation maps in Figure 6a, such as FMSim: 0.651). 

We found that fixation map consistency during 
the interval of  0 to 2 seconds (G1, 0.65 0.15 [M 
SD]; G2, 0.66 0.15) (Figure 6b) was significantly 
higher than those during the intervals of (1) 2 to 4 
seconds (G1, 0.29 0.11; G2, 0.31 0.11); (2) 4 to 6 
seconds (G1, 0.23 0.08; G2, 0.24 0.09); and (3) 6 
to 8 seconds (G1, 0.20 0.09; G2, 0.25 0.11). This 
finding suggests that people attend to similar scene 
regions during the first 2 seconds but attend to different 
regions afterward. Figure 6a shows this tendency even 
within the same person. For example, the fixation maps 
during the intervals of 2 to 4, 4 to 6, and 6 to 8 seconds 
look very different from that during the 0- to 2-second 
interval. Consistent with this observation, the similarity 
values between the 0- to 2-second fixation map and the 
other fixation maps (i.e., FMSim in Figure 6a) were 

low (2–4 seconds: G1, 0.18 ± 0.10, G2, 0.17 ± 0.11; 
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Figure 6. Examination of attention deployment across time in the Edinburgh dataset. (a) Three exemplar G2 participants’ fixation 
maps at each 2-second intervals. The black numbers at the bottom are fixation map consistency (FMC). The blue numbers on the left 
bottom of each fixation map are fixation map similarity (FMSim) between the current fixation map and the fixation map from 0 to 2 
seconds. Note that FMC is calculated across participants, whereas FMSim is calculated within the same participant. (b) FMC across 
time. The unit of analysis is scene. The histograms of G1 and G2 FMC are drawn, and the rectangles are overlaid to describe their 
median, first, and third quartiles. The upper and lower horizontal edges of the rectangles specify the first and third quartile, the 
middle thick lines specify the median, and the open and filled circles represent the mean. (c) FMSim across time. The unit of analysis 
is trial (a participant seeing a scene), thus the FMSim ranges are larger. However, the majority of FMSim values are around 0, and the 
mean is around 0.2. (d) Rank correlations between G1 recognition accuracy and G2 FMC across time. The gray shades represent the 
95% confidence intervals. 

 

 

4–6 seconds: G1, 0.14 0.09, G2, 0.15 0.09; 6–8 
seconds: G1, 0.15 0.09, G2, 0.18 0.11) (Figure 6c), 
which contributed to the low levels of fixation map 
consistency during the intervals of 2 to 4 seconds, 
4 to 6 seconds, and 6 to 8 seconds. Moreover, the 
correlation between fixation map consistency and scene 
memorability was the highest during the interval of 0 to 
2 seconds, ρ(130) 0.34; 95% CI 0.2–0.46; p < 0.001 
(Figure 6d), and was not a significant predictor of scene 
memorability after 4 seconds. Together, these results 
suggest that fixation maps are the most consistent in 
the first 2 seconds and that the scene features (which 
we do not fully know yet) that lead to more consistent 
fixation maps early in viewing may also enhance scene 
encoding. 

Examination of center bias in both datasets 

Previous research showed that photographs tend  
to have objects of  interest at  their center,  resulting 
in both higher level of low-level visual saliency and 
higher probability of fixations at the center than in 
the periphery (Bindemann, 2010; Tatler, 2007; Tseng 
et al., 2009). It is possible that center bias could 
affect fixation map consistency and its relationship 
to scene memorability. For this reason, we calculated 
the center bias of each scene (Figure 2) and examined 
the relationships among center bias, fixation map 
consistency, and recognition accuracy in both datasets. 

Comparing center bias and fixation map consistency 
(Figure 7a), we found that these were significantly 
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Figure 7. Examination of center bias in both datasets. (a) The relationships between center bias and fixation map consistency in the 
Edinburgh (left) and FIGRIM (right) datasets. Consistent with the main results (Figure 3), only G2 fixation map consistency is 
presented. The circles represent each image, and the gray shades represent the 95% confidence intervals. The dashed line represents 
a non-significant correlation, whereas the solid line represents a significant correlation, with their correlation values written at the 
right bottom. (b) Correlations between center bias and G2 fixation map consistency across time in the Edinburgh dataset. (c) The 
relationships between center bias and recognition accuracy in the Edinburgh (left) and FIGRIM (right) datasets. 

 
 

positively correlated in the FIGRIM dataset, ρ(628) 
0.34; 95% CI, 0.28–0.4; p < 0.001, and in the 

Edinburgh dataset, ρ(130) 0.18; 95% CI, 0.04–0.32; 
p 0.036. In other words, the higher center bias of 
a scene, the more consistent fixation maps become 
across participants. The high level of correlation 
between center bias and fixation map consistency in 
the FIGRIM raised a possibility that center bias may 
affect fixation map consistency in the first 2 seconds of 
viewing (but potentially not later). So, we examined 
the correlation values between center bias and fixation 
map consistency across time in the Edinburgh dataset, 
but we were unable to find a clear relationship between 
time of viewing and center bias (Figure 7b). Comparing 
center bias and scene memorability (Figure 7c), 
we failed to find a significant relationship between 
center bias and scene memorability in either the 
Edinburgh dataset, ρ(130) 0.06; 95% CI, –0.08 to 0.2; 
p 0.489, or the FIGRIM dataset, ρ(628) 0.00; 95% 
CI, –0.07 to 0.06; p 0.970. Together, these null results 
suggest that center bias is unlikely to be driving the 
relationship between fixation map consistency and scene 
memorability. 

 

 

In this study, we used two different datasets, the 
Edinburgh and FIGRIM datasets, and confirmed in 
both datasets that fixation map consistency measured 
from one group of people was significantly and 
positively associated with scene memorability measured 
from a different group of people (Figure 3). Consistent 
with previous research, we also confirmed the positive 
effects of fixation counts (Choe et al., 2017; Loftus, 
1972; Tatler & Tatler, 2013) and the proxies of scene 
semantics (Isola et al., 2011) on scene memorability. 
We found that the relationships between the proxies 
of scene semantics and scene memorability were 
partially (but not fully) mediated by fixation map 
consistency and fixation count, separately as well as 
together (Figures 4b and 5). Importantly, we found 
that fixation map consistency, fixation count, and scene 
semantics additively contributed to scene memorability 
(Table 1), suggesting that eye tracking can complement 
computer vision-based algorithms and improve scene 
memorability prediction. 

Discussion 
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Although the Edinburgh and FIGRIM datasets 
were different in many aspects, such as the scenes 
used, experimental details,  and viewing duration, 
we found that fixation map consistency, fixation 
count, and their relationships to scene memorability 
were similar between these datasets (Supplementary 
Figure S1). In particular, we confirmed a positive 
association between fixation map consistency and 
scene memorability in both datasets (Figure 3), 
consistent with previous research with static scenes 
(Khosla et al., 2015; Mancas & Le Meur, 2013) and 
videos (Burleson-Lesser, Morone, DeGuzman, Parra, 
& Makse, 2017; Christoforou, Christou-Champi, 
Constantinidou, & Theodorou, 2015). Moreover, 
the observed correlation values between fixation 
map consistency and scene memorability from the 
Edinburgh dataset (0.23; 95% CI, 0.09–0.36) and 
FIGRIM dataset (0.21; 95% CI, 0.15–0.27) were very 
similar to the value (0.24) reported by Khosla et al. 
(2015) from the Fixation Flickr dataset (Judd Ehinger, 
Durand, & Torralba, 2009). Together, these findings 
suggest a robust positive association between fixation 
map consistency and scene memorability. 

How can fixation map consistency be associated 
with scene memorability? In this study, we found three 
factors, all of which have been reported in previous 
research, that affected fixation map consistency: 
center bias, the presence of face/human (which was 
used as a proxy for scene semantics), and viewing 
time. How were these factors also related to scene 
memorability? Regarding center bias (Figure 7), 
photographs tend to have objects of interest at their 
center, resulting in both higher level of low-level visual 
saliency and higher probability of fixations at the 
center than in the periphery (Bindemann, 2010; Hayes 
& Henderson, 2020; Tatler, 2007; Tseng et al., 2009). 
Consistently, we found that center bias was positively 
correlated with fixation map consistency. However, 
we also found that center bias was not significantly 
correlated with scene memorability in the both  
datasets, suggesting that center bias does not drive the 
relationship between fixation map consistency and scene 
memorability. 

Regarding the presence of face/human (Figure 5), 
previous research showed that people prioritize their 
attention to faces, bodies, and other people (i.e., social 
features) in naturalistic scenes where they could obtain 
important social information (Bindemann, Scheepers, 
Ferguson, 2010; Cerf, Frady, & Koch, 2009; End & 
Gamer, 2017; Flechsenhar & Gamer, 2017; Scrivner, 
Choe, Henry, Lyu, Maestripieri, & Berman, 2019), 
suggesting that scenes with informative and salient scene 
features, such as faces and people, may produce higher 
fixation map consistency than scenes without those. For 
example, Wilming and colleagues (2011) showed that 
fixation map consistency was higher in urban scenes 
than in nature scenes and explained that urban scenes 

have more people and concrete man-made objects, 
which are more likely to attract fixations. Also, Isola 
and colleagues (2011) showed that nameable objects, 
including faces and people, affect scene memorability. 
Consistently, we found that the presence of face/human 
simultaneously increased fixation map consistency, 
fixation count, and scene memorability. Moreover, 
we found that fixation map consistency and fixation 
count, separately as well as together, partially mediated 
its relationship to scene memorability (Figure 5), 
suggesting that these salient features may enhance scene 
encoding through multiple mechanisms, including 
overt visual attention. However, we do not know to 
what extent nameable objects/features, other than 
face/human, can engage attentional mechanisms and 
increase scene memorability because we only examined 
the objects/features that increased scene memorability 
significantly after correcting for multiple comparisons 
in the FIGRIM dataset. 

Regarding viewing time (Figure 6), it is well 
known that fixation maps are more consistent across 
participants early in viewing (Buswell, 1935; Tatler et 
al., 2005). Consistently, we found that fixation map 
consistency was the highest in the first 2 seconds of 
viewing and quickly dropped afterward (Figure 6b). 
Moreover, we found the correlation between fixation 
map consistency and scene memorability was significant 
only during the intervals of 0 to 2 seconds and 2 to 
4 seconds, suggesting that the scene features (other 
than center bias) that contribute to producing more 
consistent fixation maps early in viewing may be also 
important for scene encoding. Unfortunately, however, 
which scene features can contribute to the difference 
in fixation map consistency across scenes, especially 
in the first 2 seconds, is less well known. Our results 
suggest that such scene features could include highly 
meaningful features such as faces and people, which 
can guide overt attention from the very first fixation 
(Henderson & Hayes, 2017; Henderon & Hays, 2018). 
Understanding which scene features contribute to 
producing more consistent fixation maps early in 
viewing and how these features contribute to scene 
encoding will be critical for predicting both fixation 
patterns and scene memorability. 

Fixation count is simple, easy to measure, and 
associated with scene memorability (Choe et al., 2017; 
Loftus, 1972; Tatler & Tatler, 2013). Consistently, we 
found that  the correlation between fixation counts 
and scene memorability was significantly positive 
(0.18; 95% CI, 0.12–0.25) in the FIGRIM dataset and 
non-significantly positive (0.11; 95% CI, 0.03–0.25) in 
the Edinburgh dataset, suggesting that the scenes that 
trigger elaboration are better remembered. Moreover, 
our finding that fixation counts partially mediated the 
relationship between MOPS and scene memorability 
(Figure 4b) also supports the role of elaboration in 
scene encoding. 
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Scene semantics is known to play an important role 
in guiding attention (Cerf et al., 2009; Henderson, 2003; 
Henderson & Hayes, 2017; Henderson & Hayes, 2018; 
Wu, Wick, & Pomplun, 2014; Xu et al., 2014) and in 
forming scene memory (Isola et al., 2011). Consistently, 
we found that two proxies of scene semantics in this 
study, MOPS and the presence of face/human, were 
positively associated with scene memorability. Through 
the mediation analyses, we found that fixation counts 
partially mediated the relationship between MOPS and 
scene memorability (Figure 4b) and that both fixation 
map consistency and fixation count, separately as well 
as together, partially mediated the relationship between 
the presence of face/human and scene memorability 
(Figure 5). These results suggest that scene semantics 
engages attentional mechanisms, which contribute to 
scene encoding, but attentional mechanisms can only 
partly explain the relationship between scene semantics 
and scene memorability. As a result, we found that 
the effects of fixation map consistency, fixation count, 
MOPS, and the presence of face/human were all 
significantly positive when these were used together to 
predict scene memorability (Table 1), suggesting that 
these measures additively contribute to scene encoding. 
Our results show why the  computer  vision-based 
scene memorability models (Bylinskii et al., 2015; 
Khosla et al., 2015), which are mainly based on scene 
information, are successful but also suggest that 
2 seconds of eye tracking (for each scene) can provide 
valuable additional information for better prediction. 

There are at least five limitations of this study. First, 
the scenes used in this study were two-dimensional (2D) 
computer images and not real scenes, so the results 
are primarily pertinent to what happens when people 
look at images on computer screens. Presumably, 
encoding of 2D computer images would engage similar 
underlying cognitive processes as encoding real scenes 
(i.e., three-dimensional), but this assumption has to be 
explicitly tested. Second, the combined predictive power 
of the eye-tracking and scene-based measures was still 
low, as indicated by the explained variance of the full 
models (Edinburgh EBoth: 24.5%;  FIGRIM  FBoth 
MOPS face/human: 30.0%). Third, this study did 
not fully identify the scene features that can produce 
high fixation map consistency or provide mechanistic 
explanations for how a scene can produce more or less 
consistent fixation maps. Fourth, this study also did not 
provide mechanistic explanations for how a scene can 
produce more or less fixations. More fixations in a trial 
could be interpreted as elaborate inspection (Winograd, 
1981), but what and how intrinsic properties of a scene 
can mechanistically bias fixation counts and saccade 
rate across viewers have been less studied. Fifth, the 
proxies of scene semantics used in the study were 
limited by the existing object annotations and the 
authors’ manual inspection, which may have missed 
factors affecting scene memorability and attention 

deployment. Large eye-tracking datasets with a large 
number of scenes and rapidly improving computer 
vision algorithms for scene understanding will help 
tackle these limitations.  Future research should 
further investigate the bottom-up (i.e., scene-specific) 
and top-down (e.g., instructions, viewing tasks, past 
experience) factors that affect gaze control (Ballard & 
Hayhoe, 2009; Henderson, 2007; Henderson, 2011; 
Henderson, 2017; Tatler, Hayhoe, Land, & Ballard, 
2011). Such effort will lead to a precise understanding 
of what fixation map consistency and fixation counts 
can tell us about a scene. 

 

 
 

By examining two different eye-tracking datasets, we 
confirmed that the higher the fixation map consistency 
of  a scene, the higher its memorability is. Fixation 
map consistency and, more importantly, its correlation 
to scene memorability were the highest in the first 
2 seconds of viewing, suggesting that scene features 
(other than center bias) that contribute to producing 
more consistent fixation maps early in viewing may 
be also important for scene encoding. We also found 
that the relationships between (the proxies of) scene 
semantics and scene memorability were partially (but 
not fully) mediated by attentional mechanisms and that 
fixation map consistency, fixation count, and scene 
semantics significantly and additively contributed to 
scene memorability. Together, these results suggest 2 
seconds of eye tracking can complement computer 
vision-based algorithms in better predicting scene 
memorability. 

Keywords: visual attention, image memorability, 
eye-tracking, fixation map consistency, fixation counts 
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