A Reality-Conforming Approach for QoS
Performance Analysis of AFDX in Cyber-Physical
Avionics Systems

Boyang Zhou, Liang Cheng
Department of Computer Science and Engineering, Lehigh University, USA.
boz319@Ilehigh.edu, cheng@lehigh.edu

Abstract—AFDX (Avionics Full Duplex Switched Ethernet)
is developed to support mission-critical communications while
providing deterministic Quality of Service (QoS) across cyber-
physical avionics systems. Currently, AFDX utilizes FP/FIFO
QoS mechanisms to guarantee its real-time performance. To
analyze the real-time performance of avionic systems in their
design processes, existing work analyzes the deterministic delay
bound of AFDX using NC (Network Calculus). However, existing
analytical work is based on an unrealistic assumption leading to
assumed worst cases that may not be achievable in reality. In
this paper, we present a family of algorithms that can search for
realistic worst-case delay scenarios in both preemptive and non-
preemptive situations. Then we integrate the proposed algorithms
with NC and apply our approach to analyzing tandem AFDX
networks. Our reality-conforming approach yields tighter delay
bound estimations than the state of the art. When there are
100 virtual links in AFDX networks, our method can provide
delay bounds more than 25% tighter than those calculated by
the state of the art in our evaluation. Moreover, when using
our reality-conforming method in the design process, it leads to
27.2% increase in the number of virtual links accommodated by
the network in the tandem scenario.

I. INTRODUCTION

With the development of the avionic industry, an increasing
number of devices and functions have been added to the
aircraft Cyber-Physical Systems (CPS), which results in more
and more data transmissions across the network within aircraft
CPS [1]. Airbus has developed AFDX (Avionics Full Duplex
Switched Ethernet), standardized as ARINC 664, based on
the Ethernet technology to replace ARINC 429 that cannot
support a large number of end systems due to its limited
bandwidth. AFDX is required to provide deterministic QoS
to data flows using FP/FIFO (Fixed-Priority/First-In-First-Out)
QoS mechanisms.

Aircraft CPS components such as fly-by-wire, passenger
entertainment systems, and visionics devices take advantage
of AFDX to implement data transmission, which then affect
the performance of the aircraft CPS [2]. For example, a
large latency can seriously degrade the utility, usability, and
acceptability of visionics devices [3]. Therefore, it is critical
to (i) analyze the delay performance of AFDX to ensure
that the end-to-end communication delay in aircraft CPS can
be bounded, and (ii) increase network utilization under the
resource constraint in the process of designing the aircraft
CPS. Low network utilization may result in a non-optimal

hardware footprint leading to flight weight increases and fuel
wastes [2].

The state of the art in delay analysis of AFDX uses NC
to estimate the delay bounds of traffic flows. However, it is
based on an unrealistic assumption as illustrated in Section III,
which introduces pessimism to the analytical results. Thus, the
motivation of our work is finding a reality-conforming method
to provide accurate delay bound estimations of AFDX, which
also helps the design of AFDX networks.

In this research, based on QoS mechanisms including
preemptive and non-preemptive scheduling used by AFDX
switches in practice, we design a family of algorithms that can
search for realistic worst-case delay scenarios. We integrate the
proposed algorithms with NC, which enable realistic per-flow
modeling of services for accurate delay bound estimations. Our
approach is then applied to analyzing tandem AFDX networks
and the results show that it can obtain tighter delay bounds
than those identified by the state of the art. Using our method
in the design process, we can improve QoS in AFDX in terms
of delay and network utilization.

In this paper, Section II discusses the background and
related work of AFDX and NC. Section III describes the
research problems and explains why the analysis by the state of
the art deviates from reality. Section IV presents algorithms of
worst-case scenario identification, and our reality-conforming
methods. Section V evaluates the performance of our approach
and its impact on AFDX networks. Finally, we conclude our
research and discuss the future work in Section VI.

II. BACKGROUND KNOWLEDGE AND RELATED WORK
A. AFDX

AFDX networks take responsibility of airborne data trans-
mission in modern cyber-physical avionics systems. There are
two types of devices in AFDX, which are end systems and
switches. In AFDX, data exchanges between end systems are
performed through virtual links. A virtual link is a unidirec-
tional logic path from one source end system to one or more
destination end systems.

Each virtual link has a Bandwidth Allocation Gap (BAG)
and a maximum frame size. A BAG defines the minimum
time interval between two consecutive frames of a virtual link
[4]. The value of the BAG is a power of 2, and the unit is
milliseconds. The maximum frame size [,,,, of a virtual link

ranges from 64 bytes to 1518 bytes. The frame size of a virtual
link is constrained between 64 bytes and [,,,, bytes.

B. Network Calculus

NC is a well-known tool to analyze network performance
based on min-plus algebra. Convolution and deconvolution of
functions f; and fo are basic operations in min-plus algebra,
which are defined as

convolution (f1® f2)(d) = 0<1181£d{f1(d—5)+f2(5)}7 (1
deconvolution (f1@f2)(d) = st;%{{fl(d—i—u)—fg(u)}. 2

The basic principle of calculating maximum end-to-end
delay bounds is to find the upper bound of the incoming
cumulative function and the minimum service that the switch
can provide. The cumulative function of a flow shows the
cumulative data amount varying over time, which is non-
negative and non-decreasing. The upper bound of the cumu-
lative function of an incoming flow during any backlogged
period is called its arrival curve.

Given that A(t) is the cumulative function of the incoming
flow, the arrival curve «(t) of the flow is given by

VO < s <t A(t) — A(s) < alt —s). 3)

Equation 3 describes the arrival process in the worst case. In
this paper, we use leaky bucket arrival curves «, ,(t) = pt+o,
where p is the data rate and o is the burst, which profile
periodic flows well.

The service curve is a property of the switch. It defines
the minimum amount of service that the switch can provide.
Suppose A(t) is the cumulative function of the incoming flow,
and A’(t) is the cumulative function of the switch’s outgoing
flow. The service curve 8(t) of a switch is defined if and only
if

A'(t) = (A® B)(t).)

In this paper, we use a rate-latency service curve 5(t) g, =
R(t—T), where R is the rate of the link and T is the latency
in the switch. When a flow with an arrival curve « passes a
switch with a service curve (3, the delay bound of the flow is:

delay : ¥t > 0: D(t) < inf{d > 0|(a @ B)(—d) < 0}. (5)

When there are several flows passing the same switch, each
flow is assigned a part of the service curve based on the
scheduling algorithm. That part of the service owned by the
flow is defined as the leftover service curve of the flow.

III. RESEARCH PROBLEMS

In this section, we first summarize the assumption used by
the state of the art for leftover service curve calculations. Then
an AFDX example is studied to reveal that such assumption
leads to impossible frame processing scenarios in reality.
Lastly, we present the realistic scenario and research questions.

A. The Assumption Made by the State of the Art

In the existing work of analyzing AFDX networks using
NC [5] [6] [7], the way to calculate the leftover service curve
Bi(t) of VL; can be expressed in the following equation:

>

P(n)<P(i)

max ox]T (6)

on(t) P(k)>P(:)
In Equation 6, (¢) is the service curve of the switch, and
v, () is the arrival curve of V' L,,. o, is the burst of the arrival
curve of V L,,. P(n) is the priority of V' L,,. V L,, has a higher
priority than V' L; if P(n) < P(i).
Suppose B(t) = r(t = T) and a,(t) = pat + o,. The
delay bgund of VL, derived from Equation 6 is D; =

(oi+ "*méﬁ‘a’fn()Jk,JrTT)
i >P(i . .
P(")S(f(_” SR . The physical meaning of the
P(n)<P(i)

result assumes that all bits from virtual links with priorities
higher than or equal to V' L; arrive in the period of (o; +
> on+ max oy + rT)/r should be transmitted
P(n)<P(i) P(k)>P(i)
before the first frame of the V L;. This assumption has two
defects, which do not conform to the reality. First, the state
of the treat the delay of the switch as a virtual burst r7.
According to the result of D; in the previous paragraph,

this virtual burst 77" introduces a delay of ——%k o
n
Pm)<P(i)

which is larger than 7. However, since 7" is the delay of the
switch, which should be a constant, Equation 6 makes the
result conservative. Another defect is that the arrival curve
uses the fluid model, which means that there are bits arriving
at any time point. In AFDX networks, flows are periodic,
and incoming cumulative curves are step functions. Thus, the
fluid model makes the result conservative. In Section III-B,
we present an example showing the difference between the
outgoing processing order derived from the state of the art
and the reality.

B. The Processing Order Assumed by the State of the Art

Figure 1 shows an AFDX example where the assumption
described by Equation 6 does not hold in reality. Figure 1(a)
shows the properties of three virtual links. In this example,
all three virtual links have the same priority, and V' L; is the
virtual link of interest, which is the flow or virtual link that
we want to find the delay bound. The BAG values of VL,
V' Ly and VL3 are 2 ms, 4 ms and 8 ms, and the maximum
frame size of V Lq, V Ly and V L3 is 512 bits. We define the
hyperperiod as the least common multiple of periods of all
flows, which is 8 ms in this scenario. We define the jth frame
of VL; as VL] in each hyperperiod.

In this example, all three virtual links pass the same switch
to the same destination. For the simplicity of illustration, we
use 1 Mbps as the rate of the service curve and 1 ms as
the latency of the service curve. Thus, the service curve is
B(t) = 1% (t — 1% 1073), where the unit of the rate is Mbps,
and the unit of the delay is second.

In each hyperperiod V Ly, V Ly, and V L3 sends 4 frames,
2 frames, and 1 frame, respectively. Knowing the maximum

BAG =2ms
Imax = 512 bits
Packet arrival time _- . - .
of VL. t
1 i t it4 ts
: BAG = 4ms :
; Inae = 512 bits :
K ;
Packet arrival time VL2
of VL, t
Y ty
BAG = Hyperperiod = 8ms
o Inax = 512 bits |

[
Packet arrival time ﬁu |\—/L3%

of VL, T, y

(a) Properties of virtual links

) Hyperperiod = 8ms |

e i
ty 15

t
t tg

(b) Scheduling\Processing order derived from the state of the art
Hyperperiod = 8ms

P
i
b t, t

(c) Scheduling\Processing order in reality

F Lz%\; L;%

ts

Fig. 1: Worst-case scenarios for frames in V' L1 when all virtual
links have the same priority passing through the same switch

frame size I,,, and the BAG value B; of V L;, the arrival

curve of V' L; can be calculated using Equation 7.

i(t) =100/ Bixt +1 (7)

max

The leftover service curves of V' L; can be derived using
Equation 6. Then, using Equation 5, we can get the maximum
delay bound of V' L;. For VL, the delay bound is about
3.1 ms. The total amount of data being transmitted when
V L1 finishes its transmission can be calculated by substituting
t = 3.1% 1072 into S(¢), which is 2100 bits. The maximum
frame size of V' L} itself should be subtracted from 2100
bits. Thus, the amount of data transmitted before VL is
(2100 — 512 = 1588) bits.

This may imply a worst-case scenario illustrated as Figure
1(b), which shows the processing order of frames assumed by
the model (i.e., Equation 6) used by the state of the art. V L}
needs to wait for VL3, VL2, VILL.

However, this worst-case scenario cannot be realized. For
example, V L1 must arrive at the switch ahead of V' L3. Since
the switch has a FIFO policy and V' L; and V Ly have the
same priority, V L} must be processed before V' L3. The reason
why V' L3 arrives later than V L} is that AFDX switch has a
maximum allowed jitter. According to the AFDX standard [8],
the maximum jitter should be less than 500 ps [9].

C. The Reality and Research Questions

Since the smallest BAG value is 2 ms and the maximum
jitter is 500 ps, the first frame of any virtual link should arrive
before all second frames from other virtual links if all virtual
links start the transmissions at the same time. Therefore, before
the transmission of the first frame of the virtual link of interest,
there is exactly one frame from all other virtual links that can

be transmitted in the worst case. Figure 1(c) shows the worst-
case condition encountered by V' L in reality. It is clear that
the assumed scheduling or processing order in Figure 1(b)
leads to an unnecessarily conservative delay estimation.

Based on the previous analysis, we can define the research
problems of this paper. (i) How should we identify reality-
based worst-case scenarios for AFDX network analyses? (ii)
How should the worst-case delay bounds be calculated to
reflect the reality for NC analysis?

IV. ALGORITHMS TO FIND WORST-CASE SCENARIOS AND
THEIR INTEGRATION WITH NC

To solve the first research question mentioned in Section
III, which is how to identify worst-case scenarios, we propose
two algorithms in AFDX networks under both preemptive and
non-preemptive situations. Although frame preemption is not
mandatory in AFDX, we develop an algorithm for it because
it may be implemented in switches to guarantee the service for
high-priority virtual links [10]. We use dynamic programming
to find all sf of VL;, and then find sj***, where s]"%* =
max(s}, s?,...,s%), and s] is the maximum number of bits
from other virtual links transmitted between the arrival time
of VL] and the time finishing the transmission of the frame. n
is the number of frames of V' L; in each hyperperiod. Thus, s]
represents the worst-case scenario encountered by VL7, and
57" represents the worst-case scenario for V' L;.

A. An algorithm for the worst-case scenario with frame pre-
emption

To find s]*** under preemptive scenarios, we develop an
algorithm as shown in Algorithm 1, which is called Seeking
Frames with Frame Preemption (SFFP), to identify the worst-
case scenario experienced by the virtual link of interest. In
this algorithm, V' L; is the virtual link of interest. hp is the
set containing all virtual links that have priorities higher than
V' L;. ep contains all virtual links having the same priority as
V' L; except VL; itself, and 5t is the minimum jitter of V L;
and all virtual links that influence V' L;.

VL.BAG, V L.jitter, and V L.l,,,, represent the BAG
value, the jitter, and the maximum frame size of virtual link
VL, respectively. temp is the total size of all the frames
transmitted ahead of V' L! plus the size of VL] itself because
the transmission of VL] can be interrupted by high-priority
frames. Array [stores the number of frames of virtual links in
hp that can be transmitted before V L. For example, {[2] = 4
means that there are 4 frames belonging to hp[2] transmitted
before VL.

To find s7"**, we need to check all frames of V' L; in each
hyperperiod. The for loop in Line 8 is used to find all s] for
n frames of V L;. Since temp is used to record the total size
of all the frames transmitted ahead of VL] plus the size of
VLg itself, we can derive sf from temp in every iteration.
We initialize temp to the sum of all maximum frame sizes of
virtual links in hp and ep plus the maximum frame size of
V' L; as there is at least one frame from each virtual link that

Algorithm 1: Seeking Frames with Frame Preemption

Input: Set hp, Set ep, Set Ip, VL V L;, Bandwidth R,
Hyperperiod H.

Output: s;***, which is the data quantity w.r.t to the largest

delay experienced by V' L;.

1 k < hp.length, | < an array of k element, n < ﬁ

2 U[1...k] = 1, jt < V L;.jitter, flag + 1, res <0

3 temp < VLilmax

4 for VL in hp do

s | temp < temp + V L.lynax, jt < min{jt, VL jitter}

6 for VL in ep do

7 L temp < temp + V L.lmaw, jt < min{jt, VL jitter}

8 for j < 1 to n do

9 if j # 1 then

10 for VL in ep do

11 if (j —1)*VL;.BAG%V L.BAG == 0) then
12 L L temp = temp + V L.lmax

13 while flag do

14 flag + 0, m <+ 0
15 while m < k do
16 if (temp/R) + jt > hp|m].BAG * l[m] then

flag < 1, I[m] < I[m] + 1
temp < temp + hp[m].lmae

17
18

19 %m<—m+1

20 res

max{res,temp—V L;. BAG*(j —1)* R—V Li.lmax }
21 temp <

max{temp+V Li.lmaz, j*V Li. BAG*R+V L;.lmax }

22 return res

has an equal or higher priority than V' L; transmitted ahead of
V L} in the worst case. All elements in [are initialized to 1.

We need to search whether there is more than one frame
from each virtual link that can be transmitted before VL]
iteratively. Since each virtual link having the same priority as
V' L; can contribute at most one frame to s], we only need to
search virtual links in hp. The inner while loop in line 15 is
used to check whether there are more than [[m] frames that
can be transmitted ahead of VL] in hp[m]. (temp/R) + jt is
the time to finish transmitting V' L? and all frames before it.
hp[m].BAG=«l[m)] is the earliest arrival time of the (I[m]+1)th
frame of hp[m|. Thus, (temp/R) + jt > hp[m|.BAG * [[m]
represents whether the ({[m]+1)th frame of hp[m] transmitted
before V' L]. If it does, we need to update [[m], temp and
flag. flag is used to control the outer while loop in Line 13.
flag is true meaning that there was an update in the previous
iteration. ‘

Line 20 is used to compute s] from temp and compare
the current s} with the previous maximum value. Because the
earliest arrival time of VL? is VL;.BAG * (j — 1), the first
VL;.BAG * (j — 1) * R bits of data does not influence the
delay experienced by V' L!. Then, we also need to subtract
V L;.lpnae from temp because this term is the size of VLg
itself.

Line 21 is used to update temp for the next iteration. The

initial number of bits transmitted before VLEj 1)

temp—+V L;.l,qz. Since the earliest arrival time of V'
j*V L;.BAG and the transmission of frame can be interrupted
due to the frame preemption, temp must be larger than or
equal to j * VL;. BAG * R+ V L;.l,q... When the algorithm
finishes its execution, res is s;*“* that we want to find.

equals to
LV s

B. An algorithms for the worst-case scenario in the non-
preemptive situation

The algorithm for the non-preemptive situation is called
Seeking Frames without Frame Preemption (SFNFP). The
main difference between Algorithm SFNFP and Algorithm
SFFP is that the frame size of V' L; is not considered in
temp because the transmission cannot be interrupted. Thus,
in Algorithm SFNFP, we remove V L;.l,,4, from temp, and
add mSize, which is the maximum burst of flows having lower
priorities than V' L;, to temp. The final result returned by the
algorithm is s[*“* in the non-frame preemption scenario.

Both algorithms have a time complexity O(numV L * w),
where numV L is the number of virtual links, and w is the
average number of frames of all virtual links in each hyper-
period. Thus, it is not time-consuming when using them to
derive reality-conforming leftover service curves. We discuss
how to integrate the results of the two algorithms with NC to
calculate delay bounds of virtual links in Section I'V-C.

C. Integration of the Algorithms with NC

We put forward an approach to analyzing the delay perfor-
mance of virtual links using s;*“* obtained by the previous
algorithms. To analyze the delay performance of virtual links,
we first need to calculate the leftover service curve for each
virtual link. Theorem 1 provides a way to calculate leftover
service curves using s;"%".

Theorem 1: Suppose m time-synchronized periodic virtual
links, meaning that all periodic virtual links start the trans-
mission at the same time, pass the same switch, and V L; is
the virtual link of interest. The maximum frame size of V L;
is 17 .. The service curve of the switch is 3(t). Then, the

leftover service curve (3;(t) of V' L; can be computed by
Bi(t) = [B(t) — s 71"

, where [a]t means max{a,0}.
Knowing the leftover service curves, delay bounds can be
calculated using Equation 5.

®)

V. EVALUATION

In this section, we evaluate our reality-conforming approach
by comparing its delay bound estimations with those obtained
by the state of the art (i.e. Equation 6). We use a tandem
network with different numbers of virtual links as shown in
Figure 2 to evaluate the performance of our approach. In
the evaluation, we use the DiscoDNC toolbox to perform the
calculation of NC [11].

The network consists of 10 switches and n virtual links of
the same path. Virtual links are assigned with BAG values
from 2 ms to 128 ms, and frame sizes range from 256 bits to

12000 bits iteratively. We vary the number of virtual links n.
The bandwidth of switches is set as 100 Mbps, which is the
bandwidth of real AFDX switches. The latency of switches is
assumed to be 0.1 ms.

Current implementations of AFDX networks use two pri-
orities [12]. Since avionics CPS becomes more and more
complicated, additional priorities may be needed in AFDX
networks to provide deterministic QoS [13]. Thus, we discuss
scenarios where systems have two or eight priorities. The
reason for choosing eight priorities is that the same number of
priorities is used in TSN standards [14], which are specifically
designed for traffic with different QoS requirements, including
hard real-time ones.

V=== |ri=#— T L >
Y!:z_ .- S1 _____ Sz === Sm _____ >
Vip=m=]____ |=s=s= N I >

Fig. 2: Network topology and virtual links for evaluations

We compare the delay bounds obtained by our approach
and the state of the art. Figure 3 shows the results of the one-
priority scenario and the two-priority scenario. We compare
two methods when there are 20 and 100 virtual links in AFDX
networks.

The previous work (i.e. the state of the art) did not study
how to derive leftover service curves when there exists frame
preemption in AFDX networks. Since frame preemption elim-
inates the influence of the low-priority flows on the flow of
interest, we use Equation 9 to calculate the leftover service
curves when switches support frame preemption [15].

>

P(n)<P(m)

Qn (t)]+)

Virtual links are assigned priorities based on the parity
of their ID. For example, VL1, V L3, and V L5 have a low
priority, and V' Ly, V L4, and V Lg have a high priority in the
two-priority scenario. Results of two-priority and one-priority
scenarios are shown in Figure 3. The x-axis of the figures is
the ID of the VL, and the y-axis is the delay bound.

From Figure 3, we can conclude that whatever the scenario
is, our approach always derives tighter delay bounds than the
state of the art. The reason for it is that our reality-conforming
method removes the pessimism introduced by the fluid model
and the unrealistic processing order of frames in AFDX. Since
we can draw the same conclusion from the results of eight-
priority scenarios, we do not show the results of eight-priority
scenarios in the evaluation due to the page limit. We calculate
the percentage decrease of the delay bounds derived from our
method compared with the state of the art to the decrement of
delay bounds. The percentage decrease p is defined as

mds — md,
p=——7—. (10)
mdg

® The state of the art
Reality-Conforming method

> 184 -o.,. ®ese, ceee, > e N N N N e
2 . g 0
£ m . £
@ 9 100
2 1w 2
1 3 650
8 1m 2
> > 600
@ 17 o
[7) [53
[S I [SH
500
172
1754367 6shNpRBLRbBLIBLD 3 3 @ @ E) 160
ID of VLs ID of VLs
(a) Comparison when all VLs have the same priority
_ 185 { g . © e . * o . _ 5001 tag 004 090,004500,004 500, 000800 500000,0040050000
j2) 180 [2}
£ £ 100
P 175 p
£ 1 c
3 3
R 165 @ so
> >
T 1w @
[} O 00
Q 5] * e ., % e e . o e o QO
150 300
133435676 nNRBLBLIBOA) 3) E) E) 100
ID of VLs o ID of VLs
(b) Comparison when there are two priorities without frame preemption
— e e e s 800 900,504 900 004 800, 00,80 09¢000400¢000400400050090
[%) 180 [}
E E 0
] 170 12}
2 2 s
3 3
o 160 o 500
g . g
g} D 400
= ® e, e o o ° o o a
140 300
1234567891011121314151617181920 0 20 £ 60 80 100

ID of VLs ID of VLs
(c) Comparison when there are two priorities with frame preemption

Fig. 3: Comparison between our reality-conforming method
and the state of the art in the one-priority and the two-priority
scenarios

, where md is the average delay bound of the state of the art,
and md, is the average delay bound of our reality-conforming
method.

Table I shows the percentage decrease in different scenarios.
We can see that when all flows have the same priority, our
method achieves the largest improvement. The percentage
decrease is not significant when there are only 20 virtual links
in the network. However, if we increase the number of virtual
links to 100, the percentage decrease increases significantly. In
the two-priority and the one-priority scenarios, the percentage
decrease is more than 30% when there are 100 virtual links
because more pessimism is introduced by Equation 6 when
the number of virtual links is large. The decrease of delay
bounds of virtual links can help design AFDX networks
more efficiently. Using our method, the same network can be
designed to accommodate more virtual links.

To show the improvement in the design process, we compare
the average delay bounds of our method and the state of
the art when the network has different numbers of virtual
links. We evaluate the average delay bounds in the two-priority
scenario without frame preemption, which is the most popular
implementation of AFDX. Figure 4 shows the result. The
x-axis is the number of virtual links, and the y-axis is the
average delay bounds. The blue line shows the average delay
bounds computed by the state of the art, and the orange line
shows the average delay bounds calculated using our reality-
conforming method. The average delay bounds represent the

TABLE I: Average percentage decrease of the delay bounds using our method compared with those of the state of the art

One-priority Scenario Two-priority Scenario Eight-priority Scenario
Number of virtual links | With Frame | Without Frame | With Frame | Without Frame | With Frame | Without Frame
Preemption Preemption Preemption Preemption Preemption Preemption
20 6.1% 6.1% 4.7% 4.6% 4.7% 4.5%
100 36.6% 36.6% 30.7% 30.5% 25.3% 25.2%
- decrease of the number of switches needed by the AFDX
c6 network and the associated cost and weight reduction of the
= —— The state of the art
o L | system.
S5 Our method
2 4 VII. ACKNOWLEDGEMENT
E’ This work is supported by NSF Award No. 1646458.
] 3 Any opinions, findings, and conclusions or recommendations
g expressed in this paper are those of the author(s) and do not
g 27 necessarily reflect the views of the sponsors of the research.
= T T T T T
< 20 40 60 80 100 REFERENCES
Num of VLs

Fig. 4: Average delay bounds of the reality-conforming method
and the state of the art when the network has different numbers
of virtual links

delay performance of the network.

As we observe from Figure 4, the average delay bound
calculated using the state of the art when there are 60 virtual
links in the network is 3.39 ms, which is similar to the average
delay bound when there are 80 virtual links computed by our
reality conforming method. The network utilization increases
using our method because the same network can accommodate
20 more virtual links based on analytical estimations in the
design process. Thus, our method can help reduce network
resource needs in the design, which means that the number of
switches used by the network might decrease, leading to the
cost and weight reduction of the system [2]. When designing
the two-priority non-frame preemption network using our
method, the network can accommodate 27.2% more virtual
links than the one designed by the state of the art on average
according to Figure 4.

VI. CONCLUSION

In this paper, we have designed a family of algorithms
and integrate them with NC to analyze the delay performance
of cyber-physical avionics systems backboned by AFDX net-
works. Using our method, we can achieve more than a 25%
decrease of delay bound estimations in tandem scenarios
with 100 virtual links compared with the state of the art.
Tighter delay bound estimations contribute to a larger number
of flows accommodated by the network in the CPS design.
Thus, using the same amount of resource, we can achieve a
significant increase in accommodating the number of virtual
links by using our reality-conforming method in the design
process. This QoS performance analysis of AFDX conforming
to the reality of cyber-physical avionics systems results in the

[1] K. Sampigethaya and R. Poovendran, “Cyber-physical system frame-
work for future aircraft and air traffic control,” in 2012 IEEE Aerospace
Conference, pp. 1-9.

, “Aviation cyber—physical systems: Foundations for future aircraft

and air transport,” Proceedings of the IEEE, vol. 101, no. 8, pp. 1834—

1855, 2013.

R. E. Bailey, J. Arthur III, S. P. Williams, and L. J. Kramer, “Latency

in visionic systems: Test methods and requirements,” in RTO HFM

Workshop, 2005.

R. Scarduelli, P.-A. Bourdil, S. D. Zilio, D. L. Botlan, and P.-A. Bourdil,

“Time-accurate Middleware for the Virtualization of Communication

Protocols,” arXiv preprint arXiv:1805.09256, 2018.

M. Tawk, X. Liu, L. Jian, G. Zhu, Y. Savaria, and F. Hu, “Optimal

scheduling and delay analysis for AFDX end-systems,” SAE Technical

Paper, Tech. Rep., 2011.

F. Frances, C. Fraboul, and J. Grieu, “Using network calculus to optimize

the afdx network,” in 2006 Proceedings of ERTS.

A. Finzi, A. Mifdaoui, F. Frances, and E. Lochin, “Network calculus-

based timing analysis of AFDX networks with strict priority and

TSN/BLS shapers,” in 2018 IEEE 13th International Symposium on

Industrial Embedded Systems (SIES), pp. 1-10.

R. Mancuso, A. V. Louis, and M. Caccamo, “Improving bandwidth

utilization with deterministic delivery guarantees in AFDX through

traffic phase-shifting,” Tech. Rep., 2015.

J. Ermont, S. Mouysset, J.-L. Scharbarg, and C. Fraboul, “Message

scheduling to reduce AFDX jitter in a mixed NoC/AFDX architecture,”

in Proceedings of the 26th International Conference on Real-Time

Networks and Systems, 2018, pp. 234-242.

D. Thiele and R. Ernst, “Formal worst-case performance analysis of

time-sensitive Ethernet with frame preemption,” in 2016 IEEE 21st Inter-

national Conference on Emerging Technologies and Factory Automation

(ETFA), pp. 1-9.

S. Bondorf and J. B. Schmitt, “The discodnc v2: a comprehensive

tool for deterministic network calculus,” in Proceedings of the Sth

International Conference on Performance Evaluation Methodologies and

Tools, 2014, pp. 44-49.

T. Hamza, J.-L. Scharbarg, and C. Fraboul, “Priority assignment on

an avionics switched ethernet network (qos afdx),” in 2014 10th IEEE

Workshop on Factory Communication Systems (WFCS 2014). 1EEE,

2014, pp. 1-8.

O. Hotescu, K. Jaffrés-Runser, J.-L. Scharbarg, and C. Fraboul, “Mul-

tiplexing avionics and additional flows on a qos-aware afdx network,”

in 2019 24th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA). 1EEE, 2019, pp. 282-289.

J. L. Messenger, “Time-sensitive networking: An introduction,” IEEE

Communications Standards Magazine, vol. 2, no. 2, pp. 29-33, 2018.

J.-Y. Le Boudec and P. Thiran, Network calculus: a theory of determin-

istic queuing systems for the internet. Springer Science & Business

Media, 2001, vol. 2050.

[2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

