
Mitigation of Scheduling Violations in Time-Sensitive
Networking using Deep Deterministic Policy Gradient

Boyang Zhou
Lehigh University
Bethlehem, PA, USA
boz319@lehigh.edu

Liang Cheng
EECS, University of Toledo

Toledo, OH, USA
liang.cheng@utoledo.edu

ABSTRACT
Time-Sensitive Networking (TSN) is designed for real-time applica-
tions, usually pertaining to a set of Time-Triggered (TT) data flows.
TT traffic generally requires low packet loss and guaranteed upper
bounds on end-to-end delay. To guarantee the end-to-end delay
bounds, TSN uses Time-Aware Shaper (TAS) to provide determin-
istic service to TT flows. Each frame of TT traffic is scheduled a
specific time slot at each switch for its transmission. Several fac-
tors may influence frame transmissions, which then impact the
scheduling in the whole network. These factors may cause frames
sent in wrong time slots, namely misbehaviors. To mitigate the
occurrence of misbehaviors, we need to find proper scheduling
for the whole network. In our research, we use a reinforcement-
learning model, which is called Deep Deterministic Policy Gradient
(DDPG), to find the suitable scheduling. DDPG is used to model the
uncertainty caused by the transmission-influencing factors such
as time-synchronization errors. Compared with the state of the
art, our approach using DDPG significantly decreases the number
of misbehaviors in TSN scenarios studied and improves the delay
performance of the network.

1

CCS CONCEPTS
• Networks → Network algorithms; Network performance
evaluation;

KEYWORDS
Time-Sensitive Networking, Deep Deterministic Policy Gradient,
Scheduling

ACM Reference Format:
Boyang Zhou and Liang Cheng. 2021. Mitigation of Scheduling Violations
in Time-Sensitive Networking using Deep Deterministic Policy Gradient.
InWorkshop on Flexible Networks Artificial Intelligence Supported Network
Flexibility and Agility (SIGCOMM ’21), August 27, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3472735.3473385

1The research was done while Dr. Liang Cheng was at Lehigh University. Institutional
affiliation is provided for identification purposes.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCOMM ’21, August 27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8634-0/21/08.
https://doi.org/10.1145/3472735.3473385

1 INTRODUCTION
Time-Sensitive Networking (TSN) is developed by the Time-Sensitive
Networking Task Group, extending IEEE 802.1Q to provide a de-
terministic performance guarantee to Time-Triggered (TT) traffic,
which has a hard delay requirement. TSN can be applied to many
fields, such as industrial automation systems, telesurgery, and au-
tonomous driving [9]. Reliable data exchange is the prerequisite
for the real-time control in these systems [16]. Data flows between
sensors, actuators, and controllers usually have hard delay require-
ments. TSN is a potential candidate to serve as the communication
backbone in these real-time systems because it can guarantee de-
terministic delay for TT traffic.

In TSN, each switch schedules a specific time slot for the trans-
mission of each TT frame to provide deterministic service. However,
the determinism can be violated when TT frames are not sent in
their scheduled time slots (defined as misbehaviors), which is fur-
ther discussed in Section 2.1. Monitoring techniques are needed to
detect misbehaviors, which can be treated as scheduling violations.
Previously, several techniques have been developed to monitor data
center networks or local area networks, such as NetFlow [3] and
SNMP [12]. Most techniques are not designed for TSN, and thus
they may not be able to discover the misbehaviors in TSN networks.
Recently, a new monitoring system, TSN-insight [1], is proposed
to record the TSN network status. However, monitoring can only
discover the occurrence of misbehaviors (detailed classifications
of misbehaviors are discussed in Section 3.1). Our work aims to
reduce the number of misbehaviors (i.e. to mitigate the scheduling
violations) by using reinforcement learning methods. The benefit
of choosing reinforcement learning methods is that they do not
require datasets with ground truth, which saves a lot of effort to
collect data with labels.

Since we model the TSN network with continuous states and ac-
tions, we select Deep Deterministic Policy Gradient (DDPG), which
is a reinforcement learning method for continuous action space
and continuous state space. Our idea is to use DDPG to find suit-
able scheduling so that the number of misbehaviors is minimized.
Meanwhile, the queuing time of frames and the network resource
assigned to TT traffic should be optimized. In other words, each
frame should not encounter a queuing delay leading to the viola-
tion of its delay requirement, and the bandwidth allocated to TT
traffic should be minimized so that bandwidth left for the lower
priority traffic can be maximized. Our DDPG model implements
offline training to find suitable GCLs to reduce the number of mis-
behaviors. It establishes the foundation for adjusting GCLs online
in the future.

In this paper, Section 2 introduces the background knowledge
of TSN and DDPG. Section 3 describes the type of training we use,

https://doi.org/10.1145/3472735.3473385
https://doi.org/10.1145/3472735.3473385


SIGCOMM ’21, August 27, 2021, Virtual Event, USA Boyang Zhou and Liang Cheng

the way we apply the DDPG model to TSN, and the selection of
states, rewards, and actions of the model. Section 4 evaluates the
performance of our DDPG model using OMNeT++ simulator. The
worst-case upper bounds for TT frames when our DDPG model
is used are provided in Section 4 as well. Section 5 concludes the
performance and discusses the future work.

2 BACKGROUND KNOWLEDGE
In this section, we discuss the basic concepts of TSN and DDPG.
TSN is one of the networking technologies designed for data trans-
missions in real-time systems. DDPG is a widely used reinforcement
learning algorithm for continuous control [6].

2.1 TSN
TSN is designed for real-time applications. It takes advantage of
IEEE 802.1Qbv Time-Aware Shaper (TAS) to provide deterministic
end-to-end delay for TT flows. TAS separates the communication
into repeating time cycles, which have the length of a hyperperiod.
Hyperperiod is defined as the least common multiple of periods of
all TT flows. All TT flows have their periodical patterns within a
hyperperiod.

There are eight queues corresponding to eight priorities in TSN
switches. Each queue has its own gate. Frames in the queue can
be transmitted only when the gate of the queue is open. When
several gates are opening at the same time, TSN switches usually
choose the framewith the highest priority for the transmission. TAS
utilizes Gate Control Lists (GCLs), which contain information about
gate statuses of all eight queues in each hyperperiod, to control the
transmission of frames of different priorities. A format of GCLs is
discussed in Section 3.2.2. Note that TAS works in the output ports
of TSN switches. All frames passing TSN switches are enqueued
into the eight queues of the output ports based on their priorities.
And GCLs control gate statuses of output ports, through which
flows pass.

The objective of scheduling in TSN is finding GCLs that enable
all TT frames to meet their delay and jitter requirements. Previous
work on the scheduling in TSN [4, 10] formulates it as an opti-
mization problem. Constraints of the optimization problem are
derived based on factors such as delay and jitter requirements, and
traffic patterns of the network. A feasible solution to the problem
means that all requirements are fulfilled theoretically. The solution
contains the offsets of flows, the number of windows in each hy-
perperiod, and the start and end time of each window. The offsets
of flows define the sending time of each frame in the source.

However, a feasible solution does not guarantee that the delay
requirement of TT traffic can be met in real hardware-software
operation environments. Each frame is assigned a specific window
in each switch on its path by the TSN scheduling. A window is
defined as the time period when the gate of the queue is open. Once
the frame is not sent during its assigned window, which means
that a misbehavior occurs, the scheduling along the path might
be violated. There are several possible reasons that can cause the
violation/misbehaviors: i) time-synchronization errors between
switches and hosts; ii) frame transmission dynamics at hosts; iii)
scheduling dynamics in the switch fabric. Time-synchronization
errors cause the drift of the assigned window of each TT frame in

different switches. Frame transmission dynamics at hosts induces
the inaccurate sending time of frames from their sources, which
causes unknown jitter and changes the order of frames. Scheduling
dynamics in the switch fabric can lead to that the order of frames
in the same queue differs during runtime if the frames come from
different input ports [7]. Our work aims to mitigate the impact of
the uncertainty induced by the three factors on the scheduling in
TSN.

2.2 DDPG
Reinforcement learning methods have already been used in the net-
work research areas, such as traffic scheduling [2] [11] and routing
optimization [13]. DDPG is a reinforcement learningmethod, which
combines deep neural networks and Q-learning. This algorithm
is developed by Google Deepmind [6]. The traditional Q-learning
method is a model-free off-policy algorithm for agents to learn the
optimal actions in different states. The convergence of Q-learning
has been proved [15]. The Q-learning algorithmmaintains a Q-table
to store Q-values of all pairs of (𝑠, 𝑎), where 𝑠 is the state and 𝑎 is
the action. The Q-value is a measurement of the overall expected
reward assuming that action 𝑎 is taken upon state 𝑠 . Although Q-
learning is a powerful method, it only works for environments with
discrete states and discrete actions.

Deep Q-learning can deal with the environments with continu-
ous states [8]. Instead of using a Q-table to memorize Q-values, deep
Q-learning uses neural networks to map states to (𝑎,Q-value) pairs.
Neural networks in deep Q-learning are used to implement the func-
tion approximation so that they can evaluate Q-values of actions
in any state. Deep Q-learning performs experience replay, which
randomly samples the previous data for training. The experience
replay helps smooth the training distribution over past behaviors.
However, deep Q-learning cannot be applied to the continuous
action domain.

DDPG adopts the idea of deep Q-learning and extends the work-
ing domain to environments with continuous states and continuous
actions. There is a main network and a target network in DDPG.
Both networks have the same structure. As DDPG uses an actor-
critic approach, each network contains an actor network and a
critic network. The actor network, whose input is the state, is used
to predict the action. The critic network is used to evaluate the
Q-value of (𝑠, 𝑎) pairs. Similar to deep Q-learning, DDPG utilizes
the experience replay to train the model. Unlike traditional neural
networks, DDPG does not require datasets with ground truth for
training. Instead, DDPG uses the target network to approximate
Q-values gradually. Figure 1 [17] shows the structure and the train-
ing process of DDPG. The loss functions of the actor network and
the critic network are shown in the figure. Parameters of both the
main network and the target network are updated in each episode
based on the gradient.

3 DDPG FOR GCL CONFIGURATION
In our research, we use DDPG to find suitable GCLs to decrease
the number of misbehaviors in TSN. Our DDPG model utilizes
the knowledge of misbehaviors to model the uncertainty in the
network. Thus, in Section 3.1, we provide the classification and



Mitigation of Scheduling Violations in Time-Sensitive Networking using Deep Deterministic Policy Gradient SIGCOMM ’21, August 27, 2021, Virtual Event, USA

Figure 1: Structure of DDPG

example of misbehaviors. In Section 3.2, we discuss how we apply
DDPG to find suitable GCLs.

3.1 The classification of misbehaviors
Feasible GCLs, which enables meeting the delay requirement of
TT traffic, can be derived by solving the optimization problem.
However, as discussed in Section 2.1, frames may not be sent in
their assigned windows, which means that misbehaviors occur due
to the jitter and the disorder.

In order to distinguish misbehaviors in the network, we clas-
sify misbehaviors into two types. i) If the frame is sent ahead of
its assigned window, we treat this type of misbehaviors as lead
misbehaviors. ii) If the frame is sent after its assigned window,
a lag misbehavior happens. Figure 2 shows an example of a lead
misbehavior and a lag misbehavior.

Figure 2 (a) depicts the topology and the traffic pattern used in
this example. There are three hosts (𝐻1, 𝐻2, and 𝐻3) and two TSN
switches (𝑆1 and 𝑆2) in the network. Flows 𝑓1 and 𝑓2 are sent by 𝐻1
and the destination of the two flows is 𝐻3. Flow 𝑓3 is sent from 𝐻2
to 𝐻3. Suppose they have the same period and the same frame size.
The hyperperiod is the period of these flows, and each flow sends
one frame in each hyperperiod in this case.

Figure 2 (b) shows the correct processing of all frames on differ-
ent links. In this scenario, the offsets of the frames and the windows
assigned to the frames are derived by the scheduling in TSN. As
shown in the figure, Frame 1 and Frame 2 should be sent in window
𝑤1 of the output port of 𝑆1, and in window𝑤3 of the output port
of 𝑆2. Frame 3 should be sent in window𝑤2 of the output port of
𝑆1, and in window𝑤4 of the output port of 𝑆2. However, if there is
jitter, which causes Frame 2 arriving later than Frame 3 at switch
𝑆1, the scheduling of Frame 2 and Frame 3 is violated.

Figure 2 (c) shows the anormal transmission caused by the jitter.
Frame 3 is sent ahead of its assigned windows, which is a lead
misbehavior. Frame 2 then encounters a lag misbehavior because it
is sent in𝑤2 and𝑤4 instead of𝑤1 and𝑤3.

S1 S2 H3

H2

H1

f1, 
f2

f3

(a) Topology and traffic pattern

(b) Expected processing order

(c) Processing with misbehaviors

Figure 2: An example of misbehaviors

The aim of using DDPG is to find suitable GCLs to reduce the
number of lead and lag misbehaviors. It is impossible to eliminate
all misbehaviors in some scenarios, e.g. what is shown in Figure 2
(c). Note that the order of Frame 2 and Frame 3 is reversed. Frame
3 should be sent in 𝑤2, and Frame 2 should be sent in 𝑤1 of the
output port of 𝑆1. Since Frame 3 arrives earlier than Frame 2 at 𝑆1,
and𝑤2 is scheduled later than𝑤1 in this case, Frame 2 and Frame
3 cannot be sent in their assigned windows simultaneously. Even if
we increase the size of window𝑤1 to accommodate Frame 2, there
is still a lead misbehavior because Frame 3 must be sent before
Frame 2. Thus, there is at least one lead misbehavior or one lag
misbehavior of the output port of 𝑆1 in this scenario.

3.2 Settings of the DDPG model
Before discussing the application of DDPG, we should first decide
the type of training used in this work. There are two types of
training that can be implemented in TSN networks: global training
and local training. The global training takes in the information of
the whole network, and the model can find suitable GCLs of all
output ports in TSN networks. However, this type of training may



SIGCOMM ’21, August 27, 2021, Virtual Event, USA Boyang Zhou and Liang Cheng

need a longer time in collecting information than the one using
local information only. Thus, we choose the local training method
in our research.

The local training method is a per-port training, which means
that each output port is trained separately. There are two advan-
tages of using the local training. i) The local training is simpler and
easier to converge compared with global training. ii) Since all infor-
mation can be obtained locally, local training does not cause extra
bandwidth usage and delay induced by collecting the information
globally.

Since we use local training, the selection of states, actions, and
rewards of the model is based on the local information of the port.
We will discuss how to select suitable states, actions, and rewards
as follows.

3.2.1 States. In reinforcement learning, the state is used to de-
scribe the status of the environment. Agents take in the state of the
environment to make the decision on the next step action. Thus, a
proper state contributes to the decision of the action with a high
Q-value. In our model, the number of misbehaviors in the output
port is the most important information, which should be included
in the state vector.

In order to detect misbehaviors, TSN switches should have TT
traffic tables, which map the frames of TT traffic to their assigned
windows in the local memory. This mapping is determined by
the scheduling based on [4], which is defined as the optimization
method in this paper. TSN switches can discover lead and lag mis-
behaviors in the network by comparing the sending windows of
frames with the assigned windows to the frames in the mapping.

Besides the number of misbehaviors, the total length of windows
and total waiting time of windows (a.k.a. the total wait) should
be included in the state vector as well because they influence the
reward calculation in Section 3.2.3. The total length is the sum of
sizes of all windows in each hyperperiod, and the total wait is the
sum of the starting time of all windows. For example, if there are
two windows in a hyperperiod, which have a length of 40 ms and
60 ms, then the total length is 100 ms. If the first window opens at
30 ms and the second window opens at 100 ms in a hyperperiod,
the total wait is 130 ms. In our model, the state vector contains the
number of misbehaviors, the total length, and the total wait.

3.2.2 Actions. In our work, we aim to reduce the number of mis-
behaviors by modifying GCLs used in the network. Thus, actions
in our model should be able to find suitable GCLs of output ports.
In this paper, we use the NeSTiNg project [5], which is based on
OMNeT++ [14] to simulate TSN networks. In NeSTiNg, a GCL can
be represented by a time array and a bit-vector array. A bit-vector
in the bit-vector array indicates the status of eight gates. If the 𝑖𝑡ℎ
bit of the bit-vector is 1, it means that the gate of the 𝑖𝑡ℎ queue is
open. Otherwise, it is closed. For example, if the time array is [20
ms, 30 ms, 50 ms], and the bit-vector array is [00000000, 11111111,
00000000], it means that all the gates of eight queues are closed in
the first 20 ms and the last 50 ms, and all the gates are open in the
middle 30 ms in the hyperperiod of 100 ms. In our model, we do
not want to change the bit-vector array because the modification
of the bit-vector array can ruin the mapping between frames and
windows, which is stored in TSN switches. The mapping between
frames and windows is given by the results from the optimization

method in [4]. Thus, we only need to modify the time array of the
GCLs, which means that the action should correspond to the time
array.

The actor network in the main network is used to predict the
action. We use the softmax activation function in the output layer
of the actor network. The sum of all elements is 1 in the output
array of the actor network. Since the requirement of a feasible time
array is that the sum of all elements equals to the hyperperiod, the
new time array can be obtained through multiplying each element
of the output array by the hyperperiod. Using this way, the model
can produce continuous GCLs with a fixed hyperperiod.

3.2.3 Rewards. The selection of rewards significantly influences
the performance of the DDPG model because it guides the model
how the parameters should be updated. We consider three require-
ments for designing rewards. The basic requirement of the model,
which has the highest priority, is to minimize the number of mis-
behaviors. The second requirement is to minimize the bandwidth
reserved for the TT traffic so that flows with lower priorities have
the opportunity to be sent. Thus, the total length should be mini-
mized. The last requirement is to reduce the queuing time of TT
frames because larger queuing delay may lead to higher probability
of violating delay requirements. We expect that the window opens
immediately once the first frame sent in this window arrives. Thus,
we want to minimize the total wait.

In order to achieve these goals, we design the reward as shown
in Equation 1, where 𝑛𝑢𝑚_𝑚𝑖𝑠 is the number of misbehaviors and
𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑚𝑒 is the transmission time of all frames in one hyperpe-
riod. We introduce 𝛼 and 𝛽 to the reward calculation to avoid the
occurrence of zero in the multipliers. If one multiplier is zero, we
cannot optimize the variables associated with another multiplier via
DDPG. The subtraction of𝑤3 ∗max(0, (𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑚𝑒 −𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ))
is used to punish the situations when the total length is less than the
transmission time of all frames because there must be misbehaviors
in this type of situations. Since minimizing the total length may
increase the total wait, we need to find a balance between the total
weight and the total length. Thus, weights𝑤1 and𝑤2 are used to
decide the significance of total wait and total length.

𝑟𝑒𝑤𝑎𝑟𝑑 =(−𝑛𝑢𝑚_𝑚𝑖𝑠 − 𝛼) ∗ (𝑤1 ∗ 𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ+
𝑤2 ∗ 𝑡𝑜𝑡𝑎𝑙_𝑤𝑎𝑖𝑡 + 𝛽)
−𝑤3 ∗max(0, (𝑡𝑟𝑎𝑛𝑠𝑇𝑖𝑚𝑒 − 𝑡𝑜𝑡𝑎𝑙_𝑙𝑒𝑛𝑔𝑡ℎ))

(1)

After the selection of states, actions, and rewards, we then need
to decide the architecture of neural networks in DDPG. The actor
network has two hidden layers with the relu activation function,
and the critic network has four hidden layers, which have relu, relu,
tanh, and linear activation functions, respectively.

4 EVALUATION OF THE DDPG MODEL
In this section, we describe the simulation results of the perfor-
mance of our DDPG model. The model is integrated with the NeST-
iNg project, which is used to simulate TSN networks based on
OMNeT++. Then, whether the results from the model can reduce
the number of misbehaviors and improve the delay performance
of the network can be evaluated. We have modified the NeSTiNg
project so that it can detect misbehaviors and provide necessary
information needed by our DDPG model. We set 𝛼 = 0.1, 𝛽 = 7,



Mitigation of Scheduling Violations in Time-Sensitive Networking using Deep Deterministic Policy Gradient SIGCOMM ’21, August 27, 2021, Virtual Event, USA

𝑤1 = 6, 𝑤2 = 3, and 𝑤3 = 1 for the calculation of rewards in the
training.

We compare the results of networks using three types of GCLs.
The first type of GCLs is obtained from the optimization method,
which is described in [4]. The second type of GCLs comes from
our DDPG model. The last type of GCLs is assumed to be ideal. All
frames can be sent with the minimum queuing time and without
misbehaviors when using ideal GCLs.

Figure 3: The network topology and the traffic pattern used
in the simulation

In the simulation, we use a tandem topology with five switches
and twenty TT flows. The topology and the traffic pattern are shown
in Figure 3. In this case, there are twenty TT flows transmitted
through the same path. Thus, all these twenty flows have to compete
for the resources of the same output ports of switches.

We assign the highest priority to all TT flows. Suppose all flows
have the same period, which is 100 𝜇𝑠 , and the same frame size. The
hyperperiod is 100 𝜇𝑠 in this case. The bandwidth of each link used
in the simulation is 1 Gbps.We use three different frame sizes, which
are 1000 bits, 2000 bits, and 3000 bits, in the simulations. However,
since headers have different sizes in OMNeT++, the sizes of the
frames are not exactly the same, leading to different transmission
delays. Because there are five output ports in use and we implement
the per-port training (one output port at each switch), we need to
train five DDPG models. The order of the training is the same as
the order of output ports on the path of flows.

We first compare the network performance in terms of the num-
ber of misbehaviors. In order to test the performance of three types
of GCLs with the same traffic pattern, we give all frames a constant
jitter, which is 5 𝜇𝑠 . Figure 4 demonstrates the accumulative number
of misbehaviors in five switches using the GCLs from the optimiza-
tion method varying over time. We can see that the curve is linear
because we set a constant jitter of 5 𝜇𝑠 . However, using the other
two types of GCLs, there is no misbehavior in the network. It means
that our DDPG model works well for eliminating misbehaviors in
the tandem scenario.

Then, we compared the end-to-end delay performance of net-
works using the three types of GCLs. Figure 5 illustrates the his-
tograms of delays and the average delay in the networks using the
three types of GCLs. In this figure, the x-axis shows the range of
delays, and the y-axis represents the density. The network using
GCLs derived from the optimization method experiences bipolar
delays. The reason for the bipolar delay pattern is that there are mis-
behaviors, which lead to a large end-to-end delay for misbehaved
frames.

Since there are no misbehaviors occurring in networks using
the other two types of GCLs, all frames have a similar delay. We
can see that our DDPG model can decrease the average delay when
the frame size is small. If the frame size is 3000 bits, our DDPG
model has a larger average delay than the optimization method.

Figure 4: The accumulative number of misbehaviors in
five switches using GCLs obtained from the optimization
method

However, larger average delay does not mean that our DDPGmodel
cannot improve the delay performance in this case. As shown in
Figure 5 (c), the optimization method causes some frames to en-
counter an approximately 60 𝜇𝑠 delay, which might exceed the
delay requirements of TT flows. Meanwhile, all frames encounter
an approximately 24 𝜇𝑠 delay using our DDPG model. Compared
with the results from ideal GCLs, our model always produces a
larger end-to-end delay. We can conclude that our DDPG model
improves the performance of the network in terms of misbehaviors
and delays compared with GCLs derived from the optimization
method. Using our DDPG model, we can eliminate all misbehaviors
in the tandem scenario.

Besides the simulation results, we can provide an upper bound of
the end-to-end delay using our DDPG model. We know that GCLs
derived from the optimization method can guarantee determinis-
tic delay if there is no misbehavior. GCLs from our DDPG model
can provide a worst-case delay bound for the frame according to
Equation 2 if there is no misbehavior or only lead misbehaviors in
the last switch on the path of the frame. In this equation, 𝐷𝐷𝐷𝑃𝐺

is the delay of the frame when using our DDPG model. 𝐷𝑂𝑃 is the
deterministic delay of the frame using GCLs from the optimization
method.𝑤𝑒𝑛𝑑

𝐷𝐷𝑃𝐺
is the end time of the window, which is assigned

to the frame in the last switch on its path, using the GCL obtained
by our DDPG model.𝑤𝑠𝑡𝑎𝑟𝑡

𝑂𝑃
is the start time of the window, which

is assigned to the frame in the last switch on its path, using the
GCL from the optimization method.

𝐷𝐷𝐷𝑃𝐺 ≤ 𝐷𝑂𝑃 +𝑤𝑒𝑛𝑑
𝐷𝐷𝑃𝐺 −𝑤𝑠𝑡𝑎𝑟𝑡

𝑂𝑃 (2)

5 CONCLUSION AND FUTUREWORK
In this paper, we describe a DDPG model to find suitable GCLs in
TSN networks to improve network performance. DDPG can model
the uncertainty induced by time-synchronization errors, frame
transmission dynamics, and scheduling dynamics in the switch fab-
ric. Thus, our DDPGmodel can be used to provide suitable, although
not optimal, GCLs to improve network performance. Compared
with the optimization method, our DDPG model can eliminate all
misbehaviors and produce better delay performance in the tandem



SIGCOMM ’21, August 27, 2021, Virtual Event, USA Boyang Zhou and Liang Cheng

(a) Delay performance when the frame size is 
1000 bits

(b) Delay performance when the frame size is 
2000 bits

(c) Delay performance when the frame size is 
3000 bits

Figure 5: Delay performance using three types of GCLs

scenario. Using GCLs derived from the DDPG model, no frame
encounters a large latency caused by the wrong sending window(s).
Therefore, it is more likely that frames will not violate their delay
requirements using our DDPG model compared with using the

optimization method. Furthermore, we provide a guaranteed delay
bound for each frame when using our DDPG model if there is no
misbehavior or only lead misbehaviors in the last switch on the
path of the frame.

Our DDPG model currently implements offline training in the
network to model the uncertainty. It establishes the foundation of
using online training in our future work. Online training should
dynamically adjust GCLs to reduce the occurrence of misbehaviors.
The goal is to update GCLs periodically based on the information
from the previous hyperperiod(s) and to offer better adaptability
than the current offline training approach.

6 ACKNOWLEDGEMENT
This work is supported by NSF Award No. 1646458. Any opinions,
findings, and conclusions or recommendations expressed in this
paper are those of the author(s) and do not necessarily reflect the
views of the sponsors of the research.

REFERENCES
[1] Tianyu Bu, Yi Yang, Xiangrui Yang, Wei Quan, and Zhigang Sun. 2019. TSN-

Insight: An Efficient Network Monitor for TSN Networks. Apnet (2019).
[2] Sandeep Chinchali, Pan Hu, Tianshu Chu, Manu Sharma, Manu Bansal, Rakesh

Misra, Marco Pavone, and Sachin Katti. 2018. Cellular network traffic scheduling
with deep reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 32.

[3] Benoit Claise, Ganesh Sadasivan, Vamsi Valluri, and Martin Djernaes. 2004. Cisco
systems netflow services export version 9. (2004).

[4] Silviu S Craciunas, Ramon Serna Oliver, Martin Chmelík, and Wilfried Steiner.
2016. Scheduling real-time communication in IEEE 802.1 Qbv time sensitive net-
works. In Proceedings of the 24th International Conference on Real-Time Networks
and Systems. 183–192.

[5] Jonathan Falk, David Hellmanns, Ben Carabelli, Naresh Nayak, Frank Dürr,
Stephan Kehrer, and Kurt Rothermel. 2019. NeSTiNg: Simulating IEEE time-
sensitive networking (TSN) in OMNeT++. In 2019 International Conference on
Networked Systems (NetSys). IEEE, 1–8.

[6] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[7] Nick McKeown. 1999. The iSLIP scheduling algorithm for input-queued switches.
IEEE/ACM transactions on networking 7, 2 (1999), 188–201.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[9] Ahmed Nasrallah, Akhilesh Thyagaturu, Ziyad Alharbi, Cuixiang Wang, Xing
Shao, Martin Reisslein, and Hesham ElBakoury. 2018. Ultra-low latency (ULL)
networks: A comprehensive survey covering the IEEE TSN standard and related
ULL research. arXiv preprint arXiv:1803.07673 (2018).

[10] Ramon Serna Oliver, Silviu S Craciunas, and Wilfried Steiner. 2018. IEEE 802.1
Qbv gate control list synthesis using array theory encoding. In 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS). IEEE, 13–24.

[11] Jonathan Prados-Garzon, Tarik Taleb, and Miloud Bagaa. 2020. LEARNET: Re-
inforcement learning based flow scheduling for asynchronous deterministic
networks. In ICC 2020-2020 IEEE International Conference on Communications
(ICC). IEEE, 1–6.

[12] William Stallings. 1998. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-
Wesley Longman Publishing Co., Inc.

[13] Giorgio Stampa, Marta Arias, David Sánchez-Charles, Victor Muntés-Mulero,
and Albert Cabellos. 2017. A deep-reinforcement learning approach for software-
defined networking routing optimization. arXiv preprint arXiv:1709.07080 (2017).

[14] Andras Varga. 2010. OMNeT++. In Modeling and tools for network simulation.
Springer, 35–59.

[15] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning
8, 3-4 (1992), 279–292.

[16] Martin Wollschlaeger, Thilo Sauter, and Juergen Jasperneite. 2017. The future
of industrial communication: Automation networks in the era of the internet of
things and industry 4.0. IEEE industrial electronics magazine 11, 1 (2017), 17–27.

[17] Junta Wu and Huiyun Li. 2020. Deep Ensemble Reinforcement Learning with
Multiple Deep Deterministic Policy Gradient Algorithm. Mathematical Problems
in Engineering 2020 (2020).


	Abstract
	1 Introduction
	2 Background Knowledge
	2.1 TSN
	2.2 DDPG

	3 DDPG for GCL configuration
	3.1 The classification of misbehaviors
	3.2 Settings of the DDPG model

	4 Evaluation of the DDPG Model
	5 Conclusion and future work
	6 Acknowledgement
	References

