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Abstract—We study several fundamental problems in the k-
machine model, a message-passing model for large-scale dis-
tributed computations where k > 2 machines jointly perform
computations on a large input of size N , (typically, N � k).
The input is initially partitioned (randomly or in a balanced
fashion) among the k machines, a common implementation in
many real-world systems. Communication is point-to-point, and
the goal is to minimize the number of communication rounds of
the computation.

Our main result is a general technique for designing efficient
deterministic distributed algorithms in the k-machine model
using PRAM algorithms. Our technique works by efficiently
simulating PRAM algorithms in the k-machine model in a
deterministic way. This simulation allows us to arrive at new
algorithms in the k-machine model for some problems for which
no efficient k-machine algorithms are known before and also
improve on existing results in the k-machine model for some
problems.

While our simulation allows us to obtain k-machine algorithms
for any problem with a known PRAM algorithm, we mainly focus
on graph problems. For an input graph on n vertices and m
edges, we obtain Õ(m/k2) round4 algorithms for various graph
problems such as r–connectivity for r = 1, 2, 3, 4, minimum
spanning tree (MST), maximal independent set (MIS), (∆ + 1)-
coloring, maximal matching, ear decomposition, and spanners
under the assumption that the edges of the input graph are
partitioned (randomly, or in an arbitrary, but balanced, fashion)
among the k machines. For problems such as connectivity and
MST, the above bound is (essentially) the best possible (up
to logarithmic factors). Our simulation technique allows us to
obtain the first known efficient deterministic algorithms in the
k-machine model for other problems with known deterministic
PRAM algorithms.
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4Õ notation hides a polylog(·) factor and an additive polylog(·) term.

I. INTRODUCTION

The focus of this paper is on the distributed processing of
large-scale inputs, which has become increasingly important
with the rise of massive datasets in general and massive
graphs such as the Web graph, social networks, and biological
networks in particular. A key goal in distributed large-scale
computation is to minimize the amount of communication
across machines, as this typically dominates the overall cost
of the computation (see, e.g. [52]). Frameworks such as the
Map-Reduce [37] and Spark [2] are popular for distributed
computation on massive datasets. In the context of graphs, sev-
eral large-scale graph processing systems such as Pregel [40],
Giraph [1], and Spark’s GraphX [3] have been designed based
on the message-passing distributed computing model [39],
[46]. In these systems, the input which is simply too large
to fit into a single machine, is distributed across a group
of machines connected via a communication network. The
machines jointly perform computation in a distributed fashion
by sending/receiving messages.

Motivated by the above considerations, we study a number
of fundamental problems in a message-passing distributed
computing model for large-scale computations called the k-
machine model [30] (explained in detail in Section II). In this
model, the input is distributed across a group of k machines
that are pairwise interconnected via a communication network.
The k machines jointly perform computations to produce
the output. The communication is point-to-point via message
passing. The computation advances in synchronous rounds,
and there is a constraint on the amount of data that can
cross each link of the network in each round. The complexity
of algorithms is expressed as the round complexity and is
measured as the number of communication rounds required
by the computation. The aim of this model is to investigate
the amount of “speed-up” possible vis-a-vis the number of
available machines in the following sense: when k machines
are used, how does the round complexity scale in k?



There are several recent results concerning graph algorithms
in the k-machine model [30], [44], [6], [45], [23], [32], [18].
All the above papers crucially assume an input distribution
known as the Random Vertex Partition (RVP) model where
each vertex of the input graph and each of its incident edges
is assigned to a machine chosen independently and uniformly
at random. It can be shown ([30]) that, on a graph of n
vertices and m edges, the RVP model gives a balanced
partition such that each machine gets Õ(n/k) vertices and
Õ(m/k + ∆) edges, where ∆ is the maximum degree of the
graph (which can be Θ(n)). Under the RVP model, Klauck
et al. [30] presented lower and upper bounds for several
graph problems including connectivity, minimum spannning
tree (MST), maximal independent set (MIS), shortest paths,
spanners, PageRank, triangle counting and enumeration, etc.
In particular, assuming that each link has a bandwidth of
O(polylog n) bits5 per round, they show a lower bound of
Ω̃(n/k2) rounds for the graph connectivity problem. They also
present an Õ(n/k)-round algorithm for graph connectivity and
spanning tree (ST) verification.

The work of [45], [44] presents an Õ(n/k2)-round algo-
rithm in the RVP model for graph connectivity, thus achieving
a speedup quadratic in k and also matches the lower bound
up to polylogarithmic (in n) factors. This result is significant
since it demonstrated that there are non-trivial graph problems
for which we can obtain superlinear (in k) speed-up.

Despite these spurts of progress in designing algorithms in
the k-machine model, we highlight two prominent questions
that arise from the current progress on distributed computation
in the k-machine model. Firstly, as mentioned earlier, most
of the current algorithms for graph problems are designed
under the RVP model. While the RVP model is used in many
graph processing systems, for many graph problems, the input
graph is typically available as a list of edges (e.g., graphs in
the popular SNAP dataset [35]). For this setting, the more
natural input model is the Random Edge Partition (REP)
model where the m edges of the input graph are distributed
among the k machines (randomly or in a balanced fashion)
so that each machine gets Õ(m/k) edges. It is worth noting
that algorithms that work in the RVP model ([30], [44], [6],
[45], [23]) do not necessarily yield optimal algorithms in the
REP model (cf. Section III-A). Secondly, many of the efficient
algorithms in the k-machine model use randomization (cf.
Section III-A). Our work presents the first-known efficient
deterministic algorithms for many problems (including graph
connectivity and MST) in the REP model.

The main contribution of this paper is a general technique
to derive efficient and deterministic distributed algorithms in
the k-machine model for various fundamental graph problems.
Our technique allows one to convert algorithms designed in the
standard PRAM model to the k-machine model. Our technique
has wide applicability as the PRAM model is a well-studied
model for algorithm design in the parallel setting with a wealth

5If the bandwidth is B bits per round, the bounds are to be divided by B.

of literature on PRAM algorithms for many problems from
various domains.

While this paper focuses on the theory of the design and
analysis of k-machine model algorithms, as part of further
work (cf. Section VI), we plan to implement these algorithms
and study their performance. It is fairly straightforward to
implement k-machine algorithms using message-passing plat-
forms such as MPI. We have implemented such algorithms for
PageRank and MST from [30] in [4].

A. Other Related Work

Theoretical study of large-scale graph computation in dis-
tributed systems is relatively new. Several works have been
devoted to developing graph algorithms in the MapReduce or
the Massively Parallel Computing (MPC) model (e.g., see [7],
[37], [33], [36], [28], [23], [5] and references therein).

Simulating algorithms originally designed in one compu-
tational model to other models of computation is the central
theme in a number of prior works [29], [55], [51], [27], [21],
[22], [28], [30], [17]. In particular, see [21] for a survey
of PRAM simulation results and techniques. Several papers
study simulation of PRAM in a distributed memory machine
(DMM), see e.g., [15], [55], [27], [29] and the references
therein. Upfal and Wigderson [55] give a deterministic scheme
to simulate a PRAM step in O(log n(log log n)2) time when
there are n processors in both the PRAM and the DMM has n
memory modules. The subsequent work of Karp et al. [29] give
a more efficient randomized simulation, i.e., each PRAM step
can be simulated in O(log log n log∗ n) time. Note that in the
DMM simulations every processor/memory module pair can
only answer one request per round and typically the bounds
are for the case when the number of processors in both the
PRAM and DMM are the same. In contrast, in the k-machine
model (each machine has its own memory), k is much smaller
than n (sublinear in n) and there is congestion at the machine
level (only) due to bandwidth limitations.

Karloff et al. [28] show that PRAM algorithms can be trans-
lated to work in the Map-Reduce model. The simulation from
[28] converts a t(n)-time and O(n2−2ε)-processor CREW
PRAM algorithm to O(t(n)) round Map-Reduce algorithm.
The number of mappers and reducers used in the simulation
is also in O(n2−2ε) unlike our results which delink the number
of processors used in the PRAM algorithm and the number of
machines in the k-machine model. Hegeman and Pemmaraju
[22] show that algorithms designed in the congested clique
model can be translated to run in the MapReduce model.
Klauck et al. [30] show several graph algorithms in the k-
machine model by converting algorithms designed in the
CONGEST model.

II. THE MODEL

The k-machine model. We now describe the adopted model
of distributed computation, the k-machine model (a.k.a. the
Big Data model), introduced in [30] and further investigated
in [43], [48], [13], [6], [45], [23], [32], [16]. The model
consists of a set of k > 2 machines {M1,M2, . . . ,Mk}
that are pairwise interconnected by bidirectional point-to-point



communication links. Each machine executes an instance of
a distributed algorithm. The computation advances in syn-
chronous rounds where, in each round, machines can exchange
messages over their communication links and perform some
local computation. Each link is assumed to have a bandwidth
of B bits per round, i.e., B bits can be transmitted over
each link in each round; unless otherwise stated, we assume
B = Θ(polylogN) (where N is the input size), although
our bounds can be easily rewritten in terms of B [45].6

Each machine has its own (internal) memory (assumed to be
unlimited7) which it can access for free (any number of its
own memory locations can be accessed simultaneously in one
round). Machines do not. share any memory and have no other
means of communication.

Local computation within a machine is ignored since our
focus is on the exchange of messages between machines,
which is the costly operation. However, we note that in
all the algorithms of this paper, every machine in every
round performs lightweight computations; in particular, these
computations are bounded by a polynomial (typically, even
linear) in the size of the input assigned to that machine. The
round complexity of an algorithm is the maximum number of
rounds until termination.
Input and Output Requirement Initially, the entire input
is not known to any single machine, but rather partitioned
among the k machines in a “balanced” fashion. Eventually,
each machine Mi, for 1 6 i 6 k, must set a designated local
output variable oi (which need not depend on the set of vertices
assigned to Mi), and the output configuration o = 〈o1, . . . , ok〉
must satisfy certain feasibility conditions for the problem at
hand.
PRAM model. The PRAM model (cf. [24]) is a popular model
that is used in designing parallel algorithms for a wide variety
of problems over decades. Key elements of this model are
the availability of a large number of processors that have
shared access to a pool of memory that can be accessed
at uniform cost. The processors execute in a synchronous
manner. Given the shared nature of memory, the model can
be classified further as the Exclusive-Read-Exclusive-Write
(EREW), the Concurrent-Read-Exclusive-Write (CREW), and
the Concurrent-Read-Concurrent-Write (CRCW) models. As
these names indicate, algorithms in the the EREW model do
not have more than one processor reading from or writing to
the same cell of memory at the same time. Algorithms in the
CREW model allow concurrent reads but forbid concurrent
writes. In the CRCW model, also concurrent writes are sup-
ported by further specifying the semantics of the concurrent

6There is an alternative (but equivalent) way to view this communication
restriction: instead of putting a bandwidth restriction on the links (which
increases with the number of machines), we can put a restriction on the
amount of information that each machine can communicate (i.e., send/receive)
in each round [45]. This is similar to the restriction imposed in the popular
Map-Reduce/MPC models as well [28], [7]. In such model, the memory and
bandwidth of each machine are restricted to sublinear in the size of the input;
this is equivalent to choosing k sublinear in the input size in the k-machine
model.

7In many k-machine algorithms, the memory usage is limited, essentially
proportional to the size of the input allocated to that machine.

PROBLEM UPPER BOUND LOWER BOUND
This Paper

Graph Algorithms
Connectivity

Õ(min{m/k2, n/k})
Ω(min{m/k2,

n/k}) [56]

Strong Connectivity∗

(Directed Graphs)
Minimum Spanning
Tree (MST)
r-Connectivity Õ(m/k2)
r = 2, 3, 4

Maximal Independent Õ(m/k2) Ω̃(n/k2)
Set, Coloring, Maximal for MIS [32]
matching
Breadth First Search Õ(m+n

k2
+D)

Approximate SSSP∗, Õ(mn
δ

k2
),

(weighted, undirected) δ > 0
Other Problems

Matrix multiplication8 Õ(M(n)/k2)

Convex hull, Voronoi Õ(N/k2)
diagram
Suffix tree9 Õ(N log Σ/k2)

TABLE I
SUMMARY OF OUR RESULTS. THE ALGORITHMS FOR SSSP ARE

(1 + O(1/POLYLOG(n)))-APPROXIMATE. PROBLEMS MARKED WITH A ∗ IN THE

FIRST COLUMN INDICATE THAT THE CORRESPONDING ALGORITHMS ARE

RANDOMIZED IN NATURE.

write operation. The parameters of interest are: the time taken
by the parallel algorithm, the number of processors used, and
the overall work done by the parallel algorithm.

III. OUR CONTRIBUTIONS AND TECHNIQUES

A. Our Results

Our main result is a general technique for designing ef-
ficient deterministic distributed algorithms in the k-machine
model. Our technique is based on efficiently simulating PRAM
algorithms in a deterministic way in the k-machine model
(cf. Section IV). This is stated in Theorem 1 below as the
Deterministic Simulation Theorem. Theorem 1 allows us to
translate PRAM algorithms to the k-machine model as shown
in Table I. Our simulation extends to also randomized PRAM
algorithms. Although our Deterministic Simulation Theorem
can be applied for any PRAM algorithm, we mainly focus
on graph problems as graph problems are one of the natural
problems to solve in the k-machine model.

Theorem 1 (Deterministic Simulation Theorem). A PRAM
algorithm P that runs in T (N) time using P (N) > k
processors, M(N) memory words, and does W (N) total work
to solve an instance of problem Π of size N can be translated
into an algorithm K for the k-machine model that runs in
Õ
(
W (N)
k2 + T (N)

)
rounds.

Table I lists some of the new and efficient deterministic
algorithms in the k-machine model for various fundamental
problems under an appropriate input model that we obtain
using the Deterministic Simulation Theorem. (See also Section
V). Importantly, the algorithms we show are deterministic
algorithms; if the PRAM algorithm is deterministic, then since

6M(n) is the worst case work complexity of the best known PRAM
algorithm for multiplying two n× n matrices.

7The input is a string of N characters from an alphabet Σ.



the simulation is deterministic we obtain deterministic k-
machine algorithms.

B. An Overview of Techniques

As a warmup, we first show that a single step of any
(deterministic) PRAM algorithm can be simulated on the k-
machine model so that each of the k machines simulates an
equal number of processors as used in a PRAM algorithm (cf.
Theorem 3). We use processors to denote PRAM processors
and machines to denote the machines in the k-machine model.
Similarly, time is used to denote the timesteps needed by a
PRAM algorithm and rounds to denote the number of commu-
nication rounds of a k-machine algorithm. This simulation is
randomized and makes certain assumptions such as a uniform
mapping of shared memory cells to the machines. These
assumptions are removed by using techniques that are shown
in a related context by Upfal and Widgerson [55]. Upfal and
Widgerson show how to deterministically simulate one step of
an n-processor PRAM algorithm in a complete network of n
nodes where nodes communicate via links by message passing
with no shared memory. Furthermore, each link has a limited
bandwidth (each link can send at most one data item per
round). The challenge is to efficiently simulate (up to) n shared
memory accesses of the n processors in a distributed network
with no shared memory. The main technical idea behind the
simulation is a scheme to distribute the shared memory among
the processors. This distribution is done by using properties
of a bipartite expander graph and using multiple (logarithmic)
copies for each word of the shared memory. We adapt this
technique for the k-machine model by solving additional
technical challenges.

Firstly, [55] is only concerned with efficiently accessing
shared memory. In our case, we have to handle both shared
memory as well as processors, so we replicate both shared
memory words and processors and place them in the k
machines. The placement is in a well-distributed manner that
ensures that for any (adversarial) choice of Ω̃(k) processors
(resp., shared memory words), the replicated executions (resp.,
copies of the shared memory words) are forced to spread
across the Ω̃(k) machines so that no small subset of machines
is over-burdened. In addition to balancing the load across
machines, this also ensures that communication is also load
balanced because all the pair-wise links between the Ω̃(k)
machines are exercised. This results in a speedup of k2 in
the k-machine round complexity with respect to the work
complexity of the PRAM algorithm.

Secondly, since each processor is replicated into multiple
executions, we should ensure that the multiple executions
of a processor coordinate appropriately. We achieve this by
ensuring that at most one execution takes the lead and executes
the step, and then shares the updated state to other executions
so that we can consistently ensure that a majority of the
executions (resp., copies) are up-to-date for every processor
(resp., shared memory word).

Thirdly, we have to be careful to stop short of keeping
all executions and copies up-to-date because this can make

the simulation sub-optimal in terms of work. For this, we
introduce new techniques to enable machines to infer when
to give up on some executions/copies. Our techniques result
in Theorem 1 where the simulation runs in a deterministic
manner while adding a logarithmic overhead in the process.

IV. DETERMINISTIC SIMULATION OF PRAM
ALGORITHMS IN THE k-MACHINE MODEL

In this section, we present simulation techniques to execute
PRAM algorithms in the k-machine model. We begin with
a warm up where we show a randomized simulation which
succeeds with high probability. Since practitioners typically
expect much stronger (in particular deterministic) guarantees,
we follow up with a deterministic simulation which is also
more efficient. Our deterministic simulation will require a
single initial setup for all subsequent simulations.

A. The General Setting

Consider a PRAM algorithm P for a problem Π. Suppose,
to solve an instance π of input size N of Π, P requires P (N)
processors, takes T (N) time, and performs work W (N). The
P (N) processors access a shared memory of at most M(N)
words, each of size at most O(logN). When clear from the
context, we drop the problem size parameter N . We assume
further that each processor has O(1) words of local/private
memory (typically in the form of its registers). The contents
of this private memory of a processor is called its state. In
each time step t, 1 6 t 6 T , we assume that some Wt

processors are active, i.e., processors that read/write into the
shared memory. Thus, the total work performed by P is given
by W =

∑
16t6T Wt 6 P × T . In each time step, each

active processor reads O(1) items from the shared memory,
performs computation on these items, and writes back O(1)
items (without loss of generality, a subset of the read items as
not every item read need not be written back) into the shared
memory.

B. Warmup: A Randomized Simulation
Our goal is to efficiently convert a PRAM algorithm P

into an algorithm K that runs on the k-machine model. We
assume that P (N) > k and each machine simulates at most
dP (N)/ke number of PRAM processors8 chosen in some
arbitrary way. Recall that we use processors to denote PRAM
processors and machines to denote the machines in the k-
machine model. Similarly, time is used to denote the timesteps
needed by a PRAM algorithm and rounds to denote the
number of communication rounds of a k-machine algorithm.
We assume that the entire shared memory used by the PRAM
algorithm is partitioned across the k machines so that each
word in the memory is placed independently and uniformly at
random in one of the k machines. Furthermore, every machine
knows this memory mapping (typically implemented in the
form of a hash function) so that any machine that requires a

8Notice that the simulation we seek is different in spirit to the Brent’s
slowdown simulation [9] in the context of PRAM algorithms as Brent’s
slowdown simulation still assumes the availability of shared memory.



particular shared memory word will know which machine to
request for it.

To convert P to the corresponding K, we first focus on the
Õ(P (N)/k) processors in some machine i and analyze the
time it takes to execute one PRAM time step. The Õ(P (N)/k)
memory accesses issued by these processors can be viewed as
O(P (N)/k) balls being thrown randomly (uniformly and in-
dependently) into k bins. Thus, with high probability each link
incident to machine i will be used for at most Õ(P (N)/k2+1)
updates. Since all the k machines perform this in parallel and
this process is repeated for T time steps, P can be simulated
in Õ

(
P (N)T (N)

k2 + T (N)
)

rounds of the k-machine with high
probability.

Notice that concurrent reads are a trivial extension. For
concurrent writes, suppose multiple PRAM processors need
to concurrently write to a single word w in machine j, and
let machine i contain one or more of such processors. Then,
the processors in machine i first resolve the appropriate write
policy and send exactly one write request for w to machine
j. Machine j might receive multiple such write requests from
several machines, so it must write into w in accordance with
the appropriate concurrent write policy.

Theorem 2 (Randomized Simulation Theorem). Let P be
a PRAM algorithm for problem Π that uses P (N) > k
processors and M(N) memory words to solve an instance
π of input size N . Then, we can translate P into an algo-
rithm K for the k-machine model such that K requires at
most Õ((P (N)T (N)/k2 + T (N)) rounds and each machine
requires at most Õ((P (N) + M(N))/k) memory with prob-
ability at least 1−N−c for any fixed constant c > 0.

The probabilistic guarantee given by Theorem 2 is a short-
coming that we must address. In addition, despite achieving
a speedup of O(k2), the guarantees are loose because of the
assumption that every processor is active in every PRAM time
step. In reality, the work performed by a PRAM algorithm
may be far less than P (N) × T (N). A good example is the
parallel BFS algorithm [8] where the number of processors
that are active in any given timestep depend on the number
of vertices in the BFS frontier. The simulation itself can be
easily adapted to situations where fewer processors execute at
any given time step, but we need to recognize an important
subtlety that will limit our speedup to k. When we seek
deterministic guarantees, the simulation could be stymied by a
PRAM algorithm P in which the processors in some machine
a execute every time step, while others are only active for,
say, one round. Suppose further that all the required data by
processors in machine a is concentrated in another machine
b. Then, all communication is restricted to just the single link
between machines a and b that in effect results in no scaling.

One possible way to guard against such PRAM algorithms
is to use deterministic routing techniques from the work of
Lenzen [34] that can distribute the load to all the possible
links thereby improving the scaling to a factor of 1/k.

To go beyond a speedup of k, we will bring another

technique into play – redundancy. In particular, we consider
creating O(logN) copies of each processor and each memory
word in the PRAM model. By placing these copies uniformly
at random across the k machines and insisting that only a
majority of these copies need to be executed for executing
any given time step in the PRAM algorithm, we will show
that the executions and communication will be more balanced
across the k machines and the k(k − 1)/2 links respectively.
This will result in achieving a scaling down by an O(1/k2)
factor as desired.
C. The Deterministic Simulation

In the rest of the section, we will present a deterministic
simulation that is work-efficient in the sense that it ensures that
the round complexity in the k-machine model is related to the
work performed by P . We will only present the simulation
for one PRAM time step t ∈ [T ], which of course can
be repeated for T time steps. The key idea is to maintain
2c − 1 = O(logN) copies of each word (a la Upfal and
Wigderson [55]) and additionally 2c− 1 redundant executions
(or just executions) for each processor. Executions are repre-
sented by the state of the processor, i.e., the contents of their
registers. The 2c−1 executions for each processor are therefore
stored as states in 2c − 1 different machines. The simulation
must ensure the invariant that a majority consisting of at least
c copies of each word and c executions (i.e., the copies of
the states) of each processor are up-to-date at all times. We
therefore require a preprocessing step (that must be performed
just once and used for any number of simulations) wherein
the copies of memory words and the copies of the executions
are assigned to appropriate machines. The exact placement of
the memory copies and executions will be addressed in the
analysis, but for now we assume that each machine is aware
of the machine in which each copy and execution resides.

We refer the reader to Algorithm 1 for an overview of the
steps we use to simulate one PRAM time step in the k machine
model. Each machine i ∈ [k] is responsible for the execution
of processors Ai ⊆ P during the current time step t. Note that
multiple machines will be responsible for each processor j that
has to be executed in the current time step, so those machines
responsible for each processor j must coordinate with each
other to execute the processor.

In Algorithm 1, we call machines that hold executions that
need to be executed in the current time step as active machines
and the rest as inactive machines. Inactive machines inform
other machines about their inactive status and wait till the next
time step. Algorithm 1 is to be executed by all active machines
i ∈ [k].

The while loop of Algorithm 1 consists of three major
steps for each machine i: acquiring a batch of processors to
execute a PRAM step, executing that batch of processors, and
a cleanup step. We describe each of these steps, detailed in
Algorithms 2–4 respectively, in the following.

In Algorithm 2, each machine i sends out a “request
to execute j”, as an REQ EXEC message to a majority
of the machines (including itself) that are responsible for
processor j. We prove shortly (cf. Lemma 3) that the 2c − 1



different executions of each processor can be placed in the k
machines so that for any choice of processors, a majority of
the executions for each of the processors can be chosen from
the k machines in a balanced fashion. This allows machine i
to therefore send the requests to all the k − 1 other machines
in a balanced fashion. As explained earlier, without this load
balancing, we risk the situation where all requests are routed
through a single incident link, thereby incurring an extra factor
k in the round complexity.

If all machines in the majority respond positively, it is
clear that no other machine can attain this sole responsibility.
However, we should ensure that some machine will get that
majority and therefore execute processor j. Consider the first
time that at least one machine raises the request to execute j. If
exactly one machine raises the request, then that machine will
get the sole responsibility by receiving OK messages from
the machines it sent REQ EXEC messages to. However,
if multiple machines raise it, then machine i acts as follows
with respect to processor j. From all the machines i′ that
sent an REQ EXEC message to i for processor j, machine
i sends an OK message to only the machine i∗ with the
highest ID among machines that have the largest time stamp
when that machine executed processor j. As shown in Line
8 of Algorithm 2, i∗ = max{i′ | i received an REQ EXEC
message from i′}.

Since each machine contacts a strict majority, all other
machines will be (implicitly) rejected by at least one machine
thereby not having at least c OK messages as mentioned in
Line 11 of Algorithm 2. Suppose machine i gains the sole
responsibility to execute processor j. In order to execute j,
machine i first obtains the state of j from the machine that
has the latest timestamp from all the OK messages received
for processor j.

Algorithm 3 shows the steps that machine i uses to execute
one step of processor j. Machine i must read from and/or
write to a majority of the copies of words accessed in the
execution of processor j. In fact, i may be responsible for
several (up to k) such executions and if all of them access
words from the same machine i′, we will again face congestion
along the link between i and i′. However, as we place the
copies of the shared memory words in the k machines, these
memory accesses can again be performed in a balanced fashion
as shown in Lemma 3. Finally, the winner, after executing
processor j, informs a majority of machines responsible for j,
so no subsequent machine will be allowed to execute j in the
current time step.

Notice from Algorithm 1 that in each iteration of the while
loop, each machine i removes k processors from its Ai (except
the last iteration which may be fewer removals). Consider the
set of all processors A = ∪i Ai that are to be executed
in the current time step t and let Wt = |A| denote the
amount of work that P performs in the current time step.
If the executions of processors in A are evenly distributed
across the machines, then, this will imply immediately that
time step t completes in O(cWt/k

2 + 1) = Õ(Wt/k
2 + 1)

rounds of the k machine. However, A can be quite arbitrary.

Algorithm 1 Deterministic simulation of one PRAM time step
from the perspective of a machine i.

1: Let Ai denote the processors that must be executed during the current
time step and have an execution hosted by machine i;

2: while Ai is non-empty do
3: Use Algorithm Acquire (Algorithm 2) to get ownership of k proces-

sors B∗ whose instruction(s) is to be executed locally;
4: for all processors P in B∗ do
5: Execute P using Algorithm Execute (Algorithm 3)
6: Invoke Cleanup (Algorithm 4)

Algorithm 2 Acquire: Subroutine to acquire ownership of
processors to execute.

1: Create a batch B ⊆ Ai of cardinality k (or as many that are left). Set
Ai ← Ai \B.

2: Find the set of machines Oj that have an execution for processor j in
B.

3: for all j ∈ B do
4: Send message 〈REQ EXEC, i′, j〉 to c machines i′ in Oj ∪ {i}
5: /* Let Tij be the time step at which processor j was last executed by

machine i */
6: J = {Processors j for which there is at least one REQ EXEC message

received}
7: for all j ∈ J do
8: Send 〈OK, i∗, j, Tij〉 if i∗ = max{i′ |

i received an REQ EXEC message from i′}
9: B∗ ← ∅.

10: for all j ∈ B do
11: if there are at least c OK messages then
12: add j to B∗.
13: obtain the state of j from the machine i∗ that has the latest

timestamp from all the OK messages for j
14: endif
15: Return B∗

For example, all of the Wt processors could be in one machine.
So if we allow all the machines i to execute the while loop
until their respective Ai’s are all processed, this could lead
to a situation where such heavily loaded machines require
Õ(Wt/k+ 1) communication rounds; notice that the speedup
is by factor k−1 as opposed to k−2. To avoid this situation,
we keep track of the machines that are no longer active, i.e.,
exited the while loop. Furthermore, active machines prune
out processors whose copies are in machines that are no longer
active. This is illustrated in Algorithm 4.

Thus, we have the following lemma that shows that the
simulation correctly indeed executes all the processors that
have an action to execute for a given PRAM time step.

Lemma 1. A machine i will only exit the while loop if all
processors in Ai have been executed by some machine.

From Lemma 1, it is clear that some machine has executed
every processor in A. We still need to show that the PRAM
time step t can be simulated in Õ(Wt/k

2 + 1) rounds regard-
less of the choice of A. For this and other purposes, we first
prove a few balls-into-bins lemmas. We use balls as analogues
of both processors and memory words, and bins as analogues
of machines. In our balls-into-bins analogy, we don’t throw
balls, but rather copies of the balls (analogous to how we
store copies of memory words or executions of processors in
machines).



Algorithm 3 Subroutine to execute one step of processors in
B∗.

1: INPUT: a set of processor B∗
2: /*We now execute processors in B∗ such that for each memory word

accessed by those processors a majority of the copies are updated.*/
3: M = ∅
4: for all processors j ∈ B∗ do
5: M := M ∪ memory words accessed by j
6: for all words w ∈M do
7: Find a set Qw of c machines such that each machine q ∈ Qw has a

copy of w ;
8: /*Note that for every machine q, |{w | w ∈M ∧ q ∈ Qw}| = Õ(1)

due to Lemma 3.*/
9: for all q ∈ Qw do

10: /* Read */
11: Read w from all the machines in Qw along with the time stamps

Tw corresponding to when the word w was last updated in Qw

12: Use the value of w
13: /* Execute */
14: Execute the time step for processor j
15: /*Write, if needed */
16: If w has to be written, send 〈UPDATE,w,Qw, Tw〉
17: /* Tw is the current time stamp that will be used to mark the

update with. */
18: for all messages received of the form 〈UPDATE, r,Qr, Tr〉

do
19: Update the local copy of r and set the timestamp of the update
20: /*Also, update local variable copy updates sent by other ma-

chines.*/
21: Send the updated state of processor j to all machines in B∗ that

have an execution for j.
22: Receive updated processor states and update corresponding local

executions to the updated states.
23: /* This ensures that a majority of the executions have, in effect,

executed processor j. */

Algorithm 4 Cleanup
1: /*This step crucially ensures that all machines will complete around the

same time even under worst-case selection of processors.*/
2: Let C = {j ∈ Ai | a copy of j is in a machine that is no longer

active in the current time step}.
3: Ai ← Ai \ C.
4: /*Pruning out executions of processors that other machines have already

executed.*/
5: if Ai = ∅ then inform all machines that i is no longer active for the

current time step.

We now provide a lemma inspired by Upfal and Wigder-
son [55]. Consider the random experiment of throwing 2c−1
copies of N δ distinguishable balls into k bins where δ > 0 is
a fixed constant. We ensure that no two copies of a ball are
in the same bin. For a given ball, the set of bins that have a
copy of this ball is called as the span of the ball. For a set X
of balls, the span of X is naturally the set of bins that have
at least one copy of some ball in X . We say that a mapping
of these copies of balls into bins is smooth if for any subset
X of balls with c copies of each ball, the span of X has a
size of at least α ·min(β logN, k/ logN) where β = |X| and
α > 0 is some fixed constant.

Lemma 2. With high probability, an independent and
uniformly-at-random distribution of 2c− 1 copies of N δ balls
into k bins is smooth.

Proof. The proof is based on a similar lemma proved by Upfal
and Wigderson (cf. Lemma 3.2 in [55]).

Remark 1. For our deterministic simulation, we assume that
a smooth mapping exists and is accessible by the machines.
The above lemma shows the existence of such a mapping; in
fact it shows that most “random” mappings are smooth. We
note that such a mapping has to be constructed only once for
all simulations (as a preprocessing step). In addition, we need
only O(c)-wise independence for the assignment of balls (and
their copies) into bins. This means that such a mapping can
be done by choosing a c-wise universal hash function [10].
Such a hash function can be constructed by using c random
bits.

Lemma 3. Consider again the assignment of the 2c−1 copies
of the N δ balls into k bins as stated under Lemma 2 and any
choice of balls X of cardinality β 6 N δ balls. Then, for each
ball in X , there is a choice of c copies such that no bin has
more than Õ(β/k + 1) chosen copies. (In particular, when
β = k, we get Õ(1) copies per bin.)

Proof. As an aid for our proof, we present a procedure that
operates in rounds. At the beginning, all copies of all balls
are unmarked. A ball is said to be complete if at least c of its
copies are marked, and incomplete otherwise. In each round
r, for each bin that has at least one copy of an incomplete
ball, we mark a copy of one of its incomplete balls chosen
arbitrarily. We terminate when all balls are complete, thereby
guaranteeing that each ball has at least c of its copies marked.
The total number of rounds to termination is therefore an upper
bound on the number of marked balls in each bin. So the rest
of the proof is aimed at showing that the total number of
rounds is Õ(β/k + 1).

Let βr be the number of incomplete balls at the start of
round r. Consider as phase 1, the rounds r when βr >
k/ log2N . From Lemma 2, we know that the span of the βr
incomplete balls considering only the unmarked copies will
be at least k/ logN . Since each bin in the span will be able
to mark one of its balls, each round r will mark at least
Ω(k/ logN) copies. At least Ω(k/ log2N) of those marked
copies will be useful in the sense that they will count towards
marking a copy of an incomplete ball. To see why, notice that
a ball that was incomplete at the start of the round with a < c
marked copies may become complete with a′ > c marked
copies by the end of the round. Out of the a′ − a < 2c − 1
marked copies, at least one will count towards reaching the
complete state. Thus, in O(β log3N

k ) rounds, we will be able to
reduce the number of incomplete balls to fewer than k/ logN ,
thus ending phase 1.

Phase 2 are the rounds r when 0 < βr < k/ log2N ,
again using Lemma 2, we know that the span will be at
least Ω(β logN). Thus, Ω(β logN) copies will be marked out
of which at least Ω(β) will be useful (as argued earlier) in
reducing the number of unmarked copies in incomplete bins.
Since the number of copies that need to be usefully marked
in phase 2 is at most c × k/ log2N = O(k/ logN), the
number of rounds in phase 2 is the smallest integer x such
that k

logN

(
1− 1

logN

)x
< 1, which is at most O(log2N).



Lemma 4. Each machine i performs at most Õ(Wt/k
2 + 1)

iterations of the while loop in Algorithm 1.

Lemma 5. Algorithm 1 simulates a time step t in the PRAM
algorithm P in Õ(Wt/k

2 +1) rounds of the k machine model.
Here, Wt is the work performed by P during time step t.

Thus we obtain the following theorem (akin to Theorem 1).

Theorem 3 (Deterministic Simulation Theorem). Let P be
a PRAM algorithm that runs in T (N) time using P (N) > k
processors, M(N) memory words, and does W (N) total work
to solve an instance of a problem Π of size N . Then, we can
translate P into an algorithm K for the k-machine model so
that K runs in Õ

(
W (N)
k2 + T (N)

)
rounds and each machine

will require at most Õ((P (N) +M(N))/k) memory.

Theorem 3 is significantly stronger than Theorem 2. Firstly,
K will be a deterministic algorithm iff P is deterministic. If
P is randomized, then T (N) and the round complexity of K
will be random variables. Secondly, the round complexity of
K is significantly more nuanced in that it depends on the work
performed by P rather than the processor-time product. The
latter could be significantly higher as the case of parallel BFS
[8] shows.

V. APPLICATIONS

We now show the following k-machine algorithms for
various problems. Each of the theorems we state in this
section is the result of a direct application of Theorem 3.
Although our Simulation Theorem can be applied for any
PRAM algorithm, we mainly focus on graph problems and
discuss other problems briefly. In particular, when we apply
our Simulation Theorem for graph problems, we obtain the
first ever algorithms in the k-machine model for problems such
as higher order connectivity, and also deterministic algorithms
for fundamental problems such as symmetry breaking.

A. Graph Algorithms

Graph Input. Consider an input graph G with n vertices, each
associated with a unique integer ID from [n], and m edges.
To avoid trivialities, we will assume that n,m > k (typically,
m,n � k, and also we generally assume that m = Ω(n)).
Although k can be any value (between 2 and n), the interesting
regime for our bounds is when k is sublinear in n, i.e., k =
nε for any constant ε > 0. For the algorithms in this paper,
we assume the REP model ([56], [45]) whereby edges are
assigned independently and uniformly at random to one of the
k machines in a balanced fashion. Each machine gets Õ(m/k)
edges. However, we note that our algorithms will work for any
arbitrary, but balanced, partitioning of the edges. It is easy to
show that one can transform the input partition from the REP
model to the RVP model in Õ(m/k2 +n/k) rounds [4] using
techniques from [30], [45] or [34]. Therefore, one is interested
in algorithms that improve this trivial Õ(m/k) upper bound.

1) Connectivity, Connected Components, and MST: Chong
et al. [12] show a deterministic PRAM algorithm to obtain
the MST of a given graph, which also implies an algorithm

for checking connectivity and connected components, using
O(m+n) processors and O(log n) time. Using this algorithm
and Theorem 3, we obtain the following theorem.

Theorem 4. Graph connectivity, connected components, and
MST can be solved in Õ(min{m/k2, n/k}) rounds in the k-
machine model where m is the number of edges in the graph.

Theorem 3 gives the Õ(m/k2) upper bound. We obtain a
deterministic Õ(n/k) algorithm for MST in the k-machine
model in the REP model as follows. The high-level idea
is based on repeated filtering (see e.g., [33]). Initially all k
machines are active. One phase of the algorithm consists of:
(i) “Filter” the edges in each active machine using the cut
and cycle properties of the MST [26]; this leaves each active
machine with O(n) edges. (ii) Pair up the active machines
(this pairing can be hardcoded apriori). Each machine sends
its list of edges to its corresponding paired machine by using
the deterministic routing of Lenzen [34] which takes O(n/k)
rounds. Each phase halves the number of active machines.
This is repeated over O(log k) phases for a total of Õ(n/k)
rounds. At the end, one machine (say machine 1) will have
all the MST edges.

Thus, MST (and connectivity and connected components)
can be solved in Õ(min{m/k2, n/k}) rounds deterministi-
cally with a (an almost) matching lower bound (cf. Section
III-A).

2) r-connectivity for r = 2, 3, 4: Using Theorem 3, and the
PRAM algorithms for testing r-connectivity via the works of
Tarjan and Vishkin [54] for r = 2, Miller and Ramachandran
[42] for r = 3, and Kanevsky and Ramachandran [25] for
r = 4, we obtain Theorem 5. These are the first known
and deterministic k-machine algorithms for 2-,3-, and 4-
connectivity.

Theorem 5. Graph r-connectivity, for r = 2, 3, 4, can be
solved in Õ(m/k2) deterministic rounds in the k-machine
model where m is the number of edges in the graph.

3) Symmetry breaking: For symmetry breaking problems
such as maximal matching (MM), maximal independent set
(MIS), and coloring (COL), we obtain the following theorem
via the respective derandomized PRAM algorithms of Luby
[38] and Han [19]. These are the first known determinsitic
algorithms for symmetry breaking in the k–machine model
(under REP). For randomized algorithms, Konrad et al. [32]
show an upper bound of Õ(min{n/k,m/k2}) and a lower
bound of Ω̃(n/k2) for MIS in the RVP model.

Theorem 6. An MIS, ∆+1 coloring, and a maximal matching
of a graph can be solved deterministically in Õ(m/k2) rounds
in the k-machine model.

4) Ear Decomposition: An ear decomposition of a graph
is a partitioning of the edges of the graph into edge disjoint
paths (ears) Pi, for i > 1, such that P1 is a simple cycle, and
the end points of the ith ear, Pi for i > 1, are the only vertices
common to Pi and the vertices of ∪i−1

j=1Pj . Using the PRAM
algorithm of Ramachandran [49], the following theorem holds.



Theorem 7. An ear decomposition of a graph can be obtained
in Õ(m/k2) rounds in the k-machine model.

As the ear decomposition of a graph has applications
to several important problems such as planarity testing and
finding planar embedding [50], the above theorem leads to
first known Õ(n/k2)-round algorithms for planar graphs in
the k-machine model.

5) BFS: Given an unweighted graph G of diameter D, and
a source vertex s, the PRAM algorithm for BFS as designed
by Blelloch and Maggs [8, Section 4.2] runs in O(D) parallel
time using O(m + n) work. This translates to the following
theorem.

Theorem 8. Given a directed weighted graph G = (V,E)
and a source vertex s, a breadth first traversal from s can be
obtained in Õ((m+n

k2 +D))-rounds in the k-machine model.

Noticeably, the product of the number of processors and
the parallel run time of the BFS algorithm is much higher at
O((m+n) ·D) whereas the deterministic simulation theorem
is able to arrive at a k-machine algorithm that has a round
complexity of Õ(m+n

k2 +D)).
6) Shortest Paths: Obtaining shortest paths from a given

source in a weighted directed graph is a problem with several
applications. Klein and Subramanian [31] show that the short-
est paths from a source s can be computed in Õ(

√
n logL)

PRAM time with high probability using Õ(m
√
n logL) work

where L is the sum of the weights of the edges of G. We
obtain the following theorem from Theorem 3.

Theorem 9. Given a directed weighted graph G = (V,E) and
a source vertex s, the shortest paths from s to all other vertices
can be found in Õ(m

√
n logL
k2 )-rounds in the k-machine model

with high probability.

For undirected graphs and approximation algorithms, a
few improvements to Lemma 9 can be obtained through the
following theorem using the work of Cohen [14].

Theorem 10. Given a directed weighted graph G = (V,E)
and a source vertex s, (1+ε)–approximate shortest paths from
s to all other vertices in G can be found in Õ(mn

δ

k2 )-rounds
in the k-machine model. In the above, ε = O(1/polylog(n))
and δ > 0 is any constant.

For sparse graphs with m < n1−δk3/2, Theorem 10 im-
proves the current knowledge on (1 + ε)–approximate single
source shortest paths from [30].

All Pairs Shortest Paths (APSP). Using Theorem 10 over n
times, one can see that the (1+ε)–approximate APSP problem
can be solved in the k-machine model using Õ(mn1+δ/k2)
rounds. This result improves the corresponding result from
[30] designed in the RVP model, provided m = O(n

1
2−δ · k).

7) Directed Graphs: Following the results of Schudy [53],
we get the first known (randomized) algorithms in the k-
machine model for strong connectivity of directed graphs.

Theorem 11. The strongly-connected components and a topo-
logical sort of a directed graph G can be obtained in Õ(m/k2)
rounds in the k-machine model, with high probability.

8) Spanners: Graph spanners are a useful tool in the
context of approximate shortest paths. A t-spanner of a graph
G is a subgraph H such that distances in H are no more than
distances in G by a multiplicative factor of t. The recent work
of Miller et al. [41] results in the following theorem.

Theorem 12. Given a weighted graph G with n vertices and
m edges with each edge weight at most U and a parameter t >
1, an O(t)-spanner for G containing O(n1+1/t log t) edges in
expectation can be obtained in Õ(m logU

k2 ) rounds in the k-
machine model with high probability.

B. Other Applications
1) Algebraic Computations: For matrix algorithms, we use

the Random Matrix Element Partition (RMEP) model where
the elements of the input matrix (matrices) are partitioned
across the k machines independently and uniformly at random.
This is similar to the REP model we use for graph algorithms.
Given a square matrix of size n × n, each machine in the
k-machine model gets Õ(n2/k) elements of (each of) the
matrix. Existing algorithms, for instance matrix multiplication
[11], assume that the each row of the matrix is stored at
some machine corresponding to Random Matrix Row Partition
(RMRP) model.

Let us denote by M(n) the worst-case work complexity of
the best known PRAM algorithm for multiplying two n × n
matrices. For example, the algorithm of Strassen (cf. [24]) has
M(n) = O(nlog2 7). In the RMEP model, Theorem 3 gives us
the following theorem.

Theorem 13. Multiplying two n×n matrices can be achieved
in O(M(n)/k2) rounds in the k-machine model.

2) Algorithms from Strings: We consider the problem of
constructing the suffix tree of a given string. Suffix tree
construction is fundamental to the field of bioinformatics. In
this case, we assume that for a string of length N , each
machine of the k-machine model is given N/k characters
of the string chosen independently and uniformly at random.
Using the PRAM algorithm of Hariharan [20], we obtain:

Theorem 14. The suffix tree of a string of N characters from
an alphabet Σ can be constructed in Õ(N log |Σ|/k2) rounds
in the k-machine model.

3) Geometric Algorithms: In this case, we assume that
the input is N points on the plane and each machine in
the k-machine model is given O(N/k) points of the input
chosen independently and uniformly at random. Owing to NC
algorithms for geometric computations such as the convex
hull and Voronoi diagrams, [47], we obtain Õ(N/k2) round
algorithms for these problems in the k-machine model.

VI. CONCLUSION

We presented a general technique for designing efficient de-
terministic distributed algorithms in the k-machine model and



showed its application for many fundamental graph problems.
While some algorithms are optimal with respect to the REP
input model, for some problems such as shortest paths, it is not
clear whether these are the best possible. These are interesting
questions for further research. We also plan to implement
our algorithms using a message-passing distributed computing
platform such as MPI or GraphX and study their performance.
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