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Ductile Fracture in Plane Stress
A micromechanics-based ductile fracture initiation theory is developed and applied for
high-throughput assessment of ductile failure in plane stress. A key concept is that of inho-
mogeneous yielding such that microscopic failure occurs in bands with the driving force
being a combination of band-resolved normal and shear tractions. The new criterion is
similar to the phenomenological Mohr–Coulomb model, but the sensitivity of fracture ini-
tiation to the third stress invariant constitutes an emergent outcome of the formulation.
Salient features of a fracture locus in plane stress are parametrically analyzed. In particu-
lar, it is shown that a finite shear ductility cannot be rationalized based on an isotropic
theory that proceeds from first principles. Thus, the isotropic formulation is supplemented
with an anisotropic model accounting for void rotation and shape change to complete the
prediction of a fracture locus and compare with experiments. A wide body of experimental
data from the literature is explored, and a simple procedure for calibrating the theory is
outlined. Comparisons with experiments are discussed in some detail.
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1 Introduction
Much has been written about low-triaxiality ductile fracture

[1–4]; see Ref. [5] for synthesis and review. The basis of investiga-
tion is either deformation-induced anisotropy [6], initial anisotropy
[6,7] or an inherent effect of the third stress invariant [8]. That voids
change shape, and orientation at low stress triaxiality is observed in
physical experiments [9,10] and can be modeled with various
degrees of refinement [11]. However, implementing anisotropic
constitutive relations is quite complex, as one needs to evolve ten-
sorial internal variables, e.g., Refs. [12–15]. Hence, isotropic consti-
tutive relations and failure models are generally preferred in practice
[8,16,17] even if the physical basis is elusive.
The experimental database, from which facts—perceived or

real—have been inferred, essentially involves thin-walled speci-
mens. In all, a plane stress state prevails. A feature peculiar to
plane stress is that when the biaxiality stress ratio is varied, the
stress triaxiality T, which measures the hydrostatic stress in units
of the deviatoric von Mises stress, and the Lode parameter L, a non-
dimensional measure of the third stress invariant, do not vary inde-
pendently from each other. Under such circumstances, when the
strain to failure is plotted against T, the obtained locus often exhibits
a cusp. Phenomenological failure models were proposed to account
for this cusp by introducing an explicit dependence upon L of either
the failure strain, e.g., Refs. [4,8,18], or an internal damage variable,
e.g., Refs. [3,17]. However, both approaches fail to provide a ratio-
nale for key physical mechanisms.
In a recent work, Torki et al. [19] have provided a rationale for

measured failure loci in plane stress. The physical mechanism is
void-mediated failure, irrespective of stress state. The key concept
is that microscopic failure occurs in bands with the driving force
being a combination of normal and shear stresses, both resolved
on the bands. Physically, the bands are defined by the spatial distri-
bution of voids. For actual void distributions, which are clustered, a
finite number of such bands may be available and the emergent
behavior is anisotropic, regardless of the isotropy of prevailing
behavior before band formation. For statistically isotropic void dis-
tributions, the band orientation may depend solely on the macro-
scopic stress state assuming small porosity levels. The process of
determining the failure band orientation is similar to that for soils

and rocks for which the Mohr–Coulomb model is most relevant.
In ductile failure, the formation of bands is intimately connected
with void coalescence, or better with inhomogeneous yielding, a
terminology adopted to highlight the importance of early band for-
mation under shear-dominated loading.
Here, the isotropic mechanism-based ductile failure theory devel-

oped in Ref. [19] is employed to reproduce fracture loci in sheet
metal using experimental data from the literature. To this end,
adjustable parameters are introduced in the porous material consti-
tutive relations similar to the well-known Tvergaard parameters for
Gurson-like constitutive relations [20,21]. An essential feature of
the theory in Ref. [19], and arguably of any isotropic theory that
proceeds from first principles, is prediction of infinite ductility in
shear. To rationalize finite strains to failure under shear-dominated
regimes, the aforementioned theory is supplemented with a simple
anisotropic model [22]. A procedure for calibrating model parame-
ters is outlined. The developed code is made available upon request.

2 Model Formulation
2.1 Isotropic Constitutive Relations. The total rate of defor-

mation D is written as follows:

D = De + D p (1)

where the elastic part, De, and the plastic part, D p, are given by

De = C
−1 : σ

∇
(2)

D p = Λ̇
∂F
∂σ

(3)

with C being the elastic stiffness tensor (assuming small elastic

strains), σ
∇
the Jaumann rate of the Cauchy stress, Λ̇ the plastic mul-

tiplier, and F an effective yield function.
The process of yielding in a material containing pores involves

one of two modes illustrated in Fig. 1. Homogeneous yielding cor-
responds to diffuse plasticity and slow (Gurson-like) void growth,
Fig. 1(a). In contrast, inhomogeneous yielding occurs when plastic-
ity is localized in intervoid ligaments, Fig. 1(b). It corresponds to
accelerated void growth leading to void coalescence. Note that
the void growth does not necessarily mean growth of void
volume fraction. Under intense shear loading, for instance, one
void dimension may grow, relative to some initial size, with no sig-
nificant volume change [22].
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In a continuum description, the intervoid ligaments are repre-
sented by bands. When inhomogensous yielding is active, band ori-
entation is solely determined by the macroscopic stress state for
statistically isotropic and dilute void dispersions [19].
The competition between the two modes of yielding is accounted

for within a simplified multisurface approach. For a statistically iso-
tropic dispersion of randomly oriented spheroidal voids, the effec-
tive yield criterion is given by

F (σ; f , w) =max FH(σ; f , w), F I(σ; fb, �w)
{ }

≤ 0 (4)

where FH and F I are, respectively, given by

FH = �C
σ2eq
�σ2

+ 2q1(g + 1)(g + f ) cosh q2κ
σm
�σ

( )
− (g + 1)2 − q21(g + f )2 (5)

F I =
τ2n
�τ2

+ 2p1 fb cosh p2β
σn
�σ

( )
− 1 − p21 f

2
b (6)

In Eq. (5), σeq =

��������
3
2
σ ′ : σ ′

√
is the von Mises stress, σm is the mean

normal stress, �σ is the matrix yield strength, f is the void volume
fraction, w is the void aspect ratio (w> 1 for prolate voids), and
�C, g, and κ are functions of f and w; see Ref. [19] for �C and
Ref. [23] for others. Also, q1 and q2 are Tvergaard parameters
[21]. For spherical voids, �C = 1, κ = 3/ 2, and g= 0, so that the
Gurson–Tvergaard criterion [20,21] is recovered.
In Eq. (6), τn and σn denote the band-resolved shear and normal

tractions, respectively, �τ = �σ/
��
3

√
is the shear yield strength of the

matrix, fb and �w are, respectively, the band porosity and surrogate
void aspect ratio, given in terms of f and w by

f
3
2
b �w = f (7)

�w =
w

2
π
K 1 −

1
w2

( )[ ]−3/2
(w ≥ 1)

1��
w

√ 2
π
K 1 − w2
( )[ ]−3/2

(w < 1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(8)

where K denotes the complete elliptic integral of the first kind and
β( fb, �w) is a scalar-valued function given in Appendix A. Also, p1
and p2 are Tvergaard-like parameters.
The formulation underlying Eqs. (3) and (4) is simplified from a

multisurface representation [24] taking advantage of the fact that the
two mechanisms of yielding are exclusive of each other and that no
reversal is possible.
When inhomogeneous yielding is active, Eq. (6) accounts for

both internal necking and void-sheet coalescence. Internal

necking can only occur perpendicular to a principal stress direction,
in which case, Eq. (6) reduces to

|σn| = −
�σ

p2β
ln (p1 fb) (9)

which is equivalent to earlier criteria [25,26]. Conversely, void-
sheet coalescence can only occur on a principal plane, say e1–e2,
at an angle φ measured from e1:

φ =
1
2
sin−1

2τn
σ1 − σ2

( )
(10)

with σ1 > σ2 the corresponding principal stresses. Equation (10) is
implicit since τn depends on band orientation n (see Appendix B
for a practical method of resolution).
The evolution of void volume fraction is given by the usual rela-

tion [20]:

ḟ = (1 − f )trD p (11)

The evolution of the void aspect ratio w is given by

ẇ

w
=

1 − 3α1
f

+ 3α2 − 1

( )
Ẋ (12)

where α1(w) is a function of w alone, while α2( f, w) [23]. Also, Ẋ =
Dp

kk when F = FH and Ẋ = Dp
kk/c when F = F I, where c =

���
fb

√
w

denotes the ligament volume fraction.
The flow stress �σ in Eqs. (5) and (6) is taken to follow power-law

hardening:

�σ(�ϵ) = σ0 1 +
�ϵ

ϵ0

( )N

(13)

with parameters σ0, ϵ0, and N. The effective plastic strain �ϵ is
evolved using the identity:

(1 − f )�σ�̇ϵ = σ :D p (14)

What is of particular importance here is that Eq. (5) depends on
the first and second stress invariants (via σeq and σm), whereas
Eq. (6) also depends on the third invariant via the resolved shear
stress and resolved normal stress.

2.2 Failure Criterion. Under predominately tensile loading,
the transition from homogeneous to inhomogeneous yielding corre-
sponds to the onset of void coalescence and, putatively, to failure.
When shearing is predominant, however, inhomogeneous yielding
may set in much earlier than any definition of failure. It is thus
appropriate, within the confines of an isotropic theory, to adopt as
a common failure criterion that by which strain localization
occurs. For the rate-independent case here, this corresponds to
loss of ellipticity of the incremental problem [27,28]. A serious lim-
itation of this approach under intense shear will be addressed in the
following section.
For all stress states, described by parameters T and L, it is found

that localization invariably occurs after the onset of inhomogeneous
yielding within the range of void volume fractions considered. Also,
the orientation of the shear band q is, to first order, that of the plastic
band of inhomogeneous yielding, q= n. It is sufficient, therefore, to
compute the elasto-plastic tangent stiffness tensor Ct based on the
constitutive relation for inhomogeneous yielding. In doing so, one
finds

Ct = C −
1
D
(C :N)⊗ (C :N) (15)

where N determines the plastic flow direction given by

N =
∂F I

∂σn
n⊗ n +

1
2
∂F I

∂τn
(m⊗ n + n⊗m) (16)

Fig. 1 Schematic representation of (a) homogeneous yielding
versus (b) inhomogeneous yielding
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where m is a unit vector along the resolved shear traction on the
plastic band with normal n (determined as earlier for internal
necking or void-sheet coalescence). Also,

D = N :C :N −
∂F I

∂α
· A (17)

Here, α denotes the doublet of internal variables α = {f , w} andA is
the conjugate generalized force defined through:

α̇ = Λ̇A (18)

The components of A are determined based on the evolution laws
for the internal variables, Eqs. (11) and (12).
Failure occurs when

det n · Ct · n = 0 (19)

All calculations done, the criterion reduces to

∂F I

∂α
· A = 0 (20)

which is independent of the elastic constants of the material. Note
that A is not necessarily equal to ∂F I/∂α since associativity does
not necessarily hold for the evolution of internal parameters.

2.3 Anisotropic Constitutive Relations. In Ref. [19], Torki
et al. have shown that failure criterion (20) predicts unlimited duc-
tility in shear. This is all that an isotropic theory proceeding from
first principles would predict under shear. In other words, any mea-
sured finite strain to failure in shear may not be due to an inherent
effect of the third stress invariant, but rather to strong induced
anisotropy. Constitutive relations that account for this have recently
been developed by the authors [22,29]. For completeness, they are
succinctly presented here.
The formulation proceeds formally from Eqs. (1)–(3), but aniso-

tropic yield criteria are now used. The homogeneous yield criterion
depends on void orientation v, FH(σ; f , w, v) = 0, while the inho-
mogeneous yield criterion depends on v and band orientation n,
F I(σ; fb, �w, v, n) = 0. Several criteria are now available in the liter-
ature, but evolution equations under inhomogeneous yielding are
only found in Ref. [22].
Here, we use for FH the criterion of Keralavarma and Benzerga

[23], which for an isotropic matrix essentially reduces to the model
in Ref. [30], and associated evolution equations. A description of
the constitutive relations and their implementation may be found in
Ref. [13].
For F I we use the criterion in Ref. [31], which takes the form of

Eq. (6) with two key differences. First, the criterion depends on
band orientations specified by the user. Thus, calculating resolved
stresses σn and τn is straightforward, unlike in the isotropic case
(see Eq. (10) and Appendix B). Second, the surrogate parameters
are defined in accordance with a periodic (hence anisotropic) void
distribution. This is in contrast with the statistically isotropic distri-
bution underlying Eqs. (7) and (8). Thus,

σn = n · σn; τn =m · σn (21)

with n and m given. Also,

f
3
2
b �w = f�λ (22)

�w = w wS +
1
C

( )−3

(23)

where C= v · n and S= v ·m.

In Eq. (22), �λ denotes the surrogate void spacing ratio, which is
related to the actual relative spacing λ (ratio of out-of-band to
in-band void spacing) through:

�λ =
λ

1 + γmn

( )3 (24)

where γmn = 2m · En and E =
�
Ddt. The concept of a surrogate

microstructure stems from the fact that the void spin is generally
not tied to the continuum spin so that, even if initially v= n, the
two would evolve differently under intense shear yet, available
inhomogeneous criteria do not account for this; see Ref. [22].
The evolution of f is governed by plastic matrix incompressibil-

ity, Eq. (11). That of w follows from:

ẇ

w
=

1
2

3C2

c
−
1
f

( )
n · Dpn +

3CS
c

m · Dpn (25)

where the ligament volume fraction c is now given by

c3 = C3f
w2

λ2

The current void axis v is obtained from

v̇ = (Ωv +Ωl)v (26)

whereΩ v is the deviation from the continuum spin due to the eigen-
rotation of the void, calculated using Eshelby concentration tensors
[32] after [13,33], and Ω l is the shear-induced rotation that comes
from mere distortion of void boundaries (dominant here), reading

Ωl =
ċ

c
−

1
3

ḟ

f
+ 2

ẇ

w
−
λ̇

λ

( )[ ]( )
n⊗ n −

C2

S2
m⊗m

( )
(27)

The fraction c evolves according to

ċ = (1 − c)Dnn no sum on n (28)

Finally, standard kinematical relations are used to calculate current
values of λ and n:

λ

λ0
=

1������
det F

√ n · FFTn
( )3

4 (29)

n =
F−Tn0
|F−Tn0|

(30)

where F is the deformation gradient. Equations (25) and (26) are for
the constrained motion of void boundaries due to elastic unloading
above and below the void [29]. Relations (12)–(28) generalize the
evolution equations of Benzerga [25] in the absence of shear,
whereas Eq. (29) was derived by Leblond and Mottet [34].
Within this anisotropic framework, failure is taken to mean com-

plete loss of stress carrying capacity, which occurs when fb= 1 (or
fb = 1/p1 if p1 is used). This may occur while the overall void
volume fraction is small, possibly unchanged from its initial
value, which may be orders of magnitude smaller than fb.
Thus, when the anisotropic theory is used, the localization-based

failure criterion of Sec. 2.2 is not needed. This does not mean that
strain localization is not possible, but the competition between
failure by loss of load bearing capacity and strain localization is
worth a separate study for the anisotropic theory.

3 Results
Before any detailed analysis, some anticipated features of the

theory are worth emphasizing. In the isotropic version (Sec. 2.1),
homogeneous yielding only depends on the mean normal stress
and the von Mises stress. Thus, it is independent of the third
stress invariant. Conversely, the constitutive relation for
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inhomogeneous yielding depends on band-resolved stresses (σn, τn),
and this leads to dependence upon all stress invariants.
Therefore, it is void coalescence in bands that potentially leads to

strong dependence upon both the stress triaxiality T and the Lode
parameter L. This is illustrated in Fig. 2. The locus of strain to
failure, ϵf, versus T and L is shown for an initial void volume frac-
tion f0= 10−3 and for three values of the initial void aspect ratio.
Here and in all subsequent results, a single set of matrix hardening
parameters is used with σ0= 420 MPa, ϵ0= 0.002, and N= 0.1.
Also, E= 210 GPa and ν= 0.3 are the elastic constants.
Along proportional plane stress loading paths, T and L are related

and a plane stress fracture locus may be inscribed onto the 3D locus,
as illustrated in Fig. 2. A cusp generally appears in plane stress frac-
ture loci although no cusp would appear in any cross section of the
3D locus (that is, at either constant T or constant L). These general
features are similar to those of phenomenological failure models
[4,8,18].
In the anisotropic version of the theory (Sec. 2.3), the material

response depends on all stress components, but, in a program of
loading specified by T and L, a strain to failure is obtained. It is
emphasized in such case that the strain to failure may strongly
depend on the orientation of the initial axes (both of the void v0
and the band n0). The main feature of the anisotropic theory is
that it can predict a finite value of ϵf in simple shear. More gener-
ally, the anisotropic theory predicts three possible regimes in
shear: (i) infinite ductility without weakening, (ii) infinite ductility
with weakening, and (iii) finite ductility with softening; see
Ref. [22] for details. To our knowledge, no other theory is
capable of such predictions at present.

3.1 Parametric Analysis

3.1.1 Isotropic Theory. There are two types of parameters in
the isotropic theory, the initial values of internal variables, f0 and
w0, and the heuristic parameters q1, q2, p1, and p2. Unless otherwise
noted, the default value of each of the latter is unity.
Figure 3 shows three sets of results, each corresponding to a spe-

cified value of w0 for a range of values of f0. The larger the initial
porosity, the lower the strain to failure across the range of triaxial-
ities. However, the influence of f0 is much stronger near the cusp.
The intensity of the cusp decreases with increasing f0 and may
even disappear, as in the f0= 0.05 case for w0= 1/5, Fig. 3(a).
It is remarkable that in the biaxial tension regime (1/3 <T< 2/3)

an order-of-magnitude variation in initial void volume fraction
can have a negligible effect on ductility; for example, compare ϵf
values for f0= 0.005 and f0= 0.05 in Fig. 3(a). In biaxial tension,
neither triaxiality nor the initial void content seems to have a first-
order effect on ductility. There are two exceptions to this. There is a
sharp rise of ϵf for equibiaxial tension and, over a wider range, near
uniaxial tension. These trends are due to internal necking being
dominant under uniaxial tension and equibiaxial tension, and void

sheeting prevailing in all other intermediate cases; for details, see
Ref. [19].
In all cases, the ductility in shear is predicted to be infinite by the

isotropic theory. If there is a cusp in the failure locus, then there is a
minimum ductility in the generalized shear regime (0 < T< 1/3).
This minimum lies closer to a pure shear state (T= 0) when the
initial void volume fraction is small.
Figure 4 highlights the effect of initial void aspect ratio for f0=

0.01. The main effect of w0 manifests around the cusp. In materials

Fig. 2 Fracture loci under proportional loading giving the strain to failure, ϵf, versus triaxiality T and Lode parameter L for f0=
10−3 and (a) w0=1/10, (b) w0=1, (c) w0=5. Inscribed curves denote plane–stress excursions on the failure loci. Also, qi=
pi = 1.

Fig. 3 Failure loci for various values of the initial void volume
fraction f0 and initial void aspect ratio w0
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with no initial porosity, as expected in structural alloys, initially
oblate voids are generally taken to represent a mechanism of nucle-
ation by particle cracking, while spherical or prolate voids represent
void nucleation by decohesion. In that sense, the nucleation mech-
anism may be viewed to indirectly influence the overall shape of the
locus, in particular the emergence of a cusp and its magnitude.
Next, consider the effect of the Tvergaard parameters q1 and q2 in

the criterion for homogeneous yielding, Eq. (5). This is illustrated in
Fig. 5 for spherical voids. Introducing q1 amounts to multiplying the
initial void volume fraction by q1 so that an effect similar to that of
f0 (see Fig. 3(b)) would be expected. In effect, there are two differ-
ences between the influence of f0 and that of q1. Not only does q1
multiply the effective initial porosity but also the instantaneous
rate of growth of f, by way of normality to the yield criterion; see
Eqs. (11) and (3). The main difference, however, is that the effect
of q1 is confined to a relatively narrow range of triaxiality about
the cusp, i.e., on either side of uniaxial loading, Fig. 5(a). Over
much of the biaxial tension and generalized shear regimes, q1 has
no effect on ϵf. This is due to the fact that the Lode parameter in
these regions is close to L= 0 for which inhomogeneous yielding
is active from the outset, which is independent of q1.
Likewise, the second Tvergaard parameter q2 has no influence

outside the triaxiality range about the cusp, Fig. 5(b). However,

the effect of q2 appears to be more significant, both around the
cusp and for equibiaxial tension. This is so because q2 appears
inside the exponential term of the yield criterion and has thus a
greater effect on porosity growth whenever homogeneous yielding
is active.
Figure 6 shows the influence of the second pair of heuristic

parameters, p1 and p2, introduced in the inhomogeneous yield crite-
rion, Eq. (6). Each parameter separately affects the entire fracture
locus. When homogeneous yielding occurs first (|L|∼ 1 or T about
the cusp), failure occurs immediately after the transition to inhomo-
geneous yielding so that p1 and p2 have an effect. When inhomoge-
neous yielding prevails from the outset (|L|∼ 0 or T away from the
cusp), their influence is expected. The results in Fig. 6 show that the
influence of parameter p1 is more gradual, which is a desirable
feature in model calibration.
It is noteworthy that p1 and p2 have both an effect on ductility in

biaxial tension. This is important since the Tvergaard parameters q1
and q2 had no effect on it, Fig. 5, while the microstructural param-
eters f0 and w0 had a small effect (except for very elongated voids
and wide variations of initial void content, Fig. 3(c)).
Neither the microstructural parameters f0 and w0 nor the heuristic

parameters q1, q2, p1, and p2 have an effect on shear ductility, which
is always predicted to be infinite. This appears as an unavoidable
feature of the isotropic theory. The reason for this is that when
stress triaxiality vanishes, there is no driving force for volumetric
void growth, and void shape changes, if any, tend to make the
voids spherical. As discussed in Ref. [22], an essential mechanism
of failure in shear involves void rotation and elongation even if no
volumetric growth occurs. This mechanism is inherently
anisotropic.

3.1.2 Anisotropic Theory. In the anisotropic theory of Sec. 2.3,
the initial state is defined by the triplet of scalars f0, w0, and λ0 in
addition to directors v0 and n0. Here, our focus is on analyzing
the effect of microstructural parameters on the strain to failure in
simple shear (T= 0 and L= 0), hereafter called shear ductility.
There can be more than one band of inhomogeneous yielding in

the anisotropic formulation, but here only one band is used parallel

Fig. 4 Failure loci for various values of the initial void aspect
ratio w0 for f0=0.01

Fig. 5 Effect of Tvergaard parameters q1 and q2 entering Eq. (5) on plane stress failure loci for
f0=0.001 and w0=1

Fig. 6 Effect of parameters p1 and p2 entering Eq. (6) on plane stress failure loci for f0=0.001
and w0=1
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to the shear direction such that n0= v0. This holds initially but upon
subsequent deformation n≠ v.
Figure 7 summarizes the key trends. The essential finding is

twofold: (i) finite values of shear ductility are predicted; and (ii)
the shear ductility can be as small as 0.01 and as large as 1.0 for
initial void volume fractions in the usual range.
Figure 7(a) shows the effect of initial void volume fraction on

shear ductility (i.e., value of ϵf in simple shear). Three sets of
results are shown, which correspond to initially oblate, spherical,
or prolate voids. In all cases, the initial void spacing is the same
within the band or normal to it, so that λ0= 1. The effect manifests
strongly for small values of f0 and becomes small for porosities of
order 0.01 and above. In the limit f0→ 0, ϵf→∞ since nomechanism
of failure other than void-mediated coalescence is accounted for.
Figure 7(b) depicts the effect of initial void aspect ratio on shear

ductility for four values of f0 spanning five decades. In fact, what
plays a key role in shear failure is not f0 per se, but the initial liga-
ment ratio χ0, defined as the in-plane void size to the in-plane void
spacing. Basically, it is related to the band porosity via the relation
fb0 = χ20. Thus, the four listed values of f0 correspond to χ0= 0.01,
0.05, 0.1, and 0.46 and initial band porosities of 10−4, 2.5 × 10−3,
0.01, and 0.2116, respectively. Figure 7(b) shows that oblate
voids are more damaging with the effect of initial void aspect
ratio decreasing gradually for elongated voids.
Clearly, the largest influence on shear ductility is that of the rela-

tive void spacing λ0, Fig. 7(c). For given values of f0 and w0, the

shear ductility varies over a wide range (nominally from zero to
infinity) depending on the initial anisotropy of void distribution.
This is rooted in the fundamental influence of the relative ligament
parameter χ0, which is directly affected by void spacing. As illus-
trated in Fig. 8, the critical configuration for failure is when the
rotating void has touched the cell boundaries such that some sec-
ondary linkup mechanism leads to total loss of load bearing capac-
ity. When voids are initially more widely spaced along the shear
direction than normal to it, it takes a lot more straining to achieve
the critical condition; compare the λ0 < 1 and λ0 > 1 situations in
Fig. 8.

3.1.3 Synthesis. The isotropic theory has three features: (i) infi-
nite ductility in shear, (ii) cusp near uniaxial tension, and (iii)
weakly varying ductility in biaxial tension. The parametric analysis
reveals the following:

(1) The initial void volume fraction and to a lesser extent the
initial aspect ratio have a strong influence on the “intensity”
of the cusp.

(2) Among heuritsic parameters, the second Tvergaard parame-
ter q2 has the largest effect on the cusp (Fig. 5(b)).

(3) Microstructural parameters f0 and w0 have a weak effect on
ductility in biaxial tension; the Tvergaard parameters q1
and q2 have no effect on it.

(4) Heuristic parameters p1 and p2 entering the inhomogeneous
yielding criterion have a strong influence on biaxial tension
ductility (Fig. 6).

(5) No parameter of the isotropic theory affects the infinite duc-
tility in shear.

By way of contrast, the anisotropic theory has two essential fea-
tures: (i) finite ductility in shear (unless f0→ 0) and (ii) infinite duc-
tility under uniaxial loading (not shown). The parametric analysis
reveals the following:

(1) Initially oblate voids can be far more damaging than spheri-
cal or elongated ones.

(2) The initial relative void spacing has a first-order effect on
shear ductility.

These trends will be exploited later when dealing with model cal-
ibration on the basis of experimental data (Sec. 3.2.2).

3.2 Comparison With Experiments. A large database on
sheet metal fracture is now available. Here, we use data from
Refs. [1,4,8] to demonstrate the applicability of the models. Focus
is placed on overall trends concerning ductile crack initiation
without any attempt to model precisely the plastic flow preceding
failure or the nonproportional loading paths that may pertain to

Fig. 7 Effect of microstructural parameters on shear ductility
using the anisotropic theory and n0=v0 with parallel shear:
(a) influence of f0 for three values of w0 and λ0=1, (b) influence
of w0 for four values of f0 and λ0=1, and (c) influence of λ0 for
three values of w0 and f0=0.001

Fig. 8 Schematic representation of the effect of initial relative
spacing, λ0, on shear ductility.
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certain loading programs. One advantage of the proposed method-
ology is that it is high throughput in that one can quickly produce a
fracture locus for sheet metal calibrated on experimental data of
interest. Further refinement of such results is outside the scope of
the analysis.

3.2.1 Overview of Experiments. Figure 9 depicts the specimens
used in Refs. [1,4,8]. Specimens 1–5 were used by Bao and Wierz-
bicki [1]. Later, Bai and Wierzbicki [8] augmented their data set
with additional specimens 11–14. Conversely, specimens 6–10
were used by Mohr and Marcadet [4]. The studies in Refs. [1,8]
used Al 2024-T351, while in Ref. [4], two dual-phase (DP) steels
and one TRIP steel were investigated. A TRIP steel was also
used in Ref. [8], but the trends are similar, and so the data are not
used here. Not all specimens produce a plane stress state (e.g., 4,
5, 10, and 13). When postnecking deformation is small, as in Al
alloys at the ambient, the uniaxial stress state that prevails in speci-
mens 4 and 13 may be viewed as plane stress. In punching (speci-
men 10), the disk thickness is small so that the deformation is
stretch dominated, thus resulting in a quasi-equibiaxial tensile
stress state.
The results of experiments are typically produced in terms of a

fracture locus giving a measure of fracture strain, ϵ∗f , versus a
measure of stress state, often a strain-weighted average triaxiality,
�T . If the location of crack initiation is known, then an estimate of
ϵ∗f may be obtained either by direct measurement, e.g., using
digital image correlation [35] if crack initiation is superficial, or
using a hybrid method. The latter is most common and was
indeed used in Refs. [1,4,8]. In the hybrid method, the specimen
is meshed and simulated in finite elements using a high-fidelity
plasticity model such that the computed global (specimen-level)
response matches the measured one. Up to the global displacement
where it is believed that a crack initiates, local quantities, such as
effective plastic strain, �ϵ, triaxiality, and Lode parameter, are
extracted from the calculations and used as basis for plotting exper-
imental data with ϵ∗f being identified with the value of �ϵ at global
failure. If some triaxiality variations occur at the presumed location
of failure, �T is used for plotting purposes. In Ref. [4], a variant
method is used to account for nonporportional loadings. The proce-
dure has limitations but is useful since local quantities of interest are
generally inaccessible in experiments.
In initially crack-free specimens, Fig. 9, a damage to cracking

transition occurs. An estimate of the fracture strain may be obtained
by simply integrating the constitutive relations of Sec. 2 for an ele-
mentary volume element under two conditions: (i) the material
volume where cracking first occurs is subject to nominally

uniform deformation up to crack initiation; (ii) stress triaxiality var-
iations do not lead to strong deviations from the fracture locus under
proportional loading. Under such conditions, the application of the
proposed theory presents immense advantages. It requires knowl-
edge of initial microstructural parameters f0 and w0 as well as (if
needed) λ0, v0, and n0 and the heuristic parameters qi and pi.

3.2.2 Parameter Calibration Procedure. Two methods were
used for model identification using experimental data. The first
employs an in-house optimizer, while the second follows a simple
procedure. Plane stress fracture data can be dispersed in a rather
erratic way. In addition, the shape of fracture loci depicted in
Sec. 3.1 presents features that are not well suited for optimization
(due to sharp gradients near the cusp and the shear limit). In all
cases, the optimizer produced results that were at best comparable
to the simple procedure. Thus, in what follows, we shall present
results of the simple procedure, which is streamlined below:

(1) Measure the initial void volume fraction, f0, or the initial
volume fraction of void nucleation sites, fp.

(2) If neither measurement is available, assume one of two
things:
(a) Void nucleation by particle cracking, in which case take

f0≤ 10−3 and w0∼ 0.1–0.2, or
(b) Void nucleation by decohesion, in which case take f0= fp

and w0=wp, the particle aspect ratio. Estimates of fp and
wp are available in the literature for most structural
alloys.

(3) Use heuristic parameter p1 to calibrate the biaxial tension
“plateau”; see Fig. 6(a).

(4) Use heuristic parameter q2 to calibrate the intensity of the
cusp; see Fig. 5(b).

(5) Use the relative void spacing, λ0, to calibrate the shear duc-
tility using the anisotropic theory; see Fig. 7(c).

(6) Obtain the final fracture locus as the minimum of the isotro-
pic locus (which generally works for biaxial tension and the
cusp) and the anisotropic locus (which general works near
the shear limit).

(7) Refine as needed by small manipulations of the values of w0

and f0.

The availability of microscopic measurements lowers the uncer-
tainty on some microstructural parameters. For example, λ0 is pro-
posed above as an adjustable parameter. In principle, it could be
inferred from measurements. However, these are tedious [6] and
typically not reported by most experimentalists. Conversely,
precise knowledge of f0 and w0 may not be needed given the
small effects they have, say on the biaxial plateau; see Figs. 3 and
4. Unless otherwise noted, qi and pi parameters are restricted to
lie between 1 and 2. The so-estimated fracture strain would consti-
tute a lower bound given that some strain is usually required before
nucleation. The reader would also note than no mention was made
of plasticity model identification. This will be discussed further in
Sec. 4, as it is inconsequential to the main issue at hand.

3.2.3 Fracture Loci. Experimental data reported in Ref. [1] are
replotted in Fig. 10. For ease of reference, the data points are num-
bered following the scheme of Fig. 9. We emphasize that the
“experimental locus” is in fact the result of a hybrid procedure;
see Sec. 3.2.1.
Figure 10 shows simulation results for f0= 0.001 assuming either

nucleation by particle cracking (w0= 0.1) or by decohesion from
equiaxed particles (w0= 1). The biaxial tension regime is not well
discriminated by the data.
The only available data point 5 is for a shallow round notch

(Fig. 9), which does not truly correspond to a plane stress state.
This affects step 3 of the procedure for determining p1. The
height of the cusp is lower with w0= 0.1 using q2= 1 and is
found to be too high for w0= 1 using the maximum value of q2=
2. The shear ductility is simulated using λ0= 0.38 for w0= 0.1
and λ0= 0.9 for w0= 1. Since the w0= 0.1 locus is closer to

Fig. 9 Specimens of the experimental database used here:
(1) shear “butterfly” specimen, (2) tension–shear, (3) plate with
a hole, (4) round uniaxial bar, (5) round notched bar, (6) modified
“butterfly,” (7) central hole (CH) specimen, (8) notch tension
(NT20), (9) notch tension (NT6), (10) disk punch, (11) tube
tension, (12) flat tension, (13) solid square bar tension, and
(14) flat grooved tension
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experimental data, one may hypothesize that nucleation by particle
cracking is more likely in this material and that, at least in the
severely sheared region of specimen 1, the voids were more
widely spaced in the shear direction (λ0 < 1).
Both fracture loci in Fig. 10 exhibit a double cusp. The first cusp

about T= 1/3 is inherent to the locus. The second one is the artefact
of two intersecting loci. Indeed, the branch of the locus closest to
shear (say 0 < T< 0.2) corresponds to the anisotropic theory.
Next, data on a 1.4mm sheet of TRIP steel are reproduced in

Fig. 11. The data are of better quality in the biaxial tension
regime thanks to using notched flat specimens 8 and 9 (Fig. 9),
which lead to p1= 1.4 for both nucleation scenarios. In this material,
the cusp seems to be better captured when assuming w0= 1, which
suggests more equiaxed nucleation sites. A value of q2= 1 was used
for the w0= 0.1 case. Using a larger value of q2 would improve the
cusp prediction but would lower the prediction of data point 7. Both
loci pass through point 6, which is captured thanks to λ0.
Data for the two DP steels in Ref. [4] are replotted in Fig. 12

along with our predictions, using as above two nucleation scenarios.
For the DP780 steel, the w0= 0.1 locus is closer to the experimental
one, although the data do not discriminate the cusp. Either nucle-
ation scenario seems reasonable for the DP590 steel.

4 Discussion
Until low-triaxiality fracture was investigated in some detail [1],

engineering failure predictions were mostly based on void growth
models [16,20,36] with a few notable exceptions reviewed in
Ref. [37]. Such models do not account for any effects of the third
stress invariant, J3, nor do they account for anisotropies induced
by low-triaxiality loading. The effect of J3 on void growth has
since been analyzed by means of cell model analyses, e.g.,
Ref. [38]. It was eventually incorporated in porous material

plasticity equations from first principles, e.g., see Ref. [39] and
references therein. When examined, the effect of J3 on void
growth is modest and by no means can explain the trends seen in
sheet metal fracture, particularly in the plane stress limit.
Constitutive formulations were therefore developed to account

for inherent J3 effects (isotropic theory in Ref. [19] and Sec. 2.1)
or apparent Lode effects (anisotropic theory in Ref. [22] and Sec.
2.3). Both sets of constitutive relations contain idealizations, as dis-
cussed in Refs. [19,22]. However, the analyses in Refs. [19,22] and
their application here demonstrate that first-order J3 effects in
ductile fracture are associated with void coalescence, not void
growth. In doing so, a connection is naturally drawn to widely
adopted phenomenological failure models. Notable among these
is the so-called modified Mohr–Coulomb model [4,8]. The connec-
tion is made through the concept of failure in microscopic bands
such that an effect of (band-resolved) shear and normal tractions
emerges.
There are fundamental differences between our formulation and

that of phenomenological uncoupled models. The latter suffer
from three drawbacks:

(1) They lack physical basis.
(2) They assume a locally hardening, hence invertible, response.
(3) They do not refer to any internal state variable.

Such drawbacks have many consequences, which will be further
analyzed in a forthcoming publication. Here, it suffices to draw the
reader’s attention that the range of predictions enabled by
uncoupled models is within the reach of the present formulation.
In addition, the new theory has the immense advantage of connect-
ing to microscopic aspects of damage accumulation to fracture.
The link to microscopic aspects of fracture initiation enables ana-

lyzing propagating uncertainties in macroscopic measurements. To
illustrate this, consider the case of Al 2024-T351 initially used in
Ref. [1], later augmented with additional data in Ref. [8] then revis-
ited by Papasidero et al. [40]. Figure 13 replots data from Ref. [40]
where a quantitative discrepancy was noted between experimental
data for the same material (Al 2024) in the same heat condition
(T351). Given that the same hybrid procedure was used in both
Refs. [1,40], uncertainties related to the procedure itself should be
minimal. One possible source of discrepancy is therefore micro-
structural variations. This is illustrated in Fig. 13(a).
The microstructural parameters used for either set in Fig. 13(a)

are quite close. It is possible to discriminate the two sets using an
order of magnitude variation of f0 and assuming much elongated
particles in Ref. [40] as per the trends in Fig. 3(c). However, such
variations are unlikely. Also, as shown in Fig. 13(b), assuming a
different nucleation scenario only affects the secondary cusp and
not the biaxial tension plateau. Therefore, we conclude that micro-
structural variations are unlikely to explain the discrepancy among
the two datasets in Refs. [1,40] for the biaxial tension regime. We
hypothesize that the key difference is rooted in using a different
set of specimens among the two studies. Indeed, tubular specimens
were used in Ref. [40], whereas sheet specimens were mostly used
in Ref. [1], except for the only datapoint used to calibrate the biaxial
tension regime (shallow round notch).
For shear failure, our anisotropic theory predicts a strong influ-

ence of microstructural variations that have to do with the effect
of λ0; see Fig. 7(c).
Another issue that is often raised is whether shear ductility is

lower than tensile ductility. First, we note that phenomenological
models are ill-equipped to address the question. In a Mohr–
Coulomb formulation, for instance, it is posited ab initio that
failure occurs in shear. The results from our isotropic theory
show that a finite ductility in shear must account for induced anisot-
ropies. When these are included, local variations of void spacing
parallel to the shear direction can lead to significant scatter, far
more significant than what may be found for tension.
The availability of data for T∼ 0.33 seems to justify the cusp pre-

dicted by the theory. For example, Bai and Wierzbicki have used
specimens 11–16 (see Fig. 9), and this enriches the data about the

Fig. 11 Predicted versus experimental failure loci for TRIP780
steel (data after Ref. [4] using specimens numbered in accor-
dance with Fig. 9). The w0=1 locus was obtained using p1=
1.4, q2=1.85, and λ0=0.25. The w0=0.1 locus was obtained
using p1=1.4, q2=1, and λ0=0.1. For both, f0=0.001.

Fig. 10 Predicted versus experimental failure loci for Al
2024-T351 (data after Ref. [1] using specimens numbered in
accordance with Fig. 9). The w0=1 locus was obtained using
p1=1.9, q2=2, and λ0=0.9. The w0=0.1 locus was obtained
using p1=1.7, q2=1.65, and λ0=0.38. For both, f0=0.001.
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cusp; Fig. 13(c). Also, the biaxial tension specimen 14 is better than
a round notched bar (specimen 5) for estimating the plateau
although the state of plane stress induced by the groove is not in
the plane of the sheet. Given the potential anisotropy of sheet
metal, this induces additional uncertainty in the data.
The calculations carried out here assumed uniform deformation

and proportional loading. Several issues encountered in matching

experimental data would involve deviations from both as well as
the possibility of failure due to shear band formation; see Refs.
[41,42]. All such situations would require full boundary value
problem solutions. For materials capable of much straining
beyond necking, not only does the plane stress assumption break
down but also the assumption of proportional loading. Also,
when the anisotropic theory is used, it is possible that failure by
instability precedes the complete loss of stress carrying capacity
implied by void impingement. The choice of the failure criterion
was motivated by simplicity and is not expected to affect the
overall trends for the composite fracture loci. When instabilities
are not critical, one advantage of the methodology proposed here
is that it enables a quick assessment of trends over the full stress
state regime along with uncertainty analysis due to microstructural
variations.
Another aspect that is much emphasized in the literature con-

cerned with phenomenological uncoupled models, e.g. Refs.
[4,8,18], is the attention given to high-fidelity simulation of plastic-
ity. There is no particular difficulty in doing the same with the
present theory. We leave it to potential users to refine the plasticity
part when making direct comparisons. However, we emphasize that
a good prediction of plastic flow does not guarantee a good predic-
tion of crack initiation. This issue is illustrated in Appendix C.

5 Conclusions
Analyses of plane stress ductile fracture have both practical and

fundamental importance. Theoretical considerations based on
recent developments of porous material plasticity lead to a rich
body of results.

(1) To the extent that the fracture process may be viewed as iso-
tropic, a cusp is generally predicted in the locus giving the
fracture strain versus stress triaxiality.

(2) The cusp is rooted in the dependence of void coalescence
upon the third stress invariant.

(3) The initial void volume fraction or void shape has minimal
effect on ductility in biaxial tension except near uniaxial
tension or equi-biaxial tension.

(4) The isotropic theory cannot rationalize finite values of shear
ductility.

(5) The anisotropic theory predicts a strong effect of relative
void spacing on shear ductility

(6) Heuristic parameters were introduced in the constitutive rela-
tions to enable better matching with experimental data.
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Fig. 12 Predicted versus experimental failure loci for DP steels (data after Ref. [4] using
specimens numbered in accordance with Fig. 9). (a) DP780: the w0= 1 locus was obtained
using p1=1.25, q2=1.25, and λ0=0.33. The w0=0.1 locus was obtained using p1=1.3,
q2 = 1, and λ0=0.15. (b) DP590: the w0=1 locus was obtained using p1=1.1, q2=2 and
λ0 =0.24. The w0=0.1 locus was obtained using p1=1.2, q2=1.25, and λ0=0.1. In all cases,
f0=0.001.

Fig. 13 Possible effect of microstructural variations on fracture
loci of Al 2024-T351. (a) Discrepancy among two experimental
data sets from Refs. [1,40] captured with present theory using
f0=0.001, w0=0.1, and {λ0=0.38, p1=1.7, q2=1.65} for the
data in Ref. [1] and {λ0=0.28, p1=2.75, q2=1.6} for the data in
Ref. [40]. (b) Effect of nucleation scenario. Solid curve obtained
using {λ0=0.6, p1=2.75, q2=2.85 }. (c) Sensitivity of prediction
to quantity of data. Solid line prediction uses {λ0=0.38, p1=
2.2, q2=1.35}.

Journal of Applied Mechanics JANUARY 2022, Vol. 89 / 011001-9

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/1/011001/6753832/jam
_89_1_011001.pdf by Texas A & M

 U
niversity user on 29 Septem

ber 2021



Conflict of Interest
There are no conflicts of interest.

Data Availability Statement
The datasets generated and supporting the findings of this article

are obtainable from the corresponding author upon reasonable
request. The authors attest that all data for this study are included
in the paper.

Appendix A: Relations for Inhomogeneous Yielding
The function β appearing in Eq. (6) is given by
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where W0 an adjustable parameter close to 0.1.

Appendix B: Orientation of Void Sheeting
For void-sheet coalescence, the resolved shear stress τn obeys the

biquadratic equation:

τ4n − 2S1�τ
2τ2n + S2�τ

4 = 0 (B1)

where

S1 = 1 + f 2b −
6

β2
, S2 = (1 − f 2b )

2 −
σ1 − σ2
β�σ

( )2

A valid solution for τn must be in the range 0 < τn < |σ1− σ2|/2. Once
τn is obtained numerically, the band orientation n (i.e., the angle φ)
is obtained from Eq. (10).

Appendix C: Effect of Yield Strength on Ductility
Ductile failure is not brittle fracture. An error on stress prediction

does not necessarily translate into meaningful errors on fracture
strain prediction. To illustrate this for void-mediated ductile
failure, consider single-void cell model simulations. Axisymmetric
loading is assumed such that a quarter cell is modeled and the ratio
of overall axial to lateral stress is kept fixed. Under these conditions,
L=−1 and T is a constant. The void attributes (volume and shape)
are taken to represent average properties of the material (void
volume fraction and void aspect ratio). The matrix is taken to
obey an elastoplastic behavior, Eqs. (1) and (2), with the plasticity
represented by an assoicated von Mises criterion and power-law
hardening as in Eq. (13). The calculations were performed using
ABAQUS. For illustration, two simulations were carried out using
T = 0.66, f0= 0.01, w0= 1, λ0= 1, N= 0.1, and ϵ0= 0.002. The
values of elastic constants E and ν were as in the text. In one

simulation, the initial yield stress was σ0= 420 MPa, in the other
half this value.
Figure 14(a) shows the overall cell effective stress, σeq, versus

effective strain, Eeq, responses. Even for an initial void volume frac-
tion of 0.01, each response is initially close to that of the void-free
matrix. As expected, the cell with a hard matrix exhibits a harder
effective response. When the effective stress is normalized with
σ0, the two curves are barely distinguishable, Fig. 14(b). The evolu-
tion of the void volume fraction in Fig. 14(c) is also insensitive to
the yield stress. By way of consequence, the strain to failure,
which is defined by the transition from homogeneous yielding to
inhomogeneous yielding (i.e., the abrupt load drop in Fig. 14) is
insensitive to the yield stress.
The implication of this simple illustration is as follows. One

stress strain curve in Fig. 14(a) could be thought of as correspond-
ing to a measured response, while the other to a simulated response
suffering from a 200% error on stress prediction. Yet, the simulated
response predicts exactly the correct ductility. This is due to the
latter depending essentially on the triplet {f0, w0, λ0}, not on σ0.
Furthermore, when a fracture locus is determined using the

so-called hybrid method [4,8,18], the problem of error estimation
does not seem to have received the attention it deserves. A compre-
hensive analysis may be found in Ref. [43].

Fig. 14 Cell model analyses for T=0.66, L=−1, f0=0.01,w0=1,
λ0=1, N=0.1, ϵ0=σ0/E, and either σ0=420 MPa (solid lines) or
σ0 =210 MPa (dashed lines). Plotted against the cell effective
strain Eeq: (a) effective stress, σeq, (b) σeq normalized by initial
yield strength σ0, and (c) band porosity, fb.
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