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ABSTRACT

Security of deep neural network (DNN) inference engines, i.e.,

trained DNN models on various platforms, has become one of the

biggest challenges in deploying artificial intelligence in domains

where privacy, safety, and reliability are of paramount importance,

such as in medical applications. In addition to classic software at-

tacks such as model inversion and evasion attacks, recently a new

attack surfaceÐimplementation attacks which include both pas-

sive side-channel attacks and active fault injection and adversarial

attacksÐis arising, targeting implementation peculiarities of DNN

to breach their confidentiality and integrity. This paper presents

several novel passive and active attacks on DNNwe have developed

and tested over medical datasets. Our new attacks reveal a largely

under-explored attack surface of DNN inference engines. Insights

gained during attack exploration will provide valuable guidance for

effectively protecting DNN execution against reverse-engineering

and integrity violations.
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1 INTRODUCTION

Deep learning (DL) has become a foundational means for solving

grand societal challenges, disrupting many application domains

with superior performance. Trained Deep Neural Network (DNN)
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models have proven to be effective in solving various medical imag-

ing problems. Commercial AI-assisted computer-aided diagnosis

equipment has been approved and deployed [19, 21]. Despite the

promising outcomes of DNN, protecting the security of trained

models has become a challenge, in part because DNN inference

engines create heretofore unknown attack surfaces.

Trained models constitute valuable intellectual property, for the

following reasons. Customizing DNN models for applications re-

quires access to high-quality, often proprietary, datasets and also

demands a considerable amount of computational resources. Typi-

cally it also requires machine learning experts and domain experts

to work together towards selecting network structures suitable

for the task, pre-processing the dataset, and fine-tuning the model

structure and hyperparameters. Given the commercial value of to-

day’s DNN models, an adversary has a strong incentive to reverse-

engineer a trained DNN model to obtain a near-identical one. If

the model is known to the adversary, active attacks that disrupt or

sabotage the DNN inference engines can be enabled or strength-

ened. For example, attacks based on adversarial examples, which

appear authentic to human eyes but contain deliberately added

noise to yield a wrong output, can become more effective. Know-

ing the details of the model also facilitates fault injection attacks,

which maliciously modify the model parameters to disrupt the deep

learning applications in execution.

In this work, we present two passive attacks that steal the in-

tellectual property of DNN models, and two active attacks that

compromise DNN execution. We discover a new attack surface with

a number of threats directed at DNN inference engines. Counter-

measures are proposed to protect the confidentiality and integrity

of DNN model execution against these new attacks.

The rest of this paper is organized as follows. Section 1.1 gives

an overview of the attacks. Section 1.2 provides the necessary back-

ground for attacks on DNN. Section 2 and 3 describe the passive

attacks and the active attacks in detail, respectively, where counter-

measures are also outlined for each attack. Conclusions and future

work are presented in Section 4.

1.1 Overview

To protect the confidentiality of trained DNN models, trusted ex-

ecution environments like Intel SGX and ARM TrustZone can be

adopted. However, valuable information can still be extracted from

various side channels. We develop two passive side-channel attacks

to steal the intellectual property of DNN models. The first one is a

novel persistent cache monitoring attack, which relies on a newly

developed utility to monitor the state of shared caches continuously



and covertly. By monitoring carefully selected function call instruc-

tions, we are able to reverse-engineer the hyperparameters of DNN,

as shown in Section 2.1. Knowing the hyperparameters, i.e., the

structure of the DNN, enables another finer-grained side-channel

attack, which exploits the floating-point timing side-channel to

reverse-engineer all parameters of DNN models accurately, as de-

tailed in Section 2.2. This is the first reverse-engineering work

targeting weights and biases of DNN software implementations,

published in DAC 2020 [9].

We also investigate the feasibility of active attacks, i.e., how to

effectively and efficiently disrupt the execution of DNN inference

engines. A ResNet-18 network that detects COVID-19 disease from

chest X-ray images is trained to evaluate these attacks. In Section 3.1,

we launch an adversarial attack against this model and demonstrate

that adding human-imperceptible noise to the input images can

effectively mislead the DNN inference. In Section 3.2 we perform

a realistic fault injection attack on GPU kernels for such ResNet-

18 model inference. We leverage the GPU overdrive attack [28],

which was published in DAC 2020. This attack maliciously perturbs

the operating voltage and frequency of the target GPU, inducing

silent data corruption during model execution, which leads to a

significant decrease of the DNN classification accuracy.

1.2 Background

1.2.1 Deep neural networks. Over the past decade, DNN have expe-

rienced rapid and tremendous progress thanks to the new era of big

data. Especially for computer vision problems, DNN and large-scale

annotated imaging datasets drastically improve the performance

of classification, object localization, detection, and segmentation.

Chest X-ray images can be quickly obtained from patients with

inexpensive equipment. Various DNN models have been developed

and trained on large datasets, which can rapidly extract and learn

the complex features embedded in images. Applying the trained

DNN models for inference can significantly aid diagnosing, disease

detection and localization. One prior work [30] introduces a recur-

rent neural cascade model for disease detection. Another work [26]

adopts convolutional layers to construct CheXNet, exceeding the

average performance on detecting pneumonia by radiologists. An-

other model, Text-Image Embedding network (TieNet), is based on

an end-to-end trainable CNN-RNN architecture and can be trans-

ferred to a chest X-ray reporting system [34].

1.2.2 Side-channel analysis. Side-channel analysis (SCA) targets

the information leakage of a system due to peculiarities of its phys-

ical implementation, on various platforms including CPU, GPU,

MCU, and FPGA. These leakages come in the form of physical

signatures that include, among others, power consumption [6],

execution time [9], electromagnetic radiation [18], and sound emis-

sion [8]. Various methods have been developed to extract secret

information, e.g., key of cryptographic algorithms, from these phys-

ical signatures. SCA attacks are relatively cheap to perform, and

hard and expensive to protect against. Recently SCA attacks have

been applied to steal the IP of DNN models [4, 9, 14].

1.2.3 Fault injection attacks. Fault injection attacks actively modify

intermediate states of a program to bypass verification [17], facili-

tate differential fault analysis for secret key retrieval [3], or simply

disrupt or shut down the operation [16]. Physical fault injection

methods include laser beaming [33], electromagnetic radiation [25],

and voltage glitching [32], requiring physical access to the victim

device. Fault injections can also be performed by software, includ-

ing RowHammer [20] and DVFS attacks [31], possibly controlled

remotely. Vulnerabilities of DNN models to fault injections attacks

are evaluated by different algorithms [23, 39]. Our prior work [29]

also considers the effect of model compression in fault resilience. A

recent work implements practical fault attacks using laser beaming

on a simple MLP inference engine running on a microcontroller [5].

2 STEALING MODEL IP VIA PASSIVE
ATTACKS

This section presents two IP-stealing passive attacks: one cache side-

channel attack for hyperparameters retrieval and the other floating-

point timing attack to reverse-engineer all model parameters.

2.1 Persistent Cache Monitoring Attack

Cache Telepathy [37] is a recent work that leverages shared re-

source, cache, to learn the architecture of DNN. We devise a novel

cache monitor that can run much faster and can retrieve the model

architecture in real-time without instrumenting the victim code.

2.1.1 Attack Model. In our attack model, the victim is a trained

DNN model running on an x86 processor. The adversary (spy) runs

on the same processor and shares common software libraries with

the victim, e.g., OpenSSL for network security and OpenBLAS [35]

for deep learning applications. There is no synchronization be-

tween the victim and the spy processes, and they are executing

concurrently, either on different cores, or on the same core with

hyper-threading on. The spy and the victim only interact with each

other through the shared resource - cache, and the contention on

cache leaks victim information.

2.1.2 Attack Details. We propose a novel Flush+Flush based persis-

tent cache state monitor, and apply this monitor to a DNN victim.

a. Spy - Flush+Flush Cache Monitor: Various cache-based side

channels and covert channels have been presented, including

Flush+Reload [38], Prime+Probe [22], and Flush+Flush [12]. They

differ in the granularity of side-channel. Prime+Probe attacks deal

with cache sets and are more general as the adversary is completely

independent of the victim. The other two rely on a special x86 in-

struction - CLFLUSH to deal with individual cache lines, but require

shared libraries between the spy and the victim.

The prior work [37] uses a Flush+Reload monitor, where the spy

keeps running flushing and reloading one address from the shared

library and times the reloading. The effect of CLFLUSH, maddr

is, the cache lines corresponding to the memory address maddr

are flushed from the entire cache hierarchy - L1, L2, and Last-

level Cache (LLC). If the victim has accessed this memory address

between the spy’s flushing and reloading, the reload takes a shorter

time (cache hit) because the cache line has been brought back to

the processor by the victim. Otherwise, the reload experiences a

cache miss due to the prior flushing event. The difference in a cache

hit and a cache miss (can be 100+ cycles for last-level cache) forms

a strong timing side-channel to indicate whether the victim has

accessed a certain address or not.





Flush+Reload attack, which requires strong synchronization be-

tween the victim and the spy. We will further investigate our per-

sistent cache attack on DNN execution to recover more hyperpa-

rameters and parameters including weights and biases.

2.2 Reverse-Engineering Model Parameters via
Floating-Point Side Channels

This section describes a finer-grained passive attack for model

parameters retrieval.

2.2.1 AttackModel. The side-channel being exploited is the operand-

dependent timing for floating-point computations. According to

the IEEE-754 floating-point (FP) number standard [15], a single-

precision floating-point number is represented as a 32-bit string,

consisting of a single-bit sign (S), an 8-bit exponent (E), and a 23-bit

mantissa (M). We target this format in this work, but the attack is

otherwise agnostic to the FP format.

A normal floating-point number is representable with a mantissa

starting with 1, and an exponent in some predefined range. In con-

trast, a subnormal (or denormal) number has a magnitude between 0

and the smallest normal number and thus requires leading zeros in

the mantissa. Commercial CPUs typically have dedicated floating-

point arithmetic units (FPUs) and registers for normal floating-point

operations. However, since subnormal floating-point numbers are

less frequent, there is no dedicated hardware support for them on

modern processors. Instead, processors may have the hardware to

detect subnormal operands, but implement operations on them in

software (i.e., dispatch them onto microcode executions). This can

make such operations much slower than normal operations [27],

opening up a timing channel.

FP Multiplication Timing Model: Consider a floating-point

multiplication a · b = c , where a, b and c are non-zero. In most

cases, if one of a, b, or c is a subnormal floating-point number, this

operation will feature abnormally long timing. However, if either

operand or the result is zero, we will not observe abnormal timing.

We developed a suite of microbenchmarks to characterize the timing

model of x86 floating-point multiplications, shown in Table 1. All

experiments are performed on a workstation with Intel i7-7700

quad-core processor and 2×8GB Dual-channel DDR4 memory. We

found an average extra timing of 114 cycles for abnormal operations,

which we denote as σ .

Table 1: Timing model for floating-point mutiplications

Case Operation CPU cycles

1 normal · normal = normal 10

2 normal · normal = subnormal 124

3 subnormal · normal = normal 124

4 subnormal · normal = subnormal 124

5 subnormal · subnormal = 0 10

6 subnormal · 0 = 0 10

FP Addition Timing Model: A floating-point addition a +

b = c will feature abnormal timing when |a | ∈ (minn, 6e−33)

and |c | ∈ (1e−43,maxsn ) (as observed on our experimental plat-

form), where maxsn is the largest (single-precision) subnormal

number (≈ 1.1754942e−38), and minn is the smallest normal num-

ber (≈ 1.1754944e−38). We ran microbenchmarks to characterize

the timing model of FP addition and found that the average ex-

tra timing σ is again about 114 cycles. Previous work that utilizes

floating-point timing side channels mainly focuses on multiplica-

tions and divisions. In this work, we take advantage of the timing

leakage of additions too (which are frequent in DNN inference). In

the following subsections, we will show how we leverage these two

timing models to reverse-engineer the weights and biases.

2.2.2 Attack Details. We attack the model in a layer-by-layer fash-

ion. We focus on recovering the first layer of an MLP model.

The algebraic representation of the first layer is

l1 = Activation (W1 · l0 + b1)

Our goal of attacking this layer is to recover all the elements ofW1

and b1, by only varying the layer input l0 and observing the timing.

In this paper, we assume the activation function to be a rectified

linear unit (ReLU), one of the most effective and widely adopted

activation functions.

Our approach proceeds in three steps: 1) recover the set of ab-

solute values of each column of the weight matrix, i.e. without

knowing the order within the column; 2) arrange the weights to

figure out weights belonging to the same row and find their relative

signs; and 3) recover the bias vector and the actual signs of all

parameters in the first layer.

1) Column Absolute Values: This attack utilizes the first tim-

ing model presented in 2.2.1. We utilize case 2 in Table 1, where the

product is subnormal, and the inputs are normal numbers within the

range of [minn, 1]. For the first DNN layer, each neuron computes

a scalar product of the input vector and a weight row. In software

implementations without parallelism, these neuron computations

are carried out in sequence, and all contribute to the total timing.

To focus on the first column, we set l0[1] = a, l0[2 : m] = 0, for

some value a, wherem is the length of the input vector l0. With n

neurons, the observed first-layer computation time is the sum of

the times for n multiplications with the fixed value of a. The total

timing model for the first layer is thus:

Tlayer1(a) =

n∑

i=1

T (a ·W1[i, 1]) +Tothers ,

where Tothers summarizes other timing components and can be

considered constant. Our attack consists of two steps. First, find

a vector A = (a1,a2, ...an ) with the n values in decreasing order,

such that Tlayer1(ai ) = c + i · σ . We envision that in the range

[minn, 1], there existn such values, namelyA0[i] =maxsn/V [i], i ∈

[1,n], where V [i] are the n weight values. We treat these n values

as reference points, which divide the range of [minn, 1] into n +

1 segments for the value of a, with Tlayer1(a) for each segment

decreasing from c+n·σ to c , from left to right.We are finding a vector

A such that its n values partition the range of a into n + 1 intervals,

where each of the intervals contains one such reference valueA0[i].

By tracing this value with the interval known, we can recover the

weight. We employ a binary search to reduce the interval to the

precision desired. The precision threshold to terminate the binary

search in this algorithm is denoted by ϵ .



2): Weights with Relative Signs in Each Row The first step

has recovered all the weights in each column of W1, but we do not

know their order. Recovering all the locations of weights together is

hard because we can only control the input and observe the timing.

We adopt an iterative technique to accomplish this task. To create

a reference point for each row, we pick the first column of the

weight matrix and sort its values. Then, for each element of the

first column, we identify which element in each of the remaining

columns belongs to the same row, i.e., we recover a weight row

vector. The input is constructed so that only if the target element

is in the same row as the reference point, an addition abnormal

timing will be triggered. We repeat this step for all elements in the

first weight column and recover all the n weight rows.

After the previous two steps, we have recovered W1 except its

actual signs. For the final step, we exploit the definition of the ReLU

function, which is to reduce any negative input to 0. We construct

the value of one neuron to be of large magnitude and with the same

relative sign. If the output of the neural network does not change,

the actual sign is negative, and vice versa. The bias vector can be

recovered in a similar way.

Once the first layer is recovered, similar steps can be applied to

follow-on layers and they will all be recovered in a sequence.

2.2.3 Experimental Results. The experimental platform is as dis-

cussed in Section 2.2.1: the total execution time of the layer is

measured, in CPU cycles, for a hundred times repetitively; the most

frequent ones are averaged.

Themodel we recovered is a four-layerMLP, although themethod

also applies to CNN as well. The input layer flattens the MNIST

dataset with a size of 28 × 28 = 784. The second and third layers

both have a size of 50. The last layer is the output layer before

the softmax function, which has a size of 10. All the activation

functions are ReLU. The model is trained using stochastic gradient

descent (SGD) with a learning rate of 1e−2, a momentum of 5e−1,

and a batch size 64 for 5 epochs. The testing loss and accuracy are

1.342e−1 and 96.04%, respectively. Our entire reverse-engineering

attack takes less than one hour for the selected MLP model on our

testing workstation.

We define the accuracy of parameter recovery as follows: ρp =

1−|p−p′ |/p, wherep is the actual parameter, andp′ is the recovered

parameter. We evaluate the accuracy of all recovered first-layer

parameters and take their average.

We also evaluate the effect of adjusting the precision parameter ϵ

in the algorithm sketched in Section 2.2.2; Table 2 shows the results.

When ϵ is below 1e−39, the accuracy is close to 1. We can use even

smaller values for ϵ in our deployed algorithm.

Table 2: First-layer Parameter Accuracy with Different ϵ

− log ϵ 37 38 39 40

ρp 0.838 ± 0.1180.987 ± 0.0110.998 ± 0.0010.999 ± 1e−4

We plug in the recovered model for testing with the MNIST

dataset, and evaluate the model accuracy. Table 3 shows that the

recovered model reaches the original testing accuracy when ϵ is

below 1e−39.
2.2.4 Countermeasures. The timing side channel considered here

relies on longer execution times for certain operations involving

subnormal numbers, so eliminating these numbersÐfor instance by

Table 3: Model Accuracy in classifyingMNIST for different ϵ

− log ϵ 37 38 39 40

ρmodel 0.9193 0.9598 0.9604 0.9604

flushing all subnormal results to zeroÐeliminates this side channel.

Incidentally, this can speed up the computation. The downsides are

that it can decrease the computation accuracy, and it is platform-

and compiler-dependent.

Even subnormal-free floating-point arithmetic contains many

(fine-grained) timing dependencies, for instance due to exceptions

being raised on rounding, overflows, etc. Ultimately, these can only

be eliminated using a constant-time numeric library, e.g. based on

fixed-point arithmetic, or customizable floating-point arithmetic [1].

In addition to the likely performance degradation, such approaches

no longer benefit from the trade-off between precision and range.

3 ACTIVE ATTACKS - ON DNN EXECUTION

As deep learning is used in many safety-critical applications includ-

ing autonomous driving, medical disease diagnosis, and machine-

learning-as-a-service (MLaaS) in the cloud, the integrity of model

execution is crucial. This section presents two active attacks, with

their goal to generate adversarial inputs and introduce faults during

model execution, respectively.

3.1 Adversarial Attacks

Adversarial examples have been proved to successfully deceive deep

learning systems and become a serious threat [11]. With slight, but

carefully crafted, noise imposed on the input sample, the deep learn-

ing systemmisclassifies the adversarial example to a targeted wrong

class or any class which is different from the correct one. Figure 4

demonstrates three adversarial examples we have generated based

on a publicly available COVID-19 dataset of X-ray images [41].

The COVID-19-CXR-Dataset contains 6,354 CXR images, for both

training and testing, divided into three categories: COVID-19, Nor-

mal and Pneumonia. Misclassifying COVID-19 images to normal,

i.e., false negative, would result in life loss; while misclassifying

normal/pneumonia images to COVID-19, i.e., false positive, would

place tremendous stress on the patients and also drain the already

stringent hospital medical resources.

We first investigate effective algorithms to generate adversarial

examples to test the vulnerability of deep learning models, with the

ultimate goal to enhance the robustness of deep learning models

under such adversarial attacks.

3.1.1 Attack Model. We extend two previous attack methods for

generating adversarial examples to our COVID-19 disease detec-

tion system, and demonstrate the vulnerability of the system. We

first develop a baseline model to classify COVID-19 disease from

chest X-ray images. Irregular, patchy, hazy, reticular, and wide-

spread ground-glass opacities shown in the chest X-ray image are

considered as the symptoms of COVID-19. In Figure 4, the first

column shows three original chest X-ray images of three patients,

Normal, Pneumonia and COVID-19, respectively. ResNet-18 [13]

is adopted as our backbone model since it is easier to optimize,

and can substantially reduce the number of parameters through a

residual learning framework.
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