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Abstract

Exponential family Random Graph Models (ERGMs) are widely used to model networks by parameterizing
graph probability in terms of a set of user-selected sufficient statistics. Equivalently, ERGMs can be viewed
as expressing a probability distribution on graphs arising from the action of competing social forces that make
ties more or less likely, depending on the state of the rest of the graph. Such forces often lead to a complex
pattern of dependence among edges, with non-trivial large-scale structures emerging from relatively simple
local mechanisms. While this provides a powerful tool for probing macro-micro connections, much remains
to be understood about how local forces shape global outcomes. One very simple question of this type is that
of the conditions needed for social forces to stabilize a particular structure: that is, given a specific structure
and a set of alternatives (e.g., arising from small perturbations), under what conditions will said structure
remain more probable than the alternatives? We refer to this property as local stability and seek a general
means of identifying the set of parameters under which a target graph is locally stable with respect to a set of
alternatives. Here, we provide a complete characterization of the region of the parameter space inducing local
stability, showing it to be the interior of a convex cone whose faces can be derived from the change-scores of
the sufficient statistics vis-à-vis the alternative structures. As we show, local stability is a necessary but not
sufficient condition for more general notions of stability, the latter of which can be explored more efficiently
by using the “stable cone” within the parameter space as a starting point. In addition to facilitating the
understanding of model behavior, we show how local stability can be used to determine whether a fitted
model implies that an observed structure would be expected to arise primarily from the action of social
forces, versus by merit of the model permitting a large number of high probability structures, of which the
observed structure is one (i.e. entropic effects). We also use our approach to identify the dyads within a
given structure that are the least stable, and hence predicted to have the highest probability of changing
under the current social forces. The utility of the “stable cone” for ERGM parameter optimization is then
demonstrated on a physical model of amyloid fibril formation. This demonstration features a visualization of
the stable region, whereby it is shown that the majority of the region of the model’s parameter space where
ERGM simulations produce the highest fibril yield lies within the “stable cone.”
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Notation

We denote vectors by lower case boldface letters, as in t, matrices by uppercase boldface letter, as in M. |S|
is the cardinality of a set S.

1 Introduction

The last several decades have seen a growth of interest in network data and in strategies to analyze such data.
While statistical analysis of social networks goes back to the 1930s [1], advances in computing and statistical
theory have fueled a particular rise in stochastic models for networks with complex structure [2]. The
importance of capturing nontrivial aspects of network structure has been motivated by studies of phenomena
such as information transmission [e.g. 3, 4, 5], systemic robustness [e.g. 6, 7, 8, 9], and disease transmission
[e.g. 10, 11], all of which can be significantly impacted by features such as clustering and community or
subgroup structure that are not readily reproduced by simple random graph models.

Another motivation for complex network models has been the elucidation of the connection between
local and global aspects of network structure. For instance, the frequency distribution of triadic subgraphs
strongly constrains higher-order structures like ranked clusters [12], and partnership concurrency is closely
related to forward connectivity in time-varying networks [11]. Biases in subgraph frequencies are themselves
directly related to the conditions under which the state of one edge depends upon another [13, 14, 15],
creating a direct link between local processes that e.g. favor or inhibit tie formation or triadic closure and
higher-order structure. The exponential family random graph modeling (ERGM) framework (discussed in
detail below) has become a widely used approach for identifying and exploring such connections between
local and global structure in social and other networks [16, 17]. While it can be seen simply as a flexible
language for specifying distributions on graph sets, ERGMs can also be interpreted as parameterizing a set
of biases influencing relational structure, with realized networks emerging from the interplay of these biases;
these biases are formally analogous to forces in a physical context, an analogy that has been exploited in
applications of ERGMs to biophysical systems [e.g. 18, 19]. In some cases, these biases can also be interpreted
in terms of utility theory [20], with network structure arising from the equilibrium of a latent stochastic choice
process in which agents’ decisions to add or remove ties are shaped by the associated biases. One potential use
of ERGMs is hence to probe the conditions that are sufficient for the emergence or persistence of particular
types of network structure, particularly where multiple mechanisms may be simultaneously at work.

In this paper, we examine one facet of this latter question, specifically introducing a basic notion of local
network stability vis-á-vis an ERGM family and characterizing the subspace of parameters for an arbitrary
family that renders a target structure stable with respect to a set of alternative networks. As we show, the
stabilizing region of the parameter space forms the interior of a convex cone originating at the origin, whose
faces are associated with a subset of the alternative networks against which the target is being compared.
These results are presented in section 2, along with a practical algorithm for efficiently finding the stabilizing
region of the parameter space. Our stability analysis is then illustrated with a simple and intuitive example
involving an idealized centralized group structure (section 3), followed by an application to a well-known study
of collaboration within a legal firm (in section 4), and finally (in section 5) the stable region for an ERGM
used to model amyloid fibril formation (protein aggregates well-known for their connection to Alzheimer’s
disease). In the first two cases, the correspondence between our notion of local stability and persistence
of structures under Metropolis dynamics (widely employed in Markov Chain Monte Carlo simulations of
network structure) is explored, and the use of stability calculations to predict likely or unlikely edge changes
is demonstrated; the third case further highlights the utility of local stability for aiding model selection. As
these examples illustrate, the results described here are broadly applicable to ERGMs on social, biological,
physical, or other networks, or mutatis mutandis to other discrete exponential family distributions on binary
vectors.

2 Stability

We begin by introducing a simple notion of local stability for network structures. The intuition is as follows.
Assume we have a graph whose stability is to be assessed (the target network or target graph) with respect to
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2.1.1 Characterization of the Stable Subspace

Using (1), we can rewrite the inequality in (2) as

eθ
T
t(G)

K(θ)
>

eθ
T
t(G′)

K(θ)

allowing us to simplify the stability condition as

θ : θT (t(G′)− t(G)) < 0 for G′ ∈ S. (3)

The quantity θ
T t(G) is called the ERGM potential, and is equal to the log probability of G up to an

additive constant. ∆(G,G′) = t(G′) − t(G) is called the change score, and describes the way in which the
sufficient statistics differ between graphs. We may then construct a matrix M by accumulating the change
score vectors for G versus all G′ in S. Specifically, we define M to be a |S| ×K matrix where the i-th row is
the change score ∆(G,G′

i), and the j-th column is the change scores regarding the j-th sufficient statistics:

Mij = ∆j(G,G′
i), G

′
i ∈ S.

With this notation it becomes clear that we can easily describe the local stability problem algebraically
as

Find all θ

Such that Mθ = v ∈ R
|S|
−

(4)

with the set of θ ∈ R
K that satisfy the above constraint defined as Φ.

The algebraic characterization of Φ immediately reveals several useful properties of the stabilizing sub-
space. Trivially, the matrix product Mθ in Eq. 4 can be rewritten as a set of row-wise inner products arising
from members of the comparison set:

∑

j

Mijθj < 0, for 1 < i < |S|.

Each corresponding inequality represents an open half space, whose dividing hyperplane (eg.
∑

j Mijθj = 0)
passes through the origin. Intuitively, each half-space represents the portion of the parameter space under
which G is more probable than a particular member of S. The intersection of these open half-spaces, if
nonempty, is the interior of a convex polytope cone emanating from the origin (Fig. 2). We call this convex
cone the stable cone of G w.r.t the alternative set S, since any parameter vector within it stabilizes G.

We can also prove the set Φ is a convex cone by showing that if θ1, θ2 ∈ Φ then αθ1 + βθ2 ∈ Φ, for any α

and β > 0. Proof : Let v1 = Mθ1 and v2 = Mθ2, then v1, v2 ∈ R
|S|
− . So,

v′ = M [αθ1 + βθ2]

= αv1 + βv2 because α, β > 0

∈ R
|S|
−

�

A practical implication of this observation is that the stabilizing subspace can be characterized in terms of a
set of vectors (the directions of the facial intersections of the stable cone), from which any member of Φ can
be obtained. In practice, we might expect that redundancies in the constraints implied by M will limit the
number of vectors that are needed, an idea that we exploit below.

We note in passing that the criterion used in Eq. 3 for defining stability implies that the margin of stability
for G versus alternatives G′ may be arbitrarily small. Replacing 0 with the log of the desired probability
ratio in Eq. 3 loads to a larger guaranteed margin of stability. However, we can immediately perceive that the
effect of such a margin change is simply to shift each dividing hyperplane towards the interior of the stable
region by an amount that is logarithmic in the probability ratio. Equivalently, we observe that the margin
of stability versus a given alternative increases exponentially with distance from its dividing hyperplane; as
we show in Section 3.1, this in practice makes the seemingly weak, “zero-margin” stable cone a generically
useful proxy for stronger criteria. We also note that, while the criterion of Eq. 3 is automatically applicable
to exponential families, the condition can also be satisfied approximately or exactly by other families of
distributions (particularly in the context of specific choices of G and S). Although we restrict attention to
the exponential family case, the development used here may thus be applied in some other cases we asll.
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characterizes the subspace Φ as a set of conditional linear inequalities, or half-spaces, as shown by the blue
facets in Fig. 2, and in Eq. 5 below:

Φ = (θ|Miθ < 0) ∀i ∈ {1, 2, ..., |S|} (5)

while the V-representation characterizes the subspace as the convex hull generated by the vertices that are
created by each pair of intersecting planes from the H-representation (shown as black arrows in Fig. 2). It is
worth noting that, while solving for the stable region, it is convenient to store each vertex as a single point in
parameter space by calculating the intersection of each vertex with a hypersphere of a given radius (shown
in Fig. 5). Since all points along the ray associated with each vertex can be obtained by rescaling, as can
the ray associated with any point within this particular slice of the stable region (solid orange triangle in 5),
no information is lost by using this representation. Additionally, the data structure for the V-representation
is such that the indices of the hyperplanes whose intersection comprise each vertex is also stored in the V-
representation object. The remainder of this section presents the calculation of the stable region using this
method for storing the V-representation.

Figure 5: The vertex representation (intersections of the transparent orange planes) can be conveniently stored as the
points (green dots) produced by the intersection of the vertices with a hypersphere (blue sphere)

Although the H and V representations each offer a complete description of the stable cone individually,
they are perhaps most useful for solving the stable cone when the two representations are used in tandem.
In our application, we leverage the complementarity of the two representations to iteratively search for both
a non-redundant H-representation and V-representation simultaneously by applying a methodology based
on the double description method (or DD method), introduced by Avis and Fukuda [22]. Given an initial
redundant M matrix (redundant halfspaces), with all edge changes of interest represented in the rows, the
stable cone for a given target graph and set of sufficient statistics can be solved by first using Algorithm 1
(Fig. 6) to obtain an initial closed superset of the stable region, which is then passed (along with M) to
Algorithm 2 (Fig. 7), where the initial closed superset is whittled down to a non-redundant double description
of the stable region. For the following demonstrations of Algorithm 1 and Algorithm 2, consider a heuristic
parameter space θ, for which |θ| = 3, where we will examine the intersection of the stable region with a sphere.
To further aid spatial intuition, the stable region displayed in Figures 6 and 7 is analogous to examining only
the spherical triangle shown in opaque orange in Figure 5.

Given the redundant M matrix for a target graph and a set of sufficient statistics, this information is first
passed to Algorithm 1 in order to calculate an initial closed superset of the stable region. Algorithm 1 begins
by first obtaining a set of |θ| − 1 rows from M, where no two halfspaces are parallel, and calculating their
intersection with both each other and the hypersphere. These rows and this vertex point serve to initialize
the H-representation (H) and V-representation (V ), respectively. At this point, a new row is drawn from M

and appended to H, and intersections between all possible combinations of |θ| − 1 rows of H are calculated
and then appended to V . Although the current iteration of H is redundant, its stable region is still equivalent
to the non-redundant form, thus H is used to remove all unstable vertices (i.e. vertices positioned outside
the stable region) from V using matrix multiplication by H to evaluate the stability of each vertex. Given
that the data structure for V includes the labels for the rows of H that intersect to form each vertex in V ,
it is then trivial to now remove all rows of H that are not represented in V . At this point, H and V are
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both non-redundant. The final step in the loop is to check the convex hull for closure. If the convex hull
represented by H and V is closed, Algorithm 1 returns H and V and terminates. One straightforward method
for testing the closure of the convex hull described by V is to first check that the number of vertices is ≥ |θ|,
and then use any of the many available methods for calculating convex hulls from points (e.g. Quickhull [23])
to calculate the convex hull of the vertices in V . If both the number of vertices is ≥ |θ|, and the number
of halfspaces in the halfspace representation returned by the convex hull finding method is equivalent to the
number of rows in H, the stable region represented by H and V is closed. This test for closure is made
possible by the fact that if the convex hull finding algorithm is operating on a convex hull that is open with
respect to the stable region, it will introduce a new halfspace to close off the open end of the space.

Algorithm 1: Finding an initial closed superset of the stable region

Data: M

1 initialize H; V;
2 bool are.parallel = TRUE;
3 while are.parallel do
4 h.init = sample.two.rows(M);
5 are.parallel = check.parallel(h.init)

6 end

7 H = h.init;
8 V = get.exhaustive.intersections(H);
9 bool hull.is.closed = FALSE;

10 while !hull.is.closed do

11 h.test = sample.one.row(M);
12 H = append(H, h.test);
13 vertices.new = get.exhaustive.intersections(H, h.test);
14 V = append(V, vertices.new);
15 V = return.stable.vertices(V, H);
16 H = get.H.from.V(V);
17 hull.is.closed = testForClosedConvexHull(V);
18 if(h.row.index == nrow(M)) break;

19 end

20 return {H, V}

Once Algorithm 1 has returned an initial closed superset of the stable region, H, V , and M are then
passed to Algorithm 2. The premise of Algorithm 2, as put forth by [22], is that given an initial closed
convex hull, any newly introduced halfspaces are only non-redundant if their introduction excludes one or
more previously existing vertices. The algorithm also leverages the fact that the data structure for V keeps
track of which halfspaces intersect to produce each vertex, in that upon introduction of a new non-redundant
halfspace, only the halfspaces whose intersections comprise the newly excluded vertex or vertices must be
included in the calculation of newly created vertices. Intuition for the methodology can be readily obtained
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Figure 11: Mean number of Metropolis steps required for the first change in G, as a function of θ. Waiting times grow
exponentially fast as one moves away from the faces of the stable cone.

exp(θT (t(Gi)− t(G))). The acceptance probability if d− is proposed is:

Pr(accept|d−, G) =

{

exp(θT (t(G−)− t(G))), if θT (t(G−)− t(G)) ≤ 0

1, otherwise.

Then the probability of the target graph G change to G− can be calculated as

Pr(G−|G) = Pr(d−) Pr(accept|d−).

Similarly, Pr(G+|G) can be derived when d+ is proposed. When proposed moves are rejected, then the
graph remains unchanged. Let θ = [x, y]T where x is the parameter value for edges and y is the parameter
value for nsp(0). The probability of becoming G+, G−, or staying unchanged given starting from the perfect
star structure G is:

Pr(G−|G) =

{

2
v
e−x+(v−1)y, if x− (v − 1)y ≥ 0

2
v
, otherwise

,

Pr(G+|G) =

{

v−2
v

ex, if x ≤ 0
v−2
v

, otherwise
,

Pr(G|G) = 1− Pr(G+|G)− Pr(G−|G)

To illustrate the dyad vulnerability, we sampled 10,000 parameter vectors from the [−10, 10] interval for
both edges and nsp(0) at v = 7. This region covers both the stable cone and the unstable region. We ran
a 5000 step random walk Metropolis trajectory for each sampled parameter until the first change occurred.
The Metropolis procedure evaluates the acceptance ratio (α) at each step and decides whether the proposed
toggle is accepted or rejected (as mentioned in 3.2). The simulation result (in fig. 13) is in accordance with
the theoretical derivation.
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vectors define two half-spaces whose intersection is empty (i.e., x + y > 0 and −x − y > 0), and thus there
is no model that stabilizes such a graph. Intuitively, this is because any choice of θ for this family will on
balance either favor adding or removing cross-group edges, and hence one of the two dyad states will not be
favored. More generally, for any G and model family parameterized t, if there exists an edge and a null in G

with directly opposite change scores with respect to t, then the local stable region associated with S = H(1)

will be empty. In such cases, we can conclude that the forces associated with t do not (or would not) locally
stabilize G. Beyond this observation, we can gain additional insight into model behavior by examining the
subsets of S for which stabilization is possible, particularly where θ is known or has been estimated from the
observed network [see e.g. 21]. Moreover, where the local stable cone is non-empty but an estimated model
does not lie within it, we can exploit the position of the estimated model relative to the stable cone to obtain
insights into the factors that are driving instability, and the hypothetical changes in social forces that would
lead the target graph to become locally stable. In this section, we illustrate how some of these techniques
can be used to gain insights into model behavior in a non-trivial setting.

We study graph stability with a data set collected by Lazega [29] on working relations among 36 partners
in 1991 in a New England corporate law firm. This dataset is a network where edges (undirected) represent
collaborations between partners. For purposes of analysis, we employ a model family for this data set that
was previously published by [30]. Due to improvements in estimation methods since the original publication,
we here refit the model using the ergm package [31] to obtain updated coefficients (table 2). The covariates
used in the model are as follows: seniority, which describes the rank order of entry into the firm (1=earliest,
36=latest); type of practice (1=litigation, 2=corporate); the office at which the partner works (1=Boston;
2=Hartford; 3=Providence); and the partner’s gender (1=man; 2=woman). The model includes the main
effects of seniority and practice, along with homophily effects for practice, gender, and office location. A
geometrically weighted edgewise shared partner (GWESP) term was also included to account for triadic
closure.

Parameter Estimate S.E

Edges -7.375 0.712∗∗∗

Main Seniority 0.024 0.007∗∗∗

Main Practice 0.411 0.118∗∗∗

Homophily Practice 0.761 0.192∗∗∗

Homophily Gender 0.696 0.256∗∗

Homophily Office 1.145 0.196∗∗∗

GWESP(α = 0.75) 0.937 0.159∗∗∗

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2: Maximum likelihood estimates for the Lazega model, with standard errors and Wald test p-values. α refers to
the GWESP decay parameter, which was fixed to 0.75 during estimation.

We enumerate S = H(1) (total 630 graphs) and compute the corresponding M matrix (630-by-7). Each
row in M is characterized by one graph in the alternative set and each column is one model statistic. The
network would be locally stable under the estimated model with parameter θ̂ if Mθ̂ ∈ R−, i.e. if all 1-step
changes are unfavorable. Interestingly, the observed graph is unstable against this alternative set with an
unstable fraction of 0.159 (i.e., 100 out of 630 alternative graphs are unstable). Because each graph in the
alternative set corresponds to one dyad toggle and defines a stable half-space, then for each dyad there exists
a stable half-space in which this dyad is more likely to stay unchanged. If a model lies within the stable
half-space, then the dyad is said to be stable under this model, and vice versa. We calculate the distance
from the model to stabilization of graph G′

i in H(1) as generalized distance di (shown in fig. 14) and use the
convention that positive di means the model lies outside of the stable half-space of graph G′

i; while negative
di means the model is within the stable half-space of graph G′

i. The absolute value of di is the distance to
the dividing hyperplane.

In fig. 15 we plot the stable edges, unstable edges, and unstable nulls. A few observations can be made: 1)
Two core groups are clearly identified, each centered within one of the larger offices (Hartford and Boston).
To illustrate the core groups, light shadings are plotted around the actors that have at least one stable tie
within the group. The two groups are completely separated, which means the ties between groups are mostly
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to the most vulnerable set of edges/nulls in the network. The external unstable edges between two groups
suggest that cross-office ties tend to be somewhat fragile, and prone to disruption. The internal unstable
edges connecting peripheral partners to core partners within groups likewise suggests an enhanced propensity
towards turnover for collaborations involving these more marginal partners. By contrast, the unstable nulls
among core actors suggest the potential for new collaborations among the most central partners, especially
in the Boston office.

The local stability calculations identify the dyads that are most vulnerable to changes in the network, i.e.,
if changes were to happen, the unstable edges are the ones that would be expected to change the earliest.
To see how this corresponds with an explicit dynamic process, we run 100,000 Metropolis trajectories until
the first dyad toggle is accepted and record the number of times each dyad was toggled. We plot the fraction
of each dyad toggle occurrence as a function of di for all dyad Di. When di < 0 (left panel of fig.16), it
indicates dyad Di is stable and the probability of accepting an edge toggle is proportional to the ratio of
target/alternative graph potentials. When di > 0 (right panel of fig.16), dyad Di is unstable and the fraction

of dyad toggles becomes flat and is equal to the probability of any dyad being sampled (
(

v
2

)−1
, which is 1/630

in this case). This reflects the fact that the Metropolis acceptance probability becomes 1 when a move is
favored. This experiment shows that the most vulnerable dyads are the ones that are outside of the stable
region, where the probability of such a dyad toggle is equal to the probability of any dyad being sampled.
When a dyad lies within the stable region, the probability of a toggle is an exponentially increasing function
of negated distance to the closest hyperplane, maxed out at dyad sampling probability. This indicates that
dyads lying close to the hyperplanes, although within the stable region, are also somewhat vulnerable to
structural changes. It is also interesting to note that under this model there are more unstable edges than
nulls, indicateing a tendency towards lowering network density by breaking established edges.

Figure 16: The dyad toggle occurrence fraction as a function of generalized distance di, recorded from 100,100 Metropolis
trajectories until the first dyad toggle is accepted. The points on the left panel (di < 0) indicates dyads,
w.r.t which the model is not stable, and points on the right (di > 0) indicate otherwise. Edges and nulls are
differentiated by colors.

Finally, while we may consider stability with respect to externally defined groups (as above) we can
also examine whether stability is associated with endogenously identified communities. Figure 17 shows
stable and unstable edges within the Lazega network, with vertices labeled by community membership as
identified via modularity minimization [32, 33]. We see that inferred community structure closely aligns
with dyadic stability, with stable edges forming the respective cores of the two non-degenerate communities
and ties between communities or to peripheral community members being predicted to be unstable. While
the availability of covariate information here allows us to interpret the detected communities in this case
as corresponding to the regional offices, such correspondence in other cases could be used to verify the
robustness of inferred community structure: to the extent that the detection algorithm is identifying cohesive
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subgroups, we would expect to see a higher probability of stability for within-group versus between group
edges. Alternatively, dyadic stability could also be employed as an input to community detection itself,
with edge stability used e.g. to weight edge variables prior to segmentation. This may be particularly
useful in networks with large numbers of ephemeral contacts for which direct measurement of tie strength is
unavailable; even for very large networks in which ERGM parameter estimation by MCMC is not feasible,
maximum pseudo-likelihood [34] or contrastive divergence [35] estimates may be sufficiently informative to
improve algorithmic performance. This would seem to be a fruitful area for further investigation.

Figure 17: Dyadic stability by community structure. Clusters (vertex color) identified by modularity minimization are
related to stability, with stable edges lying disproportionately within communities. Cross-cutting edges and
edges to peripheral members are more often predicted to be unstable.

5 Network Models for Amyloid Fibril Formation

It has recently been demonstrated that ERGMs can serve as the basis for modeling protein aggregation
events on both timescales and system size scales that are orders of magnitude beyond what is accessible using
particle-based spatial modeling techniques [18, 36]. These approaches are particularly useful for modeling
the spontaneous self-assembly of amyloid fibrils, which are filamentous aggregates of proteins characterized
by locally ordered periodic structure. This periodicity is analogous to the periodic structure of crystals, the
key difference being that crystal structures exhibit periodic structure along three axes of growth, while the
periodicity of fibrils occurs along a single axis of growth (e.g. note the region of the network highlighted
in Fig. 18 C). This periodic symmetry, that is a hallmark of fibril structure, poses unique challenges to
model selection, as it exacerbates a well-known challenge in fitting ERGMs to observed network models via
maximum pseudolikelihood estimation (MPLE) or other standard maximum likelihood optimization-based
approaches: degeneracy [37]. It is in this realm of highly degenerate model spaces where using the stable
region to pare down the parameter space to more tractable subspaces is particularly valuable. This approach
is highlighted in Fig. 18, whereby the stable region is shown for a commonly observed fibril topology with
respect to an ERGM with four sufficient statistics: θ ·t(g) = θeedges+θ2skstar(2)+θnsp1nsp(1)+θnsp2nsp(2).
Specifically, 100,000 points were randomly selected from the surface of a sphere that is a constant edge
parameter projection (θe = 109− log(48)) of a four dimensional hypersphere in the parameter space for the
model. The parameters within the stable region were then used to carry out standard ERGM simulations.
A graphlet-based approach [18, 36, 38, 39] was then used to quantify the fraction of nodes in the resulting
graphs that belonged to subgraphs exhibiting the ladder-like local periodic structure characteristic of the fibril
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to undergo changes from both theoretical derivation and simulation.
We demonstrate a straightforward approach to exploring network stability under a given model, using

the Lazega Lawyer dataset as an example. By simply constructing the M matrix and examining whether the

vector Mθ̂ is in the negative quadrant, i.e., Mθ̂ ∈ R
|S|
− , we can assess whether the observed graph is predicted

to be stable under the estimated model. When the graph is not locally stable, then we may further inquire
into the stability of particular dyads (exploiting the relationship between dyad toggles and the elements

of S). Thus, non-negative elements in Mθ̂ suggest the instability of the corresponding dyads. This can
aid in making predictions regarding potential future changes to the network under the current social forces
(as parameterized by the estimated model). For the Lazega dataset, we are able to identify the structural
characteristics of the network from dyad stability assessment. For example, by examining the stable edges we
are able to identify two densely connected clusters centered at two of the larger offices; each exhibits a core-
periphery structure. The unstable nulls are relatively concentrated in the Boston office, suggesting that the
pressure to collaborate is greater in the Boston office, while unstable edges bridging offices suggest fragility in
ties between units. Such insights may be useful for guiding additional empirical studies or modeling efforts.

Additionally, we demonstrated the utility of using our stable region-based approaches to pare down vast
parameter spaces to much smaller stable subspaces by applying our methodologies to fitting ERGMs that
can be used to model amyloid fibril producing protein aggregation events. For the 2-ribbon model studied
here, the locally stable region of parameter space contains a large fraction of the region producing fibrillar
topologies in equilibrium, demonstrating that the stable region can offer significant utility for initializing
parameter searches.

The methodology introduced here offers a powerful new toolset for practitioners of network modeling. The
techniques presented require no simulation, and are applicable to a wide range of problems. The one-step
stability metric introduced herein is a straightforward implementation of the alternative set, and possesses
an intuitive interpretation. At the same time, our method is amenable to any user-defined alternative set.
Our approach also offers a quantitative tool for measuring instability in network structure due to either a
strain imposed on a network by the social forces at play, or conversely, could indicate that the choice of social
forces in the model could be poorly chosen. Finally, we also note that the formal correspondence between the
ERGM form and Boltzmann distribution makes this approach useful in physical settings [18], where locally
stable structures correspond to local energy minima in graph space. The ability to easily characterize the
conditions under which particular graph structures are energetically favorable may be useful for studying the
formation of complex materials, or the protein aggregates associated with Alzheimer’s and other diseases [18].
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