
A Reality-Conforming Approach for QoS

Performance Analysis of AFDX in Cyber-Physical

Avionics Systems

Boyang Zhou, Liang Cheng

Department of Computer Science and Engineering, Lehigh University, USA.

boz319@lehigh.edu, cheng@lehigh.edu

Abstract—AFDX (Avionics Full Duplex Switched Ethernet)
is developed to support mission-critical communications while
providing deterministic Quality of Service (QoS) across cyber-
physical avionics systems. Currently, AFDX utilizes FP/FIFO
QoS mechanisms to guarantee its real-time performance. To
analyze the real-time performance of avionic systems in their
design processes, existing work analyzes the deterministic delay
bound of AFDX using NC (Network Calculus). However, existing
analytical work is based on an unrealistic assumption leading to
assumed worst cases that may not be achievable in reality. In
this paper, we present a family of algorithms that can search for
realistic worst-case delay scenarios in both preemptive and non-
preemptive situations. Then we integrate the proposed algorithms
with NC and apply our approach to analyzing tandem AFDX
networks. Our reality-conforming approach yields tighter delay
bound estimations than the state of the art. When there are
100 virtual links in AFDX networks, our method can provide
delay bounds more than 25% tighter than those calculated by
the state of the art in our evaluation. Moreover, when using
our reality-conforming method in the design process, it leads to
27.2% increase in the number of virtual links accommodated by
the network in the tandem scenario.

I. INTRODUCTION

With the development of the avionic industry, an increasing

number of devices and functions have been added to the

aircraft Cyber-Physical Systems (CPS), which results in more

and more data transmissions across the network within aircraft

CPS [1]. Airbus has developed AFDX (Avionics Full Duplex

Switched Ethernet), standardized as ARINC 664, based on

the Ethernet technology to replace ARINC 429 that cannot

support a large number of end systems due to its limited

bandwidth. AFDX is required to provide deterministic QoS

to data flows using FP/FIFO (Fixed-Priority/First-In-First-Out)

QoS mechanisms.

Aircraft CPS components such as fly-by-wire, passenger

entertainment systems, and visionics devices take advantage

of AFDX to implement data transmission, which then affect

the performance of the aircraft CPS [2]. For example, a

large latency can seriously degrade the utility, usability, and

acceptability of visionics devices [3]. Therefore, it is critical

to (i) analyze the delay performance of AFDX to ensure

that the end-to-end communication delay in aircraft CPS can

be bounded, and (ii) increase network utilization under the

resource constraint in the process of designing the aircraft

CPS. Low network utilization may result in a non-optimal

hardware footprint leading to flight weight increases and fuel

wastes [2].

The state of the art in delay analysis of AFDX uses NC

to estimate the delay bounds of traffic flows. However, it is

based on an unrealistic assumption as illustrated in Section III,

which introduces pessimism to the analytical results. Thus, the

motivation of our work is finding a reality-conforming method

to provide accurate delay bound estimations of AFDX, which

also helps the design of AFDX networks.

In this research, based on QoS mechanisms including

preemptive and non-preemptive scheduling used by AFDX

switches in practice, we design a family of algorithms that can

search for realistic worst-case delay scenarios. We integrate the

proposed algorithms with NC, which enable realistic per-flow

modeling of services for accurate delay bound estimations. Our

approach is then applied to analyzing tandem AFDX networks

and the results show that it can obtain tighter delay bounds

than those identified by the state of the art. Using our method

in the design process, we can improve QoS in AFDX in terms

of delay and network utilization.

In this paper, Section II discusses the background and

related work of AFDX and NC. Section III describes the

research problems and explains why the analysis by the state of

the art deviates from reality. Section IV presents algorithms of

worst-case scenario identification, and our reality-conforming

methods. Section V evaluates the performance of our approach

and its impact on AFDX networks. Finally, we conclude our

research and discuss the future work in Section VI.

II. BACKGROUND KNOWLEDGE AND RELATED WORK

A. AFDX

AFDX networks take responsibility of airborne data trans-

mission in modern cyber-physical avionics systems. There are

two types of devices in AFDX, which are end systems and

switches. In AFDX, data exchanges between end systems are

performed through virtual links. A virtual link is a unidirec-

tional logic path from one source end system to one or more

destination end systems.

Each virtual link has a Bandwidth Allocation Gap (BAG)

and a maximum frame size. A BAG defines the minimum

time interval between two consecutive frames of a virtual link

[4]. The value of the BAG is a power of 2, and the unit is

milliseconds. The maximum frame size lmax of a virtual link



ranges from 64 bytes to 1518 bytes. The frame size of a virtual

link is constrained between 64 bytes and lmax bytes.

B. Network Calculus

NC is a well-known tool to analyze network performance

based on min-plus algebra. Convolution and deconvolution of

functions f1 and f2 are basic operations in min-plus algebra,

which are defined as

convolution (f1⊗f2)(d) = inf
0≤s≤d

{f1(d−s)+f2(s)}, (1)

deconvolution (f1�f2)(d) = sup
u≥0

{{f1(d+u)−f2(u)}. (2)

The basic principle of calculating maximum end-to-end

delay bounds is to find the upper bound of the incoming

cumulative function and the minimum service that the switch

can provide. The cumulative function of a flow shows the

cumulative data amount varying over time, which is non-

negative and non-decreasing. The upper bound of the cumu-

lative function of an incoming flow during any backlogged

period is called its arrival curve.

Given that A(t) is the cumulative function of the incoming

flow, the arrival curve α(t) of the flow is given by

∀0 ≤ s ≤ t, A(t)−A(s) ≤ α(t− s). (3)

Equation 3 describes the arrival process in the worst case. In

this paper, we use leaky bucket arrival curves αρ,σ(t) = ρt+σ,

where ρ is the data rate and σ is the burst, which profile

periodic flows well.

The service curve is a property of the switch. It defines

the minimum amount of service that the switch can provide.

Suppose A(t) is the cumulative function of the incoming flow,

and A′(t) is the cumulative function of the switch’s outgoing

flow. The service curve β(t) of a switch is defined if and only

if

A′(t) ≥ (A⊗ β)(t). (4)

In this paper, we use a rate-latency service curve β(t)R,T =
R(t−T ), where R is the rate of the link and T is the latency

in the switch. When a flow with an arrival curve α passes a

switch with a service curve β, the delay bound of the flow is:

delay : ∀t ≥ 0 : D(t) ≤ inf{d ≥ 0|(α� β)(−d) ≤ 0}. (5)

When there are several flows passing the same switch, each

flow is assigned a part of the service curve based on the

scheduling algorithm. That part of the service owned by the

flow is defined as the leftover service curve of the flow.

III. RESEARCH PROBLEMS

In this section, we first summarize the assumption used by

the state of the art for leftover service curve calculations. Then

an AFDX example is studied to reveal that such assumption

leads to impossible frame processing scenarios in reality.

Lastly, we present the realistic scenario and research questions.

A. The Assumption Made by the State of the Art

In the existing work of analyzing AFDX networks using

NC [5] [6] [7], the way to calculate the leftover service curve

βi(t) of V Li can be expressed in the following equation:

βi(t) = [β(t)−
∑

P (n)≤P (i)

αn(t)− max
P (k)>P (i)

σk]
+ (6)

In Equation 6, β(t) is the service curve of the switch, and

αn(t) is the arrival curve of V Ln. σn is the burst of the arrival

curve of V Ln. P (n) is the priority of V Ln. V Ln has a higher

priority than V Li if P (n) < P (i).
Suppose β(t) = r(t − T ) and αn(t) = ρnt + σn. The

delay bound of V Li derived from Equation 6 is Di =
(σi+

∑

P (n)≤P (i)

σn+ max
P (k)>P (i)

σk+rT )

(r−
∑

P (n)≤P (i)

ρn)
. The physical meaning of the

result assumes that all bits from virtual links with priorities

higher than or equal to V Li arrive in the period of (σi +∑
P (n)≤P (i)

σn + max
P (k)>P (i)

σk + rT )/r should be transmitted

before the first frame of the V Li. This assumption has two

defects, which do not conform to the reality. First, the state

of the treat the delay of the switch as a virtual burst rT .

According to the result of Di in the previous paragraph,

this virtual burst rT introduces a delay of rT
r−

∑

P (n)≤P (i)

ρn
,

which is larger than T . However, since T is the delay of the

switch, which should be a constant, Equation 6 makes the

result conservative. Another defect is that the arrival curve

uses the fluid model, which means that there are bits arriving

at any time point. In AFDX networks, flows are periodic,

and incoming cumulative curves are step functions. Thus, the

fluid model makes the result conservative. In Section III-B,

we present an example showing the difference between the

outgoing processing order derived from the state of the art

and the reality.

B. The Processing Order Assumed by the State of the Art

Figure 1 shows an AFDX example where the assumption

described by Equation 6 does not hold in reality. Figure 1(a)

shows the properties of three virtual links. In this example,

all three virtual links have the same priority, and V L1 is the

virtual link of interest, which is the flow or virtual link that

we want to find the delay bound. The BAG values of V L1,

V L2 and V L3 are 2 ms, 4 ms and 8 ms, and the maximum

frame size of V L1, V L2 and V L3 is 512 bits. We define the

hyperperiod as the least common multiple of periods of all

flows, which is 8 ms in this scenario. We define the jth frame

of V Li as V Lj
i in each hyperperiod.

In this example, all three virtual links pass the same switch

to the same destination. For the simplicity of illustration, we

use 1 Mbps as the rate of the service curve and 1 ms as

the latency of the service curve. Thus, the service curve is

β(t) = 1 ∗ (t− 1 ∗ 10−3), where the unit of the rate is Mbps,

and the unit of the delay is second.

In each hyperperiod V L1, V L2, and V L3 sends 4 frames,

2 frames, and 1 frame, respectively. Knowing the maximum



Fig. 1: Worst-case scenarios for frames in V L1 when all virtual

links have the same priority passing through the same switch

frame size limax and the BAG value Bi of V Li, the arrival

curve of V Li can be calculated using Equation 7.

αi(t) = limax/Bi ∗ t+ limax (7)

The leftover service curves of V Li can be derived using

Equation 6. Then, using Equation 5, we can get the maximum

delay bound of V Li. For V L1, the delay bound is about

3.1 ms. The total amount of data being transmitted when

V L1
1 finishes its transmission can be calculated by substituting

t = 3.1 ∗ 10−3 into β(t), which is 2100 bits. The maximum

frame size of V L1
1 itself should be subtracted from 2100

bits. Thus, the amount of data transmitted before V L1
1 is

(2100− 512 = 1588) bits.

This may imply a worst-case scenario illustrated as Figure

1(b), which shows the processing order of frames assumed by

the model (i.e., Equation 6) used by the state of the art. V L1
1

needs to wait for V L1
2, V L2

2, V L1
3.

However, this worst-case scenario cannot be realized. For

example, V L1
1 must arrive at the switch ahead of V L2

2. Since

the switch has a FIFO policy and V L1 and V L2 have the

same priority, V L1
1 must be processed before V L2

2. The reason

why V L2
2 arrives later than V L1

1 is that AFDX switch has a

maximum allowed jitter. According to the AFDX standard [8],

the maximum jitter should be less than 500 µs [9].

C. The Reality and Research Questions

Since the smallest BAG value is 2 ms and the maximum

jitter is 500 µs, the first frame of any virtual link should arrive

before all second frames from other virtual links if all virtual

links start the transmissions at the same time. Therefore, before

the transmission of the first frame of the virtual link of interest,

there is exactly one frame from all other virtual links that can

be transmitted in the worst case. Figure 1(c) shows the worst-

case condition encountered by V L1 in reality. It is clear that

the assumed scheduling or processing order in Figure 1(b)

leads to an unnecessarily conservative delay estimation.

Based on the previous analysis, we can define the research

problems of this paper. (i) How should we identify reality-

based worst-case scenarios for AFDX network analyses? (ii)

How should the worst-case delay bounds be calculated to

reflect the reality for NC analysis?

IV. ALGORITHMS TO FIND WORST-CASE SCENARIOS AND

THEIR INTEGRATION WITH NC

To solve the first research question mentioned in Section

III, which is how to identify worst-case scenarios, we propose

two algorithms in AFDX networks under both preemptive and

non-preemptive situations. Although frame preemption is not

mandatory in AFDX, we develop an algorithm for it because

it may be implemented in switches to guarantee the service for

high-priority virtual links [10]. We use dynamic programming

to find all sji of V Li, and then find smax
i , where smax

i =
max(s1i , s

2
i , ..., s

n
i ), and sji is the maximum number of bits

from other virtual links transmitted between the arrival time

of V Lj
i and the time finishing the transmission of the frame. n

is the number of frames of V Li in each hyperperiod. Thus, sji
represents the worst-case scenario encountered by V Lj

i , and

smax
i represents the worst-case scenario for V Li.

A. An algorithm for the worst-case scenario with frame pre-

emption

To find smax
i under preemptive scenarios, we develop an

algorithm as shown in Algorithm 1, which is called Seeking

Frames with Frame Preemption (SFFP), to identify the worst-

case scenario experienced by the virtual link of interest. In

this algorithm, V Li is the virtual link of interest. hp is the

set containing all virtual links that have priorities higher than

V Li. ep contains all virtual links having the same priority as

V Li except V Li itself, and jt is the minimum jitter of V Li

and all virtual links that influence V Li.

V L.BAG, V L.jitter, and V L.lmax represent the BAG

value, the jitter, and the maximum frame size of virtual link

V L, respectively. temp is the total size of all the frames

transmitted ahead of V Lj
i plus the size of V Lj

i itself because

the transmission of V Lj
i can be interrupted by high-priority

frames. Array l stores the number of frames of virtual links in

hp that can be transmitted before V Lj
i . For example, l[2] = 4

means that there are 4 frames belonging to hp[2] transmitted

before V Lj
i .

To find smax
i , we need to check all frames of V Li in each

hyperperiod. The for loop in Line 8 is used to find all sji for

n frames of V Li. Since temp is used to record the total size

of all the frames transmitted ahead of V Lj
i plus the size of

V Lj
i itself, we can derive sji from temp in every iteration.

We initialize temp to the sum of all maximum frame sizes of

virtual links in hp and ep plus the maximum frame size of

V Li as there is at least one frame from each virtual link that



Algorithm 1: Seeking Frames with Frame Preemption

Input: Set hp, Set ep, Set lp, VL V Li, Bandwidth R,
Hyperperiod H .

Output: smax
i , which is the data quantity w.r.t to the largest

delay experienced by V Li.
1 k ← hp.length, l← an array of k element, n← H

V Li.BAG

2 l[1...k] = 1, jt← V Li.jitter, flag ← 1, res← 0
3 temp← V Li.lmax

4 for V L in hp do
5 temp← temp+ V L.lmax, jt← min{jt,VL.jitter}

6 for V L in ep do
7 temp← temp+ V L.lmax, jt← min{jt,VL.jitter}

8 for j ← 1 to n do
9 if j 6= 1 then

10 for V L in ep do
11 if ((j− 1) ∗V Li.BAG%V L.BAG == 0) then
12 temp = temp+ V L.lmax

13 while flag do
14 flag ← 0, m← 0
15 while m < k do
16 if (temp/R) + jt ≥ hp[m].BAG ∗ l[m] then
17 flag ← 1, l[m]← l[m] + 1
18 temp← temp+ hp[m].lmax

19 m← m+ 1

20 res←
max{res, temp−V Li.BAG∗(j−1)∗R−V Li.lmax}

21 temp←
max{temp+V Li.lmax, j∗V Li.BAG∗R+V Li.lmax}

22 return res

has an equal or higher priority than V Li transmitted ahead of

V L1
i in the worst case. All elements in l are initialized to 1.

We need to search whether there is more than one frame

from each virtual link that can be transmitted before V Lj
i

iteratively. Since each virtual link having the same priority as

V Li can contribute at most one frame to sji , we only need to

search virtual links in hp. The inner while loop in line 15 is

used to check whether there are more than l[m] frames that

can be transmitted ahead of V Lj
i in hp[m]. (temp/R)+ jt is

the time to finish transmitting V Lj
i and all frames before it.

hp[m].BAG∗l[m] is the earliest arrival time of the (l[m]+1)th
frame of hp[m]. Thus, (temp/R) + jt > hp[m].BAG ∗ l[m]
represents whether the (l[m]+1)th frame of hp[m] transmitted

before V Lj
i . If it does, we need to update l[m], temp and

flag. flag is used to control the outer while loop in Line 13.

flag is true meaning that there was an update in the previous

iteration.

Line 20 is used to compute sji from temp and compare

the current sji with the previous maximum value. Because the

earliest arrival time of V Lj
i is V Li.BAG ∗ (j − 1), the first

V Li.BAG ∗ (j − 1) ∗ R bits of data does not influence the

delay experienced by V Lj
i . Then, we also need to subtract

V Li.lmax from temp because this term is the size of V Lj
i

itself.

Line 21 is used to update temp for the next iteration. The

initial number of bits transmitted before V L
(j+1)
i equals to

temp+V Li.lmax. Since the earliest arrival time of V L
(j+1)
i is

j∗V Li.BAG and the transmission of frame can be interrupted

due to the frame preemption, temp must be larger than or

equal to j ∗ V Li.BAG ∗R+ V Li.lmax. When the algorithm

finishes its execution, res is smax
i that we want to find.

B. An algorithms for the worst-case scenario in the non-

preemptive situation

The algorithm for the non-preemptive situation is called

Seeking Frames without Frame Preemption (SFNFP). The

main difference between Algorithm SFNFP and Algorithm

SFFP is that the frame size of V Li is not considered in

temp because the transmission cannot be interrupted. Thus,

in Algorithm SFNFP, we remove V Li.lmax from temp, and

add mSize, which is the maximum burst of flows having lower

priorities than V Li, to temp. The final result returned by the

algorithm is smax
i in the non-frame preemption scenario.

Both algorithms have a time complexity O(numV L ∗ w),

where numV L is the number of virtual links, and w is the

average number of frames of all virtual links in each hyper-

period. Thus, it is not time-consuming when using them to

derive reality-conforming leftover service curves. We discuss

how to integrate the results of the two algorithms with NC to

calculate delay bounds of virtual links in Section IV-C.

C. Integration of the Algorithms with NC

We put forward an approach to analyzing the delay perfor-

mance of virtual links using smax
i obtained by the previous

algorithms. To analyze the delay performance of virtual links,

we first need to calculate the leftover service curve for each

virtual link. Theorem 1 provides a way to calculate leftover

service curves using smax
i .

Theorem 1: Suppose m time-synchronized periodic virtual

links, meaning that all periodic virtual links start the trans-

mission at the same time, pass the same switch, and V Li is

the virtual link of interest. The maximum frame size of V Li

is limax. The service curve of the switch is β(t). Then, the

leftover service curve βi(t) of V Li can be computed by

βi(t) = [β(t)− smax
i ]+ (8)

, where [a]+ means max{a, 0}.

Knowing the leftover service curves, delay bounds can be

calculated using Equation 5.

V. EVALUATION

In this section, we evaluate our reality-conforming approach

by comparing its delay bound estimations with those obtained

by the state of the art (i.e. Equation 6). We use a tandem

network with different numbers of virtual links as shown in

Figure 2 to evaluate the performance of our approach. In

the evaluation, we use the DiscoDNC toolbox to perform the

calculation of NC [11].

The network consists of 10 switches and n virtual links of

the same path. Virtual links are assigned with BAG values

from 2 ms to 128 ms, and frame sizes range from 256 bits to



12000 bits iteratively. We vary the number of virtual links n.

The bandwidth of switches is set as 100 Mbps, which is the

bandwidth of real AFDX switches. The latency of switches is

assumed to be 0.1 ms.

Current implementations of AFDX networks use two pri-

orities [12]. Since avionics CPS becomes more and more

complicated, additional priorities may be needed in AFDX

networks to provide deterministic QoS [13]. Thus, we discuss

scenarios where systems have two or eight priorities. The

reason for choosing eight priorities is that the same number of

priorities is used in TSN standards [14], which are specifically

designed for traffic with different QoS requirements, including

hard real-time ones.

Fig. 2: Network topology and virtual links for evaluations

We compare the delay bounds obtained by our approach

and the state of the art. Figure 3 shows the results of the one-

priority scenario and the two-priority scenario. We compare

two methods when there are 20 and 100 virtual links in AFDX

networks.

The previous work (i.e. the state of the art) did not study

how to derive leftover service curves when there exists frame

preemption in AFDX networks. Since frame preemption elim-

inates the influence of the low-priority flows on the flow of

interest, we use Equation 9 to calculate the leftover service

curves when switches support frame preemption [15].

βm(t) = [β(t)−
∑

P (n)≤P (m)

αn(t)]
+ (9)

Virtual links are assigned priorities based on the parity

of their ID. For example, V L1, V L3, and V L5 have a low

priority, and V L2, V L4, and V L6 have a high priority in the

two-priority scenario. Results of two-priority and one-priority

scenarios are shown in Figure 3. The x-axis of the figures is

the ID of the VL, and the y-axis is the delay bound.

From Figure 3, we can conclude that whatever the scenario

is, our approach always derives tighter delay bounds than the

state of the art. The reason for it is that our reality-conforming

method removes the pessimism introduced by the fluid model

and the unrealistic processing order of frames in AFDX. Since

we can draw the same conclusion from the results of eight-

priority scenarios, we do not show the results of eight-priority

scenarios in the evaluation due to the page limit. We calculate

the percentage decrease of the delay bounds derived from our

method compared with the state of the art to the decrement of

delay bounds. The percentage decrease p is defined as

p =
mds −mdr

mds
. (10)

Fig. 3: Comparison between our reality-conforming method

and the state of the art in the one-priority and the two-priority

scenarios

, where mds is the average delay bound of the state of the art,

and mdr is the average delay bound of our reality-conforming

method.

Table I shows the percentage decrease in different scenarios.

We can see that when all flows have the same priority, our

method achieves the largest improvement. The percentage

decrease is not significant when there are only 20 virtual links

in the network. However, if we increase the number of virtual

links to 100, the percentage decrease increases significantly. In

the two-priority and the one-priority scenarios, the percentage

decrease is more than 30% when there are 100 virtual links

because more pessimism is introduced by Equation 6 when

the number of virtual links is large. The decrease of delay

bounds of virtual links can help design AFDX networks

more efficiently. Using our method, the same network can be

designed to accommodate more virtual links.

To show the improvement in the design process, we compare

the average delay bounds of our method and the state of

the art when the network has different numbers of virtual

links. We evaluate the average delay bounds in the two-priority

scenario without frame preemption, which is the most popular

implementation of AFDX. Figure 4 shows the result. The

x-axis is the number of virtual links, and the y-axis is the

average delay bounds. The blue line shows the average delay

bounds computed by the state of the art, and the orange line

shows the average delay bounds calculated using our reality-

conforming method. The average delay bounds represent the



TABLE I: Average percentage decrease of the delay bounds using our method compared with those of the state of the art

One-priority Scenario Two-priority Scenario Eight-priority Scenario

Number of virtual links With Frame
Preemption

Without Frame
Preemption

With Frame
Preemption

Without Frame
Preemption

With Frame
Preemption

Without Frame
Preemption

20 6.1% 6.1% 4.7% 4.6% 4.7% 4.5%

100 36.6% 36.6% 30.7% 30.5% 25.3% 25.2%

Fig. 4: Average delay bounds of the reality-conforming method

and the state of the art when the network has different numbers

of virtual links

delay performance of the network.

As we observe from Figure 4, the average delay bound

calculated using the state of the art when there are 60 virtual

links in the network is 3.39 ms, which is similar to the average

delay bound when there are 80 virtual links computed by our

reality conforming method. The network utilization increases

using our method because the same network can accommodate

20 more virtual links based on analytical estimations in the

design process. Thus, our method can help reduce network

resource needs in the design, which means that the number of

switches used by the network might decrease, leading to the

cost and weight reduction of the system [2]. When designing

the two-priority non-frame preemption network using our

method, the network can accommodate 27.2% more virtual

links than the one designed by the state of the art on average

according to Figure 4.

VI. CONCLUSION

In this paper, we have designed a family of algorithms

and integrate them with NC to analyze the delay performance

of cyber-physical avionics systems backboned by AFDX net-

works. Using our method, we can achieve more than a 25%

decrease of delay bound estimations in tandem scenarios

with 100 virtual links compared with the state of the art.

Tighter delay bound estimations contribute to a larger number

of flows accommodated by the network in the CPS design.

Thus, using the same amount of resource, we can achieve a

significant increase in accommodating the number of virtual

links by using our reality-conforming method in the design

process. This QoS performance analysis of AFDX conforming

to the reality of cyber-physical avionics systems results in the

decrease of the number of switches needed by the AFDX

network and the associated cost and weight reduction of the

system.

VII. ACKNOWLEDGEMENT

This work is supported by NSF Award No. 1646458.

Any opinions, findings, and conclusions or recommendations

expressed in this paper are those of the author(s) and do not

necessarily reflect the views of the sponsors of the research.

REFERENCES

[1] K. Sampigethaya and R. Poovendran, “Cyber-physical system frame-
work for future aircraft and air traffic control,” in 2012 IEEE Aerospace

Conference, pp. 1–9.
[2] ——, “Aviation cyber–physical systems: Foundations for future aircraft

and air transport,” Proceedings of the IEEE, vol. 101, no. 8, pp. 1834–
1855, 2013.

[3] R. E. Bailey, J. Arthur III, S. P. Williams, and L. J. Kramer, “Latency
in visionic systems: Test methods and requirements,” in RTO HFM

Workshop, 2005.
[4] R. Scarduelli, P.-A. Bourdil, S. D. Zilio, D. L. Botlan, and P.-A. Bourdil,

“Time-accurate Middleware for the Virtualization of Communication
Protocols,” arXiv preprint arXiv:1805.09256, 2018.

[5] M. Tawk, X. Liu, L. Jian, G. Zhu, Y. Savaria, and F. Hu, “Optimal
scheduling and delay analysis for AFDX end-systems,” SAE Technical
Paper, Tech. Rep., 2011.

[6] F. Frances, C. Fraboul, and J. Grieu, “Using network calculus to optimize
the afdx network,” in 2006 Proceedings of ERTS.

[7] A. Finzi, A. Mifdaoui, F. Frances, and E. Lochin, “Network calculus-
based timing analysis of AFDX networks with strict priority and
TSN/BLS shapers,” in 2018 IEEE 13th International Symposium on

Industrial Embedded Systems (SIES), pp. 1–10.
[8] R. Mancuso, A. V. Louis, and M. Caccamo, “Improving bandwidth

utilization with deterministic delivery guarantees in AFDX through
traffic phase-shifting,” Tech. Rep., 2015.

[9] J. Ermont, S. Mouysset, J.-L. Scharbarg, and C. Fraboul, “Message
scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture,”
in Proceedings of the 26th International Conference on Real-Time

Networks and Systems, 2018, pp. 234–242.
[10] D. Thiele and R. Ernst, “Formal worst-case performance analysis of

time-sensitive Ethernet with frame preemption,” in 2016 IEEE 21st Inter-

national Conference on Emerging Technologies and Factory Automation

(ETFA), pp. 1–9.
[11] S. Bondorf and J. B. Schmitt, “The discodnc v2: a comprehensive

tool for deterministic network calculus,” in Proceedings of the 8th

International Conference on Performance Evaluation Methodologies and

Tools, 2014, pp. 44–49.
[12] T. Hamza, J.-L. Scharbarg, and C. Fraboul, “Priority assignment on

an avionics switched ethernet network (qos afdx),” in 2014 10th IEEE

Workshop on Factory Communication Systems (WFCS 2014). IEEE,
2014, pp. 1–8.

[13] O. Hotescu, K. Jaffrès-Runser, J.-L. Scharbarg, and C. Fraboul, “Mul-
tiplexing avionics and additional flows on a qos-aware afdx network,”
in 2019 24th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA). IEEE, 2019, pp. 282–289.
[14] J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE

Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, 2018.
[15] J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-

istic queuing systems for the internet. Springer Science & Business
Media, 2001, vol. 2050.


