
Evaluating Commit, Issue and Product Quality  
in Team Software Development Projects 

Christopher Hundhausen 
School of EECS 

Washington State University 
Pullman, WA  USA 
hundhaus@wsu.edu 

Adam Carter 
Department of Computer Science 

Humboldt State University 
Arcata, CA  USA 

adam.carter@humboldt.edu 

Phillip Conrad 
Department of Computer Science 

University of California, Santa Barbara 
Santa Barbara, CA  USA 

phtcon@ucsb.edu 

Ahsun Tariq 
School of EECS 

Washington State University 
Pullman, WA USA 

ahsun.tariq@wsu.edu 

Olusola  Adesope 
Department of Educational Psychology 

Washington State University 
Pullman, WA  USA 

olusola.adesope@wsu.edu 

 

ABSTRACT 
Providing students with authentic software development 
experiences is essential to preparing them for careers in 
industry.   To that end, many undergraduate courses include a 
team-based software development experience in which each 
team works on a different software project.  This raises 
significant challenges for assessing student work and measuring 
the impact of pedagogical interventions:  What do we measure 
and how, when each team is working on a different project?  To 
address this question, we present a collection of metrics 
developed using the Goal-Question-Metric framework from the 
empirical software engineering literature, and an empirical study 
in which we applied those metrics to assess 23 team software 
projects involving 94 students at three institutions. Study results 
suggest that these metrics, which gauge commit, issue, and 
overall product quality, are sensitive to differences in the quality 
of teams’ processes and products. This work contributes a new 
metric-based approach to evaluating key aspects of software 
development processes and products in a wide variety of 
computing courses.  

CCS CONCEPTS 
• Applied computing ~ Education ~ Collaborative learning 
• Software and its engineering ~ Software creation and 
management ~ Collaboration in software development~ 
Programming teams • Software and its engineering ~ Software 
creation and management ~ Collaboration in software 
development ~ Software verification and validation ~ Empirical 
software validation 

KEYWORDS 
Team software development, Empirical software engineering, 
Soft skills, Collaboration, Software development process quality, 
Software product quality, Metrics 

ACM Reference format: 

Anonymous. 2021. Evaluating Commit, Issue and Product Quality in 
Team Software Development Projects. In Proceedings of ACM SIGCSE 
Symposium (SIGCSE’21). ACM, New York, NY, USA, 7 pages. 
https://doi.org/10.1145/3408877.3432362 

1 Introduction 
Given the prominence of team software development in 

industry, computing educators have long been interested in 
engaging undergraduate computing students in team software 
development projects (e.g., [32, 35]). A key pedagogical goal is to 
provide students with software development experiences that 
align with those they will encounter in the software industry, 
thus giving them opportunities to develop the skills and 
practices that are essential to success [6, 11, 37], particularly so-
called “soft skills” [1, 8, 13]. While team software development 
projects are most frequently assigned in senior capstone courses 
(e.g., [20]), computing educators have explored their use in a 
variety of computing courses (e.g., [36]). There has also been 
great interest in engaging student teams in projects with “real 
clients” [31] and in free and open-source projects [33]. 

Among the many questions surrounding how to run team 
software development projects, one stands out as particularly 
important: How do we systematically evaluate the quality of 
teams’ processes and products, given that each student team works 
on a different software project? Answers to this question could 
lead to more effective and ecologically valid pedagogical 
approaches for team software development projects. 

To address this question, we use the Goal-Question-Metric 
(GQM) framework [2, 38] from the empirical software 
engineering literature to derive a collection of metrics for 

Permission to make digital or hard copies of part or all of this work for personal or 
classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full 
citation on the first page. Copyrights for third-party components of this work must be 
honored. For all other uses, contact the Owner/Author. 
SIGCSE ’21, March 13-20, Virtual Event, USA. 
© 2020 Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM ISBN 978-1-4503-8062-1/21/03. 
DOI: https://doi.org/10.1145/3408877.3432362 



SIGCSE ’21, March 2021, Toronto, Ontario, Canada Hundhausen et al. 
 

 

 

assessing the quality of teams’ commits, issues, and final 
software products. To explore the use of these metrics in 
practice, we present an empirical study of 23 team software 
development projects involving 96 students in three computing 
courses at three institutions. The results demonstrate that the 
metrics are sensitive to differences in the quality of teams’ 
commits, issues, and products. This work contributes a new 
metric-based approach to evaluating key aspects of software 
development processes and products in computing courses.  

2 Related Work  

2.1 Theoretical Foundations 
Team software development projects aim to provide students 
with authentic learning experiences [39] that will prepare them 
for the software industry, where they are likely to work on 
teams. In addition to providing authenticity, team software 
development projects are a form of cooperative learning, one of 
the most effective and widespread instructional practices [23]. 
Cooperative learning aligns with a number of social learning 
theories, which tout the educational benefits of both community 
participation [27] and positive interdependence with others [23]. 
Our interest in evaluating commit and issue quality 
acknowledges that, in team development settings, commits and 
issues play a central communicative role in building a sense of 
community and interdependence within teams. 

2.2  Measuring Process and Product Quality in 
the Software Industry 

Our goal is to measure the quality of the software products 
produced by student teams, and the quality of the processes they 
use.  Empirical software engineering research has performed such 
measurements in industrial settings for decades. In fact, metrics 
for software engineering are so well studied that multiple 
literature reviews of the research exist [19, 24, 26, 29]. 

In surveying this work, we struggled to find agreement on 
how to measure process and product quality. However, there 
was some agreement on how to derive measures of process and 
product quality: the Goal-Quality-Metric (GQM) framework [2, 
38], which [29] cites as the most commonly used method.  In the 
GQM framework, metrics are defined in a top-down manner by 
identifying high-level goals, questions about those goals, and 
metrics1 to shed light on those questions. In Section 3, we apply 
this framework, starting with common learning goals for team 
software development projects. 

2.3  Measuring Process and Product Quality in 
Student Team Software Projects  

Fincher et al. [18] describes the challenges of assessing project 
work in computing education, in contradistinction to assessment 
of other computing course work. These include, among others: 

 
1While some authors make a technical distinction between 

“measures” and “metrics,” others use the terms interchangeably. 

(1) it is larger scale, (2) both processes and products need to be 
assessed (3) student teams typically undertake “significantly 
different projects from one another,” and (4) collaboration is a 
desirable or required objective to be assessed.    

Despite these challenges, computing educators have carefully 
considered ways to evaluate team software projects (see  [34] for 
a review). Clear [9, 10] and Herbert [20] provide general 
guidance. Other computing educators propose more detailed 
evaluation models, with a focus on software projects in the 
context of capstone courses (e.g., [16, 17, 25, 40]).   

One issue of concern in the evaluation of team software 
projects is the fair distribution of credit across individual team 
members. While many approaches rely on self and peer 
assessment (see, e.g.,  [16, 17]), Buffardi  [7] gauged individual 
contributions using process data from GitHub. In contrast, this 
work leverages GitHub data to evaluate how well teams meet 
course learning objectives, with an eye towards developing 
interventions to improve software engineering education.   

In work most closely related to that presented here, 
computing educators have developed metrics for assessing team 
software projects. For instance, Linhoff and Settle [28] propose 
metrics firmly rooted in the specific learning goals of a game 
development course.  Dubinsky and Hazzan  [14]  propose 
metrics based on the roles that students may play on a software 
development team.  The metrics presented here, in contrast, are 
based on software processes captured through GitHub log data. 

2.4 The Industry-Academia Gap 
Studies of software developers in industry suggest a 

significant gap between students’ undergraduate academic 
preparation and the skills they need to be successful software 
developers.  In their seminal study, Begel and Simon [3, 4] 
shadowed new hires at Microsoft, finding that they struggled in 
five broad areas: communication, collaboration, technical skills, 
cognition, and orientation. They noted that only one of these 
skills related to the technical skills emphasized in academia. 
Subsequent studies of new software developers in industry have 
found similar gaps between the skills of new hires and the skills 
needed to succeed in the software industry [12, 15, 21].   

The studies cited above motivate our interest in evaluating 
the quality of issues and commit messages. Four of the studies 
identified version control as a deficient skill  [3, 4, 12, 15]; 
another two identified a deficiency in defining product 
requirements [12, 15]. The importance of this latter skill is also 
backed by a large survey of industry professionals [30].  Notice 
that aspects of both of these skills relate to written 
communication, a skill explicitly identified in [21]. 

3 Deriving Metrics with the GQM Framework 
There are six stages in the Goal-Question Metric (GCM) 

framework for defining a software engineering metric [2, 38]: 
1. Develop a set of goals and associated measurement goals 

for productivity and quality 
2. Generate questions that define those goals as completely as 

possible in a quantifiable way 

https://en.wikipedia.org/wiki/Productivity
https://en.wikipedia.org/wiki/Quality_(business)


Evaluating Commit, Issue and Product Quality  SIGCSE ‘21, March 2021, Toronto, Ontario, Canada 
 

 

3. Specify the measures needed to answer those questions and 
track process and product conformance to the goals 

4. Develop mechanisms for data collection. 
5. Collect, validate and analyze the data in real time to provide 

feedback to projects for corrective action 
6. Analyze the data to assess conformance to the goals and to 

make recommendations for future improvements 
In this section, we present our work toward steps 1–3. In 

Section 4, we present an empirical study representing steps 4 and 
6. Step 5 is left for future work and discussed in Section 7. 

3.1 Goals  
Our overall goal is to help students learn the professional 
software development skills they need to succeed. We made this 
more precise by formulating three specific goals: 

(1) Students will write commit messages that are consistent with 
industry expectations for quality. 

(2) Students will specify software requirements (in the form of 
issues on a Kanban board) in a way that is consistent with 
industry expectations for quality. 

(3) Students will produce software products of high quality. 

Our motivation for Goals 1 and 2 is supported by the related 
work presented in Section 2.4.  Goal 3 is fundamental to 
computing education: we want to know whether our students 
can produce quality software products.    

3.2 Questions  
Based on Goal 1, we formulated four questions related to 

commit quality: 

(1a)  atomic: Do the code changes in the commit deal with one 
and only one concern? 

(1b)  accurate: Does the commit message describe all changes, 
and only those changes, made in the commit? 

(1c)  precise: Does the commit message unambiguously 
describe the changes made, situating the commit in the 
context of the code base or project? 

(1d)  justified: Does the commit message describe why the 
change was made from the perspective of the end user? 

Goal 2 led to five questions related to issue quality: 

(2a)  atomic:  Does the issue deal with one and only one 
concern? 

(2b)  descriptive title:  Is the issue title short and descriptive? 
(2c)  identifies impact: Does the issue identify who is 

impacted by the change? 
(2d)  clearly described: Does the issue clearly describe the 

changes to be made? 
(2e)  justified: Does the issue describe the reason for the 

change from the perspective of the end user? 

Finally, Goal 3 prompted four questions related to software 
product quality: 

(3a)  complexity:  To what degree does the software product 
demonstrate mastery of the technologies, knowledge and 
skills covered in the course? 

(3b)  reliability:  To what degree is the software free of bugs?    
(3c)  usefulness: To what degree does the software product 

meet its target users’ needs? 
(3d)  overall quality: If you were the course instructor, what 

grade would you give the software product if you knew 
how long the team had to work on it?   

In formulating the questions in this subsection, we had hoped 
to find guidance from the literature on empirical software 
engineering, and from the CS education literature on evaluating 
software engineering products. However, we failed to identify 
evaluation criteria and techniques in that literature that could 
readily address our specific goals.  

Instead, for commits and issues, since our main concern was 
preparing students for the expectations they would encounter in 
industry, we were guided by industry discussions of good 
practices for commits and issues (e.g., [22, 41]). For product 
quality, we worked toward a set of criteria that (a) was general 
enough to apply to a variety of software products (our courses 
spanned mobile and web apps in various domains), and (b) could 
be applied within a reasonable time frame (within 20-30 
minutes).   Given that team projects provide opportunities for 
students to apply what they have learned so far, we adopted 
complexity to capture the extent to which a team project made 
use of the tools and technologies learned so far. Because team 
software products are presumably intended to be used by real-
world users, we identified reliability and usefulness as two key 
concerns of real users. Finally, we added an overall quality 
category to acknowledge that instructors must ultimately assign 
a final grade to an academic project. We wanted to include a 
metric that gave multiple instructors the opportunity to discuss 
and converge on an overall quality rating, despite differences in 
the grading criteria used in their own courses. 

3.3 Metrics 
For questions 1a–1d and 2a–2e, we defined corresponding 
metrics in terms of the percentage of commits and issues for 
which we could answer “yes” to the question. In contrast, for 
questions 3a-3d, we defined the corresponding metrics in terms 
of a four-point quality scale where 1 = “Poor,” 2 = “Deficient,” 3 
= “Acceptable” and 4 = “Excellent.” We reserved a rating of 0 
(“Failure”) for software that could not be launched. 

4 Empirical Study 
To explore the value of the metrics in evaluating student teams’ 
processes and software products, we now present a multi-
institutional empirical study that addresses steps 4 and 6 of the 
GQM framework. 

4.1 Courses and Participants 
The study focused on team projects in courses at three 
universities (see Table 1): Humboldt State University (HSU), 

https://en.wikipedia.org/wiki/Corrective_action


SIGCSE ’21, March 2021, Toronto, Ontario, Canada Hundhausen et al. 
 

 

 

University of California, Santa Barbara (UCSB), and Washington 
State University (WSU). Project teams used GitHub for version 
control and project collaboration. Participants at HSU and WSU 
signed an informed consent form to release their GitHub data to 
the study. In contrast, participants at UCSB were part of teams 
that agreed to do their project work in public GitHub 
repositories, thus providing this study with access to their data. 

Table 1. Key Attributes of the Courses Studied 
Course Attribute HSU UCSB WSU 

Course Level  Upper Div.  Lower Div. Upper Div. 
Course Topic Mobile apps Soft. Eng. Web Dev. 
Course enrollment 15 80 65 
# Participants 15 39 42 
# Participant Teams 5 9 9 

4.2 Materials and Procedure 
Table 2 presents key attributes of the team software 
development projects implemented in each course. The projects 
ranged in duration from 4 to 9 weeks, with sprints ranging from 
one to three weeks. Projects varied in terms of who defined 
them, how teams were formed, and how students were graded.  

Table 2. Key attributes of the Projects Studied 
Project Attribute HSU UCSB WSU 

Projects defined by Students Students Instr./Students 
Teams chosen by Instructor Instructor Students 
Team size 2-3 4-6 1-5 
Sprint duration 1 week 3 weeks 1 week 
Sprints in project 5 3 4 
Grading method Individual Team Team w/ind. 

multipliers 

4.3 Data Collection and Sampling 
We developed a web application that mined GitHub for the 
commits and issues in teams’ repositories. Since, in some cases, 
multiple teams worked on the same repository, we mapped 
commits and issues to teams based on their authorship.  

In addition to the GitHub data, we collected team’s final 
software products. Two of the three courses also required final 
software demo videos. We collected those as well.  

Given the large number of commits and issues logged by 
teams in this study, we analyzed, for each team, either (a) a 20% 
random sample of their commits and issues, or (b) 20 of each—
whichever was greater. For teams with fewer than 20 commits or 
issues, we sampled all available commits or issues. 

Table 3 presents, by course, counts of the data considered in 
this study. For analysis purposes, we excluded some of the 
commits prior to drawing our samples: (a) those that were made 
by students who did not provide informed consent (unless the 
commit was to a public repository); (b) those that  involved only 
documentation (.md files), not code, and (c) those that were 
automatically generated by GitHub (e.g., to merge a pull 
request). Likewise, we excluded some of the issues: (a) those that 
were not closed or in the “Done” column of the team’s Kanban 
board; and (b) those authored by students who did not provide 
informed consent (unless the issue was in a public repository). 

Table 3. Counts of Included (Inc.) and Sampled (Sam.) Data 
Items by Course 

 HSU UCSB WSU 

Data Item Inc. Sam. Inc. Sam. Inc. Sam. 

Issues 55 44 250 176 155 127 
Commits 187 92 1019 228 266 165 
Software  5 5 9 9 9 9 
Video Demo 5 5 9 9 0 0 

4.4 Data Analysis 
4.4.1 Commits and Issues. After iteratively developing a 

detailed evaluation manual, we employed a three-phase process 
to evaluate the sampled commits against questions 1a–1d, and 
the sampled issues against questions 2a–2e (see Section 3.2).  The 
percent agreement and Cohen’s Kappa (inter-rater reliability) 
values attained at the end of each phase are shown in Table 4.  

Table 4. Percent Agreement (% ag.) and Cohen’s Kappa () 
after Each Phase of Commit and Issue Evaluation 

 Phase 1 Phase 2 Phase 3 
Commit Metric % ag,   % ag.  % ag.  
(1a) atomic 80 .35 95 .85 100 1.0 
(1b) accurate 73 .37 94 .86 100 1.0 
(1c) precise 73 .30 91 .76 99 .98 
(1d) justified 79 .32 97 .89 100 1.0 
Issue Metric 

(2a) atomic 93 .61 98 .91 100 1.0 
(2b) descript. title 84 .65 97 .94 100 .99 
(2c) identifies impact 93 .86 97 .94 100 1.0 
(2d) clearly described 77 .41 87 .70 95 .89 
(2e) justified 90 .78 98 .95 100 1.0 

 
In the first phase, the first three coauthors independently 

evaluated the sample of commits and issues. We assigned two 
evaluators to each item such that no one evaluated the commits 
and issues of their own students. For each item, evaluators were 
asked to formulate a brief rationale for their decisions. In the 
second phase, each evaluator inspected the items where there 
were disagreements, changing their evaluations in cases where 
they thought their original evaluation was wrong. In the final 
phase, all three evaluators discussed the remaining 
disagreements. In cases where disagreements remained after this 
discussion, the third evaluator resolved the disagreement.  

 4.4.2 Software Products. After iteratively developing a detailed 
evaluation manual, we evaluated teams’ software products in 
three phases. In Phase 1, the co-author who was the course 
instructor first debriefed the two co-authors who were not the 
course instructor (the evaluators) on the scope and goals of each 
team project. Next, the instructor led a live demo of the project’s 
final software product. The two evaluators were invited to ask 
questions and to request interaction sequences for the instructor 
to attempt. In cases where the product failed to launch, the 
team’s video demo, if available, was also consulted. This debrief 
and demo period was capped at 10 minutes for each project. To 
conclude Phase 1, the two evaluators independently rated the 
software product along the four quality dimensions, writing a 
rationale for each rating. The first column of Table 5 presents the 



Evaluating Commit, Issue and Product Quality  SIGCSE ‘21, March 2021, Toronto, Ontario, Canada 
 

 

percent agreement attained by the two evaluators after Phase 1.2 
Notably, no Phase 1 ratings differed by more than one point. 

In Phase 2, the two evaluators revealed their ratings and 
rationales to each other. In cases of disagreement, the evaluators 
were invited to discuss and change their ratings. Column 2 of 
Table 5 shows the percent agreement attained after this phase. In 
cases where disagreements remained after Phase 2, the course 
instructor resolved them in Phase 3.  The total time for Phases 1, 
2, and 3 was capped at 30 minutes. 

Table 5. Percent Agreement at the End of the First Two 
Phases of Software Product Evaluation 

Product Metric Phase 1 Phase 2 

(3a) complexity 58 96 
(3b) reliability 71 100 
(3c) usefulness 88 100 
(3d) overall quality 75 96 

4.5 Results 
Table 6 presents metric values corresponding to commit and 
issue quality—that is, the percentages of sampled commits and 
issues that satisfied questions 1a–1d and 2a–2e (Section 3.2).  
Additionally, the table presents the percentages of perfect (i.e., 
atomic, accurate, precise and justified) commits and perfect (i.e., 
(atomic, has descriptive title, identifies impact, is clearly 
described and is justified) issues. Table 7 presents metric values 
corresponding to product quality. In Tables 6 and 7, values with 
superscript (a) are significantly different (Pearson’s chi-squared, 
p < 0.05) from values in the same row with superscript (b).  
  

Table 6. Commit and Issue Metric Values by Course 
Commit Metric HSU UCSB WSU 

(1a) atomic 80% 80% 72% 
(1b) accurate 64% 65% 50% 
(1c) precise a45% b14% b25% 
(1d) justified a38% b20% b15% 
perfect commit a22% b5% b3% 
Issue Metric    

(2a) atomic a94% a95% b75% 
(2b) descriptive title 70% a80% b36% 
(2c) identifies impact b27% a88% b28% 
(2d) clearly described 55% 86% 60% 
(2e) justified 18% a50% b8% 
perfect issue b2% a21% b1% 

 
Table 7. Product Quality Metric Values by Course  

Product Metric HSU UCSB WSU* 

(3a) complexity 2.4 3.2 2.0 
(3b) reliability 2.4 a3.3 b1.4 
(3c) usefulness 1.8 3.1 2.0 
(3d) overall quality 2.2 a3.2 b2.0 

*Averages for WSU do not include evaluations from two 
teams whose projects would not run and therefore could 
not be evaluated.  

 
2We opted not to compute Cohen’s Kappa in our product evaluation process 
because of the low number of ratings involved (one per team per metric), and 
because the evaluations were scalar and not categorical. 

 
Table 6 indicates there are differences in team proficiency 

based on the metrics. An analysis of variance detected significant 
differences between both the commit quality metrics 
(F(3,92)=59.90, p < 0.001, η2 = 0.66) and the issue quality metrics 
(F(4,115)=10.36, p < 0.001, η2 = 0.26).  A post-hoc Bonferroni test 
on the commit quality metrics identified statistically significant 
differences between atomic and all other commit quality metrics 
(p < 0.05). In addition, a significant difference was detected 
between accurate and both precise and justified (p < 0.05).  A 
post-hoc Bonferroni test on issue quality detected statistically 
significant differences between atomic and justified (p < 0.01), 
and between descriptive title and justified (p < 0.01). 

We also tested for differences in metric values among teams 
in the same course.  One HSU team exhibited significantly 
higher commit quality than their peers (χ2 = 23.50, df = 4, p < 
0.001, V=0.26).  This team scored 4’s in all product metrics. 
Conversely, one WSU team had significantly lower commit 
quality than their peers (χ2 = 26.23, df = 9, p = 0.002, V=0.21).  
Notably, this team scored 1’s in all product metrics.   

In addition, we considered whether a statistical relationship 
existed between the process and product metrics.  To reduce the 
likelihood of detecting false significance, we established that any 
true relationship between process and product metrics needed to 
be significant across all three courses.  Using this standard, we 
did not detect statistically significant correlations between any 
process and product metrics.  That is, no relationship was found 
between adherence to good process and final product quality.   

5 Discussion 
Inspection of Tables 6 and 7 suggests that the greatest strength 
of the teams in this study was their creation of atomic issues, 
and, to a lesser degree, their creation of atomic commits.  In all 
three courses, teams scored significantly higher on the atomic 
metric than on most or all other quality metrics. Thus, creating 
issues and commits that focus on a single concern may come 
relatively easily to students. Instructors may be able to teach this 
behavior with minimal effort.  

In contrast, our data show that students have much room for 
improvement when it comes to (a) clearly, accurately, and 
precisely describing commits and issues, and (b) justifying 
commits and issues. We suspect that teaching these best 
practices will require instructors to make the case that, even if 
they seem like a waste of time in smaller software projects,  
these practices are important and valuable in larger software 
projects. Frequent formative assessments, especially if they can 
be automated or streamlined, could also help in this regard. 

With respect to the quality of commits and issues between 
courses, we found that HSU teams had higher-quality commits, 
and UCSB teams had higher-quality issues. While there are 
several possible explanations for this difference, the most 
obvious relates to the pedagogical choices made by the course 
instructors. The HSU instructor made it clear to students that 
their grades would be based in part on the quality of their 
commit messages, although the instructor’s definition of commit 
quality differed from the definition of commit quality presented 



SIGCSE ’21, March 2021, Toronto, Ontario, Canada Hundhausen et al. 
 

 

 

in Section 3.3.  The UCSB instructor provided an issue template 
for students to use.  This template aligned with the issue quality 
metrics defined in Section 3.2. However, even with these course 
incentives, the percentage of “perfect” commits and issues across 
all courses remained below 22%.  These observations suggest that 
there is much room for improvement when it comes to these 
practices, and that carefully designed pedagogical practices have 
the potential to positively influence students’ behaviors around 
issues and commits.  

We failed to detect a statistically significant relationship 
between the process and product metrics.  This was not a 
surprise. We suspect that the benefits of superior processes 
might require longer project durations to materialize than were 
present in our study.  Yet, we did identify a single HSU team that 
was statistically more likely to produce high quality commits, 
and that also excelled in our product metrics.  Likewise, we 
identified a single UCSB team that was statistically less likely to 
produce good quality commits, and that also scored poorly in our 
product metrics.  We suspect that a follow-up qualitative 
investigation of these teams’ processes could provide insight into 
the possible relationships between process and product metrics.   

6 Threats to Validity 
The threats to the validity of this work include threats to 

internal, external, and construct validity.  
Internal validity reflects the degree to which the data 

collected in the study robustly applied our metrics to gauge 
student teams’ commit, issue and product quality.  One threat to 
internal validity is that we may not have collected a 
representative sample of these items. We have attempted to 
mitigate this threat by using random sampling, but there is no 
guarantee that our samples were truly representative. A second 
threat is that we may not have robustly applied our metrics. We 
mitigated this threat in three ways. First, by iteratively 
developing a detailed evaluation manual to guide the application 
of the metrics, we increased the chances that evaluators 
uniformly applied the metrics. Second, by ensuring that course 
instructors did not evaluate the work of their own students, we 
mitigated potential instructor bias—what Buffardi [7] identifies 
as the Halo Effect. Third, by breaking the process into three 
stages, we encouraged evaluators to be deliberative in their 
evaluations, reducing the chances of capricious decisions.   

External validity reflects the degree to which our metrics are 
relevant to real-world software development. Given that version 
control and issue tracking are crucial to modern collaborative 
software development, our measurements of commit and issue 
quality are relevant to real-world contexts. However, software 
developers have mixed opinions about what makes for good 
commits and issues. Likewise, end users have mixed opinions 
about what makes for good software products. Thus, the external 
validity of our metrics is threatened by the reality that there is 
no clear consensus on these matters. We have tried to mitigate 
this threat by deriving the metrics from published sources. 

Finally, construct validity has to do with the extent to which 
our metrics gauge the intended construct. A clear threat to the 

construct validity of our metrics is that they require human 
judgment of a complex entity (e.g., a commit spanning many 
lines) within a limited time frame, making the judgment prone to 
error. We have attempted to mitigate this threat by having 
multiple evaluators perform each judgment and by having them 
resolve disagreements through deliberative discussion.   

7 Conclusions and Future Work  
Using the GQM framework from the empirical software 

engineering literature, we have developed a collection of metrics 
for evaluating two aspects of process (commits and issues) and 
overall product quality in a wide variety of team software 
projects. Through an empirical study, we have demonstrated not 
only that these metrics are sensitive to differences in the quality 
of teams’ processes and products, but also that teams performed 
better on some quality metrics than they did on others.  

This work contributes a new metric-based approach to 
evaluating key aspects of software development processes and 
products in a wide variety of computing courses. Future work 
could build on this contribution by implementing Step 5 in the 
GQM process—that is, by adopting the metrics for formative 
assessment.  Since it may not be feasible to assess every commit 
or issue, instructors could assess a randomly chosen sample at 
various points in the course and offer feedback on how to 
improve. Effectiveness could be measured by examining whether 
the process and product metrics improve over time. 

In the current study, we did not establish a uniform set of 
criteria for process and product quality across all three courses, 
nor did we share our process and product quality with students.  
In future work, we could study the impact of sharing the metrics 
up front—a practice Biggs calls “constructive alignment” [5].  

Like issues and commits, pull requests and code reviews are 
important avenues of communication within a software team. In 
future work, we would like to apply the GQM process to develop 
metrics for these, and to perform empirical studies that use them 
for formative and summative assessment. Similarly, the use of an 
online communication tool (e.g., Slack) is increasingly essential 
for collaboration in team software development projects.  In 
future work, we would like to apply the GQM to derive metrics 
for measuring the extent to which students develop professional 
communications skills aligned with the learning goals of courses 
with team software  development projects. 

How to evaluate student and team success in software 
projects remains an important open question. We believe that 
leveraging data from online software development tools such as 
GitHub provides a promising way forward. We are optimistic 
that future research can leverage these data in increasingly 
sophisticated ways both to gain new insights into the 
relationships between teams’ development processes and 
products, and to advance pedagogy through improved formative 
and summative assessment. 

ACKNOWLEDGMENTS 
This work is supported by a grant from the National Science 
Foundation (DUE-1915196).  



Evaluating Commit, Issue and Product Quality  SIGCSE ‘21, March 2021, Toronto, Ontario, Canada 
 

 

REFERENCES 
[1] Abernethy, K. and Treu, K. 2009. Teaching Computing Soft Skills: An 

Experiential Approach. J. Comput. Sci. Coll. 25, 2 (Dec. 2009), 178–186. 
[2] Basili, V.R. 1992. Software Modeling and Measurement: The 

Goal/Question/Metric Paradigm. University of Maryland at College Park 
Computer Science Technical Report UMIACS-TR-92-96. (1992), 1–24. 

[3] Begel, A. and Simon, B. 2008. Novice software developers, all over again. 
Proceedings of the Fourth International Workshop on Computing Education 
Research. ACM. 3–14. 

[4] Begel, A. and Simon, B. 2008. Struggles of new college graduates in their first 
software development hob. SIGCSE Bull. 40, 1 (Mar. 2008), 226–230. 
DOI:https://doi.org/10.1145/1352322.1352218. 

[5] Biggs, J.B. 2011. Teaching for Quality Learning at University: What the Student 
Does. McGraw-Hill Education (UK). 

[6] Bridging the Academia-Industry Gap in Software Engineering: A Client-
Oriented Open Source Software Projects Course: 1AD. https://www.igi-
global.com/gateway/chapter/121869. Accessed: 2020-08-20. 

[7] Buffardi, K. 2020. Assessing Individual Contributions to Software 
Engineering Projects with Git Logs and User Stories. Proceedings of the 51st 
ACM Technical Symposium on Computer Science Education (New York, NY, 
USA, Feb. 2020), 650–656. 

[8] Carter, L. 2011. Ideas for Adding Soft Skills Education to Service Learning 
and Capstone Courses for Computer Science Students. Proceedings of the 42nd 
ACM Technical Symposium on Computer Science Education (New York, NY, 
USA, 2011), 517–522. 

[9] Clear, T. 2010. Managing mid-project progress reviews: a model for formative 
group assessment in capstone projects. ACM Inroads. 1, 1 (Mar. 2010), 14–15. 
DOI:https://doi.org/10.1145/1721933.1721938. 

[10] Clear, T. 2009. Thinking Issues: the three p’s of capstone project 
performance. ACM SIGCSE Bulletin. 41, 2 (Jun. 2009), 69–70. 
DOI:https://doi.org/10.1145/1595453.1595468. 

[11] Coppit, D. and Haddox-Schatz, J.M. 2005. Large Team Projects in Software 
Engineering Courses. SIGCSE Bull. 37, 1 (Feb. 2005), 137–141. 
DOI:https://doi.org/10.1145/1047124.1047400. 

[12] Craig, M., Conrad, P., Lynch, D., Lee, N. and Anthony, L. 2018. Listening to 
early career software developers. J. Comput. Sci. Coll. 33, 4 (2018), 138–149. 

[13] Damian, D. and Borici, A. 2012. Teamwork, coordination and customer 
relationship management skills: As important as technical skills in preparing 
our SE graduates. 2012 First International Workshop on Software Engineering 
Education Based on Real-World Experiences (EduRex) (2012), 37–40. 

[14] Dubinsky, Y. and Hazzan, O. 2006. Using a role scheme to derive software 
project metrics. Journal of Systems Architecture. 52, 11 (Nov. 2006), 693–699. 
DOI:https://doi.org/10.1016/j.sysarc.2006.06.013. 

[15] Exter, M. 2014. Comparing educational experiences and on-the-job needs of 
educational software designers. Proceedings of the 45th ACM Technical 
Symposium on Computer Science Education (New York, NY, USA, 2014), 355–
360. 

[16] Farrell, V., Farrell, G., Kindler, P., Ravalli, G. and Hall, D. 2013. Capstone 
project online assessment tool without the paper work. Proceedings of the 
18th ACM conference on Innovation and technology in computer science 
education (New York, NY, USA, Jul. 2013), 201–206. 

[17] Farrell, V., Ravalli, G., Farrell, G., Kindler, P. and Hall, D. 2012. Capstone 
project: fair, just and accountable assessment. Proceedings of the 17th ACM 
annual conference on Innovation and technology in computer science education 
(New York, NY, USA, Jul. 2012), 168–173. 

[18] Fincher, S., Petre, M. and Clark, M. 2001. Computer Science Project Work: 
Principles and Pragmatics. Springer Science & Business Media. 

[19] Gómez, O., Oktaba, H., Piattini, M. and García, F. 2008. A Systematic Review 
Measurement in Software Engineering: State-of-the-Art in Measures. 
Software and Data Technologies (Berlin, Heidelberg, 2008), 165–176. 

[20] Herbert, N. 2018. Reflections on 17 Years of ICT Capstone Project 
Coordination: Effective Strategies for Managing Clients, Teams and 
Assessment. Proceedings of the 49th ACM Technical Symposium on Computer 
Science Education (New York, NY, USA, 2018), 215–220. 

[21] Hewner, M. and Guzdial, M. 2010. What game developers look for in a new 
graduate: Interviews and surveys at one game company. Proceedings of the 
41st ACM Technical Symposium on Computer Science Education (New York, 
NY, USA, 2010), 275–279. 

[22] Hutterer, P. 2009. Who-T: On commit messages. Who-T. 
[23] Johnson, D.W. and Johnson, R.T. 2009. An Educational Psychology Success 

Story: Social Interdependence Theory and Cooperative Learning. Educational 
Researcher. 38, 5 (2009), 365–379. 
DOI:https://doi.org/10.3102/0013189X09339057. 

[24] Kitchenham, B. 2010. What’s up with software metrics? – A preliminary 
mapping study. Journal of Systems and Software. 83, 1 (Jan. 2010), 37–51. 
DOI:https://doi.org/10.1016/j.jss.2009.06.041. 

[25] von Konsky, B.R. and Ivins, J. 2008. Assessing the capability and maturity of 
capstone software engineering projects. Proceedings of the tenth conference on 
Australasian computing education - Volume 78 (AUS, Jan. 2008), 171–180. 

[26] Kupiainen, E., Mäntylä, M.V. and Itkonen, J. 2015. Using metrics in Agile and 
Lean Software Development – A systematic literature review of industrial 
studies. Information and Software Technology. 62, (Jun. 2015), 143–163. 
DOI:https://doi.org/10.1016/j.infsof.2015.02.005. 

[27] Lave, J. and Wenger, E. 1991. Situated Learning: Legitimate Peripheral 
Participation. Cambridge University Press. 

[28] Linhoff, J. and Settle, A. 2009. Motivating and evaluating game development 
capstone projects. Proceedings of the 4th International Conference on 
Foundations of Digital Games (New York, NY, USA, Apr. 2009), 121–128. 

[29] Meidan, A., García-García, J.A., Ramos, I. and Escalona, M.J. 2018. Measuring 
Software Process: A Systematic Mapping Study. ACM Computing Surveys. 51, 
3 (Jun. 2018), 58:1–58:32. DOI:https://doi.org/10.1145/3186888. 

[30] Misic, M.M. and Russo, N.L. 1999. An assessment of systems analysis and 
design courses. Journal of Systems and Software. 45, 3 (Mar. 1999), 197–202. 
DOI:https://doi.org/10.1016/S0164-1212(98)10078-X. 

[31] Murphy, C., Sheth, S. and Morton, S. 2017. A Two-Course Sequence of Real 
Projects for Real Customers. Proceedings of the 2017 ACM SIGCSE Technical 
Symposium on Computer Science Education (New York, NY, USA, 2017), 417–
422. 

[32] Perkins, T.E. and Beck, L.L. 1980. A Project-Oriented Undergraduate Course 
Sequence in Software Engineering. SIGCSE Bull. 12, 1 (1980), 32–39. 
DOI:https://doi.org/10.1145/953032.804607. 

[33] Postner, L., Ellis, H.J.C. and Hislop, G.W. 2018. A Survey of Instructors’ 
Experiences Supporting StudentLearning using HFOSS Projects. Proceedings 
of the 49th ACM Technical Symposium on Computer Science Education (New 
York, NY, USA, Feb. 2018), 203–208. 

[34] Richards, D. 2009. Designing Project-Based Courses with a Focus on Group 
Formation and Assessment. ACM Transactions on Computing Education. 9, 1 
(Mar. 2009), 2:1–2:40. DOI:https://doi.org/10.1145/1513593.1513595. 

[35] Robillard, P.N. 1996. Teaching Software Engineering through a Project-
Oriented Course. Proceedings of the 9th Conference on Software Engineering 
Education (USA, 1996), 85. 

[36] Saltz, J.S. and Heckman, R.R. 2018. A Scalable Methodology to Guide Student 
Teams Executing Computing Projects. ACM Trans. Comput. Educ. 18, 2 (Jul. 
2018). DOI:https://doi.org/10.1145/3145477. 

[37] Sherriff, M. and Heckman, S. 2018. Capstones and Large Projects in 
Computing Education. ACM Trans. Comput. Educ. 18, 2 (Jul. 2018). 
DOI:https://doi.org/10.1145/3229882. 

[38] Solingen, R. van, Basili, V., Caldiera, G. and Rombach, H.D. 2002. Goal 
Question Metric (GQM) Approach. Encyclopedia of Software Engineering. John 
Wiley & Sons. 

[39] Stein, S.J., Isaacs, G. and Andrews, T. 2004. Incorporating authentic learning 
experiences within a university course. Studies in Higher Education. 29, 2 
(Apr. 2004), 239–258. DOI:https://doi.org/10.1080/0307507042000190813. 

[40] Vasilevskaya, M., Broman, D. and Sandahl, K. 2015. Assessing Large-Project 
Courses: Model, Activities, and Lessons Learned. ACM Transactions on 
Computing Education. 15, 4 (Dec. 2015), 20:1–20:30. 
DOI:https://doi.org/10.1145/2732156. 

[41] Writing a proper GitHub issue: 2018. https://medium.com/nyc-planning-
digital/writing-a-proper-github-issue-97427d62a20f. Accessed: 2020-08-27. 

 
 
 


