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Abstract

This paper introduces two classes of variational problems, determining optimal shapes
for tree roots and branches. Given a measure µ, describing the distribution of leaves, we
introduce a sunlight functional S(µ) computing the total amount of light captured by the
leaves. On the other hand, given a measure µ describing the distribution of root hair
cells, we consider a harvest functional H(µ) computing the total amount of water and
nutrients gathered by the roots. In both cases, we seek to maximize these functionals
subject to a ramified transportation cost, for transporting nutrients from the roots to the
trunk and from the trunk to the leaves. The main results establish various properties
of these functionals, and the existence of optimal distributions. In particular, we prove
the upper semicontinuity of S and H, together with a priori estimates on the support of
optimal distributions.

1 Introduction

Living organisms come in an immense variety of shapes, such as roots, branches, leaves, and
flowers in plants, or bones in animals. In many cases, it is expected that through natural
selection, these organisms have evolved into a “best possible” shape. From a mathematical
perspective, it is thus of interest to study functionals whose minimizers may determine some
of the many shapes found in the biological world.

As a step in this direction, in this paper we consider two functionals, defined on a space of
positive measures on IRd, and show how they can be used to describe the optimal configurations
of roots and branches in a tree.

The first one, which we call the “sunlight functional”, models the total amount of sunlight
captured by the leaves of a tree. Here we think of a measure µ as the density of leaves. To
achieve a realistic model, our functional S(µ) will take different forms in the case of a free-
standing tree in the middle of a prairie, or a tree in a forest, whose lower branches are partially
shielded by the surrounding vegetation. The model also accounts for the fact that light rays
come from different directions at different times of the day.

The second one, which we call the “harvest functional”, models the total amount of water and
nutrients collected by the roots. In this case, we think of a measure µ as the density of root
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hair cells in the soil. A similar harvest functional H(µ) was introduced in [13], in connection
with a problem of optimal harvesting of marine resources. In the present paper, both Dirichlet
and Neumann boundary conditions will be considered.

The above functionals will be combined with a “ramified transportation cost”, for transporting
nutrients from the roots to the base of the trunk, or from the base of the trunk to the leaves.
For a given measure µ on IRd, this is modeled by the minimum α-irrigation cost Iα(µ) from
the origin, introduced in [24, 31]. The lower semicontinuity of this cost plays an essential
role toward the existence of optimal solutions. For a comprehensive introduction to irrigation
problems we refer to [7]. Further results on the structure of optimal irrigation patterns can
be found in [11, 16].

The optimal shape of branches is now determined by the variational problem

maximize: S(µ)− cIα(µ) (1.1)

for some constants 0 < α < 1 and c > 0. We study this maximization problem among all
positive measures with a given total mass:

µ(IRd) = κ0 . (1.2)

Notice that, to maximize the gathered sunlight, the leaves should be spread out as wide as
possible. On the other hand, this makes it more costly to transport nutrients from the root
to all the leaves.

Similarly, the optimal structure of a root system can be related to the problem

maximize: H(µ)− cIα(µ). (1.3)

The remainder of the paper is organized as follows. In Section 2 we introduce a sunlight
functional and prove some of its properties. These include the upper semicontinuity and
various estimates. Section 3 is concerned with the harvest functional, recalling the main
definitions and extending some of the results in [13] to different boundary conditions. In
Section 4 we briefly review the theory of optimal ramified transport, proving some estimates
on the minimum α-irrigation cost for a measure µ, for later use. The optimization problems for
the shape of tree branches and tree roots are studied in Sections 5 and 6, respectively. Using
the semicontinuity of the various functionals, together with a priori bounds on the supports
of a sequence of optimizing measures, in both cases we establish the existence of an optimal
solution. Some concluding remarks are given in the last section.

2 The sunlight functional

Throughout the following, B(x0, r) denotes an open ball centered at x0 with radius r, while
Sd−1 = {x ∈ IRd ; |x| = 1} denotes the unit sphere in IRd. We write Ω for the closure of a set
Ω, and Ld for the d-dimensional Lebesgue measure.

Let µ be a positive, bounded Radon measure on IRd. Thinking of µ as the distribution of
leaves on a tree, we seek a functional S(µ) describing the total amount of sunlight captured
by the leaves.
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To begin with a simple setting, fix a unit vector n ∈ IRd and assume that all light rays come
parallel to n. Moreover, assume that the measure µ is absolutely continuous with density f
w.r.t. Lebesgue measure on IRd. Call E⊥n the (d − 1)-dimensional subspace perpendicular to
n and let πn : IRd 7→ n⊥ be the perpendicular projection. As shown in Fig. 1, each point
x ∈ IRd can be expressed uniquely as

x = y + sn (2.1)

with y ∈ E⊥n and s ∈ IR.

Our basic modeling assumption is that the rate at which sunlight is absorbed is proportional
to the local density of leaves. For each fixed y ∈ E⊥n , calling s 7→ φ(y, s) the amount of sunlight
reaching the point x = y + sn, we thus assume

∂

∂s
φ(y, s) = f(y + sn)φ(y, s)

lim
s→+∞

φ(y, s) = 1.

For simplicity, we here assign unit values to the absorption rate, and to the amount of light
arriving from infinity per unit (d− 1)-dimensional volume in E⊥n . This implies

φ(y, s) = exp

{
−
∫ +∞

s
f(y + tn) dt

}
. (2.2)

Integrating over the perpendicular plane E⊥n , the total amount of light which is absorbed by
the leaves is thus

Sn(µ) =

∫
E⊥n

1 − exp

{
−
∫ +∞

−∞
f(y + tn) dt

}
dy. (2.3)

We now observe that the formula (2.3) can be easily extended to the case of a general measure
µ, not necessarily absolutely continuous w.r.t. Lebesgue measure.

On the perpendicular subspace E⊥n consider the projected measure µn defined by setting

µn(A) = µ
(
{x ∈ IRd ; πn(x) ∈ A}

)
(2.4)

for every open set A ⊆ E⊥n . Call Φn the density of the absolutely continuous part of µn

w.r.t. the (d− 1)-dimensional Lebesgue measure on E⊥n .

Definition 2.1 The total amount of sunlight from the direction n absorbed by a measure µ
on IRd is defined as

Sn(µ)
.
=

∫
E⊥n

(
1− exp{−Φn(y)}

)
dy . (2.5)

Next, we model the fact that sunlight does not always come from the same direction. Instead,
there exists a density function η : Sd−1 7→ IR+ which describes the total amount of light
coming from the direction n during the course of a day.

Definition 2.2 If light comes from different directions with variable intensity η = η(n), the
total amount of sunlight captured by a measure µ on IRd is defined as

Sη(µ)
.
=

∫
Sd−1
Sn(µ) η(n) dn . (2.6)
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Figure 1: Sunlight arrives from the direction parallel to n. Part of it is absorbed by the measure µ,
supported on the grey regions.

Remark 2.1 The above definitions apply to a general Radon measure µ on IRd. However,
measures which are singular w.r.t. the (d − 1)-dimensional Hausdorff measure are irrelevant.
More precisely, if µ = µ1+µ2 and µ2 is concentrated on a set whose (d−1)-dimensional measure
is zero, then for every unit vector n ∈ IRd we have Sn(µ) = Sn(µ1), while Sn(µ2) = 0.

Remark 2.2 A case of particular interest is when light comes uniformly from all directions
of the positive half sphere.

Sd−1
+

.
=
{
n = (n1, . . . , nd) ; |n| = 1 , nd > 0

}
,

We shall model this situation by taking

η(n) =

 σd/2 if n ∈ Sd−1
+ ,

0 otherwise.
(2.7)

Here σd denotes the (d− 1)-dimensional measure of the surface of the unit ball in IRd.

The next lemma collects some elementary properties of the functional Sn. In the following,
we denote by µλ the measure such that

µλ(A) = µ(λ−1A) (2.8)

for every open set A ⊂ IRd, so that

Supp(µλ) = λ · Supp(µ) = {λx ; x ∈ Supp(µ)}. (2.9)

Moreover, ωd denotes the volume of the unit ball in IRd.
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Lemma 2.1 Let µ, µ̃ be positive Radon measures on IRd. For any unit vector n ∈ Sd−1, the
following holds.

(i) Sn(µ) ≤ µ(IRd),

(ii) If the measure µ is supported inside a ball of radius r, then Sn(µ) ≤ ωd−1 r
d−1.

(iii) Sn(µ) ≤ Sn(µ+ µ̃) ≤ Sn(µ) + Sn(µ̃).

(iv) Sn(λµ) ≤ λSn(µ), for every λ ≥ 1.

(v) For every λ > 0 one has
Sn(λd−1µλ) = λd−1Sn(µ). (2.10)

(vi) If µ is absolutely continuous w.r.t. Lebesgue measure, then

lim
λ→0+

Sn(λµ)

λ
= µ(IRd) = lim

λ→+∞
Sn(µλ). (2.11)

Proof. 1. To prove (i), consider any unit vector n and call Φn the density of the absolutely
continuous part of of the projected measure µn w.r.t. the (d−1)-dimensional Lebesgue measure
on E⊥n . Then

Sn(µ)
.
=

∫
E⊥n

(
1− exp{−Φn(y)}

)
dy ≤

∫
E⊥n

Φn(y) dy ≤ µn(E⊥n ) = µ(IRn). (2.12)

2. To prove (ii), let µ be supported inside the ball B(x0, r), centered at x0 with radius r. Call
y0 the perpendicular projection of x0 on the space E⊥n . Then Φn(y) = 0 whenever |y−y0| > r.
Hence

Sn(µ)
.
=

∫
E⊥n

(
1− exp{−Φn(y)}

)
dy ≤

∫
E⊥n ∩B(y0,r)

1 dy = ωd−1r
d−1.

3. Concerning (iii), the first inequality is an immediate consequence of the monotonicity of
the function 1 − e−x. To prove the second inequality, denote by Φn, Φ̃n the density functions
of the projected measures µn, µ̃n on the perpendicular space E⊥n . Observing that Φn + Φ̃n is
the density function of (µ+ µ̃)n, one obtains

Sn(µ+ µ̃)− Sn(µ)− Sn(µ̃)

=

∫
E⊥n

(
1− exp{−Φn(y)− Φ̃n(y)}

)
−
(
1− exp{−Φn(y)}

)
−
(
1− exp{−Φ̃n(y)}

)
dy

=

∫
E⊥n

[
exp{−Φn(y)}+ exp{−Φ̃n(y)} − exp{−Φn(y)− Φ̃n(y)} − 1

]
dy ≤ 0.

(2.13)
Indeed, the last inequality is obtained by checking that

h(x1, x2)
.
= e−x1 + e−x2 − e−x1−x2 − 1 ≤ 0
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for every x1, x2 ≥ 0.

4. To prove (iv), consider the function

h(x)
.
= 1− e−λx − λ+ λe−x.

Assuming λ ≥ 1, an elementary computation yields

h(0) = 0, h′(x) = λ e−λx − λ e−x ≤ 0 for all x ≥ 0.

Therefore h(x) ≤ 0 for all x ≥ 0. Using this inequality we obtain

Sn(λµ)− λSn(µ) =

∫
E⊥n

(
1− exp{−λΦn(y)}

)
dy −

∫
E⊥n

λ
(
1− exp{−Φn(y)}

)
dy

=

∫
E⊥n

h(Φn(y)) dy ≤ 0.
(2.14)

5. To prove (v), we first compute the density function Φn,λ for the projected measure
(λd−1µλ)n on the (d− 1)-dimensional subspace E⊥n . From the identity∫

A
Φn,λ(y) dy =

∫
λ−1A

λd−1Φn(ỹ) dỹ =

∫
A

Φn(λ−1y) dy

valid for every open set A ⊆ E⊥n , we deduce

Φn,λ(y) = Φn(λ−1y)

for every y ∈ E⊥n . Therefore, using the change of variable ỹ = λ−1y, one obtains

Sn(λd−1µλ) =

∫
E⊥n

(
1− exp{−Φn,λ(y)}

)
dy

=

∫
E⊥n

λd−1
(
1− exp{−Φn(ỹ)}

)
dỹ

= λd−1Sn(µ).

(2.15)

6. It remains to prove the two limits in (2.11). Assume that the positive measure µ has
density f w.r.t. Lebesgue measure on IRd. Then

Sn(λµ)

λ
=

∫
E⊥n

(
1− exp

{
− λ

∫∞
−∞ f(y + tn)dt

})
λ

dy

By Fubini’s theorem, for almost every y ∈ E⊥n we have
∫∞
−∞ f(y+ tn) dt <∞. At such a point

y we have

lim
λ→0+

1− exp
{
− λ

∫∞
−∞ f(y + tn)

}
λ

=

∫ ∞
−∞

f(y + tn) dt.

On the other hand,

1− exp
{
− λ

∫∞
−∞ f(y + tn)

}
λ

≤
∫ ∞
−∞

f(y + tn) dt (2.16)
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Therefore, by dominated convergence theorem, we conclude

lim
λ→0+

Sn(λµ)

λ
=

∫
E⊥n

∫ ∞
−∞

f(y + tn) dtdy = µ(IRd). (2.17)

To prove the second equality in (2.11), call Φn,λ the density function for the projected measure
(µλ)n. For almost every y ∈ E⊥n we have

Φn,λ(y) =
1

λd−1

∫ ∞
−∞

f

(
y

λ
+ tn

)
dt < +∞. (2.18)

Therefore,

Sn(µλ) =

∫
E⊥

(
1− exp

{
− 1

λd−1

∫ ∞
−∞

f
(y
λ

+ tn
)
dt
})

dy

=

∫
E⊥

λd−1
(
1− exp

{
− 1

λd−1

∫ ∞
−∞

f(y + tn)dt
})

dy.

(2.19)

For a.e. y we have
∫∞
−∞ f(y + tn)dt <∞, and hence

λd−1
(

1− exp

{
− 1

λd−1

∫ ∞
−∞

f(y + tn)dt

})
≤

∫ ∞
−∞

f(y + tn) dt.

On the other hand, by L’Hospital Rule,

lim
λ→+∞

λd−1
(
1− exp

{
− 1

λd−1

∫ ∞
−∞

f(y + tn)dt
})

=

∫ ∞
−∞

f(y + tn) dt

Letting λ → +∞ in (2.19), by the dominated convergence theorem one obtains the second
equality in (2.11).

The formula (2.5) covers the case where there are no other obstacles to light propagation
except µ. Next, we want to model the presence of other plants that capture part of the light,
and determine how much light is actually collected by µ.

As a preliminary, consider two positive measures µ and ν, absolutely continuous with densities
f, g w.r.t. Lebesgue measure on IRd. Assuming that light comes from the direction n, the same
computation as in (2.2) shows that the total amount of light that reaches a point x = y + sn
is

exp

{
−
∫ +∞

s
(f(y + tn) + g(y + tn)) dt

}
.

Integrating by parts, the total amount of light collected by the distribution µ with density f
is computed by

Sn(µ) =

∫
E⊥n

(∫ +∞

−∞
f(y + sn) exp

{
−
∫ +∞

s
(f(y + tn) + g(y + tn)) dt

}
ds

)
dy

=

∫
E⊥n

(∫ +∞

−∞

d

ds
exp

{
−
∫ +∞

s
f(y + tn) dt

}
· exp

{
−
∫ +∞

s
g(y + tn) dt

}
ds

)
dy

=

∫
E⊥n

(
1− exp

{
−
∫ +∞

−∞
f(y + tn) dt

}
exp

{
−
∫ +∞

−∞
g(y + tn) dt

}

−
∫ +∞

−∞
g(y + sn) exp

{
−
∫ +∞

s
(f(y + tn) + g(y + tn)) dt

}
ds

)
dy .

(2.20)
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In essence, this says that

[light collected by µ] = [light collected by µ+ ν]− [light collected by ν].

Notice that here the right hand side makes sense also if µ is is an arbitrary measure, not
necessarily absolutely continuous w.r.t. Lebesgue measure. This fact can be used to define
the total sunlight absorbed by any positive measure µ, in the presence of a second measure ν
which is absolutely continuous with density g(·) w.r.t. Lebesgue measure on IRd.

For any given a unit vector n, we represent IRd = En⊕E⊥n , as the sum of the orthogonal spaces
containing all vectors parallel and orthogonal to n, respectively. We denote by (t, y) ∈ En⊕E⊥n
the variable corresponding to this decomposition. As before, let πn : IRd 7→ E⊥n be the
perpendicular projection, and call µn be the projection of µ on E⊥n , defined as in (2.4).
By Theorem 2.28 in [1] (on the disintegration of the measure µ), there exists a family of
1-dimensional measures µy, y ∈ E⊥n , such that the following holds.

(i) µy(En) = 1 for every y ∈ E⊥n .

(ii) The map y 7→ µy is µn-measurable.

(iii) For every φ ∈ L1(IRd) one has∫
IRd

φdµ =

∫
E⊥n

(∫ +∞

−∞
φ(t, y)dµy(t)

)
dµn(y) . (2.21)

y

E
⊥

E
n

n

n

Figure 2: Disintegration of a measure µ on IRd. According to (2.21), the integral
∫
φdµ can be

computed first integrating φ along each line {y + tn ; t ∈ IR} parallel to the unit vector n, then
integrating over the variable y ∈ E⊥n .

To compute the total amount of light coming from the direction parallel to n which is captured
by the measure µ, we proceed as follows.

Let Φn be the density of the absolutely continuous part of µn w.r.t. (d − 1)-dimensional
Lebesgue measure on E⊥n , as in (2.5).

Now let ν be a second measure, absolutely continuous with density g w.r.t. Lebesgue measure
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on IRd. Motivated by (2.20), for each y ∈ E⊥n we define

Snµ,ν(y)
.
= 1− exp{−Φn(y)} exp

{
−
∫
g(y + sn) ds

}
−
∫ (

g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
· exp

{
− Φn(y) · µy([s,+∞[ )

})
ds ,

(2.22)

Sn(µ; ν)
.
=

∫
E⊥n

Snµ,ν(y) dy . (2.23)

Definition 2.3 Assume that light comes with variable intensity η(·) from different directions.
The total sunlight Sη(µ; ν) absorbed by the measure µ in the presence of the abso-
lutely continuous measure ν is then defined as

Sη(µ; ν)
.
=

∫
Sd−1
Sn(µ; ν) η(n) dn . (2.24)

We observe that the first three estimates in Lemma 2.1 remain valid in this more general
situation.

Lemma 2.2 Let µ, ν be positive Radon measures on IRd. Assume that ν is absolutely contin-
uous w.r.t. Lebesgue measure. For any unit vector n ∈ Sd−1, the following holds.

(i) Sn(µ, ν) ≤ Sn(µ) ≤ µ(IRd).

(ii) If the measure µ is supported inside a ball of radius r, then Sn(µ; ν) ≤ ωd−1 r
d−1.

(iii) For any positive measures µ1, µ2 one has

Sn(µ1, ν) ≤ Sn(µ1 + µ2, ν) ≤ Sn(µ1, ν) + µ2(IRd). (2.25)

Proof. 1. Let g be the density of ν w.r.t. Lebesgue measure on IRd. By (2.22) we have

Snµ,ν(y)
.
= 1− exp{−Φn(y)} exp

{
−
∫
g(y + sn) ds

}
−
∫ (

g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
· exp

{
− Φn(y) · µy([s,+∞[ )

})
ds

≤ 1− exp{−Φn(y)} exp

{
−
∫
g(y + sn) ds

}
−
∫ (

d

ds
exp

{
−
∫ +∞

s
g(y + tn) dt

})
ds · exp{−Φn(y)}

= 1− exp{−Φn(y)} ≤ Φn(y) .
(2.26)

Integrating over E⊥n we obtain the first inequality in (i). The second inequality is now a
consequence of (2.12).
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2. If µ is supported in a ball of radius r, then the estimate (ii) follows immediately from
Sn(µ, ν) ≤ Sn(µ) ≤ ωd−1r

d−1.

3. To prove (iii), let Φn
1 ,Φ

n
2 , and Φn = Φn

1 + Φn
2 be the densities of the absolutely continuous

parts of µn1 , µn2 , and µn = µn1 + µn2 w.r.t. the (d − 1)-dimensional Lebesgue measure on E⊥n ,
respectively. We claim that

Snµ1+µ2,ν(y)− Snµ1,ν(y) ≤ Φn
2 (y) (2.27)

for almost every y ∈ E⊥n . Indeed, for a fixed y, assume Φ2(y) 6= 0 and define

λ
.
=

Φn
1 (y)

Φn
1 (y) + Φn

2 (y)
< 1 . (2.28)

Call µy1, µ
y
2, and µy the probability measures on the 1-dimensional space En corresponding to

the disintegration of µ1, µ2, and µ = µ1 + µ2, respectively. By (2.28) it follows

µy = λµy1 + (1− λ)µy2 . (2.29)

We now compute

Snµ1+µ2,ν(y)− Snµ1,ν(y)

=
(

exp{−Φn
1 (y)} − exp

{
− Φn

1 (y)− Φn
2 (y)

})
· exp

{
−
∫
g(y + sn) ds

}
+

∫
g(y + sn) · exp

{
−
∫ ∞
s

g(y + tn)dt

}
·
(

exp
{
− Φn

1 (y) · µy1[s,∞[
}
− exp

{
− (Φn

1 (y) + Φn
2 (y))µy[s,∞[

})
ds

.
= I + J.

(2.30)

The second term in the above expression can be estimated as

J =

∫
g(y + sn) · exp

{
−
∫ ∞
s

g(y + tn)dt

}

·
(

exp

{
− λ

1− λ
Φn

2 (y) · µy1[s,∞[

}
− exp

{
− 1

1− λ
Φn

2 (y) · (λµy1 + (1− λ)µy2)[s,∞[

})
ds

=

∫
g(y + sn) · exp

{
−
∫ ∞
s

g(y + tn)dt

}

·
(

exp

{
− λ

1− λ
Φn

2 (y) · µy1[s,∞[

}
·
(
1− exp{Φn

2 (y) · µy[s,∞[ }
))
ds

≤
∫
g(y + sn) · exp

{
−
∫ ∞
s

g(y + tn)dt
}
· Φn

2 (y) ds

=

(
1− exp

{
−
∫
g(y + sn)ds

})
· Φn

2 (y)

(2.31)
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Combining (2.30) with (2.31) we obtain

Snµ1+µ2,ν(y)− Snµ1,ν(y) = I + J

≤
(

exp{−Φn
1 (y)} − exp{−Φn

1 (y)− Φn
2 (y)} − Φn

2 (y)
)
· exp

{
−
∫
g(y + sn)ds

}
+ Φn

2 (y)

≤ Φn
2 (y).

Integrating over the (d − 1)-dimensional space E⊥n one obtains the desired estimate. This
completes the proof of (iii).

The next lemma, establishing the upper semicontinuity of the sunlight functional S w.r.t. weak
convergence of measures, provides the main ingredient in the proof of existence of optimal
measures. We recall that the weak convergence of measures µk ⇀ µ means

lim
k→∞

∫
ϕdµk =

∫
ϕdµ for every ϕ ∈ C0

c (IRd). (2.32)

In the following we consider a sequence of positive Radon measures (µk)k≥1, on IRd, satisfying
the usual assumptions

1 - Boundedness: there exists a constant C such that

µk(IR
d) ≤ C for all k ≥ 1. (2.33)

2 - Tightness: for every ε > 0 there exists a radius Rε such that

µk
(
{x ∈ IRd ; |x| > Rε}

)
< ε. (2.34)

By a well known compactness theorem [2, 8], this implies the existence of a weakly convergent
subsequence: µkj ⇀ µ.

Lemma 2.3 Consider a weakly convergent sequence of measures µk ⇀ µ, satisfying the bound-
edness and tightness conditions (2.33)-(2.34). Then, for any unit vector n and every positive
measure ν, absolutely continuous w.r.t. Lebesgue measure on IRd, one has

Sn(µ; ν) ≥ lim sup
k→∞

Sn(µk; ν). (2.35)

Proof. 1. We start with the basic case where ν = 0 and all measures µk are supported inside
a ball B(0, R) ⊂ IRd.

From the assumption it follows the weak convergence µnk ⇀ µn of the projected measures. Call
Φn
k , Φn respectively the density of the absolutely continuous part of µnk and µn w.r.t. (d− 1)-

dimensional Lebesgue measure on E⊥n .

Let ε > 0 be given. According to the “biting lemma” [6, 14, 21], there exists a set Vε ⊂
B(0, R) ⊂ E⊥n , with

meas(Vε) < ε, (2.36)
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and such that the following holds. Let µ̂nk be the absolutely continuous measure on E⊥n whose
density (w.r.t. Lebesgue measure) is

Φ̂n
k (y) =

 Φn
k (y) if y ∈ B(0, R) \ Vε ,

0 otherwise.

Then, by possibly extracting a subsequence, we have the weak convergence

µ̂nk ⇀ µ̂n, Φ̂n
k ⇀ Φ̂n ,

Here the second arrow denotes weak convergence in L1. Moreover, µ̂n is the absolutely con-
tinuous measure having density Φ̂n w.r.t. (d − 1)-dimensional Lebesgue measure. By (2.36)
one has the obvious estimate∫

Vε

(
1− exp{−Φn(y)}

)
dy ≤ meas(Vε) < ε. (2.37)

Since µn ≥ µ̂n, by (2.5) and (2.37) the total sunshine captured by the measure µ can now be
estimated as

Sn(µ) ≥
∫
E⊥n

(
1− exp{−Φ̂n(y)}

)
dy

≥ lim sup
k→∞

∫
E⊥n

(
1− exp{−Φ̂n

k (y)}
)
dy

= lim sup
k→∞

(∫
E⊥n

(
1− exp{−Φn

k (y)}
)
dy −

∫
Vε

(
1− exp{−Φn

k (y)}
)
dy

)
≥ lim sup

k→∞
Sn(µk)− ε.

(2.38)

Notice that the concavity of the function x 7→ (1− e−x) was here used in the estimate of the
weak limit. Since ε > 0 was arbitrary, this proves the lemma in the basic case.

2. Next, we still assume that the measures µk have uniformly bounded support, say

Supp(µk) ⊆ B(0, R) for all k ≥ 1 , (2.39)

but we allow the presence of an additional positive measure ν, having density g ∈ L1
loc(IR

d)
w.r.t. Lebesgue measure. In the following we consider the cylinder

ΓR
.
= {y + tn ; y ∈ E⊥n , r ∈ IR , |y| ≤ R, |t| ≤ R}. (2.40)

Let ε0 > 0 be given. Then there exists ρ0 > 0 such that∫
V
g(x) dx ≤ ε0 (2.41)

for every set V ⊆ ΓR such that meas(V ) ≤ ρ0. Calling ωd−1 the volume of the unit ball in
IRd−1, we choose ρ1 > 0 so that

ωd−1R
d−1ρ1 < ρ0 . (2.42)

Then we choose

−∞ = t0 < t1 < t2 < · · · < tN < tN+1 = +∞
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such that
t1 < −R, tN > R, tj − tj−1 < ρ1 for all j = 2, . . . , N, (2.43)

µ
(
{x ∈ IRd ; 〈x,n〉 = tj}

)
= 0 for all j = 1, 2, . . . , N. (2.44)

3. Call µjk = χ
{〈x,n〉≥tj}

· µk the restriction of the measure µk to the set where 〈x,n〉 ≥ tj ,

and let µn,jk , µn,j the projections of µjk, µ
j on E⊥n , as in (2.4). Moreover, call Φn,j

k , Φn,j the

densities of the absolutely continuous parts of µn,jk , µn,j w.r.t. the (d−1)-dimensional Lebesgue
measure on E⊥n .

The weak convergence µk ⇀ µ, together with the assumption (2.44) implies the weak conver-
gence

µn,jk ⇀ µn,j for all j = 0, 1, . . . , N. (2.45)

Using again the “biting lemma” [14], we can find a set V ⊆ B(0, R) ⊆ E⊥n , with

meas(V ) < ε0, (tN − t1) ·meas(V ) < ρ0, (2.46)

and such that the following holds. Let µ̂n,jk be the absolutely continuous measure on E⊥n whose
density is

Φ̂n,j
k (y) =

 Φn,j
k (y) if y ∈ B(0, R) \ V,

0 otherwise.
(2.47)

Then, by possibly extracting a subsequence, for every j = 1, . . . , N we have the weak conver-
gence

µ̂n,jk ⇀ µ̂n,j , Φ̂n,j
k ⇀ Φ̂n,j .

Here the second arrow denotes weak convergence in L1. Moreover, µ̂n,j is the absolutely
continuous measure on E⊥n with density Φ̂n,j .

4. For each fixed y ∈ E⊥n , the last integral in (2.22) can be estimated from above and from
below in terms of Riemann sums. More precisely, for a given measure µ, call

µj = χ
{〈x,n〉≥tj}

· µ

the restriction of µ to the set {x ∈ IRd ; 〈x,n〉 ≥ tj}. Let µn,j be the projection of µj on
E⊥n , and let Φn,j be the density of the absolutely continuous part of µn,j . Since µ, ν are both
positive measures, one has

L(y)
.
=

N∑
j=2

∫ tj

tj−1

(
g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
· exp

{
− Φn,j−1(y)

})
ds

≤
∫ tN

t1

(
g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
· exp

{
− Φn(y) · µy([s,+∞[ )

})
ds

≤
N∑
j=2

∫ tj

tj−1

(
g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
· exp

{
− Φn,j(y)

})
ds

.
= U(y) .

(2.48)
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The difference between the upper and lower Riemann sums, on the right and the left hand
side of (2.48), can be estimated by

U(y)− L(y) ≤
N∑
j=2

∫ tj

tj−1

g(y + sn) ds ·
[

exp{−Φn,j(y)} − exp{−Φn,j−1(y)}
]

≤ max
j

(∫ tj

tj−1

g(y + sn) ds

)
·
N∑
j=2

[
exp{−Φn,j(y)} − exp{−Φn,j−1(y)}

]
≤ max

j

(∫ tj

tj−1

g(y + sn) ds

)
.

(2.49)

By (2.49) and the choice of the points tj it now follows∫
|y|<R

(
U(y)− L(y)

)
dy ≤

∫
|y|<R

(
sup

2≤j≤N

∫ tj

tj−1

g(y + sn) ds

)
dy ≤ ε0 . (2.50)

Indeed, to prove the last inequality, consider a measurable subset Γ] ⊂ Γ such that

Γ] =
{

(y + sn) ; |y| < R, s ∈ [tj(y)−1, tj(y)]
}
,

where, for a.e. y ∈ B(0, R),∫ tj(y)

tj(y)−1

g(y + sn) ds = max
2≤j≤N

∫ tj

tj−1

g(y + sn) ds.

By (2.42),
meas(Γ]) ≤ ωd−1 ·Rd−1 ρ1 < ρ0 .

Hence, by (2.41) and the definition of Γ],∫
|y|<R

(
sup

2≤j≤N

∫ tj

tj−1

g(y + sn) ds

)
dy ≤

∫
Γ]
g(x) dx ≤ ε0 . (2.51)

5. Recalling (2.22)-(2.23) and using (2.49), we obtain

Sn(µk, ν)− Sn(µ, ν) =

∫
E⊥n

(
Snµk,ν(y)− Snµ,ν(y)

)
dy

≤
∫
|y|<R

exp

{
−
∫
g(y + sn) dt

}
·
(

exp{−Φn(y)} − exp{−Φn
k (y)}

)
dy

+

∫
|y|<R

N∑
j=1

∫ tj

tj−1

g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
ds

·
(

exp{−Φn,j−1(y)} − exp{−Φn,j
k (y)}

)
dy

≤
∫
|y|<R

exp

{
−
∫
g(y + sn) dt

}
·
(

exp{−Φn(y)} − exp{−Φn
k (y)}

)
dy

+

∫
|y|<R

N∑
j=1

∫ tj

tj−1

g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
ds

·
(

exp{−Φn,j(y)} − exp{−Φn,j
k (y)}

)
dy

+

∫
|y|<R

(U(y)− L(y)) dy

= I1,k + I2,k + I3 .

(2.52)
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As k →∞, the limits of the first two integrals can be estimated as in Step 1. Indeed, recalling
the properties (2.46)-(2.47) we obtain

lim sup
k→∞

∫
|y|<R, y/∈V

exp

{
−
∫
g(y + sn) dt

}
·
(

exp{−Φ̂n(y)}− exp{−Φ̂n
k (y)}

)
dy ≤ 0, (2.53)

lim sup
k→∞

∫
|y|<R, y/∈V

∫ tj

tj−1

g(y + sn) exp

{
−
∫ +∞

s
g(y + tn) dt

}
ds

·
(

exp{−Φ̂n,j(y)} − exp{−Φ̂n,j
k (y)}

)
dy ≤ 0.

(2.54)

Moreover, by (2.50) we already know that I3 ≤ ε0. From (2.46) and the above inequalities we
conclude

lim sup
k→∞

(I1,k + I2,k) + I3 ≤ ε0 + ε0 . (2.55)

Since ε0 > 0 was arbitrary, this proves (2.35) in the case where the supports of the measures
µk are uniformly bounded.

6. Finally, using the tightness assumption (2.34), we remove the assumption that the measures
µk have uniformly bounded support.

For any given ε > 0, by (2.34) there exists a radius R sufficient large such that

µk
(
{x ∈ IRd; |x| > R}

)
< ε

for every k ≥ 1. Without loss of generality, we can assume that

µ
(
{x ∈ IRd; |x| = R}

)
= 0. (2.56)

Calling BR the open ball centered at the origin with radius R, we denote by µ[k, µ
]
k the

restrictions of µk to BR and IRd \BR, respectively. The measures µ[, µ] are defined similarly.
By the weak convergence µk ⇀ µ together with (2.56) it follows the weak convergence µ[k ⇀ µ[.
By Lemma 2.2, for every k one has

Sn(µ[k, ν) ≥ Sn(µk, ν)− µ]k
(
IRd \BR

)
≥ Sn(µk, ν)− ε .

Since the measures µ[k have uniformly bounded support, by the previous analysis we conclude

Sn(µ, ν) ≥ Sn(µ[, ν) ≥ lim sup
k→∞

Sn(µ[k, ν) ≥ lim sup
k→∞

Sn(µk, ν)− ε.

Since ε is arbitrary, this completes the proof.

From the above lemma one easily obtains the upper semicontinuity of the functional in (2.6).

Lemma 2.4 Consider a weakly convergent sequence of measures µk ⇀ µ, satisfying the bound-
edness and tightness conditions (2.33)-(2.34). Then, for any positive, integrable function
η ∈ L1(Sd−1) and every positive measure ν, absolutely continuous w.r.t. Lebesgue measure on
IRd, one has

Sη(µ; ν) ≥ lim sup
k→∞

Sη(µk; ν). (2.57)
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Proof. By the boundedness assumption (2.33) and the estimate (i) in Lemma 2.2, for each
k ≥ 1 we have

Sn(µk; ν) ≤ µk(IR
d) ≤ C. (2.58)

This implies

lim sup
k→∞

Sη(µk, ν) = lim sup
k→∞

∫
Sd−1

η(n)Sn(µk, ν) dn ≤
∫
Sd−1

lim sup
k→∞

η(n)Sn(µk, ν) dn

≤
∫
Sd−1

η(n)Sn(µ, ν) dn = Sη(µ, ν).

(2.59)
Here the first inequality is valid because, by (2.58), all integrand functions are pointwise
bounded by the function C η(·) ∈ L1(Sd−1). The second inequality follows from Lemma 2.3.

3 Harvest functionals

We now consider a utility functional associated with roots, whose the main goal is to collect
moisture and nutrients from the ground. To model the efficiency of a root, consider a scalar
function u(·) and a positive measure µ. We think of u(x) as the density of water+nutrients at
the point x, while µ is the density of root hair cells, which absorb fluids from the soil. Since
these fluids diffuse through the ground and are harvested by the root, u will satisfy a parabolic
equation of the form

ut = ∆u+ f(x, u)− uµ. (3.1)

Remark 3.1 Here f(x, u) is a term describing how nutrients are replenished within the soil.
For example, this may be due to the presence of bacteria producing organic matter. A more
accurate model should account for the concentration of water together with several different
chemicals and bacteria. In this case, (3.1) would become a system of n reaction-diffusion
equations for a vector-valued function u = (u1, . . . , un). Throughout the following, for sim-
plicity we shall assume that u is a scalar function. Similar results are expected to hold in the
vector-valued case as well.

Since we are interested in average values over long periods of time, we look at the equilibrium
states for (3.1). Throughout the following, we assume that

(A1) Ω ⊂ IRd is a bounded, connected open set with C2 boundary.

(A2) f : Ω× IR 7→ IR is a bounded, continuous function such that, for some constants M,K,

f(x, 0) ≥ 0, f(x,M) ≤ 0, |f(x, u)| ≤ K, for all x ∈ Ω, u ∈ [0,M ] .
(3.2)

(A3) µ is a positive Radon measure supported on the compact set Ω.

We consider solutions u : Ω 7→ [0,M ] of the elliptic problem with measure-valued coefficients

∆u+ f(x, u)− uµ = 0, (3.3)
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and Neumann boundary conditions

∂n(x)u(x) = 0 x ∈ ∂Ω. (3.4)

Here n(x) denotes the unit outer normal vector at the boundary point x ∈ ∂Ω, while ∂nu =
n(x) · ∇u(x) is the derivative of u in the normal direction.

In alternative, we shall also consider Dirichlet boundary conditions

u(x) = 0 x ∈ ∂Ω. (3.5)

Observe that, if the measure µ has a smooth density h(·) w.r.t. Lebesgue measure, then the
equation (3.3) takes the form

∆u+ f(x, u)− h(x)u = 0. (3.6)

By the assumption (A2), the constant function u∗(x) = 0 is a subsolution, while u∗(x) = M
is a supersolution. A standard comparison argument now implies that the semilinear elliptic
problem (3.6), (3.4) has at least one solution u : Ω 7→ [0,M ].

Elliptic problems with measure data have been studied in several papers [9, 10, 15] and are
now fairly well understood. A key fact is that, roughly speaking, the Laplace operator “does
not see” sets with zero capacity. Following [9, 10] we thus call Mb the set of all bounded
Radon measures on Ω. Moreover, we denote by M0 ⊂ Mb the family of measures which
vanish on Borel sets with zero capacity, so that

cap2(V ) = 0 =⇒ µ(V ) = 0. (3.7)

For the definition and basic properties of capacity we refer to [18]. Every measure µ ∈ Mb

can be uniquely decomposed as a sum

µ = µ0 + µs, (3.8)

where µ0 ∈M0 while the measure µs is supported on a set with zero capacity. In the definition
of solutions to (3.3), the presence of the singular measure µs is disregarded.

Remark 3.2 If µ is an arbitrary Radon measure and u is a measurable function defined up
to a set of zero Lebesgue measure, the product uµ may not be well defined. In the present
setting, however, we claim that the product measure uµ0 is uniquely defined. Indeed, calling

−
∫
V
u dx =

1

meas(V )

∫
V
u dx

the average value of u on a set V , for each x ∈ Ω we can consider the limit

u(x) = lim
r↓0
−
∫

Ω∩B(x,r)
u(y) dy. (3.9)

As proved in [19], if u ∈ H1(Ω) then the above limit exists at all points x ∈ Ω with the possible
exception of a set whose capacity is zero. Since µ ∈M0, we conclude that the measure uµ0 is
well defined.
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Definition 3.1 Let µ be a measure in Mb, decomposed as in (3.8).

(i) A function u ∈ L∞(Ω) ∩ H1(Ω), with pointwise values given by (3.9), is a solution to
the elliptic problem (3.3)-(3.4) if

−
∫

Ω
∇u · ∇ϕdx+

∫
Ω
f(x, u)ϕdx−

∫
Ω
uϕdµ0 = 0 (3.10)

for every test function ϕ ∈ C∞c (IRd).

(ii) A function u ∈ L∞(Ω) ∩ H1
0 (Ω), with pointwise values given by (3.9), is a solution to

the elliptic problem (3.3), (3.5) if

−
∫

Ω
∇u · ∇ϕdx+

∫
Ω
f(x, u)ϕdx−

∫
Ω
uϕdµ0 = 0 (3.11)

for every test function ϕ ∈ C∞c (Ω).

We can now state the main existence result for solutions to (3.3). The proof closely follows
the arguments in [13].

Theorem 3.1 Under the assumptions (A1)–(A3), the elliptic problem (3.3) with Neumann
boundary conditions (3.4) has at least one solution u : Ω 7→ [0,M ]. The same is true in the
case of Dirichlet boundary conditions (3.5).

Proof. Without loss of generality, we can assume that µ = µ0, so that (3.7) holds.

1. We first consider the case of Neumann boundary conditions. Let Ωε = {x ∈ IRd ; d(x,Ω) <
ε} be a neighborhood of radius ε > 0 around the compact set Ω. Following [17], we can
construct a bounded, linear extension operator E : H1(Ω) 7→ H1

0 (Ωε).

Since µ is a bounded Radon measure on Ωε which vanishes on sets of zero capacity, by the
analysis in [15] it follows that µ ∈ L1(Ωε) ⊕ H−1(Ωε). More precisely, there exist functions
φ0 ∈ L1(Ωε) and φ1, . . . φd ∈ L2(Ωε) such that

∫
Ωε
ϕdµ =

∫
Ωε
φ0 ϕdx−

d∑
i=1

∫
Ωε
φi ϕxi dx (3.12)

for every test function ϕ ∈ C∞c (Ωε). Hence the same holds for every ϕ ∈ H1
0 (Ωε).

2. By slightly shifting the measure µ in the interior of the domain Ω and performing a
mollification, we construct sequences of smooth functions φ0,n, φ1,n, . . . , φd,n such that

lim
n→∞

‖φ0,n − φ0‖L1(Ωε) = 0, lim
n→∞

‖φj,n − φj‖L2(Ωε) = 0, j = 1, . . . , d. (3.13)

Moreover, the measures µn with density hn = φ0,n +
∑
j(φj,n)xj w.r.t. Lebesgue measure are

nonnegative and supported in the interior of Ω.
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3. Since u∗ ≡ 0 is always a subsolution to (3.14), by a standard comparison argument, for
each n ≥ 1 we obtain the existence of a classical solution un : Ω 7→ [0,M ] to the elliptic
equation

∆u+ f(x, u)− hn(x)u = 0 x ∈ Ω , (3.14)

with Neumann boundary conditions (3.4). Multiplying by un and integrating over Ω, one
obtains ∫

Ω

[
∆un(x) + f(x, un(x))− hn(x)un(x)

]
un(x) dx = 0 (3.15)

Recalling that hn ≥ 0, |f | ≤ K, and un ∈ [0,M ], we obtain∫
Ω
|∇un(x)|2 dx ≤

∫
Ω
|f(x, un(x))un(x)| dx ≤ meas(Ω) ·KM . (3.16)

As a consequence, the norms ‖un‖H1(Ω) remain uniformly bounded. Therefore, the norms of
the extensions ‖Eun‖H1(Ωε) are bounded as well.

4. Thanks to the previous estimates, by possibly taking a subsequence and relabeling, we can
assume the strong convergence

‖un − u‖L2(Ω) → 0 (3.17)

and the weak convergence
un ⇀ u in H1(Ω) , (3.18)

Eun ⇀ Eu in H1
0 (Ωε) , (3.19)

for some function u ∈ H1(Ω). For every test function ϕ ∈ C∞c (IRd) we now have

0 =

∫
Ω

∆un ϕdx+

∫
Ω
f(x, un)ϕdx−

∫
Ω
unϕdµn

= −
∫

Ω
∇un · ∇ϕdx+

∫
Ω
f(x, un)ϕdx−

∫
Ωε

φ0,n +
d∑
j=1

(φj,n)xj

 (Eun)ϕdx

= −
∫

Ω
∇un · ∇ϕdx+

∫
Ω
f(x, un)ϕdx−

∫
Ωε
φ0,n(Eun)ϕdx+

d∑
j=1

∫
Ωε
φj,n(Eun)xj ϕdx .

(3.20)
Letting n → ∞, by the strong convergence in (3.13) and (3.17) and the weak convergence in
(3.18)-(3.19), we obtain

lim
n→∞

(
−
∫

Ω
∇un · ∇ϕdx+

∫
Ω
f(x, un)ϕdx

)
= −

∫
Ω
∇u · ∇ϕdx+

∫
Ω
f(x, u)ϕdx , (3.21)

lim
n→∞

∫
Ωε
φ0,n(Eun)ϕdx+

d∑
j=1

∫
Ωε
φj,n(Eun)xj ϕdx


=

∫
Ωε
φ0(Eu)ϕdx+

d∑
j=1

∫
Ωε
φj(Eu)xj ϕdx =

∫
Ω
uϕdµ .

(3.22)

Together, (3.21) and (3.22) yield (3.10), completing the proof in the case of Neumann boundary
conditions.

5. In the case of Dirichlet boundary conditions, without loss of generality we can assume that
the measure µ is entirely supported in the interior of Ω. Indeed, since u = 0 on the boundary,
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the part of µ supported on the boundary ∂Ω does not give any contribution to the right hand
side of (3.11). We can thus use the representation theorem in [15] directly on the set Ω, and
find functions φ0 ∈ L1(Ω), φ1, . . . , φd ∈ L2(Ω) such that∫

Ω
ϕdµ =

∫
Ω
φ0 ϕdx−

d∑
i=1

∫
Ω
φi ϕxi dx (3.23)

for every test function ϕ ∈ C∞c (Ω). The proof is then achieved by the same arguments as
before.

From the proof of the above theorem, one can also obtain a comparison result. As usual, we
say that two Radon measures satisfy µ̃ ≤ µ if µ̃(V ) ≤ µ(V ) for every Borel set V .

Lemma 3.1 Let the assumptions (A1)-(A2) hold and consider two measures µ ≥ µ̃, both
satisfying (A3). Let u : Ω 7→ [0,M ] be a solution of (3.3)-(3.4). Then, replacing µ with µ̃,
one can find a corresponding solution ũ : Ω 7→ [0,M ] such that ũ(x) ≥ u(x) for every x.

The same result holds in the case of Dirichlet boundary conditions (3.5).

Proof. Consider the case of Neumann boundary conditions. Define the positive measure
µ∗ = µ− µ̃. Performing the construction described in step 2 of the proof of Theorem 3.1, with
the same shifts and the same mollifications applied to all three measures, we obtain sequences
of smooth functions φi,n, φ̃i,n, φ∗i,n, for i = 0, 1, . . . , d and n ≥ 1. Since µ = µ̃+µ∗, this implies
that the corresponding densities of the mollified measures satisfy

hn(x) = h̃n(x) + h∗n(x) ≥ h̃n(x) ≥ 0.

Since un is a solution to (3.14), it is a subsolution to

∆u+ f(x, u)− h̃nu = 0, (3.24)

always with Neumann boundary conditions (3.4). By a standard comparison argument, there
exists a solution ũn : Ω 7→ [0,M ] to (3.24), (3.4). such that

ũn(x) ≥ un(x) for all x ∈ Ω.

By taking limits as n→∞, the result is proved.

The case of Dirichlet boundary conditions can be handled by the same technique.

We can now introduce a harvest functional, defined for solutions of (3.3) with Neumann or
Dirichlet boundary conditions.

Definition 3.2 Given a positive Radon measure µ on Ω and a solution u of (3.3)-(3.4), or
(3.3), (3.5), the total harvest is defined as

H(u, µ)
.
=

∫
Ω
u dµ0 , (3.25)

where µ = µ0 + µs is the decomposition introduced at (3.8).

20



In the case of Neumann boundary conditions, following [13] a more precise construction can
be performed. Let G = G(t, x; y) be the Green function for the heat equation{

wt = ∆w, t > 0 , x ∈ Ω ,
∂nw = 0, t > 0 , x ∈ ∂Ω .

(3.26)

As it is well known [20], for each fixed y ∈ Ω the function G(·, ·; y) provides a solution to (3.26)
such that ∫

Ω
G(t, x; y) dx = 1 , lim

t↓0

∫
Ω
G(t, x; y)φ(x) dx = φ(y) (3.27)

for every φ ∈ C(Ω). The solution of (3.26) with a continuous initial data w(0, x) = φ(x) is
thus given by

w(t, x) =

∫
Ω
G(t, x; y)φ(y) dy t > 0 , x ∈ Ω .

Let now u ≥ 0 be any function such that

∆u ≥ −K on Ω ,
∂nu = 0 on ∂Ω .

(3.28)

In particular, if u is the solution to the elliptic problem (3.15) constructed in Theorem 3.1,
then the condition (3.28) is satisfied. Indeed, by (3.2) all the classical solutions un of (3.14)
satisfy

∆un = − f(x, un) + hn(x)un ≥ − f(x, un) ≥ −K .

Taking the limit as n→∞ one obtains (3.15).

For any t > 0, consider the averaged function

u(t)(x)
.
=

∫
Ω
G(t, x; y)u(y) dy . (3.29)

Using the boundary conditions in (3.26) and (3.28) to integrate by parts, by the first equations
in (3.27) and (3.28) one obtains

d

dt
u(t)(x) =

d

dt

∫
Ω
G(t, x; y)u(y) dy =

∫
Ω
Gt(t, x; y)u(y) dy

=

∫
Ω

∆G(t, x; y)u(y) dx =

∫
Ω
G(t, x; y) ∆u(y) dy ≥ −K .

(3.30)

As a consequence, for every x ∈ Ω the map t 7→ u(t)(x) + Kt is nondecreasing. Since every
function x 7→ u(t)(x) is uniformly continuous on Ω, it admits a continuous extension to the
closure Ω. At each x ∈ Ω we can thus uniquely define the value u(x) by setting

u(x) = lim
t↓0

u(t)(x) = inf
t>0

(
u(t)(x) +Kt

)
. (3.31)

The representation (3.31) shows that u is the infimum of a decreasing sequence of continuous
functions. Hence u is upper semicontinuous.

We conclude this section by observing that, in the case of Neumann boundary conditions, the
harvest functional can be equivalently written as

H(u, µ)
.
=

∫
Ω
f(x, u(x)) dx . (3.32)
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In the case of Dirichlet boundary conditions, assuming that the solution is C1 in a neighborhood
of the boundary ∂Ω, the harvest functional can be expressed as

H(u, µ)
.
=

∫
Ω
f(x, u(x)) dx+

∫
∂Ω
∂n(x)u(x) dσ . (3.33)

4 Optimal irrigation patterns

This section provides a brief review of ramified transport and optimal irrigation. To fix the
ideas, throughout the following we assume

(A4) Ω ⊂ IRd is a connected, open set with Lipschitz boundary, whose closure contains the
origin: 0 ∈ Ω.

Given α ∈ [0, 1], to define the α-irrigation cost of a bounded, positive measure µ on Ω, we
shall follow the Lagrangian approach of Maddalena, Morel, and Solimini [24].

Let κ = µ(Ω) be the total mass to be transported and let Θ = [0, κ]. We think of each θ ∈ Θ
as a “water particle”. A measurable map

χ : Θ× [0, 1] 7→ Ω (4.1)

is called an admissible irrigation plan for the measure µ on Ω if

(i) For a.e. θ ∈ Θ, the map t 7→ χ(θ, t) is Lipschitz continuous.

(ii) At time t = 0 all particles are at the origin: χ(θ, 0) = 0 ∈ IRd for all θ ∈ Θ.

(iii) At time t = 1 the push-forward of the Lebesgue measure on [0, κ] through the map
θ 7→ χ(θ, 1) coincides with the measure µ. In other words, for every open set A ⊂ IRd

there holds
µ(A) = meas

(
{θ ∈ Θ ; χ(θ, 1) ∈ A}

)
. (4.2)

To the irrigation plan χ we now attach a cost Eα. Toward this goal, given a point x ∈ IRd we
first compute how many paths go through the point x. This is described by

|x|χ = meas
(
{θ ∈ Θ ; χ(θ, t) = x for some t ∈ [0, 1]}

)
. (4.3)

We think of |x|χ as the total flux going through the point x.

Definition 4.1 For a given 0 < α ≤ 1, the total cost of the irrigation plan χ is

Eα(χ)
.
=

∫
Θ

(∫ 1

0
|χ(θ, t)|α−1

χ · |χt(θ, t)| dt
)
dθ . (4.4)

If µ is a positive, bounded Radon measure supported on Ω, the α-irrigation cost of µ is
defined as

Iα(µ)
.
= inf

χ
Eα(χ), (4.5)

where the infimum is taken over all admissible irrigation plans.
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Remark 4.1 In the optimal irrigation problem, water has to be transported from a central
well located at the origin 0 ∈ IRd to various locations inside Ω. We think of χ(θ, t) as the
position of the water particle θ at time t. The factor |χ(θ, t)|α−1

χ models the assumption that
water is transported through a network of pipes, whose cost is proportional to the product

[length]× [flux]α.

When α = 1 the integral in (4.4) reduces to

E1(χ)
.
=

∫
Θ

(∫ 1

0
|χt(θ, t)| dt

)
dθ =

∫
Θ

[length of χ(θ, ·)] dθ .

If Ω is convex, the minimum irrigation cost is trivially achieved by transporting each particle
along a straight line, hence

I1(µ) =

∫
|x| dµ(x). (4.6)

On the other hand, when α < 1, it becomes convenient to lump together several paths into a
unique large pipe, and the optimal irrigation pattern can have a complicated structure.

Remark 4.2 In an irrigation plan, what matters are only the paths {χ(θ, t) ; t ∈ [0, 1]} ⊂ IRd,
not the time law with which these paths are traversed. Indeed, for each θ we could take a
smooth bijection τ θ : [0, 1] 7→ [0, 1] and consider the time-reparameterized path χ̃(θ, t) =
χ(θ, τ θ(t)). Then the irrigation plan χ̃ has exactly the same cost as χ.

Remark 4.3 As suggested by intuition, irrigation plans with minimum cost do not have
loops. Namely:

χ(θ, t1) = χ(θ, t2) =⇒ χ(θ, t) = χ(θ, t1) for all t ∈ [t1, t2]. (4.7)

A further, useful property of optimal irrigation plans is

χ(θ1, t1) = χ(θ2, t2) =⇒ {χ(θ1, t) ; t ∈ [0, t1]} = {χ(θ2, t) ; t ∈ [0, t2]}. (4.8)

For the basic theory of ramified transport we refer to [12, 24, 25, 31, 32], or to the mono-
graph [7]. The next lemmas review the existence and some basic properties of the irrigation
functional.

Lemma 4.1 Let Ω be a domain satisfying (A4), let α ∈ [0, 1], and let µ be a bounded, positive
measure on Ω. If there exists an admissible irrigation plan with finite cost Eα(χ) < +∞, then
the measure µ admits an optimal irrigation plan.

For a proof, see Proposition 3.41 in [7].

Lemma 4.2 Let Ω ⊂ IRd satisfy the assumptions in (A4) and let µ, µ1, µ2 be bounded, positive
measures on Ω. Then

Iα(µ) ≥ [µ(Ω)]α−1
∫

Ω
|x| dµ , (4.9)

Iα(µ1) ≤ Iα(µ1 + µ2) ≤ Iα(µ1) + Iα(µ2). (4.10)

23



Proof. 1. The first inequality follows immediately from

Eα(χ)
.
=

∫
Θ

(∫ 1

0
|χ(θ, t)|α−1

χ · |χt(θ, t)| dt
)
dθ ≥ [µ(Ω)]α−1

∫
Θ

(∫ 1

0
|χt(θ, t)| dt

)
dθ

≥ [µ(Ω)]α−1
∫

Θ
|χ(θ, 1)| dθ = [µ(Ω)]α−1

∫
Ω
|x| dµ(x) .

2. Next, for i = 1, 2 let κi = µi(Ω) and let χi : [0, κi]× [0, 1] 7→ Ω be an admissible irrigation
plan for µi. Then the map χ : [0, κ1 + κ2]× [0, 1] 7→ Ω defined by

χ(θ, t) =

 χ1(θ, t) if θ ∈ [0, κ1],

χ2(θ − κ1, t) if θ ∈ ]κ1, κ1 + κ2],

is an admissible irrigation plan for µ1 + µ2. Its cost is

Eα(χ) =

∫ κ1+κ2

0

(∫ 1

0
|χ(θ, t)|α−1

χ · |χt(θ, t)| dt
)
dθ

≤
∫ κ1

0

(∫ 1

0
|χ(θ, t)|α−1

χ1
· |χt(θ, t)| dt

)
dθ +

∫ κ1+κ2

κ1

(∫ 1

0
|χ(θ, t)|α−1

χ2
· |χt(θ, t)| dt

)
dθ

= Eα(χ1) + Eα(χ2).

This proves the second inequality in (4.10).

To prove the first inequality we shall use the representation (see Proposition 4.8 in [7])

Eα(χ) =

∫
Θ

(∫ 1

0
|χ(θ, t)|α−1

χ · |χt(θ, t)| dt
)
dθ =

∫
IRd
|x|αχ dH1(x), (4.11)

where dH1 denotes integration w.r.t. the 1-dimensional Hausdorff measure.

Let χ : [0, κ1 + κ2] 7→ Ω be an admissible irrigation plan for µ1 + µ2. By possibly performing
a measure-preserving transformation of the interval Θ = [0, κ1 +κ2] into itself, we can assume
that the map χ1 : [0, κ1] × [0, 1] 7→ Ω, obtained by restricting χ to the subdomain where
θ ∈ [0, κ1], is an admissible irrigation plan for µ1. Using (4.11) we obtain the obvious estimate

Eα(χ1) =

∫
IRd
|x|αχ1

dH1(x) ≤
∫
IRd
|x|αχ dH1(x) = Eα(χ).

In other words, given any admissible irrigation plan for µ1 + µ2, one can find an admissible
irrigation plan for µ1 with smaller or equal cost. This proves the first inequality in (4.10).

5 Optimal shape of tree branches

Based on the functionals introduced in the previous sections, we now consider a constrained
optimization problem for a measure µ on IRd, which we think as the distribution of leaves on
a tree. The payoff will be the total amount of sunlight captured by the leaves. This will be
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supplemented by the cost of transporting nutrients from the base of the trunk, located at the
origin 0 ∈ IRd to all leaves of the tree.

To formulate this optimization problem, we consider:

(i) An open domain Ω ⊆ IRd with Lipschitz boundary, such that 0 ∈ Ω.

(ii) Constants c, κ0 > 0, and an exponent 0 < α ≤ 1 such that

1− 1

d− 1
< α ≤ 1 . (5.1)

(iii) A non-negative, integrable function η : Sd−1 7→ IR+, determining the intensity of light
coming from various directions.

(iv) An absolutely continuous positive measure ν, with continuous density function g : IRd 7→
IR+, describing the density of external vegetation.

We then consider the optimization problem

maximize: Sη(µ; ν)− cIα(µ). (5.2)

subject to
Supp(µ) ⊆ Ω, µ(Ω) ≤ κ0 . (5.3)

Here Sη(µ; ν) is the sunlight functional introduced at (2.22)–(2.24), while Iα(µ) is the mini-
mum cost to α-irrigate the measure µ, defined at (4.5).

Remark 5.1 One can think of (5.3) as a constraint on the size of the tree, i.e. on the total
amount of leaves. Notice that the inequality in (5.3) is essentially equivalent to

µ(Ω) = κ0 . (5.4)

Indeed, given a measure µ with total mass < κ0, we can always add to µ a Dirac mass at the
origin, of size κ0 − µ(IRd). This would come at zero transportation cost, and zero additional
payoff.

Remark 5.2 If µ is supported on a set of dimension < d−1, then Sn(µ, ν) = 0. On the other
hand, if (5.1) fails, then Iα(µ) = +∞ for every measure µ whose support is NOT contained
in a set of dimension ≤ d− 1. In this case, the above optimization problem would only have
trivial solutions, where the measure µ is a point mass at the origin.

Using the semicontinuity of the functionals Sη and Iα, and deriving suitable a priori estimates,
we now prove

Theorem 5.1 In the above setting (i)–(iv), the constrained optimization problem (5.2)-(5.3)
has at least one solution.
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Proof. 1. By Lemma 2.1 and the bound (5.3) it follows

Sη(µ, ν)− cIα(µ) ≤ Sη(µ) ≤
∫
Sd−1

η(n) dn · sup {Sn(µ) ; |n| = 1} ≤ ‖η‖L1 κ0 , (5.5)

showing that the functional in (5.2) has a finite upper bound. Hence there exists a sequence
of positive measures (µn)n≥1, all satisfying the conditions in (5.3), and such that

lim
n→∞

(
Sη(µn; ν)− cIα(µn)

)
= sup

µ

{
Sη(µ; ν)− cIα(µ)

}
. (5.6)

The supremum on the right hand side is taken over all positive measures satisfying (5.3).

2. We claim that it is not restrictive to assume that the measures µn have uniformly bounded
support. More precisely

Supp(µn) ⊆ B(0, r0) ∩ Ω, (5.7)

where

r0 =
κ1−α

0

c α
‖η‖L1 . (5.8)

Indeed, each measure µn can written as a sum: µn = µ̂n + µ∗n, where µ̂n is supported inside
the closed ball B(0, r0), while µ∗n is supported outside this ball.

By Lemma 4.1, for each n ≥ 1 there exists an optimal irrigation plan χn, i.e., a minimizer of
the irrigation cost for the measure µn. By possibly performing a measure-preserving transfor-
mation of Θn = [0, µn(Ω)] into itself, it is not restrictive to assume that

χn(θ, ·) =

 χ̂n(θ, ·) if θ ∈ [0, κ̂n],

χ∗n(θ − κ̂n, ·) if θ ∈ ]κ̂n, κn],

where χ̂n is an irrigation plan for µ̂n, while χ∗n is an irrigation plan for µ∗n. By (5.3) we have

µn(Ω) = µ̂n(Ω) + µ∗n(Ω) ≤ κ0 .

Since χn is optimal while χ̂n is suboptimal, the difference between the minimal irrigation costs
can be estimated as

I(µn)− I(µ̂n) ≥
∫

Ω

(
|x|χ̂n + |x|χ∗n

)α
dH1 −

∫
Ω
|x|α

χ̂n
dH1

≥
∫

Ω
ακα−1

0 |x|χ∗n dH
1 ≥ ακα−1

0 r0 · µ∗n(Ω).

(5.9)

The second inequality comes from the fact that (x + y)α − xα ≥ α
κ1−α0

y, when x ≥ 0, y ≥ 0,

and x+ y ≤ κ0.

On the other hand, by (2.25) the difference in the sunlight functional can be estimated by

Sη(µn, ν)− Sη(µ̂n, ν) ≤ ‖η‖L1 · µ∗n(Ω). (5.10)

If the radius r0 is chosen as in (5.8), then by (5.9)-(5.10) we have

Sη(µ̂n, ν)− cIα(µ̂n) ≥ Sη(µn, ν)− cIα(µn) (5.11)
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for every n ≥ 1. By replacing each µn with µ̂n we thus obtain a maximizing sequence of
measures whose supports are uniformly bounded.

3. Thanks to the uniform boundedness of the supports, by possibly taking a subsequence we
can assume the weak convergence of measures: µn ⇀ µ̄, for some positive measure µ̄ satisfying
(5.3) as well.

By the lower semicontinuity of the irrigation cost Iα (see Proposition 3.40 in [7]), it follows

Iα(µ̄) ≤ lim inf
n→∞

Iα(µn).

On the other hand, the upper semicontinuity of the sunlight functional µ 7→ Sη(µ, ν) proved
in Lemma 2.4 yields

S(µ̄, ν) ≥ lim sup
n→∞

S(µn, ν).

We conclude that µ̄ is an optimal solution to (5.2)-(5.4).

6 Optimal shape of tree roots

In this section we consider constrained optimization problems for a measure µ on IRd, which
we now think as the distribution of root hair in the soil. The payoff will be the total amount of
water+nutrients collected by the roots. This will be supplemented by the cost of transporting
water from the tips of the roots to the base of the trunk. Under the same assumptions
(A1)-(A2) in Section 3, let constants α, c, κ0 > 0 be given, with

1− 1

d− 2
< α ≤ 1 . (6.1)

We then consider the optimization problem

maximize: H(u, µ)− cIα(µ), (6.2)

among all positive measures µ on Ω satisfying the constraint

µ(Ω) ≤ κ0 , (6.3)

and all functions u such that the couple (u, µ) provides a solution to the elliptic boundary
value problem (3.3). Here H(u, µ) is the harvest functional introduced at (3.25), while Iα(µ)
is the minimum cost to α-irrigate the measure µ, defined at (4.5).

Remark 6.1 If µ is supported on a set of zero capacity, then H(u, µ) = 0. As shown in
chapter 5.9 of [4], if a set A ⊂ IRd has Hausdorff dimension ≤ d − 2, then its capacity is
zero. On the other hand (see [7]), the minimum irrigation cost Iα(µ) is bounded only if µ is
supported on a set of dimension < 1

1−α . To achieve a nontrivial solution of (6.2), one thus

needs the inequality 1
1−α > d− 2. This motivates the condition (6.1).

Using the semicontinuity of the functionals H and Iα, we will prove the existence of optimal
solutions. We begin with the case of Neumann boundary conditions.

27



Theorem 6.1 Let the assumptions (A1)-(A2) hold. Then the maximization problem (6.2),
over all couples (u, µ) which satisfy (3.3), (3.4), and (6.3), has an optimal solution.

Proof. 1. CallA the set of all admissible couples (u, µ), satisfying (3.3), (3.4), and (6.3). Since
every solution u of (3.3) satisfies u(x) ∈ [0,M ], calling M the supremum over all admissible
couples we have

M
.
= sup

(u,µ)∈A
{H(u, µ)− Iα(µ)} ≤ M κ0 . (6.4)

Let {(un, µn)}n≥1 be a maximizing sequence. It is clearly not restrictive to assume that
µn ∈M0 for every n ≥ 1.

By (3.16) we have the bounds

‖un‖H1 ≤ C, un(x) ∈ [0,M ],

for some constant C and every n ≥ 1. As remarked in Section 3, the functions un can be
uniquely defined at every point x ∈ Ω in terms of the limit (3.31). Consider the sequence of
measures νn

.
= un µn. By possibly taking a subsequence and relabeling we can assume

νn ⇀ ν, µn ⇀ µ in the sense of weak convergence of measures,

un → u strongly in L2(Ω) and a.e. in Ω,

un ⇀ u weakly in H1(Ω).

(6.5)

In addition, by Ascoli’s theorem we can assume that, for every fixed t > 0,

u(t)
n (x) =

∫
Ω
G(t, x, y)un(y) dy →

∫
Ω
G(t, x, y)u(y) dy = u(t)(x) (6.6)

as n → ∞, uniformly for x ∈ Ω. Indeed, by choosing a subsequence we can achieve the
convergence in (6.6) for every rational t > 0. By continuity, this same subsequence satisfies
(6.6) for every t > 0.

2. We claim that, without loss of generality, one can assume that each measure µn satisfies

Supp(µn) ⊆
{
x ∈ Ω ; un(x) ≥ cα κα−1

0 |x|
} .

= An , (6.7)

where c is the constant in (6.2). Indeed, consider the decomposition

µn = µ̂n + µ∗n,

where µ̂n
.
= χAn · µn is concentrated on An, while µ∗n is concentrated on Ω \ An. We notice

that An is a closed set, because un is upper semicontinuous.

Observing that un is a subsolution to the problem

∆u+ f(x, u)− u µ̂n = 0 (6.8)

with Neumann boundary conditions, we conclude that (6.8), (3.4) has a solution ûn ≥ un. For
this solution, one has

H(ûn, µ̂n) ≥ H(un, µn)−
∫

Ω
un dµ

∗ ≥ H(un, µn)− cακα−1
0

∫
Ω
|x| dµ∗. (6.9)
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Next, define the constants

κ̂n = µ̂n(Ω), κ∗n = µ∗n(Ω), κn = µn(Ω) = κ̂n + κ∗n ,

and consider an optimal irrigation plan for µn, say χn : [0, κn] × [0, 1] 7→ Ω. By possibly
performing a measure-preserving transformation of the domain Θn = [0, κn] into itself, we can
assume that the maps χ̂n : [0, κ̂n]× [0, 1] 7→ Ω,

χ∗n : [0, κ∗n]× [0, 1] 7→ Ω,

 χ̂n(θ, t) = χn(θ, t),

χ∗n(θ, t)
.
= χn(κ̂n + θ, t),

are admissible irrigation plans for µ̂n and µ∗n, respectively (possibly not optimal). We now
have

Iα(µn)− Iα(µ̂n) ≥
∫
|x|αχn dH

1 −
∫
|x|α

χ̂n
dH1 ≥ ακα−1

0

∫ (
|x|χn − |x|χ̂n

)
dH1(x)

= ακα−1
0

∫
|x|χ∗ndH

1(x) ≥ ακα−1
0

∫
|x| dµ∗n.

(6.10)
Together, (6.9) and (6.10) imply

H(ûn, µ̂n)− cIα(µ̂n) ≥ H(un, µn)− cIα(µn).

By replacing each pair (un, µn) with (ûn, µ̂n), we thus obtain a new maximizing sequence for
which (6.7) holds.

3. Using (6.7), we now show that

Supp(µ) ⊆
{
x ∈ Ω ; u(x) ≥ cα κα−1

0 |x|
}
. (6.11)

Indeed, assume that, on the contrary, there is a point x0 ∈ Supp(µ) such that

u(x0) ≤ cακα−1|x0| − 4ε, for some ε > 0. (6.12)

By (3.31) there exists t > 0 such that

u(t)(x0) +Kt ≤ cακα−1|x0| − 3ε. (6.13)

with u(t) defined as in (3.29). The continuity of u(t) implies

u(t)(x) +Kt ≤ cακα−1|x| − 2ε (6.14)

for all x ∈ B(x0, r) ∩ Ω, with r > 0 sufficiently small. In turn, by the convergence u
(t)
n (x) →

u(t)(x), uniformly for all x ∈ Ω, we have

u(t)
n (x) +Kt ≤ cακα−1|x| − ε (6.15)

for all n ≥ N0 large enough and for all x ∈ B(x0, r) ∩ Ω.

By (6.7), this implies that

Supp(µn) ∩B(x0, r) = ∅, for all n ≥ N0 .
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From the weak convergence µn ⇀ µ it follows that Supp(µ) ∩ B(x0, r) = ∅ as well, contra-
dicting the assumption x0 ∈ Supp(µ).

4. Thanks to (6.11) we can now define

µ∗
.
=

ν

u
.

By (6.5), u satisfies
∆u+ f(x, u)− uµ∗ = 0, (6.16)

with Neumann boundary conditions (3.4). Following [13], we now establish the key inequality

µ∗ ≤ µ. (6.17)

To prove that (6.17) holds, thanks to the upper semicontinuity of u it suffices to show that∫
Ω

φ

ψ
dν ≤

∫
Ω
φdµ, for every φ, ψ ∈ C(Ω), φ ≥ 0 , ψ > u. (6.18)

Since ψ is continuous on the compact set Ω, we can choose t, δ > 0 small enough so that

u(x) ≤ u(t)(x) +Kt < ψ(x)− δ for all x ∈ Ω . (6.19)

By (6.6), as n→∞ the corresponding functions u
(t)
n converge to u(t) uniformly on Ω. Hence

for all n large enough we have

un(x) ≤ u(t)
n (x) +Kt ≤ u(t)(x) +Kt+ δ < ψ(x) for all x ∈ Ω .

This yields∫
Ω

φ

ψ
dν = lim

n→∞

∫
Ω
φ

1

ψ
dνn = lim

n→∞

∫
Ω
φ
un
ψ
dµn ≤ lim

n→∞

∫
Ω
φdµn =

∫
Ω
φdµ ,

proving (6.17).

5. We conclude by proving the pair (u, µ∗) is optimal. Since {(un, µn)}n≥1 is a maximizing
sequence, using (6.5) and the lower semicontinuity of the irrigation cost Iα, one obtains

M = lim
n→∞

[
H(un, µn)− cIα(µn)

]
≤ lim

n→∞

∫
Ω
f(x, un) dx− c lim inf

n→∞
Iα(µn) ≤

∫
Ω
f(x, u) dx− cIα(µ)

≤
∫

Ω
f(x, u) dx− cIα(µ∗).

The last inequality follows from (6.17) and the monotonicity of Iα, proved at (4.10). By (6.17)
the weak convergence µn ⇀ µ it follows

µ∗(Ω) ≤ µ(Ω) = κ0.

This completes the proof of the optimality of (u, µ∗).
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We now prove an analogous existence result in the case of Dirichlet boundary conditions.

Theorem 6.2 Let the assumptions (A1)-(A2) hold. Then the maximization problem (6.2),
over all couples (u, µ) which satisfy (3.3), (3.5), and (6.3), has an optimal solution.

Proof. 1. Call A the set of all admissible couples (u, µ) which satisfy (3.3), (3.5), and (6.3).
As in the previous case, the supremum M of the functional (6.2) over all admissible couples
(u, µ) ∈ A satisfies (6.4). Let {(un, µn)}n≥1 be a maximizing sequence. It is clearly not
restrictive to assume that µn ∈M0 for every n.

2. Let w∗ : Ω 7→ [0,M ] be the largest solution to the elliptic problem with smooth coefficients ∆w + f(x,w) = 0 x ∈ Ω,

w = 0 x ∈ ∂Ω.
(6.20)

By classical theory, w∗ can be constructed as the supremum of all functions w : Ω 7→ [0,M ]
which are subsolutions to (6.20). Hence w∗ is well defined.

For each n ≥ 1, since unµn ≥ 0, by Lemma 3.1, the solution un of (3.3), (3.5) satisfies

un(x) ≤ w∗(x) for all x ∈ Ω. (6.21)

3. Consider the set (see Fig. 3)

Ω∗
.
=

{
x ∈ Ω ; w∗(x) ≥ c ακα−1

0 |x|
}
.

Note that Ω∗ is closed and
Ω∗ ∩ ∂Ω = {0}.

Denote by χΩ∗ the characteristic function of Ω∗ and, for each n ≥ 1, consider the measure
µ∗n = χΩ∗ · µn supported on Ω∗. Since µ∗n ≤ µn, by the comparison argument in Lemma 3.1,
we can find a solution u∗n of

∆u+ f(x, u)− uµ∗n = 0

with Dirichlet boundary conditions (3.5), such that

un ≤ u∗n ≤ w∗.

We claim that (u∗n, µ
∗
n)n≥1 is another maximizing sequence. Indeed,

H(un, µn)−H(u∗n, µ
∗
n) ≤

∫
Ω\Ω∗

un(x) dµn ≤
∫

Ω\Ω∗
c ακα−1

0 |x|dµn . (6.22)

On the other hand, the same argument used at (6.10) shows that the difference in the irrigation
costs can be estimated by

Iα(µn)− Iα(µ∗n) ≥ ακα−1
0

∫
Ω\Ω∗

|x| dµn . (6.23)
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Together, (6.22) and (6.23) yield

H(un, µn) − H(u∗n, µ
∗
n) ≤ cIα(µn) − cIα(µ∗n), (6.24)

proving that {(u∗n, µ∗n)}n≥1 is also a maximizing sequence. Without loss of generality, from
now on we shall thus assume that

Supp(µn) ⊆ Ω∗ for all n ≥ 1 . (6.25)

4. Consider the sequence of measures νn
.
= un µn. By possibly taking a subsequence, we can

again assume that (6.5) holds, for suitable positive measures µ, ν, supported on Ω∗. Moreover,
for every fixed radius r > 0, we can assume the convergence of the averaged values

u(r)
n (x)

.
= −

∫
B(x,r)∩Ω

un(y) dy → −
∫
B(x,r)∩Ω

u(y) dy
.
= u(r)(x) (6.26)

as n→∞, uniformly for x ∈ Ω.

5. We claim that
u(x) ≥ cακα−1

0 |x| for all x ∈ Supp(µ). (6.27)

Indeed, assume that, on the contrary, there is a point x0 ∈ Supp(µ) ⊆ Ω∗ such that

u(x0) ≤ cακα−1|x0| − 4ε, for some ε > 0. (6.28)

Clearly, this can hold only if x0 6= 0. Hence we can choose r0 > 0 so that B(x0, 2r0) ⊂ Ω.

Since |f(x, u)| ≤ K, all functions un + K
2d |x|

2, and u + K
2d |x|

2 are subharmonic on the open
set Ω. Hence, there exists a constant C such that, for every x ∈ B(x0, r0) and 0 < r ≤ r0, all
maps

r 7→ u(r)
n (x) + Cr, r 7→ u(r)

n (x) + Cr,

are nondecreasing. Taking a sequence rk → 0, the pointwise values of un, u can thus be defined
as the infimum of a decreasing sequence of continuous functions:

un(x)
.
= inf

r>0
−
∫
B(x,r)

un(y) dy , u(x)
.
= inf

r>0
−
∫
B(x,r)

u(y) dy. (6.29)

A contradiction is now achieved by the same argument used at (6.13)–(6.15), replacing the

weigthed averages u
(t)
n defined at (6.6) with the standard averages u

(r)
n in (6.26).

6. By the previous step, we can define a measure µ∗ supported on the open set Ω, by setting

µ∗
.
=

ν

u
.

Notice that, in principle, µ may contain a point mass at the origin. In this case, to remove any
ambiguity we define µ∗({0}) = 0. By (6.5), the limit function u satisfies (6.16) with Dirichlet
boundary conditions (3.5).

The same arguments used in step 4 of the proof of Theorem 6.1 now show that µ∗ ≤ µ. Hence
the couple (u, µ∗) is admissible.
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0

∗Ω

Ω
ε,δ

Figure 3: The sets Ω∗ and Ωε,δ considered in the proof of Theorem 6.2.

7. Finally, we prove that (u, µ∗) is optimal. Indeed, on the set Ω \ Ω∗ all functions un, u
provide solutions to the semilinear elliptic equation with smooth coefficients

∆u+ f(x, u) = 0.

For any ε > 0, using the Schauder regularity estimates [17, 20] up to the boundary, we can
find ρ > 0 such that all solutions un are uniformly smooth on the set

Ωε,δ
.
=
{
x ∈ Ω ; dist(x, ∂Ω) < ρ, |x| > ε

}
,

shown in Fig. 3. Hence, by Ascoli’s theorem, by possibly taking a further subsequence we
achieve the convergence of the normal derivatives along the boundary

∂n(x)un(x) → ∂n(x)u(x) for all x ∈ ∂Ω \ {0}.

Notice that, for any ε > 0, the convergence is uniform on the set ∂Ω \B(0, ε). Observing that
0 ≤ un ≤ w∗ and similarly 0 ≤ u ≤ w∗, we deduce

∂n(x)un(x) ≤ 0, ∂n(x)w
∗(x) ≤ ∂n(x)u(x) ≤ 0. (6.30)

Using (6.30), for any fixed ε > 0 one obtains

lim
n→∞

∫
∂Ω
∂nun dσ ≤ lim

n→∞

∫
∂Ω\B(0,ε)

∂nun dσ =

∫
∂Ω\B(0,ε)

∂nu dσ

≤
∫
∂Ω
∂nu dσ −

∫
∂Ω∩B(0,ε)

∂nw
∗ dσ.

Using the lower semicontinuity of the irrigation functional and the fact that µ∗ ≤ µ, we thus
conclude

M = lim
n→∞

H(un, µn)− lim
n→∞

cIα(µn)

≤ lim
n→∞

∫
Ω
f(x, un) dx+ lim

n→∞

∫
∂Ω
∂nun dσ − cIα(µ)

≤
∫

Ω
f(x, u) dx+

∫
∂Ω
∂nu dσ +

∫
∂Ω∩B(0,ε)

∂nw
∗ dσ − cIα(µ∗)

= H(u, µ∗)− cIα(µ∗)−
∫
∂Ω∩B(0,ε)

∂nw
∗ dσ.

(6.31)

By choosing ε > 0 small, the last integral on the right hand side of (6.31) can be made
arbitrarily small. Hence H(u, µ∗)− cIα(µ∗) ≥ M , proving the optimality of (u, µ∗).
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7 Concluding remarks

In this paper we assumed that the primary goal of tree leaves (tree roots) is to gather sunlight
(water and nutrients from the soil, respectively). We then tried to determine shapes that
most efficiently achieve these goals. The search for these optimal shapes has been formulated
as a maximization problem for certain functionals, in the spirit of the classical Calculus of
Variations [5].

While our present analysis is purely theoretical, optimal shapes may be computed by the
numerical algorithms recently developed in [26, 27, 28, 30]. It will then be of interest to
compare numerical simulations with the shapes actually observed in nature. In this direction,
we expect that root shapes which maximize our harvest functional will look very similar to
the actual roots of biological trees.

On the other hand, we guess that in some cases the shapes which maximize the gathered
sunlight will resemble an optimal disposition of solar panels, more than actual tree branches.
If this is the case, it would indicate that the efficiency in capturing sunlight has not been
the primary goal driving the evolution of plant shapes. In computer simulations of tree
growth [3, 23, 29], the most realistic images are produced by algorithms based on the idea of
conquering space. This suggests that tree shapes have evolved as the result of a competitive
game among plants, rather than an optimization problem. A mathematical modeling of such
a game remains to be worked out.
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“Models of controlled biological growth”.
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