
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 54 fascicule 3 mai-juin 2021

Persi DIACONIS & Robert HOUGH

Random walk on unipotent matrix groups



Annales Scientifiques de l’École Normale Supérieure
Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Yves  C

Publication fondée en 1864 par Louis Pasteur

Continuée de 1872 à 1882 par H. S-C D

de 1883 à 1888 par H. D

de 1889 à 1900 par C. H

de 1901 à 1917 par G. D

de 1918 à 1941 par É. P

de 1942 à 1967 par P. M

Comité de rédaction au 1 er juin 2021

S. B D. H

G. C C. I

G. C S. M

F. D P. S

A. D J. S

B. F S. V̃ N. 

G. G G. W

D. H

Rédaction / Editor

Annales Scientifiques de l’École Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.

Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.
Email : annales@ens.fr

Édition et abonnements / Publication and subscriptions

Société Mathématique de France
Case 916 - Luminy

13288 Marseille Cedex 09
Tél. : (33) 04 91 26 74 64. Fax : (33) 04 91 41 17 51

Email : abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 437 euros.
Abonnement avec supplément papier :

Europe : 600 e. Hors Europe : 686 e ($ 985). Vente au numéro : 77 e.

© 2021 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisation
de l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).
All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 (print) 1873-2151 (electronic) Directeur de la publication : Fabien Durand
Périodicité : 6 nos / an



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 54, 2021, p. 587 à 625

RANDOM WALK ON UNIPOTENT MATRIX GROUPS

 P DIACONIS  R HOUGH

A. – We introduce a new method for proving central limit theorems for random walk on
nilpotent groups. The method is illustrated in a local central limit theorem on the Heisenberg group,
weakening the necessary conditions on the driving measure. As a second illustration, the method is
used to study walks on the n�n uni-upper triangular group with entries taken modulo p. The method
allows sharp answers to the behavior of individual coordinates: coordinates immediately above the
diagonal require order p2 steps for randomness, coordinates on the second diagonal require order p

steps; coordinates on the kth diagonal require order p
2
k steps.

R. – Nous introduisons une nouvelle méthode pour prouver les théorèmes limites centraux
pour la marche aléatoire sur groupes nilpotents. La méthode est illustrée dans un théorème de la limite
centrale locale sur le groupe Heisenberg, affaiblissant les conditions nécessaires sur la mesure sous-
jacente. Comme deuxième illustration, la méthode est utilisée pour étudier les marches aléatoires sur le
groupe triangulaire des matrices uni-supérieures n � n avec des entrées prises modulo p. La méthode
permet des réponses précises sur le comportement des coordonnées individuelles: les coordonnées im-
médiatement au-dessus de la diagonale nécessitent un ordre p2 pour devenir aléatoire, les coordonnées
sur la deuxième diagonale nécessitent un ordre de p pas pour converger; les coordonnées sur la k-ième

diagonale nécessitent un ordre de magnitude de p
2
k pas.

1. Introduction

Let H.R/ denote the real Heisenberg group

(1) H.R/ D

8̂̂<̂
:̂
0BB@1 x z0 1 y

0 0 1

1CCA W x; y; z 2 R

9>>=>>; :
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588 P. DIACONIS AND R. HOUGH

Abbreviate
�
1 x z
0 1 y
0 0 1

�
with Œx; y; z�, identified with a vector in R3. Consider a simple random

walk on G D H.R/ driven by Borel probability measure �. For N � 1, the law of this walk
is the convolution power ��N where, for Borel measures �; � on G, and for f 2 Cc.G/,

(2) hf; � � �i D

Z
g;h2G

f .gh/ d�.g/ d�.h/:

Say that measure � is non-lattice (aperiodic) if its support is not contained in a proper
closed subgroup of G. For general non-lattice � of compact support Breuillard [6] uses the
representation theory ofG to prove a local limit theorem for the law of ��N , asymptotically
evaluating its density in translates of bounded Borel sets. However, in evaluating ��N on
Borel sets translated on both the left and the right he makes a decay assumption on the
Fourier transform of the abelianization of the measure �, and raises the question of whether
this is needed. We show that this condition is unnecessary. In doing so we give an alternative
approach to the local limit theorem onG treating it as an extension of the classical local limit
theorem on Rn. We also obtain the best possible rate. The method of argument is analogous
to (though simpler than) the analysis of quantitative equidistribution of polynomial orbits
on G from [14].

Recall that the abelianization Gab D G=ŒG;G� of G is isomorphic to R2 with projection
p W G ! Gab given by p.Œx; y; z�/ D Œx; y�. Assume that the probability measure � satisfies
the following conditions.

i. Compact support.

ii. Centered. The projection p satisfies

(3)
Z
G

p.g/d�.g/ D 0:

iii. Full dimension. Let � D hsupp�i be the closure of the subgroup of G generated by
the support of �. The quotient G=� is compact.

Section 2 gives a characterization of closed subgroups � of G of full dimension.
Under the above conditions, the central limit theorem for � is known. Let .dt /t>0 denote

the semigroup of dilations given by

(4) dt .Œx; y; z�/ D Œtx; ty; t
2z�

and denote the Gaussian semigroup .�t /t>0 defined by its generator (see [6], [26])

A f D
d

dt

ˇ̌̌̌
tD0

Z
g2G

f .g/d�t .g/(5)

D z@zf .id/C xy@2xyf .id/C
1

2
x2@2xf .id/C

1

2
y2@2yf .id/

where �2x D x2 D
R
gDŒx;y;z�2G

x2d�.g/ and similarly �2y D y2, �2xy D xy, z. With � D �1,
the central limit theorem for � states that for f 2 Cc.G/,

(6)
�
f; d 1p

N

��N
�
! hf; �i:

For g 2 G define the left and right translation operators Lg ; Rg W L2.G/! L2.G/,

(7) Lgf .h/ D f .gh/; Rgf .h/ D f .hg/:
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RANDOM WALK ON UNIPOTENT MATRIX GROUPS 589

Our local limit theorem in the non-lattice case is as follows.

T 1. – Let � be a Borel probability measure of compact support on G D H.R/,
which is centered and full dimension. Assume that the projection to the abelianization �ab is
non-lattice. Let � be the limiting Gaussian measure of d 1p

N

��N . For f 2 Cc.G/, uniformly

for g; h 2 G, as N !1,

(8)
˝
LgRhf; �

�N
˛
D

D
LgRhf; d

p
N
�
E
C o�;f

�
N�2

�
:

If the Cramér condition holds:

(9) sup
�2cR2; j�j>1

ˇ̌̌̌Z
gDŒx;y;z�2G

e�i��.x;y/d�.g/

ˇ̌̌̌
< 1;

then uniformly for g; h 2 G and Lipschitz f 2 Cc.G/, as N !1

(10)
˝
LgRhf; �

�N
˛
D

D
LgRhf; d

p
N
�
E
CO�;f

�
N�

5
2

�
:

R. – The rate is best possible as may be seen by projecting to the abelianization.
A variety of other statements of the local theorem are also derived, see eqn. (74) in Section 3.

R. – For non-lattice �, [6] obtains (8) with h D id and for general h subject to
Cramér’s condition. A condition somewhat weaker than Cramér’s would suffice to obtain
(10).

R. – In the case that� is supported on a closed discrete subgroup or has a density

with respect to Haar measure, [1, 2] obtains an error ofO
�
N�

5
2

�
in approximating ��N .g/,

g 2 �.

Our proof of Theorem 1 applies also in the case when �ab has a lattice component,
and gives a treatment which is more explicit than the argument in [1]. To illustrate this,
we determine the leading constant in the probability of return to 0 in simple random walk
on H.Z/, giving an alternative proof of a result of [19]. Our proof applies equally well
to determine the return probability to 0 of lattice random walks with arbitrary finitely
supported driving measures.

T 2. – Let �0 be the measure on H.Z/ which assigns equal probability 1
5

to each
element of the generating set

(11)

8̂̂<̂
:̂id;

0BB@ 1 ˙1 00 1 0

0 0 1

1CCA ;
0BB@ 1 0 0

0 1 ˙1

0 0 1

1CCA
9>>=>>; :

As N !1, ��N0 .id/ D 25
16N2

CO
�
N�

5
2

�
:
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590 P. DIACONIS AND R. HOUGH

The basic idea which drives the proof is that permuting segments of generators in a
typical word of the walk generates smoothness in the central coordinate of the product,
while leaving the abelianized coordinates unchanged. This observation permits passing from
a limit theorem to a local limit theorem by smoothing at a decreasing sequence of scales.
When studying��N near the scale of its distribution, we use a Lindeberg replacement scheme
in which one copy at a time of� is replaced with a Gaussian measure in the abelianization. To
handle uniformity in the translation in Theorem 1 in the case where the Cramér condition
is not assumed we are forced to treat frequencies ˛ which are unbounded, and thus must
consider the large spectrum

(12) Spec#.�ab/ D
˚
˛ 2 R2 W j O�ab.˛/j > 1 � #

	
;

where # ! 0 as a function of N . In treating this, we use an approximate lattice structure
of Spec#.�ab/, see Section 2.1.

As a further application of the word rearrangement technique, answering a question of [9]
we determine the mixing time of the central coordinate in a natural class of random walks
on the group Nn.Z=pZ/ of n � n uni-upper triangular matrices with entries in Z=pZ.

T 3. – Let n � 2 and let � be a probability measure on Zn�1 which satisfies the
following conditions.

i. Bounded support.

ii. Full support. hsupp�i D Zn�1

iii. Lazy. �.0/ > 0

iv. Mean zero.
P
x2Zn�1 x�.x/ D 0

v. Trivial covariance.

(13)

0@ X
x2Zn�1

x.i/x.j /�.x/

1An�1
i;jD1

D In�1:

Push forward � to a probability measure Q� on Nn.Z/ via, for all x 2 Zn�1,

(14) Q�

0BBBBBBBB@

1 x.1/ 0 � � � 0

0 1 x.2/
: : :

:::

:::
: : :

: : :
: : : 0

0 1 x.n�1/

0 � � � 0 1

1CCCCCCCCA
D �.x/:

Write Z W Nn.Z/ ! Z for the upper right corner entry of a matrix of Nn.Z/. There exists
C > 0 such that, for all primes p, for N � 1,X

x mod p

ˇ̌̌̌
Q��N .Z � x mod p/ �

1

p

ˇ̌̌̌
� exp

 
�C

N

p
2
n�1

!
:(15)
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RANDOM WALK ON UNIPOTENT MATRIX GROUPS 591

R. – Informally, the top right corner entry mixes in timeO
�
p

2
n�1

�
. This is tight,

since archimedean considerations show that theL1 distance to uniform is� 1 if the number
of steps of the walk is� p

2
n�1 .

R. – Although we have considered only the top right corner entry in Un.Z=pZ/,
this result determines the mixing time of each entry above the diagonal by iteratively
projecting to the subgroups determined by the top left or bottom right m �m sub-matrices.

R. – Our argument permits treating measures not supported on the first super-
diagonal essentially without change, since entries above the first diagonal introduce a
lower degree tensor which is annihilated by the application of the Gowers-Cauchy-Schwarz
inequality. We treat the simplified case stated in order to ease the notation.

After completion of this work, the second named author has extended the methods
developed here to treat the local limit theorem on an arbitrary connected, simply connected
nilpotent Lie group [15].

History

Random walk on groups is a mature subject with myriad projections into probability,
analysis and applications. Useful overviews with extensive references are in [5], [22]. Central
limit theorems for random walk on Lie groups were first proved by [27] with [25] carrying out
the details for the Heisenberg group. Best possible results under a second moment condition
for nilpotent Lie groups are in [21].

A general local limit theorem for the Heisenberg group appears in [6], which contains a
useful historical review. There similar conditions to those of our Theorem 1 are made, but the
argument treats only the non-lattice case and needs a stronger condition on the characteristic
function of the measure projected to the abelianization. Remarkable local limit theorems
are in [1, 2]. The setting is groups of polynomial growth, and so “essentially” nilpotent Lie
groups via Gromov’s Theorem. The first paper gives quite complete results assuming that
the generating measure has a density. The second paper gives results for measures supported
on a lattice. The arguments in [2] have been adapted in [4] to give a local limit theorem for
non-lattice measures supported on finitely many points.

Just as for the classical abelian case, many variations have been studied. Central limit
theorems for walks satisfying a Lindeberg condition on general Lie groups are proved in
[23], see also references therein. Large deviations for walks on nilpotent groups are proved
in [3]. Central limit theorems on covering graphs with nilpotent automorphism groups are
treated in [17, 18]. This allows walks on Cayley graphs with some edges and vertices added
and deleted. Brownian motion and heat kernel estimates are also relevant, see [16, 12].

Random walk on finite nilpotent groups are a more recent object of study. Diaconis and
Saloff-Coste [11, 10, 9] show that for simple symmetric random walk on Z=nZ, order n2

steps are necessary and sufficient for convergence to uniform. The first paper uses Nash
inequalities, the second lifts to random walk on the free nilpotent group and applies central
limit theorems of Hebisch, Saloff-Coste and finally Harnack inequalities to transfer back
to the finite setting. The third paper uses geometric ideas of moderate growth to show that

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



592 P. DIACONIS AND R. HOUGH

for groups of polynomial growth, diameter-squared steps are necessary and sufficient to
reach uniformity. This paper raises the question of the behavior of the individual coordinates
on Un.Z=pZ/ which is finally answered in Theorem 3. A direct non-commuting Fourier
approach to H.Z=pZ/ is carried out in [7], where it is shown that order p logp steps suffice to
make the central coordinate random, improved here to order p steps, which is best possible.
For a review of the H.Z/ results, see [8]. Finally there have been quite a number of papers
studying the walk on Un.Z=pZ/ when both p and n grow. We refer to [20], which contains a
careful review and definitive results.

Notation and conventions

Vectors from Rd , d � 1 are written in plain text w, their coordinates with super-
scripts w.i/, and sequences of vectors with an underline w. The sum of a sequence of
vectors w is indicated w. wt denotes the transpose of w. We frequently identify matrix
elements in the group Un with vectors from Euclidean space, and have attempted to indicate
the way in which the vectors should be interpreted. As a rule of thumb, when the group law
is written multiplicatively, the product is in the group Un, and when additively, in Euclidean
space.

The arguments presented use permutation group actions on sequences of vectors. Given
integerN � 1, denoteSN the symmetric group on ŒN � D Z\ Œ1; N �, which acts on lengthN
sequence of vectors by permuting the indices:

(16) SN 3 � W .w1; : : : ; wN / 7! .w�.1/; : : : ; w�.N//:

C2 is the two-element group. For d � 1, identify C d2 with the d -dimensional hypercube
f0; 1gd . 1d is the element ofC d2 corresponding to the sequence of all 1’s on the hypercube.C d2
acts on sequences of vectors of length 2d with the j th factor determining the relative order of
the first and second blocks of 2j�1 elements. To illustrate the action of C 22 on x D x1x2x3x4:

.0; 0/ � x D x1x2x3x4

.1; 0/ � x D x2x1x3x4(17)

.0; 1/ � x D x3x4x1x2

.1; 1/ � x D x3x4x2x1:

The 2-norm on Rd is indicated k � k and k � k.R=Z/d denotes distance to the nearest integer
lattice point. Given � 2 Rd , e�.�/ denotes the character of Rd , e�.x/ D e2�i��x .

Use ıx to indicate the Dirac delta measure at x 2 Rd . Given f 2 Cc.Rd / and measure �,
hf; �i denotes the bilinear pairing

(18) hf; �i D

Z
Rd
f .x/d�.x/:

Denote the Fourier transform of function f , resp. the characteristic function of measure �
by, for � 2 Rd ,

(19) Of .�/ D

Z
Rd
e��.x/f .x/dx; O�.�/ D

Z
Rd
e��.x/d�.x/:

4 e SÉRIE – TOME 54 – 2021 – No 3



RANDOM WALK ON UNIPOTENT MATRIX GROUPS 593

For x 2 Rd , Txf denotes function f translated by x,

(20) Txf .y/ D f .y � x/; dTxf .�/ D e��.x/ Of .�/
and for real t > 0, ft denotes f dilated by t ,

(21) ft .x/ D t
df .tx/ ; bft .�/ D Of

�
�

t

�
:

For smooth f ,

(22) f .x/ D

Z
Rd
Of .�/e�.x/d�:

By a bump function � onRn we mean a smooth non-negative function of compact support
and integral 1. The Fourier transform of � satisfies, for each A > 0 there is a constant
C.A; �/ > 0 such that

(23) j O�.�/j �
C.A; �/

.1C k�k/A
:

This follows from integration by parts.

For r 2 R and � > 0, �.r; �/ denotes the one-dimensional Gaussian distribution with
mean r and variance �2, with density and characteristic function

(24) �.r; �/.x/ D
exp

�
�
.x�r/2

2�2

�
p
2��

; �̂.r; �/.�/ D e��.r/ exp
�
�2�2�2�2

�
:

A centered (mean zero) normal distribution � in dimension d is specified by its covariance
matrix

(25) �2 D

�Z
Rd
x.m/x.n/�.x/

�d
m;nD1

and has density and characteristic function

(26) �.0; �/.x/ D
exp

�
�
xt .�2/�1x

2

�
.2�/

d
2 .det �2/

1
2

; �̂.0; �/.�/ D exp
�
�2�2� t�2�

�
:

All of our arguments concern the repeated convolution ��N of a fixed measure � on
the upper triangular matrices. The product measure �˝N is abbreviated UN . Asymptotic
statements are with respect to N as the large parameter. The Vinogradov notation A � B,
resp. A� B, means A D O.B/, resp. B D O.A/. A � B means A� B and B � A.

2. Background to Theorems 1 and 2

This section collects together several background statements regarding the Heisenberg
group, its Gaussian semigroups of probability measures and statements of elementary prob-
ability which are needed in the course of the argument.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



594 P. DIACONIS AND R. HOUGH

Write A D Œ1; 0; 0�, B D Œ0; 1; 0�, C D Œ0; 0; 1�. The following commutators are useful,

ŒA; B� D ABA�1B�1 D Œ0; 0; 1� D C;

ŒA�1; B�1� D A�1B�1AB D Œ0; 0; 1� D C;(27)

ŒA; B�1� D AB�1A�1B D Œ0; 0;�1� D C�1;

ŒA�1; B� D A�1BAB�1 D Œ0; 0;�1� D C�1:

A convenient representation for Œx; y; z� 2 H.R/ is C zByAx . Using the commutator rules
above, the multiplication rule for w 2 H.R/N becomes

(28)
NY
iD1

h
w
.1/
i ; w

.2/
i ; w

.3/
i

i
D

h
w.1/; w.2/; w.3/ CH.w/

i
;

where � and H act on sequences of vectors from R3 via

(29) w D
X
i

wi H.w/ D
X
i<j

w
.1/
i w

.2/
j :

It is also convenient to define

H�.w/ D H.w/ �
1

2
w.1/w.2/ C

1

2

NX
iD1

w
.1/
i w

.2/
i(30)

D
1

2

X
1�i<j�N

�
w
.1/
i w

.2/
j � w

.2/
i w

.1/
j

�
;

and for w D Œx; y; z�, Qw D
�
x; y; z � 1

2
xy
�
, so that the multiplication rule may be written

(31)
NY
iD1

wi D Qw C

�
0; 0;

1

2
w.1/w.2/ CH�.w/

�
:

Let S D supp�. Recall that � D hSi is the closure of the group generated by S . Its
abelianization, �ab D �=Œ�; �� is equal to p.�/ where p is the projection p W G ! Gab. Let
�0 be the semigroup generated by S . We record the following descriptions of � and �0.

P 4. – Let � � H.R/ be a closed subgroup of full dimension. The structure of
the abelianization �ab D �=Œ�; �� and of � falls into one of the following cases.

i.

(32) �ab D R2; � D fŒ
; r� W 
 2 �ab; r 2 Rg

ii. There exist non-zero orthogonal v1; v2 2 R2, such that

�ab D fnv1 C rv2 W n 2 Z; r 2 Rg;
� D fŒ
; r� W 
 2 �ab; r 2 Rg

(33)

iii. There exist non-zero v1; v2 2 R2, linearly independent over R, such that

(34) �ab D fn1v1 C n2v2 W n1; n2 2 Zg:

In this case, � falls into one of two further cases

iv. � D fŒ
; r� W 
 2 �ab; r 2 Rg

4 e SÉRIE – TOME 54 – 2021 – No 3



RANDOM WALK ON UNIPOTENT MATRIX GROUPS 595

v. There exists � 2 R>0 and f W �ab ! R such that

(35) � D fŒ
; �.f .
/C n/� W 
 2 �ab; n 2 Zg :

Proof of Proposition 4. – The full dimension condition guarantees that �ab is a two
dimensional closed subgroup of R2, and the three possibilities given are all such closed
subgroups. Likewise, the center of � is a non-trivial subgroup of R, hence either R or � � Z
for some real � > 0. It follows that the fiber over 
 2 �ab is a translate of the center. Let
v1; v2 be two linearly independent elements of the abelianization, and choose g1 D Œv1; z1�,
g2 D Œv2; z2� in �. The commutator Œg1; g2� D g1g2g�11 g�12 is bilinear in v1, v2, is non-zero,
and lies in the center. It follows that if one of v1; v2 may be scaled by a continuous parameter
in the abelianization then the center is R.

L 5. – The closure of the semigroup �0 is �0 D �.

Proof. – Write �0;ab D p.�0/where p denotes projection to the abelianizationGab. That
�0;ab D �ab follows from the local limit theorem on R2. To treat the central fiber, in the case
�ab D R2 let 0 < � < 1

4
be a fixed small parameter and choose x; x0; y; y0 in �0 such that

(36) p.x/; p.x0/; p.y/; p.y0/ � e1;�e1; e2;�e2

where the approximation means within distance �. Take a word w in T D fid; x; x0; y; y0g
of length 4n with product approximating the identity in �ab within �, which is such that
each of x; x0; y; y0 appear > .1 � O.�//n times in w. The abelianization of the product is
independent of the ordering of w, but if the letters in w appear in order y; x; y0; x0 then the
central element is < �.1CO.�//n2, while if they appear in order y0; x; y; x0 then the central
element is > .1C O.�//n2. Moving from an ordering of the first type to an ordering of the
second by swapping generators one at a time changes the central element by O.1/ at each
step. Let � # 0 to deduce that �0 contains positive and negative central elements, and hence
that�0 is a group, equal to�. In the case�ab has a one or two dimensional lattice component,
replace either e1 or both e1; e2 above with a basis for the lattice component and repeat the
argument.

More quantitative structural statements are as follows.

L 6. – Let� be a measure onH.R/, with abelianization�ab not supported on a lattice
of R2. If the Cramér condition holds for the measure �ab then it holds also for the measure �0

on R obtained by pushing forward �ab ˝ �ab by H�.w1; w2/.

Proof. – Let � 2 R, j�j � 1 and fix w2 2 supp.�ab/, bounded away from 0. Write
H�.w1; w2/ D

w1^w2
2
D

1
2
w1 � Ow2. The claim follows since

ˇ̌R
e�� .H

�.w1; w2// d�ab.w1/
ˇ̌

is
bounded away from 1 uniformly in � and w2.

L 7. – Let � be a measure on R2 of compact support, with support generating a
subgroup of R2 of full dimension. If � is lattice supported, assume that the co-volume of the
lattice is at least 1. There is a constant c D c.�/ > 0 such that, uniformly in 0 < � � 1

2
,

for N D N.�/ D
j
1
2�

k
,

(37)

ˇ̌̌̌Z
R2�R2

e��
�
H�.w1; w2/

�
d��N .w1/d�

�N .w2/

ˇ̌̌̌
� 1 � c.�/:
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Proof. – When � is lattice with lattice of covolume V , the measure

H�.w1; w2/d�.w1/d�.w2/

is lattice distributed with step size V . Hence the bound on j�j suffices to guarantee the claim
for N bounded.

For N growing, a standard application of the functional central limit theorem implies
that 1

N
H�.w1; w2/d�

�N .w1/d�
�N .w2/ converges to a non-zero density on R as N !1.

Normalize Haar measure on H.R/ to be given in coordinates by dg D dxdydz. The
density of a Gaussian measure � on H.R/ can be understood as the rescaled limit of the
density of a random walk with independent Gaussian inputs in the abelianization. Consider
the distribution on the Heisenberg group given by �2;� D Œ�.0; �/; 0�, which has projection
to the abelianization given by a two dimensional normal distribution of covariance � , and
with trivial central fiber. Write �2 D �2;I2 for the measure in which � is the two dimensional
identity matrix. The rescaled distribution d 1p

N

��N2 converges to a Gaussian measure �0

on H.R/ as N ! 1. Note that we have not included a covariance term, which can be
accommodated with a linear change of coordinates. Also, we do not consider randomness
in the central coordinate as it would scale only as

p
N , whereas the central coordinate has

distribution at scale N .

Let ˛ 2 R2 and � 2 R. Write the modified characteristic function of �0 as (recall
Qz D z � xy

2
)

I.˛; �/ D

Z
gDŒx;y;z�2G

e�˛.gab/e��. Qz/d�0.g/(38)

and

I.˛; �IN/ D

Z
.R2/N

e�˛

�
x
p
N

�
e��

�
H�.x/

N

�
d�˝N2;ab .x/ :(39)

L 8. – Let ˛ 2 R2; � 2 R and let �2 be the covariance matrix of a non-degenerate
two dimensional normal distribution of determinant ı2 D det �2, ı > 0. ThenZ

.R2/N
e�˛

�
x
p
N

�
e��

�
H�.x/

N

�
d�.0; �/˝N .x/ D I.�˛; ı�IN/:(40)

Proof. – Making the change of variables, for each i , �yi D xi in the density
1
2�ı

exp
�
�
xt
i
��2xi
2

�
changes x D �y and H�.x/ D det � �H�.y/.

In view of the multiplication rule (31), for k˛k; j�j D O.1/

(41) lim
N!1

I.˛; �IN/! I.˛; �/:

The following rate of convergence is given in the appendix.
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T 9. – For all ˛ 2 R2, � 2 R such that .1C k˛k2/.1C �2/ < N ,

(42) I .˛; �IN/ D
1CO

�
.1Ck˛k2/.1C�2/

N

�
exp

�
2�k˛k2

� coth��

�
cosh��

:

In particular,

(43) I.˛; �/ D
exp

�
�
2�k˛k2

� coth��

�
cosh��

:

R. – While I.˛; �/ characterizes the Gaussian measure, it does not behave well
under convolution.

Along with the above characteristic function calculation the following moment calcula-
tion is used.

L 10. – Let � be a two dimensional Gaussian with identity covariance. For eachk � 1,
and N � 2,

(44) E�˝N
h
H�.w/2k

i
� �22k

N 2k

22k
;

where �2k D
.2k/Š

2kkŠ
is the 2kth moment of a standard one dimensional Gaussian.

For any compactly supported probability measure � of mean zero on R2, for any k � 1,
as N !1,

(45) E�˝N
h
H�.w/2k

i
� Ok;�

�
N 2k

�
:

Proof. – Write

(46) H�.w/ D
1

2

X
1�i¤j�N

.�1/1.i>j /w
.1/
i w

.2/
j

and expand the moment to find

E�˝N
h
H�.w/2k

i
�

1

22k
E�˝N

24 X
1�m1;:::;m2k ;n1;:::;n2k�N

w.1/m1 � � �w
.1/
m2k

w.2/n1 � � �w
.2/
n2k

35(47)

D
1

22k

24E�˝N
24 X
1�m1;:::;m2k�N

w.1/m1 � � �w
.1/
m2k

35352

D �22k
N 2k

22k
:

When treating general � of compact support,

E�˝N
h
H�.w/2k

i
D

1

22k
E�˝N

24 X
1�m1;:::;m2k ;n1;:::;n2k�N

"m;nw
.1/
m1
� � �w.1/m2kw

.2/
n1
� � �w.2/n2k

35 ;
(48)

with "m;n 2 f�1; 0; 1g. The expectation vanishes unless each index in ŒN � which appears
among m1; : : : ; m2k ; n1; : : : ; n2k appears at least twice. There are O.N 2k/ ways to choose
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which indices appear andOk.1/ ways to assignm1; : : : ; n2k to the indices which appear. For
those assignments which don’t vanish, the expectation is Ok;�.1/ by the compact support.

We make the following convention regarding rare events. Say that a sequence of measur-
able events fAN gN�1 such that AN � SN occurs with high probability (w.h.p.) if the comple-
ments satisfy the decay estimate,

(49) 8 C � 0; �˝N
�
AcN

�
D OC

�
N�C

�
asN !1. The sequence of complements is said to be negligible. A sequence of events fAN g
which is negligible for �˝N is also negligible when �˝N is conditioned on a non-negligible
sequence of events fBN g.

2.1. The large spectrum

Let � be a mean 0, compactly supported probability measure on R2. For 0 < # < 1,
define the large spectrum of O� to be

(50) Spec#.�/ D
˚
˛ 2 R2 W j O�.˛/j > 1 � #

	
and let

(51) M#.�/ D f˛ 2 Spec#.�/ W j O�.˛/j is a local maximumg:

Let

(52) L�.A/ D �.fx�1 W x 2 Ag/

and set �2 D � � L�. The measure �2 is still mean 0, compactly supported and satisfies

(53) O�2.˛/ D

Z
R2

cos.2�˛ � x/d�2.x/ D j O�.˛/j
2 ;

so Spec#.�/ D Spec2#�#2.�2/ and M#.�/ DM2���2.�2/.
For a differential operator Dˇ D Di1Di2 � � �Di` , set jˇj D `.

L 11. – Let 0 � # � 1, let ˛ 2 Spec#.�2/ and let Dˇ be a differential operator.
Then

(54) Dˇ O�2.˛/ D

8<:Oˇ
�
#
1
2

�
jˇj odd

Dˇ O�2.0/COˇ .#/ jˇj even
:

Proof. – Let Dˇ D Di1 � � �Di` . Differentiating under the integral, if ` is odd then

(55) Dˇ O�2.˛/ D .�1/
1.`�1 mod 4/.2�/`

Z
R2
xi1 � � � xi` sin.2�˛ � x/d�2.x/

so that, using the compact support of �2 and then Cauchy-Schwarz,ˇ̌
Dˇ O�2.˛/

ˇ̌
�`

Z
R2
j sin.2�˛ � x/jd�2.x/(56)

D

Z
R2

p
1 � cos2.2�˛ � x/d�2.x/

�

�Z
R2
1 � cos2.2�˛ � x/d�2.x/

� 1
2

� .2#/
1
2 :
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If ` is even, then

Dˇ O�2.˛/ D .�1/
`
2 .2�/`

Z
R2
xi1 � � � xi` cos.2�˛ � x/d�2.x/(57)

D Dˇ O�2.0/ � .�1/
`
2 .2�/`

Z
R2
xi1 � � � xi`.1 � cos.2�˛ � x//d�2.x/:

Again using the compact support, the integral in the last line is O.#/.

The previous lemma has the following consequences.

L 12. – There is a constant C1 D C1.�/, 0 < C1 < 1 such that if 0 < # < C1 then
the following hold:

i. There are constants C2.�/; C3.�/ > 0 such that if ˛0 2 M#.�2/ and k˛ � ˛0k < C2
then

(58) O�2.˛/ � O�2.˛0/ � C3k˛ � ˛0k
2:

ii. There is a constantC4.�/ > 0 such that if ˛ 2 Spec#.�2/ then there exists ˛0 2M#.�2/

with

(59) k˛ � ˛0k � C4
p
#:

Furthermore, if � does not have a lattice component, then there is a growth function F .#/

tending to infinity as # # 0 such that, if ˛0 ¤ ˛1 are distinct elements of M#.�2/ then

(60) k˛0 � ˛1k > F .#/:

Proof. – To prove i., Taylor expands about ˛0 using that the first derivatives vanish and
that the third derivatives of O�2 are uniformly bounded. The term from the second degree
Taylor expansion may be replaced with the corresponding term at ˛0 D 0, making an error
which is O.#/. This may be absorbed into the constant C3 by making C1 sufficiently small.

To prove ii., first reduce C1.�/ to guarantee that there is a ball Bı.˛/, 0 < ı < 1 a fixed
constant, such that the maximum of O�2 does not occur on the boundary of the ball. This may
be achieved by Taylor expanding about ˛, which now includes a linear term, which isO.#

1
2 /.

Let ˛0 be the global maximum in the interior, and now apply part i. and O�2.˛0/� O�2.˛/ � #
to conclude that k˛ � ˛0k �

p
# .

To prove the final statement, note that for 0 � # � 1
4

, if ˛0; ˛1 2 Spec#.�2/ then
˛0 � ˛1 2 Spec4#.�2/, see [24], p. 183. An easier proof is possible here since the spectrum is
positive, indeed,

1 � O�2.˛0 � ˛1/ D

Z
R2
1 � cos.2�˛0 � x/ cos.2�˛1 � x/d�2(61)

�

Z
R2

sin.2�˛0 � x/ sin.2�˛1 � x/d�2:

Bound the first integral by

(62)
Z
R2
1 � cos.2�˛0 � x/d�2 C

Z
R2

cos.2�˛0 � x/.1 � cos.2�˛1 � x//d�2 � 2#:
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By Cauchy-Schwarz, the second integral is bounded in size by

(63)
�Z

R2
1 � cos2.2�˛0 � x/d�2

Z
R2
1 � cos2.2�˛1 � x/d�2

� 1
2

� 2#:

The claim now follows on considering O�2.˛/ in growing balls about 0.

The following lemma gives information about variation of the phase of O�.˛/ in the large
spectrum.

L 13. – Let � be a measure of mean 0 and compact support on R2, let 0 � # � 1
2

and let ˛0 2M#.�/. The following hold.

i. ImDi log O�.˛0/ D O�.#/.

ii. ImDiDj log O�.˛0/ D O�.
p
#/.

iii. For all ˛ 2 Spec 1
2
.�/,

(64) ImDi1Di2Di3 log O�.˛/ D O.1/:

Proof. – Let O�.˛0/ D e˛0.�0/j O�.˛0/j.
For i.

(65) Di log O�.˛0/ D
Di O�.˛0/

O�.˛0/
D

2�i

j O�.˛0/j

Z
R2
xie˛0.x � �0/d�.x/:

Since � is mean 0,

(66) ImDi log O�.˛0/ D
2�

j O�.˛0/j

Z
R2
xi .cos.2�˛0 � .x � �0// � 1/d�.x/:

By the compact support,

j ImDi log O�.˛0/j �
Z
R2
1 � cos.2�˛0 � .x � �0//d�.x/(67)

D 1 � j O�.˛0/j � #:

For ii., write

(68) DiDj log O�.˛0/ D
DiDj O�.˛0/

O�.˛0/
�
Di O�.˛0/Dj O�.˛0/

O�.˛0/2
:

The subtracted term is real since Di O�.˛0/

O�.˛0/
is imaginary (˛0 is a maximum for j O�.˛0/j). Hence,

again using the compact support and Cauchy-Schwarz,

ImDiDj log O�.˛0/ D
�4�2

j O�.˛0/j

Z
R2
xixj sin.2�˛0 � .x � �0//d�.x/(69)

�

Z
R2

p
1 � cos2.2�˛0 � .x � �0//d�.x/

�

�Z
R2
1 � cos.2�˛0 � .x � �0//d�.x/

� 1
2

� #
1
2 :

To obtain iii., note that the first three derivatives of O� are bounded due to the compact
support.

The results of this section are collected into the following lemma which permits approxi-
mating O�.˛/ in neighborhoods of a local maximum for j O�.˛/j.
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L 14. – Let � be a probability measure on Rn of covariance matrix �2. There is a
constant C D C.�/ > 0 such that for all 0 � # � C and for all ˛0 2M#.�/ we have

(70) O�.˛0 C ˛/ D O�.˛0/EŒe˛.X/�CO
�
#k˛k C k˛k3

�
with X distributed as �.0; �/.

Proof. – Taylor expands log O�.˛0C˛/
O�.˛0/

in a ball of constant radius about ˛ D 0 to find

(71) log
O�.˛0 C ˛/

O�.˛0/
D
1

2
˛tH0˛ CO

�
#k˛k C #

1
2 k˛k2 C k˛k3

�
;

withH0 the Hessian of log O�.˛/ at 0. In making this expansion, we’ve used the estimates for
derivatives of O�2.˛0 C ˛/ in Lemma 11 together with

(72) Re log
O�.˛0 C ˛/

O�.˛0/
D
1

2
log
O�2.˛0 C ˛/

O�2.˛0/

and the estimates for derivatives of Im log O�.˛0 C ˛/ in Lemma 13.

Then (we’ve absorbed the #
1
2 k˛k2 error term into the others)

(73) O�.˛0 C ˛/ D O�.˛0/EŒe˛.X/�CO
�
#k˛k C k˛k3

�
:

Since O� is bounded, this formula holds for all ˛ by adjusting the constants appropriately.

3. Proof of Theorem 2

We first treat Theorem 2 which is illustrative of the main idea, before proving Theorem 1.
Identify n D .n1; n2; n3/

t 2 Z3, with gn D Œn1; n2; n3� 2 H.Z/ and let � be the limiting
Gaussian measure under convolution by �.

P 15. – For each n D .n1; n2; n3/t 2 Z3,

PN .n1; n2; n3/ WD �
�N
�
fgng

�
D

1

N 2
�
d�

dg

�
d 1p

N

gn

�
CO

�
N�

5
2

�
:(74)

Recalling the multiplication rule

(75)
NY
iD1

h
w
.1/
i ; w

.2/
i ; 0

i
D

�
w.1/; w.2/;

1

2
w.1/w.2/ CH�.w/

�
;

which is valid for wi D Œ˙1; 0; 0� or Œ0;˙1; 0�, it suffices to calculate, with UN standing for
the product measure �˝N and expectation with respect to UN ,

(76) UN
�
wab D .n1; n2/

t ;H�.w/ D n3 �
1

2
n1n2

�
DZ

.R=Z/3
e˛
�
.n1; n2/

t
�
e�

�
n3 �

n1n2

2

�
E
h
e˛.wab/e� .H

�.w//
i
d�d˛:
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3.1. Reduction to a central limit theorem

The following two lemmas reduce to a quantitative central limit theorem by truncating
frequency space to the scale of the distribution.

L 16. – For any A > 0 there is C D C.A/ > 0 such that if k�kR=Z �
C logN
N

, for all
˛ 2 R2,

(77)
ˇ̌
EUN

�
e˛
�
wab

�
e�
�
H�.w/

��ˇ̌
� N�A:

Proof. – Choose k D k.�/ according to the rule

(78) k.�/ D

8<: 1; j�j > 1
10
;j

1
2j�j

k
; j�j � 1

10
:

LetN 0 D
�
N
2k

˘
. The groupGk D CN

0

2 acts on strings of lengthN with j th factor exchanging
the order of the substrings of length k ending at .2j � 1/k and 2jk.

Given string w, write Ow for the string of length 2N 0 with j th entry given by

(79) Owj D

kX
iD1

w.j�1/kCi :

Write

(80) H�.w/ D H 1
k .w/CH

2
k .w/; H 2

k .w/ D

N 0X
jD1

H�
�
Ow2j�1; Ow2j

�
:

Both wab and H 1
k

are invariant under Gk . Exchanging the order of the expectations, which
is justified because the group action is finite,

EUN
�
e˛
�
wab

�
e�
�
H�.w/

��
D E�2Gk

�
EUN

�
e˛
�
wab

�
e�
�
H�.� � w/

���
(81)

D EUN
�
e˛.wab/e�

�
H 1
k .w/

�
E�2Gk

�
e�
�
H 2
k .� � w/

���
and, therefore,ˇ̌

EUN
�
e˛.wab/e�

�
H�.w/

��ˇ̌
� EUN

�ˇ̌
E�2Gk

�
e�
�
H 2
k .� � w/

��ˇ̌�
:(82)

By Cauchy-Schwarz,

(83) EUN
�ˇ̌
E�2Gk

�
e�
�
H 2
k .� � w/

��ˇ̌�2
� EUN

hˇ̌
E�2Gk

�
e�
�
H 2
k .� � w/

��ˇ̌2i
:

One checks, using the product group structure,

(84)
ˇ̌
E�2Gk

�
e�
�
H 2
k .� � w/

��ˇ̌2
D

N 0Y
jD1

 
1C cos

�
2��H�. Ow2j�1; Ow2j /

�
2

!
;

and hence, since the coordinates in w are i.i.d.,

EUN

hˇ̌
E�2Gk

�
e�
�
H 2
k .� � w/

��ˇ̌2i
D

�
1C EUN Œcos .2��H�. Ow1; Ow2//�

2

�N 0
:(85)

By Lemma 7 the expectation in the cosine is uniformly bounded in size by 1 � c.�/ for
some c.�/ > 0. The claim is completed by using the estimate .1 � x/N

0

� e�N
0x , which

is valid for 0 � x � 1.
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The following lemma obtains cancelation in ˛.

L 17. – Let A; � > 0 and 0 � k�kR=Z �
C logN
N

where C is as in Lemma 16. For all

N sufficiently large, if k˛kR2=Z2 � N
�� 12 ; then

(86)
ˇ̌
EUN

�
e˛
�
wab

�
e�
�
H�.w/

��ˇ̌
� N�A:

Proof. – Let N 0 D
�
N 1��

˘
. Let w0 be w truncated at N 0 and let w t be the remainder

of w so that w is the concatenation w0 ˚ w t . Write

(87) H�.w/ D H�.w0/CH
�.w0; w t /CH

�.w t /

to bound ˇ̌
EUN

�
e˛
�
wab

�
e�
�
H�.w/

��ˇ̌
(88)

� Ew t��˝.N�N 0/
hˇ̌̌
Ew0��˝N 0

�
e˛.w0;ab/e�.H

�.w0/CH
�.w0; w t //

�ˇ̌̌i
:

Truncate the outer integral to kw tk �
p
N logN , which holds w.h.p. Let Ek.x/ denote the

degree k Taylor expansion of e1.x/ about 0, and recall that the integral form of Taylor’s
theorem gives

je1.x/ �Ek.x/j D

ˇ̌̌̌
ˇ.2�x/kC1 Z 1

0

.1 � t /k

kŠ
e1.xt/dt

ˇ̌̌̌
ˇ � .2�jxj/kC1

.k C 1/Š
:(89)

Use Lemma 10 to choose k D k.A; �/ odd and sufficiently large so that

Ew0��˝N 0
�ˇ̌
Ek

�
�H�.w0/

�
� e�.H

�.w0//
ˇ̌�

(90)

�
.2�j�j/kC1

.k C 1/Š
Ew0��˝N 0

h
jH�.w0/j

kC1
i

� Ok;�.j�jN/
kC1
�

1

2NA
:

It thus suffices to estimate

EUN 0

"
e˛
�
w0;ab

�
e�
�
H�.w0; w t /

�
Ek

�
�H�.w0/

�#
:(91)

ExpandEk into Poly.N / terms, each depending on boundedly many indices fromw0. Expec-
tation over the remaining terms factors as a product which is exponentially small in a power
of N , hence negligible.

3.2. Quantitative Gaussian approximation

In the range k˛k � N �� 12 , j�j � logN
N

, expectation with respect to � is replaced with
expectation taken over a measure with projection to the abelianization given by a Gaussian
of the same covariance matrix as �ab. The modified characteristic function in the Gaussian
case is evaluated precisely in Theorem 9, which finishes the proof.

Let �2 be the covariance matrix of �ab and let �.0; �/ be a centered Gaussian of the same
covariance. Set ı D det � . Taylor expands log O�.ˇ/ about ˇ D 0 to find a cubic map T .ˇ/
such that

(92) O�ab.ˇ/ D O�.ˇ/ .1C T .ˇ//CO
�
kˇk4

�
:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



604 P. DIACONIS AND R. HOUGH

In the phase e˛
�
wab

�
e� .H

�.w// let

(93) j̨ .w/ D ˛ C
�

2

24X
i¤j

.�1/1.i<j /w
.2/
i ;

X
i¤j

.�1/1.i>j /w
.1/
i

35t ;
so that j̨ .w/ � wj is the part which depends on wj . The Gaussian replacement scheme is as
follows.

L 18. – Let 0 < � < 1
2

and C > 0 be constants. For k˛k � N �� 12 and j�j � C logN
N

,

EUN
�
e˛
�
wab

�
e�
�
H�.w/

��
D I

�p
N� � ˛;Nı�

�
CO

�
N�1CO.�/

�
(94)

C E�˝N

24e˛ �wab

�
e�
�
H�.w/

�0@X
j

T . j̨ .w//

1A35 :
Proof. – Since E�˝N

�
e˛.wab/e�.H

�.w//
�
D I

�
N

1
2 �˛;Nı�IN

�
, and since in the stated

range of ˛; �,

(95) I
�
N

1
2 �˛;Nı�IN

�
D I

�
N

1
2 �˛;Nı�

�
CO

�
N�1CO.�/

�
by Theorem 9, it suffices to prove

EUN
�
e˛
�
wab

�
e�
�
H�.w/

��
CO

�
N�1CO.�/

�
(96)

D E�˝N

24e˛ �wab

�
e�
�
H�.w/

�0@1CX
j

T . j̨ .w//

1A35 :
For convenience, write

(97) Tj .˛; �; w/ D T . j̨ .w//

and, for k ¤ j ,

(98) Tj .˛; �; w/ D T
k
j .˛; �; w/C

OT kj .˛; �; w/;

in which T kj collects monomials in Tj which depend onwk , and OT kj collects monomials which
don’t depend on wk .

Since the expectation does not depend upon the third coordinate, write �˝Nab in place
of UN . For 0 � j � N consider the measure �j D �

˝j
ab ˝ �

˝.N�j / in which the first j
coordinates are i.i.d. with measure �ab and last N � j coordinates are independent of the
first j and are i.i.d.

We prove (96) iteratively by showing that, for each k � 1,

Sk WD E�k

24e˛.wab/e�.H
�.w//

0@1CX
j>k

Tj .˛; �; w/

1A35(99)

D O
�
N�2CO.�/

�
C E�k�1

24e˛.wab/e�.H
�.w//

0@1C X
j>k�1

Tj .˛; �; w/

1A35
D O

�
N�2CO.�/

�
C Sk�1;
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which suffices since (96) may be written as jSN � S0j D O
�
N�1CO.�/

�
. By the triangle

inequality, and setting apart expectation in the kth variable as the inner integral,

jSk � Sk�1j � E
�
˝.k�1/
ab ˝�˝.N�k/

ˇ̌̌̌Z
wk

e˛k.w/.wk/.d�ab � .1C Tk.˛; �; w// d�/

ˇ̌̌̌(100)

C E
�
˝.k�1/
ab ˝�˝.N�k/

ˇ̌̌̌
ˇ̌Z
wk

e˛k.w/.wk/

0@X
j>k

Tj .˛; �; w/

1A .d�ab � d�/

ˇ̌̌̌
ˇ̌ :

In the first line of the right hand side, note that Tk.˛; �; w/ does not depend on wk , so that
Taylor expanding the exponential obtains a bound of O.k˛k.w/k4/, which suffices since

(101) E
�
˝.k�1/
ab ˝�˝.N�k/

�
k˛k.w/k

4
�
D O

�
N�2C4�

�
:

In the second line, write Tj D T kj C OT
k
j . Since OT kj does not depend on wk , matching the first

two moments of �ab and � gives

E
�
˝.k�1/
ab ˝�˝.N�k/

ˇ̌̌̌
ˇ̌Z
wk

e.˛k.w/ � wk/

0@X
j>k

OT kj .˛; �; w/

1A .d�ab � d�/

ˇ̌̌̌
ˇ̌(102)

� E
�
˝.k�1/
ab ˝�˝.N�k/

24k˛k.w/k3
ˇ̌̌̌
ˇ̌X
j>k

OT kj .˛; �; w/

ˇ̌̌̌
ˇ̌
35� N�2C6�:

Finally, to bound the terms from T kj , Taylor expands e.˛k.w/ � wk/ to degree 2 to bound

E
�
˝.k�1/
ab ˝�˝.N�k/

ˇ̌̌̌
ˇ̌Z
wk

e.˛k.w/ � wk/

0@X
j>k

T kj .˛; �; w/

1A .d�ab � d�/

ˇ̌̌̌
ˇ̌(103)

� E
�
˝.k�1/
ab ˝�˝.N�k/

ˇ̌̌̌
ˇ̌Z
wk

.1C 2�i˛k.w/ � wk/
X
j>k

T kj .˛; �; w/.d�ab � d�/

ˇ̌̌̌
ˇ̌

C E
�
˝.k�1/
ab ˝�˝.N�k/

Z
wk

k˛k.w/k
2
jwkj

2

ˇ̌̌̌
ˇ̌X
j>k

T kj .˛; �; w/

ˇ̌̌̌
ˇ̌ .d�ab C d�/:

Since the first two moments of �ab and � match, the only terms which survive the first
line here are degree 3 in wk , and these contribute O.N�2C3�/. In the second line here,
keeping in mind that T kj contains only monomials that have a factor of �w.1/

k
or �w.2/

k
, one

obtains a bound ofO.N�2C5�/ by applying Cauchy-Schwarz to separate the integrands. This
completes the iterative estimate (99).

We give two estimates for the error term

(104) T D E�˝N

24e˛.wab/e�.H
�.w//

0@X
j

T . j̨ .w//

1A35 ;
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depending on the relative sizes of ˛ and �. In this part of the argument we assume
that �.0; �/ has identity covariance, which may be achieved by rescaling ˛ and � by constant
factors.

L 19. – There exists c > 0 such that, for k˛k � N �� 12 and j�j � logN
N

,

T D O
�
N k˛k3 CN

5
2 j�j3

�
exp .�cN j�j/ :(105)

Proof. – Bound each term

(106) E�˝N
�
e˛.wab/e�.H

�.w//T . j̨ .w//
�

individually by setting

(107) k D

8̂̂<̂
:̂
j
1
2j�j

k
; j�jN > 1

�
N
2

˘
; otherwise

and allowing Gk to act as in Lemma 16. Let G0
k

be the subgroup omitting the factor that
moves wj . Then G0

k
leaves T . j̨ .w// invariant, so that

(106) D E�˝N
h
e˛.wab/E�2G0k Œe�.H

�.� � w//�T . j̨ .w//
i
:

By Cauchy-Schwarz,

j(106)j2 � E�˝N
h
jE�2G0

k
Œe�.H

�.� � w//�j2
i
E�˝N ŒjT . j̨ .w//j2�:

Arguing as in Lemma 16 now obtains the estimate, for some c > 0,

(108) j(104)j �
�
N k˛k3 CN

5
2 j�j3

�
exp .�cj�jN/ :

To obtain decay in k˛k instead of j�j, consider the degree 3 polynomial
P
j T . j̨ .w//

which consists of monomials of which

i. Those constant in w and cubic in ˛ have absolute sum of coefficients O.N/.

ii. Those linear in �w and quadratic in ˛ have absolute sum of coefficients O.N 2/.

iii. Those quadratic in �w and linear in ˛ have absolute sum of coefficients O.N 3/. Of
these, those with a repeated factor from w have absolute sum of coefficients O.N 2/.

iv. Those that are cubic in �w have absolute sum of coefficients O.N 4/. Of these, those
with a repeated factor from w have absolute sum of coefficients O.N 3/.

Write M for the typical monic monomial, so that M is of form

(109) 1;w
.�1/
i1

; w
.�1/
i1

w
.�2/
i2

; w
.�1/
i1

w
.�2/
i2

w
.�3/
i3

;

with �j 2 f1; 2g, according as the case is i., ii., iii. or iv.. Given a typical monomial M of T ,
write !.M/ for the number of variables from w which are odd degree in M .

L 20. – There is a constant c > 0 such that we have, for 0 < j�j � logN
N

andp
j�j � k˛k � N �� 12 ,

T D

�
O
�
k˛k.1CN k˛k2/.1CN 3

j�j3/
�
� exp

�
�c

�
k˛k2 min

�
N;

1

N j�j2

����
:(110)
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Proof. – Consider the expectation

(111) EM D E�˝N
�
Me˛

�
wab

�
e�
�
H�.w/

��
:

We show that, for some c > 0,

(112) EM � k˛k
!.M/ exp

�
�c

�
k˛k2 min

�
N;

1

N j�j2

���
;

which suffices on summing over the monomials described in i. through iv. above.
Let c1 > 0 be a small constant, and let

(113) N 0 D

8<:
j
c1
j�j

k
; N j�j > c1

N; otherwise
:

Let w0 be the initial string of w of length N 0 and assume that this includes any variables
from M ; the general case may be handled by a straightforward modification. Write w D
w0 ˚ w t so that w t contains the remaining variables. Write

(114) H�.w/ D H�.w0/CH
�.w0; w t /CH

�.w t /:

Write Ǫ D ˛ C �
2

h
w
.2/
t ;�w

.1/
t

it
. Bound

(115) jEM j � Ew t��˝.N�N 0/
hˇ̌̌
Ew0��˝N 0

�
Me Ǫ .w0/ e�

�
H�.w0/

��ˇ̌̌i
:

Expand e�.H�.w0// in Taylor series to degree L WD
�
N 2�

˘
. The error in doing so is

bounded by

.2�j�j/LC1

.LC 1/Š
Ew0��˝N 0

�
jM jjH�.w0/j

LC1
�
:(116)

Apply Cauchy-Schwarz to remove the monomial M , then insert the moment bound of
Lemma 10 to estimate this by

�
.2�j�j/LC1

.LC 1/Š
Ew0��˝N 0

�
H�.w0/

2LC2
� 1
2(117)

�
.2�j�j/LC1

.LC 1/Š

.2LC 2/Š

.LC 1/Š22LC2
.N 0/LC1

� .2�j�jN 0/LC1 � .2�c1/
LC1:

If c1 < 1
2�

then this is bounded by, for some c > 0, exp
�
�cN 2�

�
:

In the Taylor expansion, expectation over w0 is bounded by

LX
`D0

.2�j�j/`

`Š

ˇ̌̌
E�˝N 0

h
Me Ǫ .w0/H

�.w0/
`
iˇ̌̌

(118)

�

LX
`D0

.2�j�j/`

2``Š

X
m;n2ŒN 0�`

ˇ̌̌
E�˝N 0

h
Me Ǫ .w0/w

.1/
m1
� � �w.1/m`w

.2/
n1
� � �w.2/n`

iˇ̌̌
:

The expectation factors as a product. Those indices of ŒN 0�which do not have a monomial
factor contribute, for some c2 > 0,

(119) � exp
�
�2�2.N 0 � 2` � 3/k Ǫk2

�
� exp

�
�c2N

0
k Ǫk

2
�
:
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Let E (resp. O) be those indices in ŒN 0� which appear a positive even (resp. odd) number
of times among the factors in M and m1; : : : ; m`; n1; : : : ; n`.

For indices which appear a positive even hj number of times, bound je Ǫ .wj /j � 1, so that
the expectation is bounded by the hj th moment of a 1-dimensional Gaussian,

(120) �hj D
hj Š

2
hj
2

�
hj
2

�
Š

:

At indices which appear an odd hj number of times, set e Ǫ .wj / D 1 C O.k Ǫkkwj k/.
Expectation against 1 vanishes. The remaining expectation is bounded by

(121) � k Ǫk�hjC1:

The configurations in which no index outsideM appears with multiplicity greater than 2,
and no more than one of the mj ; nj fall on an odd degree index of M and none fall on an
even degree index of M , make a dominant contribution. Call these base configurations. The
type of a base configuration is described by a triple .p; `1; `2/ where p indicates whether an
index from m; n falls on each odd degree index present in M , where `1 counts the number
of indices which appear once, and `2 counts the number of indices which appear twice. Let
jpj be the number of indices which fall on M . Thus

(122) 2` D jpj C `1 C 2`2:

Let N .p; `1; `2/ be the number of base configurations that have a given type. There are

(123)
.2`/Š

jpjŠ`1Š`2Š2`2

ways to allot the 2` indices of m; n to belong to p, the `1 singletons or `2 doubles, and
� .N 0/`1C`2 ways to place the indices in ŒN 0� once they have been so arranged, so that

(124) N .p; `1; `2/�
.2`/Š

jpjŠ`1Š`2Š2`2
.N 0/`1C`2 :

Given m; n of type .p; `1; `2/,

(125) E�˝N 0
h
Me Ǫ .w0/w

.1/
m1
� � �w.1/m`w

.2/
n1
� � �w.2/n`

i
� exp.�c2N 0k Ǫk2/O.1/`1C`2k Ǫk!.M/�jpjC`1 :

Indicating restriction of m; n to base configurations with a 0,

LX
`D0

.2�j�j/`

2``Š

X
m;n2ŒN 0�`

0
ˇ̌̌
E�˝N 0

h
Me Ǫ .w0/w

.1/
m1
� � �w.1/m`w

.2/
n1
� � �w.2/n`

iˇ̌̌
(126)

� exp.�c2N 0k Ǫk2/

�

X
p

1X
`1;`2D0
jpjC`1 even

.�j�j/
jpjC`1C2`2

2 k Ǫk
!.M/�jpjC`1.jpj C `1 C 2`2/Š�

jpjC`1C2`2

2

�
Š`1Š`2Š2`2

O.N 0/`1C`2 :
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Bound

.jpj C `1 C 2`2/Š

jpjŠ
�
jpjC`1C2`2

2

�
Š`1Š`2Š

� 4jpjC`1C2`2
`2Š�

jpjC`1C2`2

2

�
Š
�
4jpjC`1C2`2�
jpjC`1

2

�
Š
:(127)

If the constant c1 in (113) is chosen sufficiently small, then the sum over `2 converges to a
bounded quantity and the sum over `1 is bounded by

(128) � exp
�
O.1/k Ǫk2j�j.N 0/2

�
:

Since j�jN 0 � c1, if c1 is sufficiently small this obtains a bound,

� exp
�
�
c2

2
N 0k Ǫk2

� �
k Ǫk

!.m/
C k Ǫk

!.m/�1
p
j�j C � � � C j�j

!.m/
2

�
:(129)

This bound with ˛ in place of Ǫ obtains (112) for the dominant terms, and hence bounds
the dominant terms unless j�j � 1

N
. In the remaining case, the bound is acceptable unless

k Ǫk < c3k˛k for a small constant c3 > 0. In this case one obtains k�w tk � k˛k. Since
w t is a Gaussian with variance of order N � N 0 < N , the event k�w tk � k˛k occurs with

w t -probability, for some c4 > 0,� exp
�
�c4

k˛k2

N�2

�
, which is again satisfactory.

To obtain a bound for all configurations from the bound for base ones, configurations with
jOj D `1, jE j D `2 may be enumerated by adding a number k of double indices to an existing
base configuration. There areO.L/k ways of choosing the indices where the new doubles will
be added, O.L/2k ways of inserting the indices into the list m; n, and the new indices make
a gain in the calculated moments of O.L/k . Meanwhile, a factor of j�jk is saved in the outer
sum. Recall L � N 2�. If � < 1

8
then the sum over k is O.1/ for all N sufficiently large.

Proof of Theorem 2. – Combining Lemmas 16 and 17 obtains, for anyA > 0; 0 < � < 1
4

,
for some c > 0

PN .n1; n2; n3/COA.N
�A/ D

“
k˛k�N

�� 1
2

j�j�
logN
N

e˛
�
.n1; n2/

t
�
e�

�
n3 �

n1n2

2

�
�

h
I
�p

N�˛;Nı�
�
CO .E/

i
d˛d�;(130)

where the error term E satisfies the estimates of Lemmas 18, 19 and 20. Over the range of

integration the error integrates to O
�
N�

5
2

�
.

Making a change of variables and extending the integral to R3 obtains

PN .n1; n2; n3/CO
�
N�

5
2

�
D

1

ı2N 2

Z
R3
e˛

�
��1

�
.n1; n2/

t

p
N

��
� e�

�
1

ı

�
n3 �

n1n2
2

N

��
I .˛; �/ d˛d�:(131)

The right hand side is the Gaussian density of the limit theorem. To obtain the return
probability to 0, use ı2 D 4

25
and

R
R3 I.˛; �/d˛d� D

1
4

in

PN .0; 0; 0/ D
1

ı2N 2

Z
R3
I.˛; �/d˛d� CO

�
N�

5
2

�
(132)

D
25

16N 2
CO

�
N�

5
2

�
:
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4. Proof of Theorem 1, Cramér case

Theorem 1 treats measures for which the abelianized walk is non-lattice. In this case the
fibered distribution is also dense in R, and when the abelianized distribution satisfies the
Cramér condition, the fibered distribution does, also. We assume the Cramér condition in
this section and treat the general case in the next section. In this case, after making an
arbitrary translation on the left and right, the test functions may be taken to be of the form

(133) f .Œx; y; z�/ D F
�
x � x0; y � y0; z �

xy

2
� Ax � By � z0

�
;

where F is a Lipschitz function of compact support and x0; y0; z0; A; B are real parameters.

Let � be a smooth, compactly supported bump function on R3, for t > 0, �t .x/ D t3�.tx/
and Ft D F � �t the convolution on R3. Since F is Lipschitz, kF � Ftk1 � 1

t
as t ! 1.

Set

(134) ft .Œx; y; z�/ D Ft

�
x � x0; y � y0; z �

xy

2
� Ax � By � z0

�
:

Choosing t D t .N / D N
5
2 ,

hf; ��N i D O
�
N�

5
2

�
C

Z
.˛;�/2R3

OFt .˛; �/(135)

�

D
e˛
�
.x � x0; y � y0/

t
�
e�

�
z �

xy

2
� Ax � By � z0

�
; ��N

E
d˛d�:

Using the decay of the Fourier transform of the bump function �t , truncate the integral
to k˛k; j�j D O.NO.1// with admissible error.

Apply the multiplication rule (31) to write the central coordinate of a product of group
elements w as

(136) Qz D z �
xy

2
D H�.w/C Qw

.3/
:

The mean of Qw
.3/

is N Qz. Let Qw
.3/

0 D Qw
.3/
�N Qz. Let Q̨ D ˛ � � � .A;B/t . ThusD

e˛
�
.x � x0; y � y0/

t
�
e�

�
z �

xy

2
� Ax � By � z0

�
; ��N

E
(137)

D e˛
�
�.x0; y0/

t
�
e�
�
N Qz � z0

� Z
H.R/N

e Q̨
�
wab

�
e�

�
H�.w/C Qw

.3/

0

�
d�˝N :

The argument of Lemma 16 applies as before to truncate to j�j D O
�

logN
N

�
. This uses

Lemma 7 in the case j�j D O.1/ and Lemma 6 in the case j�j � 1. The argument of
Lemma 17 applies as before to truncate to k Q̨k � N�

1
2C�.

A small modification is needed to the application of Lemma 18 which we now describe.
Here one can now include in the measure �ab a third dimension corresponding the Qz � Qz,
and make � a 3 dimensional Gaussian with the same covariance matrix. The Gaussian
replacement scheme goes through essentially unchanged, the addition of the third coordinate
evaluated at the small frequency � making a negligible change; these terms do not need to be
included in Tj . Q̨ ; �; w/. The main term becomes

(138) E�˝N
h
e Q̨ .wab/e�.H

�.w//e�

�
Qw
.3/

0

�i
:
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After a linear change of coordinates, the third coordinate is independent of the first two and
Q̨ is mapped to ˛0 D Q̨ CO.�/. Hence

E�˝N
h
e Q̨ .wab/e�.H

�.w//e�

�
Qw
.3/

0

�i
D
�
1CO.�2N/

�
E�˝N

�
e˛0.wab/e�.H

�.w//
�
:(139)

Note that, since k˛0k2 D k Q̨k2 CO.k Q̨kj�j/CO.j�j2/,

I
�
N

1
2 �˛0; Nı�

�
D

exp
�
�

2�k˛0k2

ı� cothNı��

�
coshNı��

(140)

D I
�
N

1
2 � Q̨ ; Nı�

�
.1CO.k Q̨k C j�j// :

In the error term,

(141) E�˝N

24e Q̨ .wab/e�.H
�.w//e�

�
Qw
.3/

0

�X
j

Tj . Q̨ ; �; w/

35 ;
the factor of e�

�
Qw
.3/

0

�
may be removed by Taylor expanding to degree 1, so that this part of

the argument is unchanged.

To complete the argument, integrate as before˝
f; ��N

˛
D

Z
k Q̨k�N

� 1
2
C�

j�j�
logN
N

OFt .˛; �/e˛.�.x0; y0/
t /e�.N Qz � z0/(142)

�

h
I
�
N

1
2 �˛0; Nı�

�
CO.E/

i
d˛d� CO

�
N�

5
2

�
:

The argument is now completed essentially as before, to find

(143)
˝
f; ��N

˛
D

D
ft ; dpN �

E
CO

�
N�

5
2

�
D

D
f; dp

N
�
E
CO

�
N�

5
2

�
:

5. Proof of Theorem 1, general case

We now consider the case in which �ab does not necessarily satisfy a Cramér condition.
In this section the test functions take the form

(144) f .Œx; y; z�/ D F
�
x � x0; y � y0; z �

xy

2
� Ax � By � z0

�
;

with F continuous and of compact support. Since we ask only for an asymptotic, it suffices
by Selberg’s theory of band-limited majorants and minorants [13] to assume that F takes the
form

(145) F.Œx; y; z�/ D �ab.x; y/�3.z/

with �ab and �3 functions with Fourier transform of compact support. In this case, writing
Q̨ D ˛ � � � .A;B/t ,˝

f; ��N
˛
D

Z
k˛k;j�jDO.1/

O�ab.˛/ O�3.�/e˛
�
�.x0; y0/

t
�
e�
�
N Qz � z0

�
(146)

�

Z
H.R/N

e Q̨
�
wab

�
e�

�
H�.w/C Qw

.3/

0

�
d�˝N :
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Argue as in Lemma 16 to truncate to j�j � logN
N

. Since A and B are unconstrained,
a further difficulty is encountered in applying Lemma 17 to truncate ˛. Let � > 0.
For j�j � logN

N
and Q̨ 62 SpecN�1C� .�ab/, Lemma 17 demonstrates that the integral

over H.R/N is, for any A > 0, OA.N�A/. The following modification of Lemma 18 permits
an asymptotic evaluation of

(147) EUN

h
e Q̨ .wab/e�

�
H�.w/C Qw

.3/

0

�i
at points Q̨ in the large spectrum of �ab, SpecN�1C� .�ab/.

L 21. – Let �ab have covariance matrix �2 and set ı D det.�/. Let 0 < � <
1
4

, # D N�1C�, let Q̨ 2 SpecN�1C� .�ab/, j�j �
logN
N

, and let ˛0 2 M#.�ab/ satisfy
k Q̨ � ˛0k �

p
# . Then

EUN

h
e Q̨ .wab/e�

�
H�.w/C Qw

.3/

0

�i
D O

�
N�

1
2CO.�/

�
C O�ab.˛0/

N I
�
N

1
2 �. Q̨ � ˛0/; Nı�

�
:

(148)

Proof. – Write e�
�
Qw
.3/

0

�
D 1CO

�
j�j Qw

.3/

0

�
: Since

(149) EUN

h
j�j
ˇ̌̌
Qw
.3/

0

ˇ̌̌i
D O

�
N�

1
2C�

�
;

it suffices to prove that

EUN
�
e Q̨ .wab/e�.H

�.w//
�
D O�ab.˛0/

N I
�
N

1
2 �. Q̨ � ˛0/; Nı�

�
CO

�
N�

1
2CO.�/

�
:(150)

Let � D �.0; �/ be a centered two dimensional Gaussian with covariance equal to that
of �ab. Let X be distributed according to �. Set ˛ D Q̨ � ˛0. By Lemma 14,

(151) O�ab.˛0 C ˛/ D O�ab.˛0/E�Œe˛.X/�CO.#k˛k C k˛k3/:

In analogy with Lemma 18, define

(152) j̨ .w/ D ˛ C
�

2

24X
i¤j

.�1/ı.i<j /w
.2/
i ;

X
i¤j

.�1/ı.i>j /w
.1/
i

35t :
Set, for 1 � k � N , �k D �

˝k
ab ˝ �

˝.N�k/. Also set wab;k D
Pk
jD1wj;ab and

(153) Sk D E�k
�
e˛.wab/e˛0.wab;k/e�.H

�.w//
�
;

so that SN D EUN
�
e Q̨ .wab/e�.H

�.w//
�

and

(154) S0 D I
�p

N�˛;Nı�IN
�
D I

�p
N�˛;Nı�

�
CO

�
N�1CO.�/

�
:

Holding all but the kth variable fixed obtains

jSk � O�ab.˛0/Sk�1j � E
�
˝.k�1/
ab ˝�˝.N�k/

�
#k˛k.w/k C k˛k.w/k

3
�

(155)

D O
�
N�

3
2CO.�/

�
:
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The proof is now complete, sinceˇ̌̌
SN � O�ab.˛0/

NS0

ˇ̌̌
�

N�1X
kD0

ˇ̌̌
O�ab.˛0/

kSN�k � O�ab.˛0/
kC1SN�k�1

ˇ̌̌
(156)

�

N�1X
kD0

jSN�k � O�ab.˛0/SN�k�1j � N�
1
2CO.�/:

Proof of Theorem 1, general case. – Let 0 < � < 1
4

and let # D N�1C�. By Lemma 12
there is a constant c1 D c1.�/ such that

Spec#.�ab/ �
[

˛02M#

B
c1#

1
2
.˛0/:

Let supp O�ab � BR.0/. Define the set

(157) „good D

8<:� W j�j � logN
N

; �� � .A;B/t 2
[

˛02M#

B
RCc1#

1
2
.˛0/

9=; :
Assume thatN is sufficiently large so that if ˛0; ˛1 are distinct points of M# then k˛0�˛1k �
2.R C c1#

1
2 /: Given � 2 „good let ˛0.�/ be the nearest point to �� � .A;B/t in M# . Also,

define

(158) A� D
˚
˛ 2 BR.0/ W Q̨ D ˛ � � � .A;B/

t
2 Spec#.�ab/

	
:

By Lemma 12, jA� j � N�1C�.

In the evaluation from above,

˝
f; ��N

˛
COA.N

�A/ D

Z
�2„good

Z
˛W Q̨2Spec# .�ab/

O�ab.˛/ O�3.�/e˛
�
�.x0; y0/

t
�
e�
�
N Qz � z0

�(159)

� E�˝N
�
e Q̨ .wab/e�.H

�.w//
�
d˛d�

insert the asymptotic formula for the expectation from Lemma 21. The error term here is
bounded by Z

�Wj�j�
logN
N

Z
˛2BR.0/;
Q̨2Spec# .�ab/

N�
1
2CO.�/d˛d�(160)

�

Z
�2„good

N�
1
2CO.�/jA� jd� D O

�
N�

5
2CO.�/

�
:

This leaves the main termZ
�2„good

Z
˛W Q̨2Spec# .�ab/

O�ab.˛/ O�3.�/e˛
�
�.x0; y0/

t
�
e�
�
N Qz � z0

�
� I

�p
N�. Q̨ � ˛0.�//; Nı�

�
d˛d�:(161)

The contribution from the part of this integral where ˛0.�/ D 0 contributes hf; dp
N
�i C

O.N�A/, by extending the integral with the same integrand to all of R3, so it remains to
bound the contribution from � for which ˛0.�/ ¤ 0.
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For a fixed � 2 „good, the formula

(162) I.˛; �/ D
exp

�
�
2�k˛k2

� coth �

�
cosh��

gives that integration in ˛ is bounded absolutely by

(163)
Z
˛

I
�p

N�. Q̨ � ˛0.�//; Nı�
�
d˛ �

max
�
1
N
; j�j

�
coshN�ı�

:

The contribution of � 2 „good for which ˛0.�/ ¤ 0 is bounded byZ
�2„good;˛0.�/¤0

max. 1
N
; j�j/

coshN�ı�
d�:(164)

Since the ˛0.�/ are F .#/ spaced, this is bounded by

(165) �
1

F .#/

Z 1
0

max
�
1
N
; j�j

�
coshN�ı�

d� D o

�
1

N 2

�
:

6. Random walk on Nn.Z/, proof of Theorem 3

The case n D 2 is classical so assume n � 3.

Let M W Zn�1 ! Nn.Z/ be the map

(166) M W Zn�1 3 v D

0BBBBB@
v.1/

v.2/

:::

v.n�1/

1CCCCCA 7!
0BBBBBBBB@

1 v.1/ 0 � � � 0

0 1 v.2/ 0
:::

:::
: : :

: : :
: : : 0

0 0 1 v.n�1/

0 � � � 0 1

1CCCCCCCCA
:

Recall that, given m 2 Nn we write Z.m/ for the upper right corner. Given sequence of
vectors v D fvigNiD1 2

�
Zn�1

�N
the central coordinate satisfies the product rule

(167) Z

 
NY
iD1

M.vi /

!
D

X
1�i1<i2<:::<in�1�N

v
.1/
i1
v
.2/
i2
� � � v

.n�1/
in�1

:

Write

(168) ZNn D
X

1�i1<i2<:::<in�1�N

e
.1/
i1
˝ � � � ˝ e

.n�1/
in�1

for the corresponding tensor. ZNn;� denotes the measure on Z obtained by pushing forward
measure � on Zn�1 via M to measure Q� on Nn.Z/, then obtaining hZ; Q��N i. Equivalently,
ZNn;� is the distribution of ZNn evaluated on N vectors vi drawn i.i.d. from �.

Given a probability measure � on Z and prime p, Cauchy-Schwarz and Plancherel give

(169)
X

x mod p

ˇ̌̌̌
�.x mod p/ �

1

p

ˇ̌̌̌
�

0@ X
0 6�� mod p

ˇ̌̌̌
O�

�
�

p

�ˇ̌̌̌21A 1
2

;
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where

O�.˛/ D
X
n2Z

e�˛.n/�.n/:(170)

Theorem 3 thus reduces to the following estimate on the characteristic function of ZNn;�.

P 22. – Let n � 3 and let � be a measure on Zn�1 satisfying the same
conditions as in Theorem 3. There exists constant C > 0 such that for all N > 0 and all
0 < j�j � 1

2
, ˇ̌̌

OZNn;� .�/
ˇ̌̌
� exp

�
�CN j�j

2
n�1

�
:(171)

Deduction of Theorem 3. – Recall N D cp
2
n�1 and let c � 1. Apply the upper bound of

Proposition 22. By (169),0@ X
x mod p

ˇ̌̌̌
ZNn;�.x/ �

1

p

ˇ̌̌̌1A2 � X
�2Z

0<j�j<p2

ˇ̌̌̌
OZNn;�

�
�

p

�ˇ̌̌̌2
(172)

�

X
0<j�j<p2

exp
�
�Ccj�j

2
n�1

�
� exp .�Cc/ :

6.1. Proof of Proposition 22

Let C n�22 act on blocks of vectors of length k2n�2 with the j th factor from C n�22 ,
j � 1 switching the relative order of the first k2j�1 and second k2j�1 indices. Thus, for
instance, in case n D 5, if each of x1; : : : ; x8 represents a block of k consecutive indices and
x D x1x2x3x4x5x6x7x8,

�2x D x3x4x1x2x5x6x7x8

�1�3x D �3�1x D x5x6x7x8x2x1x3x4(173)

�1�2�3x D x5x6x7x8x3x4x2x1:

For k � 1 set N 0 D
j

N
k2n�2

k
and let Gk D .C n�22 /N

0

. Gk acts on sequences of length N

with, for j � 1, the j th factor of Gk acting on the contiguous subsequence of indices of
length k2n�2 ending at jk2n�2. For fixed k and fixed w 2 WN D .supp�/N , let

(174) Zk.w/ D E�2Gk
h
ıZNn .� �w/

i
:

Continue to abbreviate UN D �˝N . For any k,

(175) ZNn;� D EUN ŒZk.w/� :

We introduce a second, dual action of Gk on a linear dual space. Let

(176) IN D fi D .i1; i2; : : : ; in�1/ W 1 � i1 < i2 < � � � < in�1 � N g :

Given i 2 IN and k � 1, let Si ;k � Sn�1 be the subset of permutations Si ;k D f��;i W � 2 Gkg,
where

(177) 81 � j � n � 1; ��;i .j / D #f1 � k � n � 1 W �.ik/ � �.ij /g:
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That is, ��;i .j / is the relative position of � � ij when � � i is sorted to be in increasing order.
Put another way, suppose � maps i1 < � � � < in�1 to j1 < � � � < jn�1 in some order (and vice
versa, � is an involution) and calculate

e
.1/
j1
˝ � � � ˝ e

.n�1/
jn�1

.� � w/ D e
.1/
� �j1
˝ � � � ˝ e

.n�1/
� �jn�1

.w/

D e
.1/
i
��1.1/

˝ � � � ˝ e
.n�1/
i
��1.n�1/

.w/(178)

D e
.�.1//
i1

˝ � � � ˝ e
.�.n�1//
in�1

.w/;

where ��;i is abbreviated � .

Let

(179) XN;k D
n
e
.�.1//
i1

˝ � � � ˝ e
.�.n�1//
in�1

W i 2 IN ; � 2 Si ;k

o
:

The action of � 2 Gk is defined on a representative set within XN;k by, for each i 2 IN ,

(180) � �
�
e
.1/
i1
˝ � � � ˝ e

.n�1/
in�1

�
D e

.��;i .1//

i1
˝ � � � ˝ e

.��;i .n�1//

in�1
:

The following lemma justifies that this definition extends to a unique group action of Gk on
all of XN;k .

L 23. – Let �; � 0 2 Gk and i 2 IN satisfy ��;i D �� 0;i . Then for any � 00 2 Gk ,
��C� 00;i D �� 0C� 00;i . In particular, (180) extends to a unique group action on XN;k .

Proof. – This follows, since, for any 1 � i < j � N there is at most one factor
of G D C n�22 in Gk , and one index `, 1 � ` � n � 2 of G which exchanges the order of i
and j . To define the group action in general, given � 2 Gk , i 2 IN and � 2 Si ;k choose any
�0 such that � D ��0;i . Let � 0 D ��0C�;i . Then

(181) � � e
.�.1//
i1

˝ � � � ˝ e
.�.n�1//
in�1

D e
.� 0.1//
i1

˝ � � � ˝ e
.� 0.n�1//
in�1

:

The definition is clearly unique, since (180) surjects on XN;k .

The actions of Gk on WN and on XN;k , although not adjoint, are compatible on ZNn , in
the sense that for any � ,

(182) .� �ZNn /.w/ D Z
N
n .� � w/

so that

(183) Zk.w/ D E�2Gk
h
ı.� �ZNn /.w/

i
:

Note that in general, although Gk is a product group, the separate factors �i do not act
independently in � �ZNn . For instance, when n D 5 and k D 1, the change in a tensor of type
e
.1/
1 ˝e

.2/
2 ˝e

.3/

2n�2C1
˝e

.4/

2n�2C2
under the first factor ofGk depends upon whether the second

factor has been applied. Thus the characteristic function

(184) �k.�; w/ D E�2Gk
�
e��

�
ZNn .� � w/

��
needs not factor as a product.
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A pleasant feature of the general case is that this difficulty is rectified by estimating instead
of �k.�; w/, a function Fk.�; w/ which is the result of applying the Gowers-Cauchy-Schwarz
inequality to �k.�; w/. To describe this, write Gk D .C n�22 /N

0

D .CN
0

2 /n�2, and thus

(185) E�2Gk Œf .�/� D E
�12C

N 0

2

� � �E
�n�22C

N 0

2

Œf .�1; : : : ; �n�2/� :

Then, setting apart one expectation at a time and applying Cauchy-Schwarz,

j�k.�; w/j
2n�2
� E

�1;�
0
1
2CN

0

2

� � �E
�n�2;�

0
n�2
2CN

0

2

24e��
0@ X
S�Œn�2�

.�1/n�2�jS j�S � w

1A35(186)

D E�;� 02Gk

24e��
0@ X
S�Œn�2�

.�1/n�2�jS j�S � w

1A35
DW Fk.�; w/;

where

(187) �S D .�S;1; : : : ; �S;n�2/; �S;i D

(
� i i 2 S;

� 0i i 62 S:

L 24. – Fk.�; w/ factors as the product

Fk.�; w/ D

N 0Y
jD1

�
1 �

1

2n�2
C
Fk;j .�; w/

2n�2

�
;(188)

where Fk;j .�; w/ is a function of wj;k D .!1; : : : ; !2n�2/ with the

(189) !i D
X

.2n�2.j�1/Ci�1/k<`�.2n�2.j�1/Ci/k

w`

the sum of consecutive blocks of length k in w. Identify C n�22 with f0; 1gn�2 and write
j� j D

Pn�2
iD1 1.�i ¤ 0/. Then

(190) Fk;j .�; w/ D E�2Cn�2
2

264e��
0B@ X
� 02Cn�2

2

.�1/j�
0jZ2

n�2

n ..� C � 0/ � wj;k/

1CA
375

with the action of C n�22 on blocks of size 1 in wj;k .

Proof. – Consider for fixed �; � 0 2 Gk the sum

(191) ZNn .�; �
0/.w/ D

X
S�Œn�2�

.�1/n�2�jS j�S �Z
N
n .w/:

After replacing w with � 0w and � with � C � 0 it suffices to consider � 0 D id.
Consider the action of

(192) O� D
X

S�Œn�2�

.�1/n�2�jS j�S

on a tensor

(193) e D e.1/i1 ˝ e
.2/
i2
˝ � � � ˝ e

.n�1/
in�1

; 1 � i1 < i2 < � � � < in�1 � N
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appearing in ZNn . Let G D C n�22 identified with subsets S of Œn � 2�, let G0 D stab.i/ �
C n�22 be the subgroup consisting of S for which �S � e D e, and let G1 D C n�22 =G0. By the
group action property, for all x 2 G0, for all y 2 G1, �xCye D �ye so that when G0 ¤ f1g,
O� � e D 0.

A necessary and sufficient condition for G0 D f1g is that, for some 1 � j � N 0,

2n�2.j � 1/k < i1 � 2
n�2.j � 1/k C k(194)

81 < ` � n � 1 2n�2.j � 1/k C 2`�2k < i` � 2
n�2.j � 1/k C 2`�1k;

and �j D 1n�2 2 C n�22 . In words, the indices must all belong to a common block of
length 2n�2k acted on by a single factor from Gk , within this block, the first 2`�1k elements
must contain i` and the second 2`�1k must contain i`C1 for ` D 1; 2; : : : ; n � 2, and the
factor �j acting on the block must be the element 1n�2 of the hypercube C n�22 .

The product formula given summarizes this condition.

Proof of Proposition 22. – Assume without loss that j�j � N�
n�1
2 .

Let k D max
�j
j�j�

2
n�1

k
;M.�/

�
, where M.�/ is a constant depending upon �. By the

triangle inequality and Hölder’s inequality,ˇ̌̌
OZNn;�.�/

ˇ̌̌
�
ˇ̌
EUN Œ�k.�; w/�

ˇ̌
(195)

� EUN Œj�k.�; w/j�

� EUN

h
j�k.�; w/j

2n�2
i 1

2n�2

� EUN ŒFk.�; w/�
1

2n�2 :

Since disjoint blocks are i.i.d., Lemma 24 implies that the expectation of Fk.�; w/ factors as
a product

EUN ŒFk.�; w/� D

 
1 �

1

2n�2
C

E
�
Fk;1.�; w/

�
2n�2

!N 0
:(196)

In the limit as j�j # 0,

(197) �
X

� 02Cn�2
2

.�1/j�
0jZ2

n�2

n ..� C � 0/ � wj;k/

has a continuous limiting distribution, which is a polynomial of degree n � 1 in indepen-
dent normal random variables, and hence the characteristic function EŒFk;1.�; w/� has size
bounded uniformly away from 1 for all j�j smaller than a fixed constant �.�/. It follows that

(198)
ˇ̌̌
OZNn;�.�/

ˇ̌̌
� exp.�C 0N 0/ � exp

�
�C j�j

2
n�1N

�
:

To handle the remaining range �.�/ � j�j � 1
2

, choose N1; N2; � � � ; Nn�1 minimal such
that��Ni gives positive mass to the i th standard basis vector inRn�1. Set k D N1C� � �CNn�1
and recall that � assigns positive probability to 0. Then with �˝2

n�2k-positive probability,
for each 1 � j � n�1, !2j�1 is the j th standard basis vector and all other !i are 0. For this
configuration, Z2

n�2

n .� �w1;k/ D 1 if � is the identity, and 0 otherwise. Again, this gives that
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the characteristic function is uniformly bounded away from 1. We thus conclude, as before,
that

(199)
ˇ̌̌
OZNn;�.�/

ˇ̌̌
�

ˇ̌̌
OZNn;�.�/

ˇ̌̌
� exp.�CN/:

Appendix

The characteristic function of a Gaussian measure on the Heisenberg group

This section proves Theorem 9, which gives a rate of convergence to the characteristic
function of a Gaussian measure on the Heisenberg group when the steps in the walk are
normally distributed in the abelianization.

Recall that

I.˛; �IN/ D

Z
.R2/N

e�˛

�
x
p
N

�
e��

�
H� .x/

N

�
d�˝N2 .x/ ;(200)

where �2.x/ D 1
2�

exp
�
�
kxk2

2

�
.

First consider the case ˛ D 0. Integrate away x.1/ to obtain,

I.0; �IN/ D
1

.2�/
N
2

Z
RN

exp
�
�
1

2
yt
��
1 � �20

�
IN C �

2
0H

�
y

�
dy;(201)

where

�0 D
��

N
; Hi;j D N � 2ji � j jI(202)

this follows from H�.x/ D 1
2

P
i<j .�1/

ı.j<i/x
.1/
i x

.2/
j ; O�.�/ D e�2�

2�2 for a standard one
dimensional Gaussian, and

(203) yt .H � IN /y D

NX
iD1

0@X
j¤i

.�1/ı.j<i/yj

1A2 :
Thus,

(204) I.0; �IN/ D
1q

det
��
1 � �20

�
IN C �

2
0H

� ;
as may be seen by using an orthogonal matrix to diagonalize the quadratic form.

We perform elementary row operations to simplify the computation of the determinant.
Let

(205) U� D IN �

N�1X
iD1

ei ˝ eiC1:

Thus

(206)
�
U t�U�

�
i;j
D

8̂̂̂̂
<̂
ˆ̂̂:
1; i D j D 1

2; i D j > 1

�1; ji � j j D 1

0; otherwise
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and

(207)
�
U t�HU�

�
i;j
D

8̂̂̂̂
<̂
ˆ̂̂:
N; i D j D 1

�2; i D 1; j > 1 or j D 1; i > 1

4; i D j > 1

0; otherwise

;

so that

U t�
��
1 � �20

�
IN C �

2
0H

�
U� D .1C �

2
0 /

"
2IN �

1 � �20
1C �20

N�1X
iD1

.ei ˝ eiC1 C eiC1 ˝ ei /

(208)

�
2�20
1C �20

NX
iD1

.e1 ˝ ei C ei ˝ e1/C
.N C 1/�20 � 1

1C �20
e1 ˝ e1

#
:

Set � D 1��2
0

1C�2
0

. We diagonalize the tridiagonal matrix with 2’s on the diagonal and �� on

the first sub and super diagonal by working from the lower right corner and adding up and
to the left, and treat the remainder of the matrix as a rank 2 perturbation.

Define sequences

"1 D 2; 8i � 1; "iC1 D 2 �
�2

"i
(209)

�0 D 1; 8i � 1; �i D

iY
jD1

"i

ı1 D 1; 8i � 1; ıiC1 D 1C
�ıi

"i
:

These parameters have the following behavior with proof postponed until the end of this
section.

L 25. – For � 2
�
0;N

1
2

i
the following asymptotics hold

�N D N
sinh.2��/
2��

�
1CO

�
1C �2

N

��
"N D 1C

2��

N
coth.2��/

�
1CO

�
1C �2

N

��
(210)

ıN D
N tanh��
2��

�
1CO

�
1C �2

N

��
N�1X
jD1

ı2j

"j
D

N 3

8�3�3
Œ2�� � 2 tanh���

�
1CO

�
1C �2

N

��
:

Set

(211) L" D IN C �

N�1X
iD1

eiC1 ˝ ei

"N�iC1
; D" D

1

.1C �20 /

NX
iD1

ei ˝ ei

"NC1�i
:
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The diagonalization process is summarized in the following matrix equation, in whichD
1
2
" is

multiplied on left and right to obtain 1’s on the diagonal

D
1
2
" L

t
"U

t
�

��
1 � �20

�
IN C �

2
0H

�
U�L"D

1
2
" D IN C P(212)

and where P is the rank two symmetric matrix which results from applying the diagonaliza-
tion operators to the second line on the right hand side of (208),

(213) P D
�2�20
1C �20

NX
iD1

ıNC1�i
p
"N "N�iC1

.e1 ˝ ei C ei ˝ e1/C
.N C 1/�20 � 1

"N .1C �
2
0 /

e1 ˝ e1:

Then, for some orthogonal matrix O, and �C � ��,

(214) O t .IN C P /O D .�Ce1 ˝ e1 C ��e2 ˝ e2/˚ IN�2:

By direct calculation, expanding by the top row, det.IN C P / is equal to the e1 ˝ e1 entry
plus the sum of the squares of the e1 ˝ ei entries, 1 < i � N ,

det .IN C P / D �C�� D
�
1 �

1

"N .1C �
2
0 /

�
C
.N C 1/�20
"N .1C �

2
0 /

(215)

�
4�20
1C �20

ıN

"N
�

4�40
.1C �20 /

2"N

N�1X
jD1

ı2i
"i

D
�� coth��

N

�
1CO

�
1C �2

N

��
:

Since

det .D"/
�1
D .1C �20 /

N�N D

�
1CO

�
1C �2

N

��
N sinh 2��

2��
;(216)

det
��
1 � �20

�
IN C �

2
0H

�
D .cosh��/2

�
1CO

�
1C �2

N

��
:(217)

Now consider the general case in which ˛ ¤ 0. Treat x asN vectors in R2. When SO2.R/
acts diagonally on .R2/N rotating each xi simultaneously, H� and the Gaussian density are
preserved. Thus, I.˛; �IN/ D I..0; k˛k/t ; �IN/. Calculate

(218) Œ1; 1; : : : ; 1�U�L"D
1
2
" D

e1q
�N .1C �

2
0 /

:

It follows that after making the change of coordinates y0 DW U1L"D
1
2
" y the phase has

magnitude 2�k˛kq
N"N .1C�

2
0
/

and is now in the e1 direction. Let vC; v� be unit vectors generating

the eigenspaces �C; �� respectively. Since e1 lies in the span of vC; v� it follows that

(219) I.˛; �IN/ D exp
�
�2�2k˛k2

N"N .1C �
2
0 /

�
hvC; e1i

2

�C
C
hv�; e1i

2

��

��
I.0; �IN/:

Calculate

T D �C C �� D 2C e
t
1Pe1 D 1CO

�
�2

N

�
;(220)
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so that

(221) .�C; ��/ D

�
1CO

�
1C �2

N

���
1;
�� coth��

N

�
:

Also,

hvC; e1i
2
C hv�; e1i

2
D 1(222)

�ChvC; e1i
2
C ��hv�; e1i

2
D 1C et1Pe1 D O

�
1C �2

N

�
;

so that

(223) hvC; e1i
2
D O

�
1C �2

N

�
; hv�; e1i

2
D 1CO

�
1C �2

N

�
:

It follows that

(224)
hvC; e1i

2

�C
C
hv�; e1i

2

��
D

N

�� coth��

�
1CO

�
1C �2

N

��
:

In particular

(225) I.˛; �IN/ D
exp

�
�2�k˛k2

� coth��

�
cosh��

�
1CO

�
.1C k˛k2/.1C �2/

N

��
:

Proof of Lemma 25. – Recall � D 1��2
0

1C�2
0

. �n satisfies the recurrence

(226) �n D 2�n�1 � �
2�n�2; �0 D 1; �1 D 2:

The following closed forms hold,

�n D
.1C �0/

2nC2 � .1 � �0/
2nC2

4�0.1C �
2
0 /
n

(227)

"n D 1C
2�0

1C �20

.1C �0/
2n C .1 � �0/

2n

.1C �0/2n � .1 � �0/2n

ın D
1

2�0

�
1C�0
1��0

�n
C

�
1��0
1C�0

�n
� 2�

1C�0
1��0

�n
�

�
1��0
1C�0

�n C
1

2
:

The formula for �n is immediate from the recurrence relation, since

(228)
.1C �0/

2

1C �20
;

.1 � �0/
2

1C �20

are the two roots of x2 � 2x C �2 D 0. The formula for "n follows from "n D
�n
�n�1

. The
formula for ın is obtained on summing the geometric series

(229) ın D
�n�1

�n�1

n�1X
jD0

�j

�j
;
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and use
�n

�n
D
.1C �0/

2nC2 � .1 � �0/
2nC2

4�0.1 � �
2
0 /
n

(230)

D
1 � �20
4�0

"�
1C �0

1 � �0

�nC1
�

�
1 � �0

1C �0

�nC1#
:

The claimed asymptotics for�; "; ı are straightforward. For instance, to obtain the correct
relative error in �n, write

(231)
.1C �0/

2nC2
� .1 � �0/

2nC2

4�0
D
.1C �0/

2nC2
� .1 � �0/

2nC2

2 ..1C �0/ � .1 � �0//

as a geometric series of positive terms. In each term of the series, approximate the power
with an exponential with acceptable relative error, then sum the sequence of exponentials.
The correct relative error may be obtained in the other cases similarly.

Using the exact formulae for " and ı yields

ı2j

"j
D

�
1CO

�
1

j
C
�2

N

��
N 2

4�2�2
tanh

�
j��

N

�2
:(232)

Approximating with a Riemann sum,

(233)
N�1X
jD1

ı2j

"j
D

�
1CO

�
1C �2

N

��
N 3

4�2�2

Z 1

0

tanh .t��/2 dt;

which gives the claimed estimate.
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