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Abstract—A vigorous and growing set of technical debt analysis
tools have been developed in recent years—both research tools
and industrial products—such as Structure 101, SonarQube, and
DV8. Each of these tools identifies problematic files using their
own definitions and measures. But to what extent do these tools
agree with each other in terms of the files that they identify
as problematic? If the top-ranked files reported by these tools
are largely consistent, then we can be confident in using any
of these tools. Otherwise, a problem of accuracy arises. In this
paper, we report the results of an empirical study analyzing 10
projects using multiple tools. Our results show that: 1) these tools
report very different results even for the most common measures,
such as size, complexity, file cycles, and package cycles. 2) These
tools also differ dramatically in terms of the set of problematic
files they identify, since each implements its own definitions of
“problematic”. After normalizing by size, the most problematic
file sets that the tools identify barely overlap. 3) Our results show
that code-based measures, other than size and complexity, do not
even moderately correlate with a file’s change-proneness or error-
proneness. In contrast, co-change-related measures performed
better. Our results suggest that, to identify files with true
technical debt—those that experience excessive changes or bugs—
co-change information must be considered. Code-based measures
are largely ineffective at pinpointing true debt. Finally, this study
reveals the need for the community to create benchmarks and
data sets to assess the accuracy of software analysis tools in terms
of commonly used measures.

Index Terms—Technical Debt, Software Analysis, Software
Maintainability

I. INTRODUCTION

The concept of technical debt has gained wide acceptance
in the software industry [1]. A major source of technical
debt is those not-quite-right [2] pieces of code that incur
penalties in the form of excessive maintenance costs. Over
the past few years more and more commercial and research
tools have become available for developers and designers to
identify not-quite-right code. These range from well-known
and widely-used commercial tools such as SonarQube [3],
Structure 101 [4], Designite [5], and CAST [6], to more
recent ones such as SonarGraph [7], Codelnspector [8],
CodeMRI [9], DV8 [10], NDepend [11], SQuORE [12], Sym-
fonyInsight [13], CodeScene [14], and Archinaut [15].

Each of these tools provides its own definitions of not-
quite-right and these definitions are used to identify technical
debt candidates. For example, Designite [5] defines smells at
architectural, design, and code levels, each based on different
sets of rules. DV8 [10], [16] defines a suite of anti-patterns
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that are claimed to be design debts. Structure101 [4] considers
tangles and excessive complexity as the measures of technical
debt. Most of the tools perform their analyses using source
or compiled code; a few such also take change information
from the revision history as input. For example, CodeScene
and Archinaut detect “hot-spots” as files that are frequently
changed, and DVS8 uses co-change information in the defini-
tions of anti-patterns.

The existence of various ways to identify problematic files
raises a fundamental question: in a given software project, will
these tools report similar sets of files as being problematic? If
the answer is yes, we can be confident that using any of these
tools, the most problematic files will be identified. However, if
the answer is no, a more important question arises: which tools
and which measures are more likely to report true technical
debt that incurs serious penalties that should be payed down?
These tools also provide common measures of software—such
as size (lines of code), complexity, and cycles—and we should
expect that they produce similar results for these measures.

To investigate these aspects we conducted an empiri-
cal study using Structure 101, SonarQube, Designite, DVS,
Archinaut, and SCC. To check their consistency, we ran 14,795
files from 10 active open source projects through these tools
and extracted 25 measures. We examined the correlation of
each pair of measures. In addition we examined the overlaps
among the sets of the 20 worst files identified by each tool for
each project. Finally, it is well-known that the size of a file has
a significant influence on various measures of concern, and so
we also normalized each score by the lines of code (LOC) in
each file and calculated the resulting correlations.

To approximate frue debt, we used four extrinsic main-
tainability measures extracted from each project’s revision
history: the number of revisions, the number of bug fixes,
the number of LOC spent on revisions, and the number
of LOC spent on bug fixes. These file-level measures are
used as proxy measures for change-proneness, bug-proneness,
and maintenance effort. We calculated pair-wise correlations
between these cost measures and each of the tool measures,
using both raw and normalized scores. Our assumption is that
if a tool’s measure is highly correlated with revisions, bugs,
and/or churn then it is likely that this measure is pinpointing
files that are truly active and incurring excessive maintenance
costs.

This study has produced unexpected results. First, for



widely accepted and fundamental measures such as size and
complexity, the tools we studied often report dramatically dif-
ferent numbers, meaning that the most complex files reported
by one tool may not be most complex according to another
tool. Package cycles and file cycles reported by different tools
also differ. Second, other than size and complexity, the other
measures produced by these tools barely correlate with each
other; that is, smelly files reported by one tool are not smelly
for another. Third, except for a few measures that incorporate
co-change information, the majority of these measures are not
more informative than “big files are bad.”

The results suggests that, to identify files with real technical
debt (that incur excessive changes or bugs), co-change (that
is, historical) information should be considered. The purely
code-based (that is, structural) measures, although providing
insights on violations of design principles, do not appear to be
effective in pinpointing real debt. Moreover, this study reveals
the need for the technical debt community to create bench-
marks and standardized data sets to assess the accuracy of
software analysis tools in terms of commonly used measures.
Otherwise the prospective user of a tool is always faced with
an “apples and oranges” decision.

II. RESEARCH QUESTIONS

The different results provided by different analysis tools
pose a challenge for practitioners who wish to select a tool
and dedicate (scarce) resources to identify and fix problems
in their project. To gain an understanding of this challenge,
we conducted an empirical study to investigate the following
research questions:

RQ1: Different tools report problematic files based on their
own definitions. But to what degree do these tools agree with
each other by reporting similar sets of problematic files?

If there is a high degree of correlation among the tools, this
means that any of these tools will identify a similar set of files,
and we can be confident that these files are truly problematic.
If there is weak or no correlation, it triggers the following
questions: how do these tools differ, why do they differ, and
which ones are more accurate?

RQ2: For commonly recognized problems, such as cycles
among files and packages, and commonly used measures, such
as complexity, do these tools agree with each other?

If the answer is yes, we can be confident that, using any
of these tools, overly complicated files and unwanted cycles
won’t be missed. If not, then it becomes important to ask what
are the reasons behind the discrepancies? If tool A identified
files a, b, and ¢ as being the most complex, while tool B
reported files e, f, and g, which tool should be trusted?

RQ3: Our final and most important question is: do the
files reported by these tools as being problematic truly contain
technical debt? That is, are the identified files associated with
unreasonably high levels of effort and bugs?

If the answer is yes, it means that the files reported as being
problematic by these tools are truly debt-laden. If the answer
is no, it implies that the problems identified by these tools do
not pinpoint technical debt effectively.

III. EMPIRICAL STUDY

To investigate these questions, our study consists of the
following steps: tool and measure selection, subject selection,
subject processing, and data analysis.

A. Tool selection

Our tool selection criteria required each tool to be: 1)
broadly accessible, 2) able to perform analysis at the file
level, and 3) able to export results to a machine-readable,
non-proprietary format. In this study, we focused on file-level
analysis because a file is a minimal unit of task assignment
and can be linked to maintenance costs.

We first chose 5 well-known tools related to technical debt
management that meet these criteria. Then we noticed that the
size counts exported by 3 of the 5 tools did not match. So
we added Succinct Code Counter (SCC)—a tool designed for
counting LOC and calculating complexity—as a reference and
for normalization purposes. For each tool we examined how
they define and detect technical debt (also termed smells or
anti-patterns in these tools). Of the 6 tools, 3 of them detect
cycles among files or packages, a commonly recognized design
problem. Since 2 of them only report if a file participates
in a cycle or not—a binary measure, their results are not
comparable with the other quantitative measures. We thus
separated our analysis of cycle-related measures. We now
briefly introduce each tool.

SonarQube (SQ): SonarQube is a widely used and well-
known industrial grade automatic code review tool that defines
a broad set of quality rules. For Java projects, SonarQube
defines rules in 4 categories: 377 code smell rules, 128 bug
rules, 59 vulnerability rules, and 33 security hotspot rules.
It is not possible to analyze the measure of each individual
rule as the data are too sparse to form meaningful correlation.
We thus aggregated all the measures into SQ_Issues, the total
of SonarQube’s detected rules which include CodeSmells,
Bugs, Vulnerabilities, and SecurityHotspots. SonarQube also
calculates size and complexity, but it does not provide these
numbers at the file level. SonarQube takes both the source code
and compiled bytecode of a project as input and displays its
results in a web application.

Designite Java (DES): Designite takes source code as
input and identifies smells at the implementation, design and
architecture levels. Because we are comparing measures at
the file level, we do not consider implementation smells as
they identify problems within individual methods. Designite
identifies 20 types of design smells and 7 types of architecture
smells. Design smells are reported at the file level, including
Deep Hierarchy, Feature Envy, etc. The Cyclically-dependent
Modularization rule detects cycles among files. Similar to
SonarQube, we created an aggregate measure, DesignSmells,
which is the sum of the reported design smells for a given file.
Architecture smells are reported at the package level, including
Cyclic Dependency, which is comparable to the package cycles
reported by DV8 and Structure101. We also collected size and
complexity data from Designite.



DV8: DV8 performs the calculation of decoupling level [17]
and propagation cost [18], the identification of architectural
roots [19], and the identification of design anti-patterns [16].
Our study only considers the six anti-patterns: 1) Clique—files
forming a strongly connected component, 2) Unhealthy Inher-
itance—violations of the Liskov Substitution Principle [20], 3)
Package Cycle—two folders mutually depend on each other, 4)
Unstable Interface—a file with many dependents that changes
often with all of them, 5) Crossing—a file with a high fan-
in and fan-out that changes often with its dependents and
dependees, and 6) Modularity Violation—files that change to-
gether frequently but have no structural relationship. Similar
to SonarQube and Designite, we denote the sum of all anti-
patterns found in a single file as Totallssues. DV8 accepts the
dependency information and commit history of a project as
input. The dependency information is retrieved from an open
source pre-processor, Depends [21], which takes source code
as input and outputs the size of each file and their dependencies
in a JSON file. The commit history is retrieved by running
git-log on a Git repository with a specified date range.

Structure101 (S101): StructurelO1 is a tool for analysing,
manipulating, and visualizing software architecture using the
concept of a Levelized Structure Map (LSM). In addition to
size, Structure101 also reports two complexity measures at the
file level, which are intended to represent technical debt: Fat
and XS. Fat is the number of edges in the dependency graph
internal to a file. XS is a measure of excessive complexity.
It is a function of Fat, size, and a user provided complexity
threshold. If a file’s Fat exceeds the threshold, its XS will
scale with its Fat and size, otherwise its XS will be zero.
Structure101 also reports tangles which are strongly connected
components found in the either the package graph or class
graph. We used the Studio edition of Structurel01.

Archinaut (ARCH): Archinaut takes various data sources
as input including dependency information generated by De-
pends and a project’s commit history. Archinaut produces
various measures at the file level and can identify “hotspots”
by analyzing trends in the measures. In particular, for each file,
it calculates Fanln, FanOut, TotalDeps (the sum of Fanln and
FanOut) as well as CoChangePartners (the number of other
files the target file has co-changed with, as recorded in the
project’s commit history.) In addition, Archinaut is capable of
integrating results from other tools. In this study Archinaut
is used both as a producer of measures and as an integrator
of results from the other tools. It compiles the results into a
single CSV file.

Succinct Code Counter (SCC): Succinct Code Counter is
a tool for measuring code size and complexity.

Table I provides a summary of the measures selected for this
study. The 1st column lists each tool and its original measures.
The 2nd column shows the abbreviation of these measures
used for the rest of this paper. If a measure incorporates
information from a project’s commit history, such as co-change
or the number of commits, we place a “(h)” next to its
abbreviation. The 3rd column indicates if a measure is an
aggregation of other measures.

Table I: Tools, Measures, and Abbreviations

Tool:Measure [ Abbr. [ Aggr.
File Measures
ARCH:Dependent Partners ARCH_fanln
ARCH:Depends on Partners ARCH_fanOut
ARCH:Total Dependencies ARCH_deps X
ARCH:CoChange Partners ARCH_coCh(h)
DES:Size DES_size
DES:Complexity DES_comp.
DES:Design Smells DES_smells X
DV8&:.LOC DV8_size
DV8:Totallssues DV8_issues X
DV8:Crossing DV8_crossing(h)
DV8:Modularity Violation DV8_MV(h)
DV8:UnhealthyInheritance DVS_UH
DV8:Unstablelnterface DV8_UI(h)
SQ:Issues SQ_issues X
SQ:CodeSmells SQ_smells
SQ:Bugs SQ_bugs
SQ:Vulnerabilities SQ_vuls
SQ:SecuritySpots SQ_sec
S101:Size S101_size
S101:Fat S101_fat
S101:XS S101_xs
SCC:CLOC SCC_size
SCC:COMPLEXITY SCC_comp.
Cycle Measures
S101:ClassTangles S101_fileCycle
S101:PkgTangles S101_pkgCycle
DVS8:Clique DV8_fileCycle
DV8:PackageCycle DVS8_pkgCycle
DES:Cyclically-dependent Modularization | DES_fileCycle
DES:Cyclic Dependency DES_pkgCycle

B. Subject Selection

To be selected for analysis each project has to meet several
constraints. First, the project has to have at least 1000 commits
that are linked to an issue tracked by an issue tracker. These
links allow us to identify bug-fixing commits so we can
calculate the bug churn and bug commits for each file. Second,
for the project to be compatible with all of the chosen analysis
tools, the project has to contain primarily Java source code.

To find an initial set of candidate projects, we ran a query
against the 20-MAD dataset introduced by Claes et al. [22]
to find the projects with the highest ratio of linked to unlinked
commits. We chose a minimum of 1000 linked commits
and a minimum ratio of 70% linked to unlinked commits.
Furthermore, if GitHub did not identify the project as being
composed of more than 80% Java source code, we excluded
the project.

This process gave us 20 candidate projects. We further
filtered this list using more practical considerations. First,
both SonarQube and StructurelO1 run their analysis against
compiled Java bytecode, not source code. This meant that we
had to be able to build each project from source. Second,
some tools can not analyze large projects. We excluded these
projects that cannot be analyzed on our hardware. These
considerations left us with 10 projects, briefed in Table II, each
of which is maintained by the Apache Software Foundation.
The table also includes information about the version that
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was analyzed (which corresponds to the final date in the
analysis period), the physical size of its Java code as measured
using SCC (“LOC”), the number of Java files (“#File”), the
total number of commits (of which exactly 1000 are linked
to an issue)(“#Com.”), and the analysis period (“Period”),
determined by the dates of the commits.

Table II: Subject Projects

Project Version LOC #File | #Com. Period

DeltaSpike | 192 | 147125 | 1824 | 1266 22%11‘;’/0132//112'
Flume 1903 | 80266 | 441 | 1082 | 3O
HBase 1412 | 430093 | 1786 | 1088 | 20 o0t
Knox 130 | 82549 | 863 | 1098 | 000"
NiFi 1100 | 620208 | 4112 | 1051 | LSO
Oozie 520 | 151221 | 812 | 1059 | 2L
Qpid-B! 706 | 321853 | 2000 | 1148 | 20 O
Qpid-J! 634 | 104181 | 561 | 1139 22%1169’/%15//211‘
Tajo 0.12.0-rc0 | 265253 | 1557 | 1095 | LRI
TEZ 002 | 150251 | 830 | 1082 | POOE

C. Subject Processing

To prepare the input for these tools, we cloned each project
repository, checked out the indicated version, and extracted
its commit history. Files that contain only tests, examples, or
generated code were removed. A list of issues identified as
bugs in the project’s issue tracker were collected into a single
file. Finally, each project was built according to its provided
documentation.

Then each analysis tool was run: Designite and SCC were
given the raw source code; SonarQube and Structure101 were
also supplied with the compiled bytecode; Archinaut and DV8
were given the commit history, the list of bugs, and the

IThe full names of these two projects are Qpid Broker-J and Qpid JMS
AMQP 0-x, respectively.

structural information generated by the Depends pre-processor.
This allowed us to extract file level results from each tool.

Finally, for each file in each project, we collected four
maintainability measures over the chosen analysis period:
#Change—the number of times a file appears in commits,
#Bug—the number of file revisions linked to bug commits,
#ChangeChurn—the added and removed LOC in these com-
mits, and #BugChurn—the added and removed LOC in file
bug commits. These maintainability measures where calcu-
lated with both DV8 and our independently created tool, JEC.
This entire process is illustrated in Figure 1.

D. Data Analysis

In our analysis, file measures and cycle data were separated.
For each pair of file measures, we analyzed their relationship
from two perspectives. First, we looked at their correlation.
For example, is it true that error-proneness scales with code
smells? We calculated the Pearson correlation coefficient using
both the raw numbers and the numbers normalized by LOC
(as reported by SCC). Second, we looked at the overlap of
the 20 worst files identified by each measure. For example,
are the smelliest files reported by Designite also the smelliest
files from SonarQube?

For each pair of cycles reported, we identified their overlap-
ping files. This allowed us to determine whether any pair of
cycles contained the same members and whether these tools
detected the same set of cycles. Cycles are compared at both
the file and package level.

IV. RESULTS

In this section, we discuss the results of our empirical study
to answer the three research questions.

A. RQI: Do the tools agree with each other?

To answer this question, we present the results for the file-
based measures and the cycle-related measures respectively.

a. Comparing file measures. We compare each pair of file
measures in two ways, correlation and top 20 overlaps. As size
and complexity are simple, fundamental measures of code, we
present their correlations separately.

Table III: Size Measure Pair-Wise Comparison

Avg. #Top-20-Overlaps (above diagonal)
Avg. Correlation (below diagonal)

Names id (1) 2) 3) 4)
DVS8_size | (1) - 17.2 | 16.8 | 19.9
DES_size ) | 098 - 157 | 17.1
S101_size | (3) | 0.97 | 0.95 - 16.7
SCC_size @) | 1.00 | 098 | 0.97 -

1) Correlations: The Pearson correlation coefficients for
each pair of file measures over all the files of all 10 projects
were calculated. Using the size measures as an example, 4
tools export “size” measures for each file, forming 6 cross-tool
pairs. Table III displays the average correlation coefficients
between each pair of size measures over 10 projects in the cells
below the diagonal. For example, row(4), column(1) contains
“1.00”, meaning that SCC and DVS agree on the size of files.



Strikingly, even for size measures, these tools do not fully
agree with each other, as we will discuss in Section IV-B.

2) #Top-20-Overlaps: This represents the number of shared
files among the top 20 files identified by the pair of measures.
This helps to compare whether two tools rank the same set of
files as being problematic. The numbers above the diagonal in
Table III are the average number of overlapping files among
the top 20 for each pair. For example, row(l), column(4)
contains “19.91”, meaning that the 20 largest files reported
by DV8 are mostly the same as those reported by SCC.

Table IV: Complexity Measure Comparison

Avg. #Top-20-Overlaps (above diagonal)
Avg. Correlation (below diagonal)

Names EEROEECOEEONEE)
DES_comp. | () | - | 135 | 12.7 | 128
SCC_comp. | (2) | 001 | - | 106 | 10.7
STOI_fat () | 066 | 061 | - | 187
ST01_xs @) | 061 | 056 | 092 | -

Table V: Normalized Complexity Measure Comparison

Avg. #Top-20-Overlaps (above diagonal)
Avg. Correlation (below diagonal)

Names id [@) 2) 3) 4)
DES_comp. | (1) - 2.9 1.0 1.0
SCC_comp. | (2) | 0.50 - 1.3 1.4
S101_fat 3) | 0.13 | 0.15 - 15.6
S101_xs 4 | 0.11 | 0.14 | 0.77 -

It is well known that size has a significant impact on
almost every other measure. To assess the relation among these
measures without the influence of size, we also calculated the
measure-pair correlations and top-20-overlaps after normaliz-
ing by LOC (using the value from SCC). Table IV presents
the original correlation and the number of top 20 overlaps
between complexity measures, and Table V presents the data
after normalization.

It is clear that, without normalization, the complexity mea-
sures have relatively high correlation, but after normalization,
both the correlation and number of top 20 overlaps dropped
significantly, except for S101_fat and S101_xs as the latter is
a function of the former. The implication is that complexity
measures are highly correlated with size measures, but their
correlations among each other are weak. In other words, these
tools frequently disagree on which files are most complex.

Table VI and VII present the relations among non-size
measure-pairs in a slightly different way. Since most of the
calculated correlations are very low, and average correlations
over all 10 projects are too small to be informative, we chose
to present (in the lower triangle of the tables) the number of
projects in which a pair of measures has a correlation greater
than 0.5, the threshold that indicates a moderate correlation.
For example, row(15), column(1) contains “10”, meaning that
for all 10 projects, SQ_issues exhibits a positive correlation
(= 0.5) with DES_complexity.

The numbers above the diagonal show the number of times
the top 20 files from each pair have more than 10 overlaps

(that is, at least 50% of the top 20 files match). For example,
row(1), column(15) contains 7, meaning that in 7 out of the
10 projects, DES_complexity and SQ_issues share at least 10
files among their 20 top ranked files.

Note that row(15), column(8) contains “1”, meaning that for
SQ_issues vs. DES_smells, only in 1 in 10 projects do their
top 20 picks share 10 or more files. The implication is that the
files with design smells as detected by Designite are mostly
different than those detected by SonarQube.

Table VII presents the same data after normalization by size.
The table shows that except for the two complexity measures,
only three pairs of measures have a correlation greater than
0.5 in 1 or 2 projects: DV8_issues vs. ARCH_deps (row(5),
column(3)), DV8_MYV vs. ARCH_coCh (row(6), column(4)),
and DV8_UI vs. ARCH_coCh (row(7), column(4)). The top
20 overlapping file data are even more sparse: only 1 pair,
DV8_UI and SQ_issues, shared more than 10 files in 1 project
among their top 20 picks (row(7), column(8)). Note that after
normalization, in no project were the most complex files
identified by S101 overlapping with 10 or more files identified
by the other complexity measures.

The implication is that the largest and most complicated
files often have other design issues. After normalizing, to
remove the impact of size, in the majority of cases the most
problematic files identified by one tool are very different
from those identified by the other tools. These consistent
discrepancies raises the question of which tool can be relied
upon to identify the truly problematic files.

b. Comparing cycle measures. Three tools we studied were
able to detect cycles at both file and package levels. As cycles
are relatively straightforward to define we expected that these
tools would report consistent results. This was not the case,
as shown in Table VIII.

For example, the 1st row in the “Package Cycle Com-
parison” section shows that in the Deltaspike project, DES,
DV8, and S101 report 2, 29, and 9 sets of package cycles,
involving 8, 34, and 44 packages respectively. The following
three columns list the number of packages shared by each pair
of tools: there were 7 packages shared by DV8 and DES, 8
shared by DES and S101, and 34 shared by DV8 and S101.
It is clear that the 34 cycle-involving packages detected by
DV8 either are a subset of the 44 of S101, or have significant
overlaps. But the number of cycle-involving packages reported
by DES are always significantly less.

At the file level, DES only reports that a file is involved in
a cycle, but does not report how many cycles are detected, or
which files are in which cycle. Thus we consider the number of
file cycles detected by DES as 1. For example, in Deltaspike,
the cell in the first row, “File Cycle Comparison” section,
contains “1 — 9 — 12”, meaning that DVS8 detected 9 cycles,
and S101 detected 12. The total number of files involved in
cycles are 15, 33, and 45 respectively detected by DES, DVS,
and S101. The last three columns list the number of cycle-
involving files shared by each pair of tools.

We observed that while the cycle-involving files reported
by S101 and DVS overlap, the differences are not trivial. In



Table VI: #Projects where Measures Agree

#Top-20-Overlaps > 10 (above diagonal); Correlation > 0.5 (below diagonal)

Names d | D] || @[S |G |D]|® |G |do | dy | d2) | d3) | a4 | {15
DES_comp. (D - 9 9 9 2 2 2 7
SCC_comp. 2) 10 - 6 6 1 3 2 1 5
S101_fat 3) 9 7 - 1 3 2 3
S101_xs 4) 10 8 - 1 3 2 4
ARCH_fanOut 5) 6 8 3 2 7 1 8 1 2
ARCH_deps (6) 1 2

ARCH_coCh 7) 3 1 3 1 1 1 1
DES_smells 8) 1 - 1
DV8_issues (O] 7 7 3 1 8 4 5 2
DV8_crossing (10) 1 1 2

DV§_MV (11) 2 1 3 6

DV8_UH (12) 5 5 4 4 8 1 2 1
DV8_UI (13) 1 1 1 2 1 3

SQ_issues (15) 10 10 5 6 6 1 1 2 3 1

Table VII: #Projects where Normalized Measures Agree

#Top-20-Overlaps > 10 (above diagonal)
Correlation > 0.5 (below diagonal)

Names id | (D) | @[ [ @[ ]@6 | D] OB
DES_comp. (1) -
SCC_comp. 2) 4
ARCH_deps 3)
ARCH_coCh | (4)

DV8_issues 5) 1 -

DV8_MV (6) 2 -

DV8_UI @) 1 - 1
SQ_issues ®) -

HBase, S101 reported 656 cycle-involving files while DV8
reported 521, with a difference of 135. In some projects, like
Flume, even though the number of files reported are similar,
the reported cycles they participate in are different, which we
will elaborate on in the next section. For all 10 projects, DES
only detects about half the number of cycle-involving files
with respect to DV8 and S101.

Answer to RQ1: The results, especially after normalizing
by size, revealed that there is little agreement between the tools
regarding which are the most problematic files, particularly
when considering their ‘flagship’ measures, such as smells
in SonarQube and Designite, XS in S101, and anti-patterns
in DVS8. Moreover, these tools disagree on the most basic
measures such as complexity, file cycles and package cycles.

This raises two questions that we will discuss next: why
are these tools report such different results, even though their
definitions are similar? And, most important, which measures
are more likely to indicate truly problematic files—those that
incur high maintenance costs?

B. RQ2: Where does the disagreement come from?

In this section, we analyze in depth why these tools cannot
even agree on the most commonly used measures including
size, complexity, file cycles, package cycles, as well as smells.

1. Size calculation. As mentioned earlier, we did not ini-
tially realize (or expect) that for the same file, DV8, Designite
and S101 report different size numbers (in LOC). These

differences could be huge. For ProtosFactory.java, the
three tools reported 5991, 6301, and 13533 LOC respectively.
As the most fundamental measure, such differences in LOC
are too huge to be acceptable. As shown in Table III, the
average number of top 20 overlaps between DES and S101 is
only 15.7.

We thus used SCC to independently verify which number is
most reliable. SCC reports two size numbers: SCC_LOC-the
total number of lines of text, and SCC_CLOC-the number of
source code lines. We observed that the SCC_CLOC count
and DV8_LOC are almost exactly the same. We only noted
a few cases where these numbers differ by 1 LOC. The
SCC_LOC count, however, does not match either S101 or DES
size counts. For example, for ProtosFactory.java in Flume,
the SCC_LOC count is 7631, meaning that the lines of code
reported by S101 (13533) is larger than the physical lines of
the file. We cannot explain why. We chose to use SCC_LOC
count as the basis for normalization.

2. Complexity calculation. Table IV and V have shown
that although these measures are all based on cyclomatic
complexity, their correlations can be as low as 0.56, and
the highest average cross-tool top-20-overlaps is only 13.5,
meaning that many of the most complex files recognized by
one tool may not be considered as most complex by another.

After a deeper look at the tool websites and data, we realized
that the differences first come from the calculation of cyclo-
matic complexity for each function, and second come from
how complexity at file-level is calculated. In SCC, function
complexity is calculated by counting the number of branches:
“This is done by checking for branching operations in the
code. For example, each of the following for,if, switch, ...
encountered in Java would increment that files complexity by
one.” There are many files for which SCC complexity are 0,
meaning that there are no branches in the file. However, ac-
cording to its definition [23], cyclomatic complexity should be
“the number of linearly independent paths”, and the minimal
score should be one for a function without any branches.

For DES complexity, even though all the scores are larger
than 1, after examining several files, their complexity score



Table VIII: Package and File Cycle Comparison

Package Cycle Comparison File Cycle Comparison
Project DES-DVS8-S101 DESN | DESn | DV8 N DES-DV8-S101 DES N | DES N | DV8N
#set #pkg DV8 S101 S101 #sets #file DV8 S101 S101
DeltaSpike 2-29-9 8-34-44 7 8 34 1-9-12 15-33-45 10 15 32
Flume 1-12-5 3-18-20 3 3 18 1-8-11 25-47-47 21 21 43
HBase 10-122-10 52-71-86 36 37 68 1-36-40 | 371-521-656 309 348 495
Knox 4-32-10 7-40-50 5 4 36 1-20-15 57-82-50 43 21 32
NiFi 16-145-37 | 41-157-164 36 34 141 1-86-62 | 144-330-354 90 118 217
Oozie 3-76-4 28-44-45 28 27 41 1-13-20 | 168-389-253 159 111 237
Qpid-B 8-117-8 15-82-97 15 15 78 1-54-41 | 263-332-586 190 236 283
Qpid-J 3-23-4 12-23-29 11 12 23 1-7-8 263-332-586 147 170 205
Tajo 8-77-11 37-68-75 37 37 68 1-33-39 182-452-527 160 174 442
TEZ 5-67-10 26-56-65 25 26 54 1-17-17 79-136-155 56 69 113
doesn’t match the original definition either. S101_fat at the Tangle of 7
method level is defined as the difference between the measured PR
complexity and a given threshold, which makes the outcome SESgf g8
different from that of DES and SCC. £ é" H o £% g
5 =
When file-level complexity is considered, these tools deviate % g % 5 % g §_,,
even more. For DES, file-level complexity is calculated as: AE AR B8 8
“Weighted Methods per Class (WMC) ... the sum of cyclomatic 3 OffHeapRowBlockUtils 11
complexities of all the methods belonging to the class. ” @ HeapRowBlockReader 2
While in S101, file-level S101_fat is defined as the number = (3 OfffieapRowBlockReader
of dependencies among inner methods, basically have little to 2 @ UnsafeTupleList 0
do with cyclomatic complexity. For SCC, it is not clear how S| @ MemoryRowBlock 7 4 4 14
file-level complexity was calculated, but the scores are more (@ CompactRowBlackWriter 5
ClOSC to that Of DES G OffHeapRowBlockWriter 2

In summary, these tools provide different complexity scores
both due to the different implementation of cyclomatic com-
plexity, and how method-level complexity scores are aggre-
gated into file-level scores, which again, raises the question:
which one should developers trust?

3. Cycle calculation. Table VIII reveals that, not only
are the number of package cycle groups different, but these
tools also disagree on whether a package participated in a
cycle or not. The differences between the number of groups
is understandably due to the definitions of cycles: in DVS,
package cycle is defined as pair-wise dependencies among
packages, while the other two tools define a package cycle as
a strongly connected graph, which explains why DV8 always
reports the largest number of sets. For S101 and DES, even
though their package-cycle definitions are similar, the detected
number of sets are often different except for HBase (10 sets)
and Qpid-B (8 sets).

Even for those projects where the same number of sets are
reported, the specific packages that participate in these cycles
are vastly different. For example, in HBase, although both
DES and S101 reported 10 package cycles, the participating
members are 52 (DES) vs. 85 (S101), while the number
reported by DV8 is 71. In NiFi, the number of cycle-involving
packages was reported to be 41, 157 and 164 by the three tools.

We observed similar discrepancies from file-cycle data. In
terms of the number of cycle-involving files, DVS is close to
S101, but DES reported about 50% fewer files. For example,
in DeltaSpike, DES, DV8 and S101 reported 15, 33, and 45
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(b) A Clique Detected by DV8
(Containing the 7 files in S101 tangle shown above)

Figure 2: File Cycle Detected by S101 and DV8

cycle-involving files respectively. DES and DVS reported 10
files in common, meaning that there are 23 files that DV8
detected to have cycles, but DES did not identify.

Since Designite Java does not provide a GUI for us to
examine where the differences come from, nor does it export
information about which files participated in which cycle, we
cannot explain the difference between DES and the other two
tools. For S101 and DV8, we first noticed that all the cycles
in S101 are mutually exclusive; that is, a file can only belong
to one cycle. In DVS, a file can belong to multiple cycles.
We studied several cycles in both tools, and observed the
cases where files should be belong to a cycle as detected by
DVS, but are left out by S101. For example, the 7-file tangle
detected by S101, as shown in Figure 2a, are contained in



the 9-file clique detected by DVS8 as shown in Figure 2b. It
is clear that the other two files, O f f HeapRowWriter.java
and HeapT'uple.java are also part of the connected graph.
It is not clear why they are left out in the S101 tangle. We
also notice that the number and types of dependencies between
files are calculated differently by S101 and DVS.

In summary, even though all these tools detect cycles
as strongly connected components, the specific instances of
cycles and the members within each cycle are calculated
differently.

4. Smell detection. Given that these tools differ in their
detection of most commonly used measures, it is not unex-
pected that when these tools define their own “smells”, the
most problematic files recognized by each tool are drastically
different. DES defines three categories of smells: implemen-
tation (code), design (file), and architecture (package) smells,
each having 11, 20, and 7 types. Structure 101 features tangles
and excessive complexity (XS), DV8 defines 6 anti-patterns,
and SonarQube allows the user to customize the definitions
of smells. By the time we used SonarQube to analyze these
subjects, there are 377 rule defined for Java code smells.

Answer to RQ2: Surprisingly there is substantial dis-
agreement between the tools in measures as basic as size
and complexity. Some discrepancies are due to differing
implementations of the same concept, or the lack of unified
definitions of the same term. In most cases, however, finding
clear explanations on how the measures are calculated is not
straightforward, and the discrepancies are hard to explain.

C. RQ3: Which tools indicate true debt?

Given all these discrepancies reported by these tools, now we
turn to the question about which measures are more likely to
correctly identify source files with significant technical debt.

As mentioned previously, for each file in each project
we collected four measures, #Change (#C), #ChangeChurn
(#CC), #Bug (#B), and #BugChurn (#BC) to approximate
maintenance costs. These approximate the inferest incurred
by technical debt. DV calculates the measures automatically
from the revision history (with respect to the provided date
range). As these numbers will act as the benchmark of our
comparison, we created an independent tool called JEC to
validate them, and confirmed their accuracy.

Table IX shows the number of projects in which a file mea-
sure has 0.5 or higher correlation with one of the four mainte-
nance cost measures. The table shows that for all 10 projects,
size and complexity measures, as well as ARCH_fanOut,
ARCH_coCh, DV8_issues, DV8_crossing, DV8_MYV, DV8_UI
and SQ_issues were positively correlated with at least one
maintenance measure in 5 or more projects. In particular,
DV8_MV correlates with #Changes in all 10 projects, per-
forming better than all size and complexity measures.

However, after normalization, as shown in Table X, only
DV8_MYV appears to be correlated with maintenance measures
in 5 projects. The implication is that modularity violation
appears to be a distinctive measure, more likely to locate
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technical debt above and beyond what is discernible simply
by considering file size.

Table X: #Projects where Normalized Measures Agree

Normalized File Measures vs. Maintenance Measures

Measure Name Correlation > 0.5 #Top-20-Overlaps > 10
#B | #BC | #C | #CC #B | #BC | #C | #CC

DV8_issues 1 1

DV8_crossing 1

DV8_MV 4 1 5 1 2

DV8_UI 1 2 1 1 1

Considering the top 20 overlaps, as shown in the last 4
columns of Table IX, it appears that in most cases, the most
error-prone or change-prone files are often not the top files
ranked by these measures. Only DVS8_issues and DV8_MV
agreed on 10 or more files as the most change-prone in
5 projects. After normalization, as shown in Table X, only
DV8 MYV and DV8_UI are left in the last 4 columns of the
table. It is worth noting that even though ARCH_coCh also
counts the number of co-changes in revision history, it does
not perform as well as DV8_MYV, which counts the discrepancy
between structure dependencies and co-changes.

Answer to RQ3: These results show that, except for a
few measures that incorporate history information, most of the
measures calculated by these tools are not more indicative than
size and complexity in terms of identifying the most error-
prone and change-prone files. The anti-patterns detected by
DV8, especially Modularity Violation and Unstable interface,
do provide a distinctive ability to identify debt-ridden files.

V. IMPLICATIONS

Our results have enormous implications for practice because
if a developer selects and runs one of these tools to analyze
their project, they will potentially focus their attention on the
wrong set of files. Specifically:



o Most of the technical debt tools we studied do not give
better insight than simply measuring the size of a file.
It has been well established for decades that bigger files
generally carry higher risk and require greater cost and
effort to maintain. So the cost of these tools, and the
effort in using them and interpreting their data, would be
largely misguided.

« The tools we studied often disagree with each other, even
on basic, seemingly objective measures such as size and
complexity. Again, this is problematic for a practitioner
as this means that the outputs of some of these tools are
unreliable and will lead them to misapply their effort.

e Many of the tool measures that we studied have low
correlations with our outcome measures of technical debt:
bugs, changes, and churn. Since a practitioner using a
tool would be highly motivated to manage the effort
associated with revisions bugs, changes, and churn, these
tool measures are giving little insight into how to do this
and where a practitioner should apply their effort.

o Many tools report file and package cycles, and explic-
itly recommend that project effort should be devoted to
breaking these cycles. But not all the cycles reported are
accurate, and these measures turn out not to be strong
predictors, across projects, of future maintenance cost and
complexity.

There is, however, one ray of hope. Measures that take
into account co-change (historical) information do perform
significantly better than purely code-based (structural) mea-
sures. Thus projects should spend the effort to link commits to
issues, to obtain deeper understanding of which debts influence
their maintenance costs, and how. Overall, the results of our
study suggest that using an analysis tool that does not consider
change history will result in sub-optimal debt remediation
efforts.

VI. THREATS TO VALIDITY AND FUTURE WORK

In this section, we discuss the threats to validity of our
empirical study, and our plans for future work.

Threats to Validity. The major threats to the conclusion
of this study include the subjects we chose, the targeted
tools, and using revisions and churn as the ground truth of
maintainability. Our study was conducted only for programs
written in Java. It may be possible (but, we believe, unlikely)
that results may differ for other languages.

In this paper, we only chose six tools for the reasons
explained in Section III. Many other tools also detect technical
debt in various forms, such as CAST [6], SonarGraph [7],
Codelnspector [8], CodeMRI [9], SQuORE [12], SymfonyIn-
sight [13], inFusion [24], JDeodorant [25], PMD [26], and
Checkstyle [27]. In addition to Archinaut and DV8, CodeScene
[14] also analyze revision history, but we cannot export results
from it. Archinaut calculates some similar measures to it.

It is not clear if and to what extent other tools will locate
technical debt differently than the tools we studied. But this
work reveals the lack of consistency and unified definitions
among several widely used technical debt detection tools.

Using revisions and churn as ground truth for maintain-
ability measures could be too simplistic. For projects that are
not being actively maintained, these numbers will not be able
to accurately reflect technical debt. It is also possible that a
system has too much technical debt, cannot evolve any more,
and thus has very low churn or revisions. In this case, this
study may be biased showing the files have little technical
debt. To mitigate this threat, we have chosen an analysis period
not based on time but rather based on the same number of
commits that are linked to issues.

It is arguable that measures containing co-change informa-
tion, such as Modularity Violation, perform better in terms
of identifying high-maintenance files because of construction
bias since they already considered the number of revisions.
However, our study showed that the measure that only counts
co-changes does not perform better than size and complexity,
but DV8_MYV does. It also correlates with the number of bug
revisions, which is not part of the definition.

Future Work. In addition to addressing these threats to va-
lidity, this initial empirical study pointed to several interesting
directions of research. First, we would like to further evaluate
if and to what extent the overall scores provided by each
tool are consistent with each other. We have observed that
SonarQube rates all 10 projects “grade A” (the lowest level
of technical debt), but the other tools give rather different
measures of the quality of these projects. For example DV8’s
decoupling level metric [17]-which measures how well a
project is decoupled and modularized—ranges from 52.35% to
93.9% for the 10 projects, suggesting an enormous range in
their maintainability.

Given that there are many tools that purport to detect
technical debt, and given the lack of consistency among their
definitions and results, this study suggests a need. We need
to create a technical debt benchmark and a widely validated
metrics suite so that projects can confidently assess, track, and
compare their quality between projects and over time. The
creation of such a benchmark would require a more rigorous
model of file-level technical debt.

VII. RELATED WORK

To the best of our knowledge, Fontana et al. [28] was the
first to present a comparative evaluation of code smell detec-
tion tools. They used six versions of a system to evaluate four
tools, Checkstyle, inFusion, JDeodorant, and PMD. Fernandes
et al. [29] also reported a systematic literature review on 29
tools that were evaluated considering two smells, Large Class
and Long Method. They studied two software systems and
three metrics for comparison: agreement, recall, and precision.
Thanis et al. [24] calculated the accuracy of 4 tools in the
detection of three code smells: God Class, God Method, and
Feature Envy. They calculated the agreement between pairs of
tools. One of their findings is that the tools have different
accuracy levels under different contexts. For example, the
average recall of a project can vary from 0 to 58% and the
average precision can vary from 0 to 100%. These prior studies
focus on code smells only at the level of methods. From a



design and architectural perspective, we are more interested
to know which files contain true debt, that is, files associated
with excessive maintenance effort?

Avgeriou et al. [30] recently published a comparison study
of 9 technical debt measurement Tools, including DV8 and
SonarQube. This work compared these tools in terms of
their popularity and features, such as the number of related
publications. By contrast, our study analyzed 10 projects and
compared their analysis outputs in detail.

The study reported in this paper, using 6 tools and 10
open source project is, to the best of our knowledge, the first
comparative study of technical debt at the file level taking
maintenance effort into consideration.

VIII. CONCLUSION

In this paper, we reported on our empirical study of 6
file-level technical debt detection tools applied to 10 open
source projects. Our objective was to investigate if and to
what extent these tools agree on which files contain technical
debt, what is the root cause of inconsistency, and which tools
and measures are more likely to pinpoint files associated with
high maintenance effort. We calculated pair-wise measurement
correlations and intersections between the measures, as well
as with churn and revision counts for each file that we studied.

Our results clearly show that without co-change (historical)
information, purely code-based (structural) measures do not
agree with each other in terms of which files contain technical
debt, other than trivially identifying large files, which could
just as easily have been identified by counting LOC. It is a
surprise that these tools disagree on even the most commonly
used measures of size, complexity, and cycles. Moreover,
these code-based measures, after normalizing by LOC, do not
identify files that incur the most maintenance costs in practice.
In other words, in terms of identifying the most problematic
files, our data suggests that some of the best known code-
based tools are not producing more insight than “big files are
bad”.

Measures using both structural and historical information
perform better in terms of correlating with high-maintenance
files, and provide additional insights into the root causes of
the debt, and hence these measures have the potential to
guide refactoring. For example, the Modularity Violation and
Unstable Interface anti-patterns that DV8 identifies give insight
into not only what files are problematic, but also how to
refactor those files to remove the root causes of the debt.
This study highlights the necessity of leveraging historical
information in technical debt detection, and the need to build
a more rigorous, uniform model of technical debt, as well as
validated benchmarks.
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