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RANDOM WALK ON UNIPOTENT MATRIX GROUPS

BY PEeRrsi DIACONIS AnD RoBerT HOUGH

ABSTRACT. — We introduce a new method for proving central limit theorems for random walk on
nilpotent groups. The method is illustrated in a local central limit theorem on the Heisenberg group,
weakening the necessary conditions on the driving measure. As a second illustration, the method is
used to study walks on the n x n uni-upper triangular group with entries taken modulo p. The method
allows sharp answers to the behavior of individual coordinates: coordinates immediately above the
diagonal require order p? steps for randomness, coordinates on the second diagonal require order p
steps; coordinates on the kth diagonal require order p% steps.

RESUME. — Nous introduisons une nouvelle méthode pour prouver les théorémes limites centraux
pour la marche aléatoire sur groupes nilpotents. La méthode est illustrée dans un théoréme de la limite
centrale locale sur le groupe Heisenberg, affaiblissant les conditions nécessaires sur la mesure sous-
jacente. Comme deuxieme illustration, la méthode est utilisée pour étudier les marches aléatoires sur le
groupe triangulaire des matrices uni-supérieures n x n avec des entrées prises modulo p. La méthode
permet des réponses précises sur le comportement des coordonnées individuelles: les coordonnées im-
médiatement au-dessus de la diagonale nécessitent un ordre p? pour devenir aléatoire, les coordonnées
sur la deuxi¢me diagonale nécessitent un ordre de p pas pour converger; les coordonnées sur la k-iéme
diagonale nécessitent un ordre de magnitude de p% pas.

1. Introduction
Let H(R) denote the real Heisenberg group

1xz
(1) H(R) = 0lyl]:x,y,zeR
001
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588 P. DIACONIS AND R. HOUGH
Abbreviate (0 i JZ/) with [x, y, z], identified with a vector in R3. Consider a simple random

001
walk on G = H(R) driven by Borel probability measure . For N > 1, the law of this walk
is the convolution power *¥ where, for Borel measures ., v on G, and for f € C.(G),

@) fipxv) = / k) due) dvih).
g.,ne

Say that measure pu is non-lattice (aperiodic) if its support is not contained in a proper
closed subgroup of G. For general non-lattice  of compact support Breuillard [6] uses the
representation theory of G to prove a local limit theorem for the law of 1*¥V , asymptotically
evaluating its density in translates of bounded Borel sets. However, in evaluating u*V on
Borel sets translated on both the left and the right he makes a decay assumption on the
Fourier transform of the abelianization of the measure u, and raises the question of whether
this is needed. We show that this condition is unnecessary. In doing so we give an alternative
approach to the local limit theorem on G treating it as an extension of the classical local limit
theorem on R”. We also obtain the best possible rate. The method of argument is analogous
to (though simpler than) the analysis of quantitative equidistribution of polynomial orbits
on G from [14].

Recall that the abelianization G, = G/[G, G] of G is isomorphic to R? with projection
p : G — Gy given by p([x, y,z]) = [x, y]. Assume that the probability measure u satisfies
the following conditions.

i. Compact support.

il. Centered. The projection p satisfies
) | perdn) =o,

iii. Full dimension. Let ' = (supp u) be the closure of the subgroup of G generated by
the support of . The quotient G/ T" is compact.
Section 2 gives a characterization of closed subgroups I' of G of full dimension.
Under the above conditions, the central limit theorem for p is known. Let (d;);~¢ denote
the semigroup of dilations given by

) di([x.y.z]) = [tx. 1y, 1%2]

and denote the Gaussian semigroup (v;);>¢ defined by its generator (see [6], [26])

d
Q) df=— . f(g)dv:(g)

dt

t=0J8€
=70, f(id) + Xy03, f(id) + %Faﬁ 7(d) + %Fai 7(id)

where 02 = x2 = Je=txy.21eG x%dp(g) and similarly o7 = y2, 02

<y = XV, Z. Withv = vy,
the central limit theorem for y states that for f € C.(G),

©) (£ g ) = (s
For g € G define the left and right translation operators Lg, R, : L*(G) — L*(G),
(M Lgf(h) = f(gh),  Rgf(h) = f(hg).
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RANDOM WALK ON UNIPOTENT MATRIX GROUPS 589
Our local limit theorem in the non-lattice case is as follows.

THEOREM 1. — Let u be a Borel probability measure of compact support on G = H(R),
which is centered and full dimension. Assume that the projection to the abelianization [y is
non-lattice. Let v be the limiting Gaussian measure of d s wN. For f € C.(G), uniformly

N

forg,h e G,as N — oo,

) (LyRif, 1Y) = (Lo Rn f,d ggv) + 0,5 (N72).

If the Cramér condition holds:

) sup <1,

AER2, |A|>1

/ e du(g)
g=[x,y,z]eG

then uniformly for g, h € G and Lipschitz f € C.(G), as N — oo

(10) (L Rnfow™) = (Lo Rifid gv) + Opp (N72).

REMARK. — The rate is best possible as may be seen by projecting to the abelianization.
A variety of other statements of the local theorem are also derived, see eqn. (74) in Section 3.

REMARK. — For non-lattice u, [6] obtains (8) with 2 = id and for general /& subject to
Cramér’s condition. A condition somewhat weaker than Cramér’s would suffice to obtain

(10).

REMARK. — In the case that u is supported on a closed discrete subgroup or has a density
with respect to Haar measure, [1, 2] obtains an error of O (N _%) in approximating u*V (g),
gel.

Our proof of Theorem 1 applies also in the case when pu,, has a lattice component,
and gives a treatment which is more explicit than the argument in [1]. To illustrate this,
we determine the leading constant in the probability of return to 0 in simple random walk
on H(Z), giving an alternative proof of a result of [19]. Our proof applies equally well
to determine the return probability to 0 of lattice random walks with arbitrary finitely
supported driving measures.

THEOREM 2. — Let o be the measure on H(Z) which assigns equal probability % to each
element of the generating set

1£10) (10 0
(11) id,]o1o0].]o1=£l
oo1) \oo1

As N — o0, iV (id) = 225 + 0 (N-%).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



590 P. DIACONIS AND R. HOUGH

The basic idea which drives the proof is that permuting segments of generators in a
typical word of the walk generates smoothness in the central coordinate of the product,
while leaving the abelianized coordinates unchanged. This observation permits passing from
a limit theorem to a local limit theorem by smoothing at a decreasing sequence of scales.
When studying ;. * near the scale of its distribution, we use a Lindeberg replacement scheme
in which one copy at a time of u is replaced with a Gaussian measure in the abelianization. To
handle uniformity in the translation in Theorem 1 in the case where the Cramér condition
is not assumed we are forced to treat frequencies « which are unbounded, and thus must
consider the large spectrum

(12) Specy (iab) = {o € R? 1 |fLap ()] > 1 =D}

where ¥ — 0 as a function of N. In treating this, we use an approximate lattice structure
of Specy (1ab), see Section 2.1.

As a further application of the word rearrangement technique, answering a question of [9]
we determine the mixing time of the central coordinate in a natural class of random walks
on the group N, (Z/pZ) of n x n uni-upper triangular matrices with entries in Z/ pZ.

THEOREM 3. — Let n > 2 and let ju be a probability measure on Z"~' which satisfies the
following conditions.
i. Bounded support.
ii. Full support. (supp u) = Z"!
iii. Lazy. u(0) >0
iv. Mean zero. ) . cyn—1 xpu(x) =0

v. Trivial covariance.

n—1

(13) > xOxPpu) = In-1.

-1 .
XEL" ij=1

Push forward p to a probability measure fi on N,(Z) via, for all x € Z"!,

1x® o ... 0
01 x® "
(14) pl: - o = p(x).
0 1 x@=b
0 - 0 1

Write Z . N, (Z) — Z for the upper right corner entry of a matrix of Ny(Z). There exists
C > 0 such that, for all primes p, for N > 1,

(15) >

x mod p

1 N
;l*N(ZExmodp)——'<<exp —C——|.
P pn-1
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RANDOM WALK ON UNIPOTENT MATRIX GROUPS 591

REMARK. — Informally, the top right corner entry mixes in time O ( pn%l). This is tight,

since archimedean considerations show that the L! distance to uniform is 3> 1 if the number
of steps of the walk is < p%.

REMARK. — Although we have considered only the top right corner entry in U, (Z/ pZ),
this result determines the mixing time of each entry above the diagonal by iteratively
projecting to the subgroups determined by the top left or bottom right m x m sub-matrices.

REMARK. — Our argument permits treating measures not supported on the first super-
diagonal essentially without change, since entries above the first diagonal introduce a
lower degree tensor which is annihilated by the application of the Gowers-Cauchy-Schwarz
inequality. We treat the simplified case stated in order to ease the notation.

After completion of this work, the second named author has extended the methods
developed here to treat the local limit theorem on an arbitrary connected, simply connected
nilpotent Lie group [15].

History

Random walk on groups is a mature subject with myriad projections into probability,
analysis and applications. Useful overviews with extensive references are in [5], [22]. Central
limit theorems for random walk on Lie groups were first proved by [27] with [25] carrying out
the details for the Heisenberg group. Best possible results under a second moment condition
for nilpotent Lie groups are in [21].

A general local limit theorem for the Heisenberg group appears in [6], which contains a
useful historical review. There similar conditions to those of our Theorem 1 are made, but the
argument treats only the non-lattice case and needs a stronger condition on the characteristic
function of the measure projected to the abelianization. Remarkable local limit theorems
are in [1, 2]. The setting is groups of polynomial growth, and so “essentially” nilpotent Lie
groups via Gromov’s Theorem. The first paper gives quite complete results assuming that
the generating measure has a density. The second paper gives results for measures supported
on a lattice. The arguments in [2] have been adapted in [4] to give a local limit theorem for
non-lattice measures supported on finitely many points.

Just as for the classical abelian case, many variations have been studied. Central limit
theorems for walks satisfying a Lindeberg condition on general Lie groups are proved in
[23], see also references therein. Large deviations for walks on nilpotent groups are proved
in [3]. Central limit theorems on covering graphs with nilpotent automorphism groups are
treated in [17, 18]. This allows walks on Cayley graphs with some edges and vertices added
and deleted. Brownian motion and heat kernel estimates are also relevant, see [16, 12].

Random walk on finite nilpotent groups are a more recent object of study. Diaconis and
Saloff-Coste [11, 10, 9] show that for simple symmetric random walk on Z/nZ, order n?
steps are necessary and sufficient for convergence to uniform. The first paper uses Nash
inequalities, the second lifts to random walk on the free nilpotent group and applies central
limit theorems of Hebisch, Saloff-Coste and finally Harnack inequalities to transfer back
to the finite setting. The third paper uses geometric ideas of moderate growth to show that

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



592 P. DIACONIS AND R. HOUGH

for groups of polynomial growth, diameter-squared steps are necessary and sufficient to
reach uniformity. This paper raises the question of the behavior of the individual coordinates
on U,(Z/ pZ) which is finally answered in Theorem 3. A direct non-commuting Fourier
approach to H(Z/ pZ) is carried out in [7], where it is shown that order p log p steps suffice to
make the central coordinate random, improved here to order p steps, which is best possible.
For a review of the H(Z) results, see [8]. Finally there have been quite a number of papers
studying the walk on U, (Z/ pZ) when both p and n grow. We refer to [20], which contains a
careful review and definitive results.

Notation and conventions

Vectors from R?, d > 1 are written in plain text w, their coordinates with super-
scripts w®, and sequences of vectors with an underline w. The sum of a sequence of
vectors w is indicated w. w’ denotes the transpose of w. We frequently identify matrix
elements in the group U, with vectors from Euclidean space, and have attempted to indicate
the way in which the vectors should be interpreted. As a rule of thumb, when the group law
is written multiplicatively, the product is in the group U,, and when additively, in Euclidean
space.

The arguments presented use permutation group actions on sequences of vectors. Given
integer N > 1, denote & the symmetric group on [N] = ZN[1, N], which acts on length N
sequence of vectors by permuting the indices:

(16) Gy 30:(Wi,...,wN) = (Wg(1), - -+ We(N))-

C, is the two-element group. For d > 1, identify Czd with the d-dimensional hypercube

{0, 1341, is the element of Czd corresponding to the sequence of all 1’s on the hypercube. C2d

acts on sequences of vectors of length 2¢ with the j th factor determining the relative order of

the first and second blocks of 271 elements. To illustrate the action of C22 ON X = X1XpX3X4:
(0,0) - x = x1x2X3X4

a7 (1,0) - x = x2x1X3X4

(0,1) - x = x3x4X1X2

(1,1) - x = x3X4X2X7.

The 2-norm on R¥ is indicated || - || and || - | (r/z)e denotes distance to the nearest integer
lattice point. Given & € R?, eg(-) denotes the character of R, eg(x) = e2mikx,

Use 8, to indicate the Dirac delta measure at x € R?. Given f € C.(R?) and measure 1,
(f, u) denotes the bilinear pairing

18) (= [ Serdnc)

Denote the Fourier transform of function f, resp. the characteristic function of measure p
by, for & € R?,

(19) F©= [ exwiwin 5= [ emu

4¢ SERIE - TOME 54 — 2021 - N° 3



RANDOM WALK ON UNIPOTENT MATRIX GROUPS 593

For x € R4, Ty, f denotes function f translated by x,

(20) Tef() = fr—x).  Tuf () =esx)f ()
and for real r > 0, f; denotes f dilated by ¢,

@D fi(x) =14 f (1x), ﬁ(g)=f(§)

t
For smooth f,

(2) 70 = [ Ferestna

By a bump function p on R” we mean a smooth non-negative function of compact support
and integral 1. The Fourier transform of p satisfies, for each A > 0 there is a constant
C(A4, p) > 0 such that

C(4,p)

23 6 —_—.
23) P = G e

This follows from integration by parts.

Forr € Rand o > 0, n(r,0) denotes the one-dimensional Gaussian distribution with
mean r and variance o2, with density and characteristic function

2
exp (— (x20r2) )
V2o '

A centered (mean zero) normal distribution 7 in dimension d is specified by its covariance
matrix

d
(25) 0_2 — (/ x(m)x(ﬂ)n(x))
R4 m,n=1

and has density and characteristic function

exp (1)

2m)% (deto?)?

Q4 nirno)(x) = n(r,0)(€) = e_¢(r) exp (—27%0 7€) .

(26) n(0.0)(x) = . 0(0,0)(€) = exp (—27%E'0%¢) .

All of our arguments concern the repeated convolution u*V of a fixed measure p on
the upper triangular matrices. The product measure £®" is abbreviated Uy. Asymptotic
statements are with respect to N as the large parameter. The Vinogradov notation 4 < B,
resp. A > B, means A = O(B), resp. B = 0O(A4). A < Bmeans A < B and B < A.

2. Background to Theorems 1 and 2

This section collects together several background statements regarding the Heisenberg
group, its Gaussian semigroups of probability measures and statements of elementary prob-
ability which are needed in the course of the argument.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



594 P. DIACONIS AND R. HOUGH

Write A = [1,0,0], B =10,1,0], C = [0,0, 1]. The following commutators are useful,
[A,B] = ABA™'B™! =[0,0,1] = C,
(27) [A7L, B =47'B714B =[0,0,1] = C,
[A, B~ 1= AB'A7'B =[0,0,—1] =C1,
[A7Y,B] = A"'BAB™! =[0,0,—-1]=C L.

A convenient representation for [x, y, z] € H(R) is C? BY A*. Using the commutator rules
above, the multiplication rule for w € H(R)" becomes

N
(8) [T[w 0 w®] = [2®.5?.2% + Hw).
i=1
where - and H act on sequences of vectors from R3 via
_ n_@
(29) w:Zwi H(@:Zwi( )wj(.).
i i<j

It is also convenient to define

N
1 1
(30) H*w) = Hw) - 5702 ® + 2 3w w®
i=1
1
=2 2 (0w —wPu®),
2 l<i<j<N ' '

and for w = [x, y,z], W = [x,y,z — 3xy], so that the multiplication rule may be written

N
_ 1
(31) [[wi=2+ [o, 0, 5@(”@(” + H*@)] .
i=1

Let S = suppu. Recall that I' = () is the closure of the group generated by S. Its
abelianization, I'y, = T'/[I, '] is equal to p(I") where p is the projection p : G — G,p. Let
I'y be the semigroup generated by S. We record the following descriptions of I and Ty.

PROPOSITION 4. — Let I' < H(R) be a closed subgroup of full dimension. The structure of
the abelianization Tp, = T/[T, T'] and of T falls into one of the following cases.
.
(32) T =R% T ={[yr]:y €T, r R}
il. There exist non-zero orthogonal vy, v, € R2, such that
Iy = {nvy +rva:neZ,r eRy,

(33) T={ly,r]:y €Tw,r €R}

=

iii. There exist non-zero vi, v, € R2, linearly independent over R, such that
(34) Fabz{nlvl + nyvy Zl’ll,n2€Z}.
In this case, T falls into one of two further cases

iv. I ={[y,r]:y € Tap,r € R}
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RANDOM WALK ON UNIPOTENT MATRIX GROUPS 595

v. There exists A € Rog and f : Ty — R such that
(35) F={[y.A(f(y) +n)]:y € Tap,n € Z}.

Proof of Proposition 4. — The full dimension condition guarantees that I'y, is a two
dimensional closed subgroup of R?, and the three possibilities given are all such closed
subgroups. Likewise, the center of T is a non-trivial subgroup of R, hence either R or A - Z
for some real A > 0. It follows that the fiber over y € Iy, is a translate of the center. Let
v1, V2 be two linearly independent elements of the abelianization, and choose g1 = [v1, z1],
g2 = [v2, 25] in I'. The commutator [g1, g2] = g18287 g5 " is bilinear in vy, v, is non-zero,
and lies in the center. It follows that if one of vy, v, may be scaled by a continuous parameter
in the abelianization then the center is R. O

LEMMA 5. — The closure of the semigroup Ty is Tg = T.

Proof. — Write I'g o, = p(I'p) where p denotes projection to the abelianization G,p,. That
Io,ab = T'ap follows from the local limit theorem on RZ2. To treat the central fiber, in the case
Tapb =R%let0 <€ < % be a fixed small parameter and choose x, x’, y, ¥’ in T’y such that

(36) p(x), p(x'), p(y), p(¥') ~ €1, —e1. €2, —e2

where the approximation means within distance €. Take a word w in T = {id, x, x’, y, y'}
of length 4n with product approximating the identity in [y within €, which is such that
each of x,x’, y,y" appear > (1 — O(¢))n times in w. The abelianization of the product is
independent of the ordering of w, but if the letters in w appear in order y, x, y’, x” then the
central element is < —(1 4+ O(e))n?, while if they appear in order y’, x, y, x then the central
element is > (1 4+ O(¢))n?. Moving from an ordering of the first type to an ordering of the
second by swapping generators one at a time changes the central element by O(1) at each
step. Let € | 0 to deduce that T contains positive and negative central elements, and hence
that Ty isa group, equal to I'. In the case I', has a one or two dimensional lattice component,
replace either e; or both ey, e, above with a basis for the lattice component and repeat the
argument. O

More quantitative structural statements are as follows.

LEMMA 6. — Let pu be a measure on H(R), with abelianization [L,, not supported on a lattice
of R2. If the Cramér condition holds for the measure [Lap then it holds also for the measure '
on R obtained by pushing forward pLap @ pap by H* (w1, wy).

Proof. — Let & € R, |§] = 1 and fix wy € supp(uap), bounded away from 0. Write
H*(wy, wa) = ¥15%2 = L, ;. The claim follows since | [ e_g (H* (w1, w2)) dptab(wr)] is
bounded away from 1 uniformly in £ and w,. O

LEMMA 7. — Let u be a measure on R? of compact support, with support generating a
subgroup of R? of full dimension. If  is lattice supported, assume that the co-volume of the

lattice is at least 1. There is a constant ¢ = c(u) > 0 such that, uniformly in 0 < § < 1,

for N =N =| % . 2

(37)

[ e (7 ) ™ (o™ ()| < 1= e,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



596 P. DIACONIS AND R. HOUGH

Proof. — When p is lattice with lattice of covolume V', the measure
H* (w1, wa)dp(wi)dp(w2)

is lattice distributed with step size V. Hence the bound on |£] suffices to guarantee the claim
for N bounded.

For N growing, a standard application of the functional central limit theorem implies
that & H*(wy, w2)du*N (wy)dpu*N (wz) converges to a non-zero density on R as N — oo.
O

Normalize Haar measure on H(R) to be given in coordinates by dg = dxdydz. The
density of a Gaussian measure v on H(R) can be understood as the rescaled limit of the
density of a random walk with independent Gaussian inputs in the abelianization. Consider
the distribution on the Heisenberg group given by v, o = [7(0, o), 0], which has projection
to the abelianization given by a two dimensional normal distribution of covariance o, and
with trivial central fiber. Write v, = v, 1, for the measure in which o is the two dimensional

identity matrix. The rescaled distribution d_; v;‘N converges to a Gaussian measure vg
VN

on H(R) as N — oo. Note that we have not included a covariance term, which can be
accommodated with a linear change of coordinates. Also, we do not consider randomness
in the central coordinate as it would scale only as /N, whereas the central coordinate has
distribution at scale N.

Let « € R? and £ € R. Write the modified characteristic function of vy as (recall
Z=z-%)
2

(38) o= [ et @)
g=[x,y,z]e

and

(39) Mty = [ e () es (52 ) i w.

LEMMA 8. — Leta € R%, & € R and let 6% be the covariance matrix of a non-degenerate
two dimensional normal distribution of determinant §2 = deto?, § > 0. Then

X H*(x) QN _ .
(40) /(RZ)N e_y (\/ﬁ) e_g ( N )dn(O, 0)°" (x) = I(owa,6&; N).

Proof. — Making the change of variables, for each i, oy; = x; in the density
t—2.
ﬁ exp (—x"gz x’) changes X = oy and H*(x) = deto - H*(y). O

In view of the multiplication rule (31), for |||, |§] = O(1)
41) lim I(a,&;N)— I(a,§).
N—>oo

The following rate of convergence is given in the appendix.
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RANDOM WALK ON UNIPOTENT MATRIX GROUPS 597

THEOREM 9. — For all a € R?, £ € R such that (1 + ||o||?)(1 + £2) < N,
140 (WVM)

(42) I(a,§:N) = > :
exp ( ;ﬁﬁﬂr §> coshé
In particular,
27 [l
exp (— 22l
(43) I(@,§) = M

coshmé

REMARK. — While /(«, &) characterizes the Gaussian measure, it does not behave well
under convolution.

Along with the above characteristic function calculation the following moment calcula-
tion is used.

LEMMA 10. — Let n be a two dimensional Gaussian with identity covariance. For eachk > 1,
and N > 2,

2%k , N7

£

(44) Eyov [H* @™ ] < 13 55

where Ly = (sz—kk),' is the 2k th moment of a standard one dimensional Gaussian.

For any compactly supported probability measure |1 of mean zero on R?, for any k > 1,
as N — oo,

(45) Eyon [H*)*] < 0k, (N).
Proof. — Write
1 1G>7),,(1), ()
(46) H*(w) = 3 > (=)D
1<i#j<N

and expand the moment to find

1
2k 1 1 2 2
4D Epov [ ] < gkron S e
1<my,..., MY ] ey nyx <N
2
1
— (1) (1)
~ 2k Eyen Z Winy * Wingy
1<my,..., moy <N
k
— 2 N?
= Hak 22k
When treating general u of compact support,
(43)
1
2k 1 1 2 2
Bon [H @] = B n S emanf g |

1<my,....map N1,k <N

with &,,, € {—1,0,1}. The expectation vanishes unless each index in [N] which appears
among my, ..., Mok, N1, ..., Ny appears at least twice. There are O(N 2¥) ways to choose
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which indices appear and Oy (1) ways to assign my, ..., 1y to the indices which appear. For
those assignments which don’t vanish, the expectation is O, (1) by the compact support.
O

We make the following convention regarding rare events. Say that a sequence of measur-
able events { Ay} y>1 such that Ay C SN occurs with high probability (w.h.p.) if the comple-
ments satisfy the decay estimate,

(49) VC=0. u®Y(4y)=0c(N)

as N — oo. The sequence of complements is said to be negligible. A sequence of events { Ay }
which is negligible for u®¥ is also negligible when u®" is conditioned on a non-negligible
sequence of events { By }.

2.1. The large spectrum

Let 1 be a mean 0, compactly supported probability measure on R2. For 0 < ¢ < 1,
define the large spectrum of i to be

(50) Specy (1) = {a € R? : |a(a)| > 1 — 9}
and let
(51) My () = {o € Specy (u) : |f1(a)] is a local maximum}.
Let
(52) fi(A) = p({x~" i x € A}
and set ip = p * 1. The measure u, is still mean 0, compactly supported and satisfies
(53) fia@) = [ cos(ema - 0)djia() = i@l

s0 Specy (1) = Specyy_y2(u2) and Ay (1) = Mrg_g2(j12).
For a differential operator Dg = Dj, D;, --- D;,, set || = £.

LEMMA 11. — Let 0 < & < 1, let o € Specy () and let Dg be a differential operator.
Then

(54) Dpin(e) = | %* gﬁz) IBlodd
Dgfi2(0) + Og() |B]| even

Proof. — Let Dg = D;, --- D;,. Differentiating under the integral, if £ is odd then
(55) Dgfa(@) = (=)= modD (o)t / Xiy -+ Xig SN2 - x)dpua (x)
R2
so that, using the compact support of x, and then Cauchy-Schwarz,

(56) (Dafa@)] <o [ | IsinCre - oldpa(

= / V1 —cos2(2ra - x)duy(x)
R2

< (/ 1 — cos?(2ra -x)d,uz(x)) < (219)%.
R2
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If ¢ is even, then
(57 Dpfis@) = (-DF @ [ v cos2ma- ndpa)
= Dpfa0) = (=15 [ iy e, (1 = cos2ma ) dua(x).
Again using the compact support, the integral in the last line is O(1}). O
The previous lemma has the following consequences.

LEMMA 12. — There is a constant C; = C1(u), 0 < Cy < 1 such that if 0 < ¥ < Cy then
the following hold.:

1. There are constants Co(1), C3(u) > 0 such that if ag € My (U2) and |la — agl| < Cs

then
(58) fia(@) < fla(@o) — Calle — o,
ii. There is a constant C4(p) > 0 such that if o € Specy ((2) then there exists ag € My (|42)
with
(59) lloe — o] < Cav/D.

Furthermore, if pu does not have a lattice component, then there is a growth function F ()
tending to infinity as O | 0 such that, if ag # ay are distinct elements of My (112) then

(60) leto —er[| > F ().

Proof. — To prove i., Taylor expands about « using that the first derivatives vanish and
that the third derivatives of fi, are uniformly bounded. The term from the second degree
Taylor expansion may be replaced with the corresponding term at oy = 0, making an error
which is O(9}). This may be absorbed into the constant C3 by making C; sufficiently small.

To prove ii., first reduce C; (i) to guarantee that there is a ball Bs(«), 0 < § < 1 a fixed
constant, such that the maximum of i, does not occur on the boundary of the ball. This may
be achieved by Taylor expanding about «, which now includes a linear term, which is O (¢ %).
Let g be the global maximum in the interior, and now apply parti. and fi2(g) — iz () <
to conclude that [Jo — ao|| < V7.

To prove the final statement, note that for 0 < ¢ < %, if g, 01 € Specy(pz) then
oo — o1 € Specys(2), see [24], p. 183. An easier proof is possible here since the spectrum is
positive, indeed,

(61) 1 — (g —aq) :/ 1 —cosrag - x) cos(may - x)duy
R2

—/ sin(2rwag - x) sin(2w oy - X)d .
R2
Bound the first integral by

(62) / 1 —cosQmag - x)dus + / cos(2mag - x)(1 —cosRray - x))du, < 29.
R2 R2
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By Cauchy-Schwarz, the second integral is bounded in size by
1

2
(63) (/ 1 —cos?(2mayg -x)duz/ 1 —cos? (2o -x)dp,z) < 29.
R2 R2

The claim now follows on considering ji, () in growing balls about 0. O

The following lemma gives information about variation of the phase of fi(«) in the large
spectrum.

LEMMA 13. — Let i1 be a measure of mean 0 and compact support on R?, let 0 < ¢ < %
and let ag € My (). The following hold.

i. Im D; log fi(eo) = O, (D).

ii. Im D; D, log fi(eg) = O, (VD).

. Forallo € Spec% (m),

(64) Im Di1 Diz D,'3 log /l(a) = 0(1).
Proof. — Let [i(ct0) = e (Po)|ft (o).
For i.
. D; (o 2mi
(65) Dilog i) = P2 = B [ e, (x = go)du(v).
f(ao) |a(ao)| Jr2
Since p is mean 0,
2
(66) Im D; log fi(ao) = —n/ xi(cos(2mag - (x — o)) — Ddpu(x).
[i(eto)| Jr2
By the compact support,
) [1m Dy log fan)| << [ 1= cos(2to - (x = go))du(x)
R
=1—[a(ao)| = 0

For ii., write
DiDjji(ao)  Diji(oro) Djfi(exo)
fi(eo) eo)?

is imaginary (o is a maximum for |{i(a)|). Hence,

(68) D;Dj log ji(eo) =

The subtracted term is real since 2:4®0)

i(aop)

again using the compact support andOCauchy-Schwarz,
472

(69)  ImD;D;logiay) = o / xix% sin(2ray - (x — $o))dpa(x)
|i(ao)| Jr2

< f V1 —cos2Qmag - (x — ¢o))du(x)
R2

< ([ 1 — cos(2mar - (x — ¢0))du(x))2 <92,
R2

To obtain iii., note that the first three derivatives of t are bounded due to the compact
support. O

The results of this section are collected into the following lemma which permits approxi-
mating (o) in neighborhoods of a local maximum for |ji(c)].
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LEMMA 14. — Let u be a probability measure on R" of covariance matrix 2. There is a
constant C = C(u) > 0 such that for all 0 < 9 < C and for all ag € My () we have
(70) fi(ao + &) = [i(@o)Elea(X)] + O (3] + [l]|®)
with X distributed as n(0, o).

Proof. — Taylor expands log % in a ball of constant radius about « = 0 to find
1 1
@ tog 202D _ Lot oar 4 0 (9all + 04 ol + ).
a(ao) 2

with H, the Hessian of log fi(«) at 0. In making this expansion, we’ve used the estimates for
derivatives of ji, (oo + ) in Lemma 11 together with
. | N
72) Relog M0+ _ 1, Aa(@0 + )
(o) 2 fz(ao)
and the estimates for derivatives of Imlog jt(ag + ) in Lemma 13.

Then (we’ve absorbed the 92 |||? error term into the others)
(73) fi(ao + &) = fi(@o)Elea(X)] + O (3ler]| + [l]?) -

Since [ is bounded, this formula holds for all « by adjusting the constants appropriately. [J

3. Proof of Theorem 2

We first treat Theorem 2 which is illustrative of the main idea, before proving Theorem 1.
Identify n = (n1,n2,n3)" € Z3, with g, = [n1,n2,n3] € H(Z) and let v be the limiting
Gaussian measure under convolution by u.

PROPOSITION 15. — For eachn = (n1,n,,n3)" € 73,

1 d 5
(74) Py(ni,nz,n3) = N ({ga}) = Vi d—; (d\;ﬁg,,) +0 (N_i).

Recalling the multiplication rule

N
1
75) [T[w 0.0 = |25, 3552 + 1w,

i=1

which is valid for w; = [£1,0,0] or [0, £1, 0], it suffices to calculate, with Uy standing for
the product measure u®" and expectation with respect to Uy,

_ " 1
(76) Uy (wab = (nl,nz)t,H (w) =n3z — Enlnz) =

/(R/Z)3 €q ((n1,n2)t) et (n3 — ”12112) E [ea(Eab)eg (H*(w))] déda.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



602 P. DIACONIS AND R. HOUGH

3.1. Reduction to a central limit theorem

The following two lemmas reduce to a quantitative central limit theorem by truncating
frequency space to the scale of the distribution.

LEMMA 16. — For any A > 0 there is C = C(A) > 0 such that if ||&||g/z > ClogN , for all
a € R?,

a7 [Euy [ea (W) ee (H*w))]| < N4,
Proof. — Choose k = k(§) according to the rule
1, &l > 15
78 k(&) =
" S I S

LetN' = L%J . The group G, = C2N "acts on strings of length N with j th factor exchanging
the order of the substrings of length k ending at (2j — 1)k and 2/ k.
Given string w, write W for the string of length 2N’ with j th entry given by

k
(79) B =Y Wik
i=1
Write
(80) H*(w) = H} W) + HZ ().  HXw) =Y  H* (thyj_1. ;).

Both w,, and H kl are invariant under Gi. Exchanging the order of the expectations, which
is justified because the group action is finite,

(81) Euy [eo (W) € (H* (w))] = Ereoy [Euy [ea (Way) €5 (H*(z - w))]]
= Euy [ea(@,p)es (Hy (W) Eregy [es (HE (- w))]]

and, therefore,

(82) [Euy [ea(@yp)es (H*(w))]] < Euy [[Ereq, [es (HZ (- w)][].
By Cauchy-Schwarz,
(83)  Euy [[Escq, [ex (B2 w)][]” = Boy [[Excq, [es (H2@-w)]].

One checks, using the product group structure,

ﬁ (1 + cos (2w EH* (Waj—1. ﬁ)zj))) 7

(84) |Eccq, [es (HA (- w))]|” = )

j=1

and hence, since the coordinates in w are i.i.d.,

(85) Ey, [iETEGk [ef (Hk (z- —))]| ] (l + Buy [cos (2;EH (W, w2))])

By Lemma 7 the expectation in the cosine is uniformly bounded in size by 1 — ¢(u) for
some ¢() > 0. The claim is completed by using the estimate (1 — x)V < ¢~V'*_ which
isvalid for0 < x < 1. O
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The following lemma obtains cancelation in .

LEMMA 17. — Let A,e > 0and 0 < ||§||gr/z < % where C is as in Lemma 16. For all

N sufficiently large, if ||ot||gz2 /72 > NE’%, then
(86) [Euy [ea (Wap) €5 (H*(w))]| < N74.

Proof. — Let N' = | N'7¢]. Let w, be w truncated at N’ and let w, be the remainder
of w so that w is the concatenation w, @ w,. Write
87) H*(w) = H"(w,) + H*(Wy.w,) + H*(w,)
to bound
®8)  [Euy [ex (@) ez ()]

< By ov-nn [[Byyyon [ea@om)es(H (o) + H* (. 1,)]| |

Truncate the outer integral to ||w, || < /N log N, which holds w.h.p. Let Ej(x) denote the

degree k Taylor expansion of e;(x) about 0, and recall that the integral form of Taylor’s
theorem gives

(2 |x|)F+!
(k + 1)!

11 _nk
(2ﬂx)k+1/ St ep(xt)dt
0

(89) ler(x) — Ex(x)| = k!

=

Use Lemma 10 to choose k = k(A, €) odd and sufficiently large so that
(90) E, v [|Ex (§H™ (wg)) — es(H™ (wy))|]

2 k+1
< O By o [ ]
1

< Ok u(EINYF! < INA

It thus suffices to estimate
(€29)] Eu,, |:‘3<x (Eo,ab) 44 (H*(Eo’ Ez)) Ex (EH*(EO)):|~

Expand Ej into Poly(N) terms, each depending on boundedly many indices from w,,. Expec-
tation over the remaining terms factors as a product which is exponentially small in a power
of N, hence negligible. O

3.2. Quantitative Gaussian approximation

In the range ||| < N 3, & <« %, expectation with respect to u is replaced with

expectation taken over a measure with projection to the abelianization given by a Gaussian
of the same covariance matrix as (,p. The modified characteristic function in the Gaussian
case is evaluated precisely in Theorem 9, which finishes the proof.

Let 62 be the covariance matrix of fta, and let (0, o) be a centered Gaussian of the same
covariance. Set § = deto. Taylor expands log /1(8) about 8 = 0 to find a cubic map 7'(8)
such that

(92) flan(B) = A(B) (1 + T(B) + O (IB]*) .-
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In the phase eq (W) ez (H*(w)) let
t

93) () =a+ 3 | Y (=DM
i#j i#j
so that o; (w) - w; is the part which depends on w;. The Gaussian replacement scheme is as

follows.
LEMMA 18. — Let 0 < € < 1 and C > 0 be constants. For ||| < N3 and €| < Clogh |

©4) Euy [eo (@) e (H* )] = 1 (VNG o, N6g) + 0 (N1+06)
+Eyon | e (W) e (H* ) [ D T w)
j

Proof. — Since E,en [ea@ab)eg(H*(w))] =1 (N%oa,NSé;N), and since in the stated
range of «, &,

95) 1 (N%ooz,NSg;N) =17 (N%o*a,Nég) +0 (N—l-i-O(e))
by Theorem 9, it suffices to prove

(96) Euy [ea (@) € (H* )] + 0 (N7170)

=Eon | ea (W) es (H @) [ 14+ > Tlejw)
J

For convenience, write

97) Tj(a, 6 w) = T(j(w))
and, for k # j,
(98) Tj(e £ w) = TF (o, £, w) + T (e, £, w).

in which Tjk collects monomials in 7; which depend on wy, and YA“jk collects monomials which
don’t depend on wy.

Since the expectation does not depend upon the third coordinate, write Mg)N in place
of Uy. For 0 < j < N consider the measure ;i; = pS/ ® n®@W=7) in which the first
coordinates are i.i.d. with measure u,, and last N — j coordinates are independent of the
first j and are i.i.d.

We prove (96) iteratively by showing that, for each k > 1,

99) Sk :=Ey, | ea@u)es(H* W) [ 1+ Tj(e. & w)
j>k

=0 (N—2+0(e)) +E, | | ea@up)es(H (W) |1+ 'szl Ti(x, &, w)
J>k—

0 (N—2+0(e)) + S,
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which suffices since (96) may be written as [Sy — So| = O (N~!'T9©). By the triangle
inequality, and setting apart expectation in the kth variable as the inner integral,

(100)

1Sk = Skctl = Eygngyon o | [ artw(edis — (1 + Tela 6.)) d
al wi

+Eug(k—l)®n®(ka) / €y (w) (W) ZTJ(O&E,E) (dpap — dn)| .

Wk j>k

In the first line of the right hand side, note that Ty (o, £, w) does not depend on wy, so that
Taylor expanding the exponential obtains a bound of O(||ay (w)||*), which suffices since

(101) Eugkﬂ)@n@(z\/—/{) [II%(&)II“] =0 (N_2+4€) .

In the second line, write 7; = Tjk + YA"].k . Since f’jk does not depend on wy, matching the first
two moments of (,p and 7 gives

10 E s ngon o || el w | YT w | @ - dn

Wi j>k

< EMS?»(k_”‘@n@(ka) llovke (w) |1? ij"(a,g,@ « N~2+6e,
J>k

Finally, to bound the terms from Tjk, Taylor expands e (ox (w) - wg) to degree 2 to bound

(103)  E,e6ng,en— / el (W) - we) | D TF (.6 w) | (dpeas — d)

Wk >k

<E @u-ngem— (1 + 2miog(w) - we) Y T (e, & w)(djap — dn)
¢ Wk j>k

+E o ngpen i | @Il |3 T @ w)| o+ ).
Wk j>k
Since the first two moments of u,, and n match, the only terms which survive the first
line here are degree 3 in wy, and these contribute O(N ~2%3¢). In the second line here,

1) 2
k

keeping in mind that 7* contains only monomials that have a factor of £w, ’ or £ w,”, one

obtains a bound of O(N ~2+3¢) by applying Cauchy-Schwarz to separate the integrands. This
completes the iterative estimate (99). O

We give two estimates for the error term

(104) T =Eyon | ea@p)ee(H* W) | D Tle;w) | |
J
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depending on the relative sizes of o and £. In this part of the argument we assume
that 5(0, o) has identity covariance, which may be achieved by rescaling o and £ by constant
factors.

LEMMA 19. — There exists ¢ > 0 such that, for ||| < N2 and & <« %,

(105) 7 =0 (Nl + N3[gF) exp (—eN ).

Proof. — Bound each term
(106) E on [ea(@,,)es (H™ (W) T () (w))]
individually by setting
EBGLES
(107) k=
L%J ., otherwise

and allowing Gy to act as in Lemma 16. Let G, be the subgroup omitting the factor that
moves w;. Then G;_leaves T'(a; (w)) invariant, so that

(106) = Eyon [ eq(@a)Eceay les(H (z- w)T (@ w)].
By Cauchy-Schwarz,
[(106) < Eyon [ [Eceqy les(H* (2 - w))] 2] Eyon (1T (@ (w))I).
Arguing as in Lemma 16 now obtains the estimate, for some ¢ > 0,
(108) (104)] < (N flll® + N3 ) exp (~lg[N)

To obtain decay in || instead of |£|, consider the degree 3 polynomial Z_/ T (aj(w))
which consists of monomials of which

O

1. Those constant in w and cubic in @ have absolute sum of coefficients O(N).
ii. Those linear in £w and quadratic in & have absolute sum of coefficients O (N ?).

iii. Those quadratic in £éw and linear in o have absolute sum of coefficients O(N3). Of
these, those with a repeated factor from w have absolute sum of coefficients O(N?).

iv. Those that are cubic in £w have absolute sum of coefficients O(N#). Of these, those
with a repeated factor from w have absolute sum of coefficients O(N3).

Write M for the typical monic monomial, so that M is of form

(109) 1’wi(lel)7wi(fl)wi(?)’wi(fl)wi(?)wi(?)’

with €; € {1, 2}, according as the case is 1., ii., iii. or iv.. Given a typical monomial M of T,
write w(M) for the number of variables from w which are odd degree in M.

LEmMMA 20. — There is a constant ¢ > 0 such that we have, for 0 < |§] <K % and

VIET < llafl < N<3,
(110) 7 = [0 (Il (1 + N |21 + N2[£1%)) x exp (‘C (”"‘“zmin (N’ N|ls|2)))}'
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Proof. — Consider the expectation

(111) Eym = E,on [Mea (Eab) eg (H*(y))] .
We show that, for some ¢ > 0,
1

which suffices on summing over the monomials described in i. through iv. above.
Let ¢; > 0 be a small constant, and let

] Vgl e

(113) N =
N, otherwise

Let w, be the initial string of w of length N’ and assume that this includes any variables
from M ; the general case may be handled by a straightforward modification. Write w =
w, D w, so that w, contains the remaining variables. Write

(114) H*(w) = H*(wy) + H* (W, w,) + H*(w,).
t
Write & = o + £ [w?’, :E”] . Bound

(115) Entl = By v [[Bygenan [Mea (@) e (H*(y))]].

Expand eg(H™*(w,)) in Taylor series to degree L := LN ZGJ. The error in doing so is
bounded by
Q2rlgp=t!
(L +1)!
Apply Cauchy-Schwarz to remove the monomial M, then insert the moment bound of
Lemma 10 to estimate this by

2 L+1 1

i « T By o [ (g 7]
- Q@rlEEtt (2L +2)! (N/)L+1
=L+ ) (L+ 1)zl

< (27T|5|N/)L+l < (27TCI)L+1.

(116) E, en [[MI[H*w)*'].

Ife; < ﬁ then this is bounded by, for some ¢ > 0, exp (—cN%¢).
In the Taylor expansion, expectation over w,, is bounded by

(118) Z (2n|$|)4 (Enw [ME& () H* @O)z”

L £

(27 [§]) — (1) W, @)

=< E 2001 E ‘En@)N’ I:Me&(wo)wml ”'wmgwnl ng:H
£=0 m,ne[N’]¢

The expectation factors as a product. Those indices of [N’] which do not have a monomial
factor contribute, for some ¢, > 0,

(119) <exp (—27%(N' — 2L —3)||&|*) < exp(—caN'[|&]).
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Let & (resp. ©) be those indices in [N'] which appear a positive even (resp. odd) number
of times among the factors in M and my,...,mg,ny,...,ny.

For indices which appear a positive even &; number of times, bound |e4 (w;)| < 1, so that
the expectation is bounded by the /;th moment of a 1-dimensional Gaussian,

hi!
120 =
(120) Y R (th)'
At indices which appear an odd A; number of times, set eg(w;) = 1+ O(||&@|[|w;l]).

Expectation against 1 vanishes. The remaining expectation is bounded by
(121) < 18, 41

The configurations in which no index outside M appears with multiplicity greater than 2,
and no more than one of the m;,n; fall on an odd degree index of M and none fall on an
even degree index of M, make a dominant contribution. Call these base configurations. The
type of a base configuration is described by a triple (p, £1, £») where p indicates whether an
index from m, n falls on each odd degree index prese_nt in M, where £; counts the number
of indices which appear once, and £, counts the number of indices which appear twice. Let
|p| be the number of indices which fall on M. Thus

(122) 20 = |p|+ 41 + 205,
Let 4" (p. £y, £2) be the number of base configurations that have a given type. There are

Qo)!

123 _
( ) |£|'€1'€2'2£2

ways to allot the 2£ indices of m,n to belong to P, the ¢; singletons or £, doubles, and
&« (N")t1+2 ways to place the indices in [N’] once they have been so arranged, so that

20)!

ne1+42
|£|'K1'K2'2£2 N ’

(124) N (p, b, L) <
Given m, n of type (p, {1, £2),

(125) Eyon [Mea@usy) - widuw? - w?]
< exp(—c2N'||@]?) O () +Ez g @02+,

Indicating restriction of m, n to base configurations with a /,

L V4
2
(126) Z(”JE‘D > [Epen [Mea@ouly) - wiw® - w®]|
£=0 2 m,n€[N']¢
< exp(—c2N'[|&|1?)
|pl+€1+2¢o

> i (mlg) 3 a0l () 4 g, +2€2)!0(N’)41+‘52
P L1,£2=0 (M)'ZI'ZZQQ
|pl+£1 even
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Bound

(|£| + 01 + 2£2)' - 4\p|+€1+2€2 25! 4|£|+(1+2€2

<
|pl+£1+24o - Ipl+€1+262\, — (lpl+& ’
|£|!(fT)!el!ez! (,T), (,T),

If the constant ¢; in (113) is chosen sufficiently small, then the sum over £, converges to a
bounded quantity and the sum over £; is bounded by

(127)

(128) < exp (O()]&]E](N)?).
Since [§|N' < ¢y, if ¢ is sufficiently small this obtains a bound,

€2 s S N - @@
129)  <exp(=ZNa)?) (Nl + @) VIE + - + 18175

This bound with « in place of & obtains (112) for the dominant terms, and hence bounds
the dominant terms unless |£]| > % In the remaining case, the bound is acceptable unless
&l < c3lle| for a small constant ¢3 > 0. In this case one obtains ||£w,|| > |l«|. Since
w, is a Gaussian with variance of order N — N’ < N, the event [|§w, || > ||| occurs with

w,-probability, for some ¢4 > 0, K exp (—64 %), which is again satisfactory.

To obtain a bound for all configurations from the bound for base ones, configurations with
|O| = £1,|8]| = £, may be enumerated by adding a number k of double indices to an existing
base configuration. There are O (L)* ways of choosing the indices where the new doubles will
be added, O(L)?* ways of inserting the indices into the list 7, , and the new indices make
a gain in the calculated moments of O(L)¥. Meanwhile, a factor of |£[¥ is saved in the outer
sum. Recall L < N%¢. If e < % then the sum over k is O(1) for all N sufficiently large. [

1

Proof of Theorem 2. — Combining Lemmas 16 and 17 obtains, forany A > 0,0 <€ < g,

for somec > 0

EN (rr.ma, ) + 04 ™) = /‘AallsN“% ea ((n1,12)") €5 (”3 - m;z)
gl <tEN
(130) x [1 (VNoa, ng) +0 (E)] dadk,

where the error term E satisfies the estimates of Lemmas 18, 19 and 20. Over the range of
integration the error integrates to O (N _%).

Making a change of variables and extending the integral to R® obtains

o)l e [257]

(131) x et (é (%)) I (o ) dadE.

The right hand side is the Gaussian density of the limit theorem. To obtain the return
probability to 0, use §? = 5% and [p3 I(e. §)dadé = 1 in

1 _5
(132) PN (0.0.0) = 53 /R3 [(@.&)dedE + O (N z)
25 _s
=16N2+0(N z). O
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4. Proof of Theorem 1, Cramér case

Theorem 1 treats measures for which the abelianized walk is non-lattice. In this case the
fibered distribution is also dense in R, and when the abelianized distribution satisfies the
Cramér condition, the fibered distribution does, also. We assume the Cramér condition in
this section and treat the general case in the next section. In this case, after making an
arbitrary translation on the left and right, the test functions may be taken to be of the form

X
(133) f([x,y,Z])=F(x—xo,y—yo,Z—Ty—Ax—By—Zo),

where F is a Lipschitz function of compact support and xg, yg, zo, 4, B are real parameters.

Let p be a smooth, compactly supported bump function on R3, fort > 0, p;(x) = ¢3p(tx)
and F; = F * p, the convolution on R3. Since F is Lipschitz, | F — F; e < % ast — oo.
Set

X
(134) fillx.y.2) = Fy (x=%0.y = yo.z = 5~ — Ax = By =) .

5

Choosingt =t(N) = N2,

) (M =o(v )+ [ R

(@,§)eR3
X <ea ((x = x0,y — y0)") e¢ (z — % — Ax — By — zo) ,;L*N>dozd§.

Using the decay of the Fourier transform of the bump function p;, truncate the integral
to |||, |E] = O(N W) with admissible error.

Apply the multiplication rule (31) to write the central coordinate of a product of group
elements w as

(136) 2:2—% — H*w) + 3.

—=3) (3

The mean of EG) is NZ. Let W, = i)
x
130 (ea (=0, = y0)) e (2 = 5 = Ax = By —z) . u*)

= eq (—(x0. y0)") es (NZ — z) /

— NZ. Leta@ = a —£- (A, B)'. Thus

eq (Wap) et (H*(w) + ES)) du®N.

H(R)N
The argument of Lemma 16 applies as before to truncate to || = O (101ng ) This uses
Lemma 7 in the case |§] = O(1) and Lemma 6 in the case |£§] > 1. The argument of

Lemma 17 applies as before to truncate to ||@| < N —3te,

A small modification is needed to the application of Lemma 18 which we now describe.
Here one can now include in the measure pap a third dimension corresponding the  — Z,
and make n a 3 dimensional Gaussian with the same covariance matrix. The Gaussian
replacement scheme goes through essentially unchanged, the addition of the third coordinate
evaluated at the small frequency £ making a negligible change; these terms do not need to be
included in 7} (&, §, w). The main term becomes

(138) E,on [e&@ab)eg( H* (w))es (Eff))] .

4¢ SERIE - TOME 54 — 2021 - N° 3



RANDOM WALK ON UNIPOTENT MATRIX GROUPS 611

After a linear change of coordinates, the third coordinate is independent of the first two and
@ is mapped to o’ = & + O(§). Hence

— * —(3) — *
(139) Eyon [ea@gp)es(H*w)es (Tg ) | = (1+ OEN)) Eyon [ea @yp)es(H*w)].
Note that, since [l[|* = [|&[]> + O(&[l|§]) + O(§[*),

__2xlle’)?
exp( §€coth Némé

cosh Nomé
= 1 (Nioa Nsg) (1 + 0@l + ).

(140) I (N%oa', Né’g) -

In the error term,
— * —(3) ~
(141) Eon | ea(@yp)es(H* ez (@) YT (@ &w) |
J

the factor of eg (ES)) may be removed by Taylor expanding to degree 1, so that this part of
the argument is unchanged.
To complete the argument, integrate as before

(142) (fiwN) = Ad”<<N,%+€ Fr(a, &)eq(—(x0, y0) )ee(NZ — z)
&)< o2

x [1 (N%oa’,ng) + O(E)] dadf + O (N—%) .
The argument is now completed essentially as before, to find

(143) (ﬁu*N)=<ﬁ,dﬁv>+O<N_%)=<f,dﬁv)+0(N_%).

5. Proof of Theorem 1, general case

We now consider the case in which ., does not necessarily satisfy a Cramér condition.
In this section the test functions take the form

X
(144) f([x,y,z]):F(x—xo,y—yo,z—Ty—Ax—By—ZO),

with F continuous and of compact support. Since we ask only for an asymptotic, it suffices
by Selberg’s theory of band-limited majorants and minorants [13] to assume that F takes the
form

(145) F([x9yvz]) =¢ab(x7Y)¢3(Z)
with ¢, and ¢3 functions with Fourier transform of compact support. In this case, writing
a ZQ_S'(A!B)Z>
(146) (i) = / Par(@)$3(§)ea (—(x0. y0)') €5 (NZ — z0)
leell,1E|=0(1)

— —=(3)
X/ eq (Wop) ez (H*(w) + g ) dpu®Y.
H(R)N
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Argue as in Lemma 16 to truncate to |§] < 10;ng . Since A and B are unconstrained,

a further difficulty is encountered in applying Lemma 17 to truncate . Let ¢ > 0.
For |§] < % and @ ¢ Specy-1+e(itap), Lemma 17 demonstrates that the integral
over H(R)¥ is, for any 4 > 0, O4(N~4). The following modification of Lemma 18 permits

an asymptotic evaluation of

(147) Eu, [ea@ues (H* (@) + ;)|

at points @ in the large spectrum of p,p, Specy—1+e (ab)-

LEMMA 21. — Let puap have covariance matrix o? and set § = det(o). Let 0 < € <

19 =N Jet & € Specy—i+e(pa), [§] < %, and let oy € My () satisfy

I — ol < V9. Then
(148)
Eyy [e&@ab)eé (H*(E) +E(()3))] =0 (N_%"‘O(G)) 4 fran(@o)N I (N%O'(d ). N(SS) .

Proof. — Write eg (E?)) =140 (|g@§”) . Since

—=(3) _1
(149) Euy [161]20]] = 0 (N73+).
it suffices to prove that

(150) Euy [ea(@,p)ee(H* W))] = fa(co)™ 1 (zv%a(oz — ap). Nag) +o0 (N—%+0<e>) ,

Let n = n(0,0) be a centered two dimensional Gaussian with covariance equal to that
of uap. Let X be distributed according to 7. Set « = & — . By Lemma 14,

(151) flab(cto + @) = flan (o) Eplea (X)] + O@ ]| + [le]®).

In analogy with Lemma 18, define

t

(152) o) = a +% ) IERILGCE S ERICCR
i#] i#]

Set,for1 <k <N, ux = uﬁk ® n®W=K)_ Also set Wopp = Z_¢=1 Wj,ap and
(153) Sk = EMk [ed@ab)eao(Eab,k)eg(H*(w))] )
so that Sy = Euy, [eq(W,y,)es (H*(w))] and
(154) So=1 (Woa,ng;N) — 1 (Woa, N8$) o (N‘HO(‘)) .
Holding all but the kth variable fixed obtains
(155) [Sk — fab(00) Sk—1| K Eug(k’—l)@n@(N—k) [Fllox ) + [l w) 1]
3
~ o (n1+00)
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The proof is now complete, since

N—1
(156)  |Sw = a0V So| = Y |tao(@0) Sy—i = fan(@0) T Sy

k=0

N-1
< Y 1SNk — fav(@0) Sy—k—1] < N—3+0@, L)
k=0

Proof of Theorem 1, general case. — Let 0 < € < % and let ¥ = N~!'*¢. By Lemma 12
there is a constant ¢; = c¢;(u) such that

Specy(uar) < | B 1 (@0).

oo EMy
Let supp dap C Br(0). Define the set
~ . log N ;
(157) Bgood = (£ El <« ==, —E-(4.B) e (] B 1(e0)

g EMy

Assume that N is sufficiently large so that if «g, @ are distinct points of .# then ||og—o1 || >
2(R + clﬂ%). Given § € Egood let ag(§) be the nearest point to —& - (4, B)' in .#. Also,
define
(158) Ag ={a € BR(0) :@ = o — £ - (A, B)" € Specy(iap)} -
By Lemma 12, |Ag| < N™1T€,

In the evaluation from above,
(159)

() o= [ [ Bav (@) (E)ea (— (0. y0)') e (NE — z0)
:@€Specy (Hab)

EEEgood (22

x E an [ea(@qp)es (H™ (w))] dadt

insert the asymptotic formula for the expectation from Lemma 21. The error term here is
bounded by

—$+0(0)
(160) /$:|§|<<IOEN/WGBR(0), N~219Cqads

N “a&eSpecy (iab)

< [ N3+0O|geldg = 0 (N73+0@).
EEEgood
This leaves the main term
. Bav (@) (E)ew (—(x0. yo)') e (NE — z0)
£€Bgo0d Ja:a€Specy (Wap)
(161) x I (\/ﬁo(&—ao(S)),NSS) dadg.

The contribution from the part of this integral where ag(§) = 0 contributes (f,d /v) +
O(N~4), by extending the integral with the same integrand to all of R3, so it remains to
bound the contribution from & for which o (§) # 0.
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For a fixed § € E 04, the formula

27 ||or||?
CXp (_ Ecoth & )

(162) Ie.§) = cosh &

gives that integration in « is bounded absolutely by

N max (1. [€])
1 I - N max{w. 51
(163) /a (ﬁo(a ao()), 55) dor < — ;
The contribution of § € Ego0q for which ag(§) # 0 is bounded by
1
(164) / max(y. D
£€E00a.a0(§)0 COSh N78E

Since the oo (§) are .# () spaced, this is bounded by

1 * max (. l§) . 1
(165) <Z@ )y cosmnmsr =0 (W) m

6. Random walk on N, (Z), proof of Theorem 3

The case n = 2 is classical so assume n > 3.
Let M : Z"~! — N,(Z) be the map

1o o0 ... 0
p@®
2
e 01 v@ o0
(166) M:7" ' o0 = ‘ = I
=) 0 0 1 @D
0 ... 0 1

Recall that, given m € N, we write Z(m) for the upper right corner. Given sequence of
vectors v = {vi}f": | € (Z”‘l)N the central coordinate satisfies the product rule

N
(167) z (]’[ M(vi)) = 3 o2 D,
i=1

1<iy<iz<...<ip—1 <N
Write
(168) zy = > e @ @erl

in—1
1<iy<iz<...<ip—1 <N
for the corresponding tensor. Z ,{V . denotes the measure on Z obtained by pushing forward
measure i on Z"~! via M to measure ji on N,(Z), then obtaining (Z, i*"). Equivalently,
z} , is the distribution of Z evaluated on N vectors v; drawn i.i.d. from p.
Given a probability measure v on Z and prime p, Cauchy-Schwarz and Plancherel give

(169) > < > 9(%) |

R
x mod p 0#& mod p

1
v(x mod p) — —
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where
(170) D) = e a(m(n).
nez

Theorem 3 thus reduces to the following estimate on the characteristic function of Z,ff "

PROPOSITION 22. — Let n > 3 and let u be a measure on Z"~' satisfying the same
conditions as in Theorem 3. There exists constant C > 0 such that for all N > 0 and all
0< It <3

(171) ’Z},V,M (s)‘ < exp (—CNIg[7T).

2

Deduction of Theorem 3. — Recall N = ¢pn=1 and let ¢ > 1. Apply the upper bound of
Proposition 22. By (169),

(172) Z

2

1 N
Ao=3l) = 2 ()

2

x mod p E€ p
0<|¢|<£
< Y exp (—Cc|$|nzTI>
0<lgl<%
<L exp(—Cc). O

6.1. Proof of Proposition 22

Let CJ~2 act on blocks of vectors of length k2"~ with the jth factor from C}~2,

j > 1 switching the relative order of the first k2/~! and second k2/~! indices. Thus, for

instance, in case n = 5, if each of x1, ..., xg represents a block of k consecutive indices and

X = X1X2X3X4X5X6X7X8,

T2X = X3X4X1X2X5X6X7Xg
(173) TIT3X = T3T1X = X5XeX7X8X2X1X3X4
T1T2T3X = X5XX7X8X3X4X2X].

Fork > Iset N' = Lkzjf\',_—2J and let G, = (Cz”_z)N/. Gy acts on sequences of length N

with, for j > 1, the jth factor of G acting on the contiguous subsequence of indices of
length k2”2 ending at jk2"2. For fixed k and fixed w € Wy = (supp u)", let

(174) Zk(W) = Eeegy |82 e |-
Continue to abbreviate Uy = u®". For any k,
(175) Zy, =Euy [Zw)].

We introduce a second, dual action of G on a linear dual space. Let
(176) I = {l_= (il,iz,...,in_l) l<ii<ira<- - <ip_1 < N}

Giveni € Sy and k > 1,let §;  C &,_; be the subset of permutations &; y = {0 : T € G},
where

(177) Vi<j=sn—1, og(j)=#1=<k=<n—1:z() <z(i)}
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That is, 0 ; (j) is the relative position of z - i; when z - i is sorted to be in increasing order.
Put another way, suppose T maps iy < --- < ip—1 to j; < --- < jy—1 in some order (and vice
versa, t 1s an involution) and calculate

(1)

e ®---®ej(':__1l)(£-w) = ®@--@e” ) (w)

1 T j1 T jn—1
) e D)
(178) = iy ®:® ela—l(nq)(w)

= efla(l)) ®-®e "V (),

n—1

where o, ; is abbreviated o.

Let
(179) Xnp = (el @ @ef "™ i€ sy.0 € Gl
The action of T € Gy is defined on a representative set within Xy x by, for each i € Zy,
(180) (e @ e ) = oo

The following lemma justifies that this definition extends to a unique group action of G on
all of Xp .

LEMMA 23. — Let 1,7’ € Gy andi € Iy satisfy op; = oy ;. Then for any 1" € Gy,
Oryr7,i = Oy o7 In particular, (180) extends to a unique group action on X .

Proof. — This follows, since, for any 1 < i < j < N there is at most one factor
of G = CZ”_2 in Gg, and one index £, 1 < £ < n — 2 of G which exchanges the order of i
and j. To define the group action in general, given z € Gg, i € Sy and 0 € &; ; choose any
7o such that o = oy ;. Let 0’ = 0y, 4. Then

(181) - ei(lU(l)) ® - ® e'((T(n—l)) — ei(lg/(l)) ® - ® e'(o-’(n—l)).

- In—1 In—1

The definition is clearly unique, since (180) surjects on Xy . O

The actions of Gx on Wy and on Xy, although not adjoint, are compatible on Z,I,V ,in
the sense that for any z,

(182) T ZV)(w) = ZY (x-w)
so that
(183) Zi () = Exeoy [Sezpym |

Note that in general, although Gy is a product group, the separate factors t; do not act

independently in 7 - Z. For instance, when n = 5 and k = 1, the change in a tensor of type

egl) ® eéz) ® eg),z a® eg,t),z ‘2 under the first factor of G depends upon whether the second

factor has been applied. Thus the characteristic function

(184) xk(E.w) = Eceg, [e—¢ (Z)V (z-w))]

needs not factor as a product.
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A pleasant feature of the general case is that this difficulty is rectified by estimating instead
of yx (&, w), a function Fy (¢, w) which is the result of applying the Gowers-Cauchy-Schwarz
inequality to yx (£, w). To describe this, write G, = (C7~2)¥" = (C)')*~2, and thus

(185) Eccoi [f@OI =B oy By oy [f @ Tua)]

Then, setting apart one expectation at a time and applying Cauchy-Schwarz,

n—2 i N
(186) [k <E, oy o ow e 3 1y g
ScC[n-2]

=Ervec, | e Z )" Blrgw

ScCl[n—2]
= Fk(f,&)v
where
T, 1 €8
187 Tg = (Tg1r s T5n2) g, =13" ’
(187) s = (Ts1 - Isn-2) s, {22 i ds.
LEMMA 24. — Fi (&, w) factors as the product
N/
1 Fi,j (€, w)
(188) Feew =[] (1 g+ ISR
i=1
where Fy j(§, w) is a function of w; , = (w1, ..., wp—2) with the
(189) wi = > wy

@ 2(j—1)+i—Dk<€<(2"2(j—1)+i)k

the sum of consecutive blocks of length k in w. Identify CJ=2 with {0,1}"~2 and write
It = Y'22 1(x; # 0). Then

(190)  Fejw =E ez [ee| Do DTIZE (@ + 1) w0

/ n—2
v'eCy

with the action of C}~2 on blocks of size I in W k-

Proof. — Consider for fixed z, 7’ € Gy the sum
(191) zZNcw = > () Blrg zNw).
ScC[n—2]
After replacing w with t’w and t with = + 7’ it suffices to consider ¢’ = id.
Consider the action of

(192) t= Y (=1l
ScCl[n—2]
on a tensor
(193) ezel-(ll)®el-(22)®---®ef;'rll), 1<ii<ip<--<ip1<N
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appearing in ZY. Let G = CJ~? identified with subsets S of [n — 2], let G® = stab(i) <
CJ~2 be the subgroup consisting of S for which tg - e = e, and let G! = C}»72/GP°. By the
group action property, for all x € G°, forall y € G!, Ty4y€ = T,€s0 that when GO # {1},
7-e=0.

A necessary and sufficient condition for G® = {1} is that, for some 1 < j < N/,
(194) 22—k <iy <2"2( - Dk + k

Vi<l<n—1 2"2( =Dk +2" 2k <ig <2"72(j — Dk + 2"k,

and 7; = 1,_, € Cy 2. In words, the indices must all belong to a common block of
length 2”2k acted on by a single factor from Gy, within this block, the first 26~k elements

must contain i, and the second 2¢~'k must contain igyq for £ = 1,2,...,n — 2, and the
factor 7; acting on the block must be the element 1,_, of the hypercube C}~2.

The product formula given summarizes this condition. O

Proof of Proposition 22. — Assume without loss that || > N -5

Let k = max (L|§|_%J , M(u)), where M (u) is a constant depending upon . By the
triangle inequality and Holder’s inequality,

20,©)| = [Buy Dt w))|
< Euy (k6 w)]
< Eu, [l w77

< By, [Fe( w)]o2 .

Since disjoint blocks are i.i.d., Lemma 24 implies that the expectation of F (&, w) factors as
a product

(195)

N/
1 E|F )
(196) Eyy [Fr(§ w)] = (1 R TE [ an_(i Eﬂ) -
In the limit as || | 0,
(197) £y DFIZE T+ ) )
r/ecg—2

has a continuous limiting distribution, which is a polynomial of degree n — 1 in indepen-
dent normal random variables, and hence the characteristic function E[Fy ; (§, w)] has size
bounded uniformly away from 1 for all |¢| smaller than a fixed constant e(u). It follows that

(198) |ZN,®)| = exp(=C'N') = exp (~CIPTN ).

To handle the remaining range e(u) < |§] < %, choose Ny, Ny, .-+, N,_1 minimal such
that 1*Ni gives positive mass to the i th standard basis vectorin R?~!. Setk = Ny +---+N,_;
and recall that p assigns positive probability to 0. Then with /L®2n_2k-positive probability,
foreach 1 < j <n—1, w,;—1 is the jth standard basis vector and all other w; are 0. For this
configuration, 23"72 (t-w; x) = lif v is the identity, and 0 otherwise. Again, this gives that
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the characteristic function is uniformly bounded away from 1. We thus conclude, as before,
that

(199) 12X = |28, ©)| < exp—CN). O

Appendix

The characteristic function of a Gaussian measure on the Heisenberg group

This section proves Theorem 9, which gives a rate of convergence to the characteristic
function of a Gaussian measure on the Heisenberg group when the steps in the walk are
normally distributed in the abelianization.

Recall that

(200) I(o,E;N) = [( e_q (%) e_g (HN@) dv¥V (x),

where v2(x) = 5= exp (_%)

First consider the case & = 0. Integrate away x(!) to obtain,

1 1
201 EN) = -5y (18 oH)y)dy,
(201) 1(0,£;N) ¥ /RNexp( 5y ((1 50)1N+§0H)X) Y
where
(202) o = %E Hi; =N =2[i — jI;

this follows from H*(x) = 33, _; (—1)5(j<i)xfl)xj(2), A(€) = e 27°¢ for a standard one
dimensional Gaussian, and
2

N

(203) XZ(H —Iy)y = Z Z(_l)s(jq')yj
i=1 \j#i

Thus,

(204) 1(0.£:N) = !

Jdet (1= 8) Iy + &3 H)
as may be seen by using an orthogonal matrix to diagonalize the quadratic form.

We perform elementary row operations to simplify the computation of the determinant.
Let

N-1
(205) U.=Iy—) ei®eiyr
i=1
Thus
Loi=j=1
2, i=j>1
(206) Uiu.), = ‘==
M) il =1

0, otherwise
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and
N, i=j=1
—2,i=1j>lorj=1,i>1
(207) (ULHU.). . = e J=ht=0
b 4, i=j>1
0, otherwise
so that
(208)
1— 2 N—-1
UL((1-&)In +5H)U-= (1 + go)[ZIN - S (ei ®eit1 +eit1 ®e;)
0 ;=1
% i( ®ei+e ® )+(N+1)§§—1 ®
- e € (4] e —_— € e .
1+ S(% — 1 i i 1 1+ Eg 1 1
2
Set ¢ = 1+§2 We diagonalize the tridiagonal matrix with 2’s on the diagonal and —¢ on

the first sub and super diagonal by working from the lower right corner and adding up and
to the left, and treat the remainder of the matrix as a rank 2 perturbation.
Define sequences
gz
(209) &1 =2, Vi >1, gi4+1 _2_8_
14

i
o = 1, Vizl,ﬂ’izl_[si

8i
5 =1, Vizl,8,+1—l+§—
&j
These parameters have the following behavior with proof postponed until the end of this

section.

LEmMMA 25. — For§ € (0, N%] the following asymptotics hold

. sinh(27§) 1+&2
an = N0 (1 10 (_N ))

(210) ey =1+ zljé—scoth(ZJrE) (1 40 (1 J]’vsz))

N tanh 7§ 1+ £2
S (o (5))

e 1§_ N’ [t — 2tanhm§](1+0(l+ng))'

e 87133
=1 §

o
2
Il

—

Set
N

eit1 ®e; 1 ei ®e;
211 L.=1 _ D, = .
@1l v ¢ ; EN—i+1 T+ £2) ; EN41—i
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1
The diagonalization process is summarized in the following matrix equation, in which D2 is
multiplied on left and right to obtain 1’s on the diagonal

1 1
(212) DZLLU (1-&) In +EGH)U-L:DZ = Iy + P

and where P is the rank two symmetric matrix which results from applying the diagonaliza-
tion operators to the second line on the right hand side of (208),

282 X Sy N+ 1DE2—1
(213) P = S02 Z M1 (e1®ei +ei ®er) + %61 ® eq.
[+ & & Jenen-in1 en(1+£)
Then, for some orthogonal matrix O, and A4 > A_,
(214) O'(IN+P)O = (Aie;Q@e; +Aers ®er) ® In—s.

By direct calculation, expanding by the top row, det(/x + P) is equal to the e; ® ey entry
plus the sum of the squares of the e; ® e; entries, 1 <i < N,

B e 1 (N + 1§
@15) det(Iy + P) = Ayh_ = (1 (Lt gg)) ten( s £2
482 SN 4 5

B 1+ Sg EN 1+ 53)281\] et &

_ mécothné 1+ £2
_ TEcotht (1+0(—N ))

Since

- 1+ £2\\ N sinh2
(216) det(De) ™' = (1+ )N = (1 + 0( J;/S )) Slznns il
(217) det ((1 — &3) In + &3 H) = (cosh §)? (1 L0 (1 ';52)) '

Now consider the general case in which o # 0. Treat x as N vectors in RZ. When SO, (R)
acts diagonally on (R?)" rotating each x; simultaneously, H* and the Gaussian density are
preserved. Thus, I(«, &; N) = I((0, ||«|)?, &; N). Calculate

1
(218) L1, U_L.D? = —1
Ven( + &)
1
It follows that after making the change of coordinates y" =: UL.D? y the phase has
magnitude 2zlell_ and is now in the e direction. Let v, v— be unit vectors generating

Ney (1+£2)
the eigenspaces A, A_ respectively. Since e; lies in the span of v, v_ it follows that

2012 2 2
(219) I(a,g;N)zexp(N:V”U”i”sz) (wt{i”l) + (U‘ie” )) 1(0.£:N).
2 _

Calculate

2
(220) T=A++/\_=2+e’1PeI=1+0(ﬁ),
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so that
1+ &2 wécothmé
221 Ar,A)=(14+0 ,—-—.
gl b= (140 (S5)) (55
Also,
(222) (v4,e1)? + (v e)® =1
1 2
Ap(vi.en)® +A_(v_,e)> =1+ e Pey = 0( _1|_\’§ )
so that
(223) wpe?=o (T8 W =140(EE
+,€1 - N ’ — €1 - N '
It follows that
(U+,€1)2 (v—7el)2 N 1+ EZ
224 = I+0 -
(224) PR zEcothmE \ N
In particular
—27||er]|?
exp (g2mhere ) (1 + )1 + )
225 1 N)=——"""1(14+0 .
(225) (o, & N) cosh & ( + ( N ))

g2
Proof of Lemma 25. — Recall { = :é‘;. 7, satisfies the recurrence
0

(226) Ton = 27p—1 — {*7n—s, mo=1,m =2.
The following closed forms hold,
(L4502 — (1= §)*"*+?

(227) TTn 5
450(1 +§o)n
e — 14 260 (14 £)%" + (1 — &))"
! 1482 (1 + &) — (1 — £9)*"
o1 () ~(58) 2

The formula for 7, is immediate from the recurrence relation, since

(1+ &o)? (1—£&)?

229 L+&5 1+&

are the two roots of x> — 2x + ¢2 = 0. The formula for &, follows from &, = . The
formula for &, is obtained on summing the geometric series

izl

;n—l n—1
(229) 8y = 5
TTn—1 i=0 <
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and use
m (15022 = (1= )2
e 40 (1 —£3)"

_ 1_%.(% (1+E0)n+1 (l_go)n+l
4&o 1—%o 1+4& '

The claimed asymptotics for 7, ¢, § are straightforward. For instance, to obtain the correct
relative error in 7,, write
(1+8)*"72 — (1 -§)*"" _ (1+8)*"" — (1 -§)*""

4&o 2((1+ &) — (1 —%o0))

as a geometric series of positive terms. In each term of the series, approximate the power
with an exponential with acceptable relative error, then sum the sequence of exponentials.

The correct relative error may be obtained in the other cases similarly.
Using the exact formulae for ¢ and § yields

§2 2 2 : 2
(232) i:(uw%%+%»1%§mm(%%.
J

Approximating with a Riemann sum,

N-142 2 3 1
(233) z:;;zzof%O(l%;L))zgéE[;umhangzdh
J

j=1

(230)

231)

which gives the claimed estimate. O
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