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Multi-Sensor Multi-Vehicle (IMSMV) Localization
and Mobility Tracking for Autonomous Driving

Pengtao Yang
Xiang Cheng

Abstract—Vehicle localization and mobility tracking are impor-
tant tasks in autonomous driving. Traditional methods either have
insufficient accuracy or rely on additional facilities to reach the
desired accuracy for autonomous driving. In this paper, a multi-
sensor multi-vehicle localization and mobility tracking framework
is developed for autonomous vehicles equipped with GPS, inertial
measurement unit (IMU), and an integrated sensing system. Our al-
gorithm fuse the information from local onboard sensors as well as
the observations of other vehicles or existing intelligent transporta-
tion system infrastructure such as road side units (RSU) to improve
the precision and stability of localization and mobility tracking.
Specifically, this framework incorporates the dynamic model of
vehicles to achieve better localization and tracking performance.
The communication delays during the information sharing process
are explicitly taken into account in our algorithm development.
Simulations manifest that not only the accuracy of localization
and mobility tracking could be greatly enhanced in general, but
also the robustness can be guaranteed under circumstances where
traditional localization and tracking devices fail.

Index Terms—Multi-sensor multi-vehicle (MSMYV) localization
and mobility tracking, autonomous driving, cooperative sensing,
intelligent transportation systems (ITS).

1. INTRODUCTION

OCALIZATION and mobility tracking, which are re-
garded as fundamental tasks in autonomous driving, pro-
vide essential information to direct the operation of intelligent

Manuscript received April 14, 2020; revised July 6, 2020; accepted October
4, 2020. Date of publication October 19, 2020; date of current version January
22, 2021. This work was supported in part by the Key Area Research and
Development Program of Guangdong Province Project 2019B010153003, in
part by the Ministry National Key Research and Development Project under
Grant 2017YFE0121400, and in part by the National Science Foundation under
Grants CNS-1932413 and CNS-1932139. This article was presented at the
2018 Global Conference on Signal and Information Processing, Anaheim, CA,
November 26-29, 2018 [1]. The review of this article was coordinated by Prof.
Shibo He.

Pengtao Yang, Chen Chen, and Xiang Cheng are with the State Key Lab-
oratory of Advanced Optical Communication Systems and Networks, Depart-
ment of Electronics, School of Electronics Engineering and Computer Science,
Peking University, Beijing 100871, China, and also with the Henan Joint
International Research Laboratory of Intelligent Networking and Data Analysis,
Zhengzhou University, Zhengzhou 450001, China (e-mail: ypt@pku.edu.cn;
c.chen@pku.edu.cn; xiangcheng.86 @ googlemail.com).

Dongliang Duan is with the Department of Electrical and Computer
Engineering, University of Wyoming, Laramie, WY 82071 USA (e-mail:
dduan@uwyo.edu).

Liuging Yang is with the Department of Electrical and Computer En-
gineering, University of Minnesota, Minneapolis, MN 55455 USA (e-mail:
qingqing @umn.edu).

Digital Object Identifier 10.1109/TVT.2020.3031900

, Student Member, IEEE, Dongliang Duan
, Senior Member, IEEE, and Liuqing Yang

, Member, IEEE, Chen Chen, Senior Member, IEEE,
, Fellow, IEEE

transportation systems (ITS), e.g. determination of the accu-
rate positions during multi-vehicle cooperation or multi-vehicle
information fusion [2], [3]. In recent years, many researchers
have been trying to develop new techniques to provide accurate
localization information of vehicles, including the early simple
and moderately priced dead reckoning techniques [4], the cur-
rently prevailing GPS-based techniques (see e.g. [5]), and the
more recent marker and high-precision map based techniques
(seee.g. [6], [7]). Compared with GPS-based techniques, which
are easily affected by the working environment and cannot pro-
vide the required accuracy under certain circumstances, such as
crowded urban, under bridges, beside high buildings, in tunnels
etc., the map-based techniques are capable of providing more
precise positioning. However, the map-based techniques rely on
the high-precision maps which incur extra high cost and hence
are not the best options for most ITS applications.

In response to the restrictions of techniques based upon in-
dividual sensors, researchers have attempted to conduct the lo-
calization and mobility tracking using the information provided
by multiple sensors for better accuracy. Within this framework,
some traditional filtering algorithms, e.g. particle filter and
Kalman filter etc., are applied for the fusion of measurements
from different sensors and their prior information so as to
gain more accurate estimates (see e.g. [8]-[12]). However, for
most solutions proposed so far in the literature, information of
different sensors can be fused and utilized only if all sensors are
located at the same vehicle. Moreover, though various kinds of
sensors are involved in the process, the accuracy is still heavily
dependent on GPS and hence is sensitive to environment. For
example, if the vehicle is operating in areas with limited or no
GPS signal, the accuracy will be significantly compromised. In
summary, the existing single-vehicle multi-sensor strategies are
still not capable of addressing the main challenges. To overcome
the above-mentioned limitations, some researchers have come
up with solutions to enhance the stability of single-vehicle
sensors with the support of other vehicles’ information (see
e.g. [2], [13]). However, the existing solutions proposed mostly
rely on traditional localization sensors and hence requires extra
efforts to build other supporting infrastructure in the ITS to
assist the localization process. They are incapable of incorporat-
ing the information from the new sensing techniques available
on the state-of-the-art intelligent vehicles. Furthermore, these
techniques based upon traditional localization sensors assume a
static model for the vehicles and hence cannot conduct effective
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mobility tracking. In other words, they can only report the local-
ization results based upon single-snapshot observations at each
single time instance and cannot utilize the temporal relationship
among the observations over a period of time.

With the development of sensing and autonomous driving
technologies, light detection and ranging (LiDAR), radar, a
variety of camera-based vision sensors and many other new
sensors are installed on intelligent vehicles. The data provided
by these sensors could be utilized to improve the localization
precision and achieve mobility tracking given their capacity
of detecting and interpreting the ambient environment, even
though their main purpose of installation might not be localiza-
tion. For example, the digital surface model (DSM) represented
by discrete-points is used to describe the LiDAR data, which
includes the spatial information needed for localization pur-
poses [14]-[19]. Another example is the camera data, with which
the relative position of a vehicle and its surrounding objects can
be obtained via the vision-based simultaneous localization and
mapping (SLAM) technique [20], [21]. There are other tech-
niques to utilize those latest sensing techniques for localization
(see e.g. [22]-[24]), e.g. using the camera for perception in the
high-precision map constructed by LiDAR [25].

For the vision of the “Internet of Vehicles” in the future
(see e.g. [26]-[28]), it is an important task to find a way to
make different vehicles cooperate with each other and combine
the information of sensors from these vehicles to improve the
accuracy of localization and mobility tracking [29]. The most
common technique is V2V multilateration, i.e. vehicles transmit
their own positions and calculate distances to other vehicles in
cooperation, and then obtain more accurate estimates of self-
localization [30]. However, most multilateration-based studies
use only GPS, IMU and V2V wireless communication modules,
while other sensors such as radar and LiDAR of different vehi-
cles cannot be applied [31]-[35]. In [36], the information pro-
vided by radar is combined with the V2V technique to improve
localization accuracy of GPS, but the technique did not take into
account the dynamic motion of the vehicles and hence cannot
achieve good mobility tracking performance. In summary, in
the literature, there is no general framework that combines
information obtained from traditional localization devices as
well as more recent advanced sensing devices to improve the
precision of localization and mobility tracking.

In this paper, a multi-sensor multi-vehicle (MSMV) localiza-
tion and mobility tracking framework is developed. The frame-
work establishes the link between observations that come from
multiple vehicles and measurement data acquired from both
traditional localization sensors namely the inertia measurement
unit (IMU) and GPS, and more advanced sensing systems which
may include camera, LiDAR, radar etc. The proposed framework
has a novel two-layer structure, consisting of global filtering
and local filtering. At the local filters, on the one hand, we
use traditional IMU and GPS data to obtain an estimate of the
vehicle’s self state. On the other hand, the vehicle observes
other vehicles and obtain their states by using the integrated
sensing system to generate the sensing data through another set
of local filters. Then the local estimates related to the same target
vehicle from all vehicles are fed into a global filter to obtain the
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global estimate of this target, which can greatly improve the
accuracy of its estimates. The localization process is carried out
under the guidance of the dynamic models for vehicles, and as a
result, mobility tracking can be achieved. The proposed MSMV
framework is general in that it not only works for all types of
sensors but also can be implemented by different techniques
for local filters to utilize the dynamic motion models. Besides,
our framework can also include intelligent infrastructures in ITS
such as road side units (RSUs) in the cooperative localization and
mobility tracking process to further improve the performance. In
addition, a critical practical issue during cooperative localization
and mobility tracking, namely the delay during the information
sharing via V2V communication links, is considered and ad-
dressed well by the proposed framework.

The remainder of this paper is organized as follows. System
model and problem formulation are presented in Section II.
Section III presents the multi-vehicle cooperative localization
and mobility tracking algorithm, which includes global filter-
ing and local filter. Then we evaluate the performance of the
algorithms in the proposed framework through numerical simu-
lations in Section I'V. Finally, conclusions and ongoing research
issues are highlighted in Section V.

II. SYSTEM MODEL

The physical motion and observation model of a vehicle can
be described by a dynamic model as follows [9]:

wlk] = f (x[k — 1], ulk], w[k]),
z[k] = g (x[k], v[K]), €))

where k is the index of discrete time slot, x is the state of
the vehicle including position and speed, w is the command
process which is equivalently regarded as the driving input and
indicates the acceleration, and w is the command noise (state
noise) which comes from the uncertainty of command process;
z is the measurement data reported by various sensors such as
IMU, GPS, LiDAR, camera etc. and v is the data noise during
measurement and transmission; f and g are equations of the
state and measurement model which can be obtained by the
physical dynamics of the motion and the inherent properties of
the sensing devices, respectively.

It is assumed that every vehicle in cooperation is equipped
with inertia measurement unit (IMU), GPS, and an integrated
sensing system which may include one or more sensing devices,
such as camera, radar, LIDAR and so on. Then each of the
above vehicles obtains its own estimate of angular velocity,
speed, acceleration through wheel encoders and IMU, its own
estimate of position through GPS, and estimate of the relative
position and speed with respect to other vehicles in cooperation
through the integrated sensing system. In order to develop the
multi-sensor multi-vehicle localization and mobility tracking
framework, here we introduce the observation and state transfer
model for moving vehicles in detail as follows:

A. System State Transfer Model

We are mostly interested in localizing and tracking an object
in the two-dimensional plane using Cartesian coordinate = and
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y. For a vehicle V;, we apply the equation in [9] to describe its
mobility in a system state transfer function:

where
xX; Wy,
Z Fi . Wi,
Ti = y Uiy = y Wi = )

Ji Wey;

1 dt 0 0 g

0O 1 0 O dt 0

A= 5 Bu == dt? )
0 0 1 dt 0 5
0 0 0 1 0 dt

where x; is the state vector, in which x;, y; are the vehicle 7’s
coordinates in the Cartesian coordinate system, and 2;,¥; are
the velocity of the vehicle i; F; .., F; ,, are the command process
of the vehicle that is related to motion acceleration, which is
generated form the power system of a vehicle and measured by
IMU; w is the state noise, and in general it can be modeled as
additive white Gaussian noise (AWGN); matrix A and B,, are
obtained by the physical dynamics.

B. Observation Model

The observation data at vehicle s consist of two parts which
have different information sources: 1) the measurement provided
by sensors such as GPS and IMU with information only related
to its own position and mobility state, denoted as z; 2) the
measurement provided by the integrated sensing systems on
other vehicles, related to both its own and another vehicle i’s
states, denoted as z;_,,.

For z,, we have

zs[k] = Hxs[k] + vsk] 3)

where v, is the measurement noise and H ; is the measurement
matrix, both of which is related to information processing mode
and the inherent properties of sensors.

For z; 4, we have

ziﬁs[k] = Hiﬁsmi%s[k] + ’Uiﬁs[k} ; (4)

where x;,s[k] = x;[k] — x;[k] is the relative states between
vehicle 7 and vehicle s. The matrix H,_., and the statistical
property of v, s are determined by the properties of their
sensing devices, the algorithm to extract the spatial information
from raw sensor data and the information transmission process.
Without loss of generality, we assume that for z, and z;_,
direct measurement of the state from the sensing devices can be
obtained, and the measurement noise is AWGN, whose variance
can be provided by the calibration and testings of the sensing
devices.

C. Compensation for Delay During Cooperation

Practically, for the information sharing during multi-vehicle
cooperation, there is a time delay 7,_,s when a vehicle 7 sends
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information to another vehicle s. The delay 7;_, s usually consists
of three parts: time of information processing at the sender, time
of information transmission, and time of information processing
at the receiver. Both the first part and the third part can be accu-
rately measured during processing, so only the second part needs
to be analyzed. The delay can be assumed to be bounded, e.g.
0 < 755 < Tmax since the communications delay in vehicular
network is bounded in most cases [37].

In our framework, we assume that the time delay 7;_, s can be
measured by extra time stamp reported by the sender. When a
vehicle ¢ send the information, a time stamp Z; senq 18 also sent at
the same time [38]. By comparing with the time stamp ¢ receive
at the receiver, say vehicle s, the delay can be obtained

- ti,send- (5)

Then, during the cooperation, at time instant ¢, the vehicle
s actually receives vehicle ¢’s observations at the time instant
t — T;_s. So, the measurement equation (4) should be rewritten
as

Tiss = ts,receive

ziﬁs[t - Tiﬂs] == Hiﬁsxiﬁs[t - Tiﬁs] + vi—)s[t - Ti—)s] .
(6)
And the measurement at time instant ¢ is
Ziss[t]) = Hiyo@is[t] + viss[t] (7

The state transfer equation (2) can be used to account for the
measurement z;_,[t]:

Zisst] = HiﬁsAdt:THs Tiss[t — Tioss]
+ Hiﬁ}sB,ldl/t:Tiﬁs Ug [t] (8)
+ Hi%sws [t] + /Uiﬁs[t] .

In particular, time delay 7 is less than 0.1 s [38], and the ac-
celeration is assumed to be approximately constant during 7;_, .
That is, the command process of the vehicle can not be suddenly
change in a short time, i.e.

ug[t] =~ uglt — 7] )
Substitute (6) and (9) into (8), then we have:

Ziﬁs[t] =H, Aldt:THs H;iszias[t - Tiﬂs]

(10)
+ Hi~>s Bu|dt:7—iHS us[t - Ti%s] + w*v
where
w* = H; ws [t] + 'Ui—)s[t]
| (1)
- Hi%s A|dt:7—i~)s Hi_ﬁsviﬂs[t - Tiﬁs]

is a Gaussian variable, so the estimate of z;_,4[t] is

2i50 [t = Hiss A|dt:THSH;1>ssz[t — Tioss) 12

+ Hi—)s Bu‘dt:ﬂﬁs Us [t - Ti—)s]-

When H;_, is an identity matrix, the estimate 2, ,4[t] can be
written as

zie = A‘dt:rwsziﬂs [t—Tiss]+ Bu|dt:riﬂus[t — Tioss]-
(13)
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Fig. 1. Framework of the MSMV cooperative localization and mobility
tracking algorithm.

N

III. MULTI-SENSOR MULTI-VEHICLE (MSMV) LOCALIZATION
AND MOBILITY TRACKING

An illustration of our proposed multi-sensor multi-vehicle
(MSMYV) localization and mobility tracking framework is shown
in Fig. 1. The ego-vehicle is denoted as V; which can conduct
self estimation of its own state from its own onboard sensors,
and there are NV other vehicles (V}, V3, ..., V) cooperating in
the Internet of Vehicles, all of which can make an observation
on V, to measure the state of V. Based on V,’s own onboard
sensor data namely the commonly used traditional localization
devices such as IMU and GPS, it can obtain a local estimation
Z, of its state through local filtering. At the same time, each of
other vehicles in cooperation can also observe V5, and they can
obtain an estimate of V’s state & s, Z3_,s, - . . , LN s through
local filters, which are the relative states between V and them-
selves based upon their measurements through sensing devices.
Together with the estimate of their own localization &;, they can
obtain the estimate of the state of V as &, ; = &;_.s — &;. These
independent estimation results of local filters can be shared with
Vs, and then a global estimate of x, is obtained by fusing all the
local estimates using a global filter at V5. The same story applies
to all vehicles, which forms a decentralized framework.

A. Local Filtering for Single-Vehicle Local Estimation

The function of local filtering is to obtain the local estimates
of the state of the vehicle V; at observing vehicles. An observ-
ing vehicle can be either V; itself or other vehicles equipped
with sensing devices that can observe Vg, e.g. Vi, V5, ..., Vx.
According to Egs. (2), (3) and (4), various kinds of filtering
algorithms can be applied to solve the localization and mobility
tracking problem. The well-known and most commonly filter-
ing technique in mobility tracking are Kalman filtering [12],
[39], Kalman-like filtering (such as extended Kalman filter-
ing and unscented Kalman Filtering) [11], particle filter [9],
Rao-Blackwellised particle filter [9] and so on. Our proposed
framework has general technical architecture and any filtering
technique can be adopted for a local filter here. Because of
the limited space, we will just elaborate on the local filtering
technique based on Kalman filtering.

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 12, DECEMBER 2020

Algorithm 1: Kalman Filtering Based Local Filter.

Initialize: the estimation value &(1 | 1), and its
co-variance P (1] 1).
Fort=1:Tdo
Receive: the measurement value z(t + 1) from GPS,
sensing devices of other vehicle.
Measure: Acquire the command process u(t) of V.
Filtering:
Prediction Step:
Z(t+1]t)=Azy(t|t)+ Byult)
P(t+1|t)=AP(t|t)AT + B,QBL
Kalman Gain:
Kt+1)=Pt+1|t)yH (HP(t+1|
HH” + R)™!
Update Step:
et+1[t+1)=a(+1|
)+ K({t+1)z(t+1)— Hx(t+1]1)]
Pit+1|t+1)=P(t+1|
t)-K({t+1)HP({t+1]1)
End For

Kalman filtering is one of the most traditional and low-
complexity methods for tracking the evolution of a dynamic
system and can be applied here for localization and mobility
tracking of moving vehicles. A local filtering algorithm based
on Kalman filtering designed for multi-vehicles is shown in
Algorithm I. In order to accommodate multi-vehicle coopera-
tion, some modifications on the filtering processes are needed.
Here, we consider the information sharing process between
multiple vehicles during the cooperation. At each iteration, a
vehicle obtain the measurement z through GPS and IMU or other
sensing devices. The information from GPS and IMU provides
the measurement of the vehicle’s own state, and the information
from other sensing devices provides the measurement of other
vehicles’ state. Then the prediction and the update procedures
are conducted to estimate the state of the tracked vehicle. If the
tracked vehicle is not itself, then the estimation would be sent
to the target vehicle via communication links. It is worth noting
that, in the prediction step of the algorithm, we use the global
estimation &, at the previous time instance as the benchmark for
prediction to obtain the predicted estimate at the current instance.
It is different from the traditional Kalman filtering, which uses
the local estimates for prediction. Here, in our framework, the
global optimal estimate can be used as the initial value of
the filter at each iteration of local filtering. In this way, each
local filter is no longer independent, and the information shared
among all vehicles are utilized to the maximum extent.

The global estimate, which closely links all local filtering
processes at cooperating vehicles, is generated by the optimal
global filtering. In the following, we will develop the rule for
the optimal global filtering.

B. Global Filtering for Local Estimate Fusion

As mentioned in Section III-A, when Kalman filtering,
Kalman-like filtering or Particle Filtering, etc. are applied for
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a local filter, generally, the output value of the local filters above
consists of the state estimate ., i.e. the mean value, and the
second-order statistics of the estimate, i.e., the variances and
covariances. These statistical information are very important to
global filtering that combines the results of local filters to obtain
the optimal global state estimate.

The objective for global filtering is to calculate the optimal
estimate of vehicle V; from the outputs of local filters. The self-
estimate of the vehicle V, s state is denoted as &, with covariance
matrix P, and the local estimate from vehicle V; is denoted
as &; with covariance matrix P;. For most data of sensing
devices, itis true that the measurement is Gaussian and hence the
local filtering results are Gaussian. Then accordingly the global
optimal state estimate can be expressed as a linear combination
of local estimates. That is to say, the problem becomes a data
fusion problem under a linear Gaussian system, which is similar
to data fusion for single-vehicle multi-sensor [3], [40], [41].
Then we modify the multi-sensor optimal data fusion method
for navigation system in [40], and make it applicable to our
setup of multi-sensor multi-vehicle information fusion.

Under the assumptions described above, the global estimation
%4 is denoted to be

N
Tg =Y A+ A,

i=1

(14)

where A;s and Ay are the unknown weights for linear combi-
nation that need to be solved to determine, in which A; is the
weight of other vehicle’ estimate and A; is the weight of self
estimate. And the variance of & is

In order to ensure the global estimation is unbiased, the mean of
the estimates cannot be changed. Then we have the constraint
on A;s:

A;P;AT + A, P AT . (15)

(16)

According to Gaussian assumption above, the maximum like-
lihood estimate of &, would be the one that minimizes the
variance. Therefore, the global filtering becomes an optimization
problem:

N
_ P.AT P AT
AI,AZT,AN N tr(Py) = tr (Z A;P;AT + A, P Al ) ,

N
s.t. ZAZ» +A, =1,

i=1
A; and A, are positive semidefinite matrix .

a7

Lagrange multiplier method can be applied here to solve the
convex optimization problem, and accordingly we can formulate
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Algorithm 2: Cooperative Localization of V.

Initialize: the estimation value
Zserf(1]1),2;(1]1),5=1:N,and its co-variance
Py s(1]1),P;(1]1),i=1:N.

Fort=1:Tdo

Measure: Get the measurement value of V zgeif(t + 1)
and the command process w(t) through GPS, IMU and
sensing devices. And get the measurement value of
other vehicles z,iper-

Send: Send z .., to other vehicles.

Receive: the measurement value from sensing devices
and GPS of other vehicles z;(t +1),i=1: N.

Filtering:

Eaerf(t+1[t+ 1), Pors(t+1[t+1) =
LocalFilter(zself(t + 1), u(t), iself (t | t), Pself(t | t))

Fori=1: N
AT(t—l— 1) Adt T Z( ) Bdt:r ( )
Zi(t+1|t+1),P (t+1\t+ )=
LocalFilter(z] (t + 1), u(t), & (t | t), P;(t | t))

End For
Zgrobar(t+ 1|t 4+ 1), Pyopar(t + 1t +1)=
GlobalFilter(Zse1(t + 1|t + 1), Pseip(t+ 1]t + 1),
r,(t+1]|t+1),Pi(t+1[t+1),i=1N)
End For

the objective function:

i=1

L(A,a) = (ZAPATJrAPAT)
N (18)
T (ZAiJrASI)a.
=1

Finally, the optimal weights for the linear combination at the
global filter can be obtained as

N -1
AsP31<ZPi1+P51> )

i=1

(19)
N —1
A, =P, <Z P, '+ P51> .
=1

Basically, one can see that the weights are inversely proportional
to the local filtering performance.
Hence, the final result of global optimal estimate is

N
T =) A+ A, .

i=1

(20)

In summary, the overall flow of the multi-sensor multi-vehicle
(MSMV) localization and mobility tracking is shown in Algo-
rithm 2. At each time slot, there are four steps: measurement,
communications, local filtering and global filtering. Delay com-
pensation is conducted before the local filtering of other vehicles
according to the discussions presented in Section II-C.
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Fig. 2.

Internet of Vehicles with RSU.

C. Inclusion of RSU in Cooperation

In ITS, road side units (RSU) are usually introduced in the
infrastructure to provide information to the vehicle and assist the
vehicle in driving as shown in Fig. 2. In the Internet of Vehicles,
there are not only communications among vehicles (V2V), but
also communications among vehicles and RSUs (V2X).

RSU can be treated as a communicable facility with a very
precise a priori location information and can be recognized by
the vehicle sensing device. During the vehicle localization and
mobility tracking process, the vehicle sensing system recognizes
a RSU and obtains a relative position from the RSU to the
vehicle, and meanwhile the RSU broadcasts its own absolute
position coordinates to the vehicles within its communication
range. Combining these information, the vehicle can obtain its
own absolute position estimate. Since the position information of
the RSU is trustworthy and accurate, error only comes from the
vehicle sensing devices. Therefore, a RSU can greatly improve
the accuracy of localization if it is included in the cooperation.

To include RSUs in the cooperative localization and mobility
tracking, similar to Eq. (4), we can obtain the relationship
between the state and the vehicles’ sensing measurement on
aRSU as

zr%s[k] — Hrﬁswrﬂs [k] + /Urﬁs[k] 5 (21)

where x,_,; and v,_, s are the noise and the state of V, respec-
tively. Similar local filtering can be applied to obtain the state
estimate. For the vehicles that can sense a RSU and communi-
cate with the RSU, the global optimal estimation incorporating
measurements on the RSU is

N
By =) A+ A, + A,

i=1

(22)

N —1
As:P.971 Zpiil'kpsil"'_Pril )

i=1
-1

N
A, =pP;! ZPflJrPs71+Pr71 )

i=1
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N —1
—1 -1 —1 -1
A =P (Y P +P P, (23)

i=1

As discussed, RSUs can improve the positioning accuracy of
the vehicles within the RSU communication range due to the
trustworthy and accurate location information of the RSUs. On
the other hand, thanks to the cooperation among the vehicles,
the vehicles assisted by RSUs can in turn help the vehicles
that cannot directly sense and communicate with the RSUs
to also improve the positioning accuracy, thus improving the
positioning and tracking performance of the vehicles in the entire
network. This will be validated by simulations presented in the
next section.

IV. SIMULATION RESULTS

Simulation experiments are conducted to evaluate the perfor-
mance of our proposed multi-sensor multi-vehicle localization
and mobility tracking framework in different cases. Without loss
of generality, the most commonly used classical Kalman filter
is selected for all local filters, and the simulation parameters
are summarized in Table I, which are identical to the parameter
settings in [9] and [14]. It should be noted that in order to show
the advantage of our MSMV framework, the measurement noise
is set at a relatively high level, i.e., we assume fair performance
for individual sensors.

In order to thoroughly test the performance and show the ad-
vantages of our proposed multi-vehicle multi-sensor framework,
we set up three simulation scenarios: a road with fair GPS signal
but without RSU, a road with fair GPS signal and with RSU and
a tunnel where the GPS signal is very poor.

A. Case I1: A Road Without RSU

To show the performance improvement of our proposed
framework over the single-vehicle strategy, we first present the
results of localization and mobility tracking for two vehicles
in Fig. 3. The figure shows the true and estimated trajectories
of the two vehicles without the help of RSU. The vertical and
horizontal axises represent the y and x coordinates, respectively.
It can be seen that the two vehicles are changing lanes from the
trajectories in the figure. And we can see that the trajectory of
the global estimate is between the local estimates from itself and
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Fig. 4. RMSE vs the number of vehicles in cooperation with delay compen-
sation(DC) or not.

the other vehicle, and is closer to the true trajectory. For vehicle
V), the root mean squared error (RMSE) of its self position
estimation is 3.341 m and the RMSE of V5’s estimation of V;’s
position is 3.743 m. By combining the two estimates, the RMSE
of the global estimate of V;’s position is reduced to 3.043 m (a
8.9% reduction in RMSE); for vehicle V5, the RMSE of its self
position estimation is 3.1790 m and the RMSE of V; ’s estimation
of V3’s position is 4.0945 m. By combining the two estimates,
the RMSE of the global estimate of V5,’s position is reduced to
2.9175 m (a 8.2% reduction in RMSE).

To show the influence of the number of vehicles that par-
ticipate in cooperation on the performance improvement, we
gradually increase the number of vehicles in the simulations
and calculate the RMSE in the estimate of the position and the
speed with and without time delay compensation, and plot the
results in Fig. 4. We assume that each vehicle added can sense the
vehicle being measured and can establish communications with
the vehicle being measured. First of all, it can be seen that when
the number of vehicles in cooperation is small (less than 30), the
proposed MSMV localization and mobility tracking algorithm
can greatly improve the performance (e.g., a 67.09% reduction
of RMSE for position estimation and a 48.82% reduction of
RMSE for speed estimation with 10 vehicles). However, when
the number of vehicles in cooperation is large, the improvement
of accuracy would be less obvious if the number of vehicles con-
tinues to increase. At the same time, the communication burden
of system always gets heavier when more vehicles participate
in the cooperation. Therefore, it is necessary to choose specific
vehicles that participate in the cooperation.

1) Effect of Delay Compensation: In this part, we want to
compare the effect of delay compensation on accuracy. As can
be seen from Eq. (6), the time delay error mainly comes from the
time delay generated by vehicle V} measured by other vehicles.
When delay compensation is not applied, vehicle V| mistakenly
treats z; ,s[t — T;s] as z;_s[t] during the tracking process,
which introduces higher error.
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Fig. 5. RMSE in the estimate of V1’s position from different information
sources with delay compensation(DC) or not.
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Fig. 6. Trajectory of two vehicles with RSUs.

Fig. 5 shows the RMSE of V;’s self position estimate, V5’s
estimate of V;’s position with delay compensation, V,’s estimate
of V}’s position without delay compensation, global estimate of
V’s position with delay compensation and global estimate of
V’s position without delay compensation. From the simulation
results, it can be seen that the delay compensation can signifi-
cantly reduce the error (a 19.6% reduction in RMSE) introduced
by the communication delay between different vehicles, and
hence also improve the accuracy of the global estimate (a 5.7%
reduction in RMSE).

In Fig. 4, it can be seen that as the number of vehicles partici-
pating in cooperative localization increases, the communication
delay has a more significant impact on the accuracy. The reason
for this phenomenon is that the increase in the number of vehicles
reduces the weight of the GPS in forming the final estimate,
making the global estimate more affected by the error caused by
the delays during the information sharing process.

B. Case 2: A Road With RSUs

We show the performance in localization and mobility track-
ing under the help of RSU in Fig. 6. We assume that RSUs are
only placed on one side of the road and their communication
ranges cover only the upper half and do not overlap with each
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other. This is the simplest setup where the help provided by
RSUs to the vehicles is minimum. In this setup, only V] can
obtain the information of the RSU and V) can only receive one
RSU information at any particular time.

From the trajectory, we can see that the estimated trajectory
of V] is closer to the ground truth than V5. This shows that
the vehicle under the direct helps of RSUs achieves a higher
tracking accuracy than the vehicle under the indirect helps of
RSUs. Specifically, for vehicle V}, the root mean squared error
(RMSE) of its self position estimation is 2.1265 m and the RMSE
of V,’s estimation of V;’s position is 2.3904 m. By combining
the two estimates and the estimate from RSU, the RMSE of
the global estimate of V;’s position is reduced to 1.0671 m (a
50% reduction in RMSE). For vehicle V5, the RMSE of its self
position estimation is 3.1442 m and the RMSE of V) ’s estimation
of V,’s position is 4.3466 m. By combining the two estimates,
the RMSE of the global estimate of V,’s position is reduced to
2.1887 m (a 30.4% reduction in RMSE). Compared with the
results in the scenario without RSUs, it can be seen that even
when the vehicle is out of the RSU’s communication range, it can
be indirectly helped to improve the accuracy. Note that this is the
performance gain obtained by cooperations between only two
vehicles. If more vehicles are participated in, more significant
improvements are expected.

We also conduct an experiment to illustrate the relationship
between RMSE and the number of vehicles in cooperation in
the case of RSUs, as shown in Fig. 7. It can be seen that in this
case the improvement of the positioning from more vechilce
cooperations is not as significant as the case without the RSU.
This is because that the RSU has already provided the vehicle
with a higher tracking accuracy and the increase in the number
of vehicles contribute little to the estimation performance.

C. Case 3: A Road With a Tunnel

We have also set up a more challenging and realistic scenario,
where multi-vehicle cooperations are more desirable. Based
upon the previous road, we set up a tunnel which extends from
the 300th meter to the 400th meter along the z direction. In
order to model the poor performance of GPS in the tunnel, the
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GPS positioning error is set to be ten times larger. As shown
in Fig. 8, for both vehicles, the self-estimated tracking results
based on GPS deviate significantly from the ground truth when
the vehicles are traveling in the tunnel. However, the errors of
the global estimates are still maintained within an acceptable
range. Fig. 9 shows the tracking error of V; and V, during
driving. After the vehicle enters the tunnel, the error of GPS
positioning is large, but the vehicle can achieve an accurate
positioning with the help of the other vehicle. This indicates
that our proposed MSMYV localization and mobility tracking can
successfully address the issue of unstable GPS signals in various
environments.
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TABLE I
SIMULATION PARAMETERS
Discrete time step 0.1 [s]
Duration of simulation 20 [s]
Covariance of v in Eq. (4) 74 [m/s%]?
Covariance of v in Eq. (3) 64 [m/s%]?
Variances of w (0.1,0.15,0.2,0.2)’

V. CONCLUSION

In this paper, a multi-sensor multi-vehicle (MSMV) local-
ization and mobility tracking framework was presented for
autonomous driving. We designed a local filter and a global
filter to form a two-layer structure for the cooperation localiza-
tion and tracking. Most traditional filtering techniques, such as
Kalman filters, Kalman-like filters and particle filters etc., can
be applied to the framework. Compared with single-sensor or
single-vehicle multi-sensor solutions, the scheme we proposed
uses the information that vehicles obtained for each other. By
sharing information, the vehicle in the Internet of Vehicles not
only improves its own tracking accuracy, but also helps others.

Simulations verify that the accuracy of localization and
tracking has been obviously improved by cooperations among
multiple sensors with low cost and high efficiency, especially
when RSUs are available. Besides, we have also shown that
thanks to the cooperation, the problem of the GPS sensitivity to
environments can be largely solved.

In the future, we will look for a strategy to select vehicles to
participate in the cooperation to optimize the tradeoff between
performance and efficiency. On the other hand, identifying and
correcting error messages from vehicles in cooperation is also
under consideration.
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