ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 978-1-7281-7605-5/20/$31.00 ©2021 IEEE | DOI: 10.1109/ICASSP39728.2021.9414734

ADAPTIVE IMPORTANCE SAMPLING VIA AUTO-REGRESSIVE GENERATIVE MODELS
AND GAUSSIAN PROCESSES

Hechuan Wang, Monica F. Bugallo, and Petar M. Djurié¢

Department of Electrical and Computer Engineering
Stony Brook University, Stony Brook, NY 11794
Email: hechuan.wang, monica.bugallo, petar.djuric @ stonybrook.edu

ABSTRACT

The quality of importance distribution is vital to adaptive im-
portance sampling, especially in high dimensional sampling spaces
where the target distributions are sparse and hard to approximate.
This requires that the proposal distributions are expressive and easily
adaptable. Because of the need for weight calculation, point eval-
uation of the proposal distributions is also needed. The Gaussian
process has been proven to be a highly expressive non-parametric
model for conditional density estimation whose training process is
also straightforward. In this paper, we introduce a class of adap-
tive importance sampling methods where the proposal distribution
is constructed in a way that Gaussian processes are combined au-
toregressively. By numerical experiments of sampling from a high
dimensional target distribution, we demonstrate that the method is
accurate and efficient compared to existing methods.

Index Terms— adaptive importance sampling, generative
model, Gaussian Process, population Monte Carlo

1. INTRODUCTION

Adaptive importance sampling (AIS) is a class of powerful estima-
tion methods that iteratively optimize the proposal distribution along
with drawing weighted samples. There are many different variations
of AIS; however the performance of all these methods is very sen-
sitive to the quality of the chosen proposal distribution [18]. Tradi-
tionally, fixed parametric distributions, such as Gaussian mixtures,
are used as proposal distributions [2, 16]. However, in high dimen-
sional samples spaces, the target distributions are usually hard to be
captured by these fixed-form distributions.

With the development of machine learning, several kinds of
compound data generating methods have proven to be highly ex-
pressive, such as neural generative models [6, 14] and Gaussian
process latent variable machines [20]. These methods succeed in
capturing details of high dimensional data distributions. However,
to use data generating methods as proposal distributions for AIS,
point evaluations of the generative models are required to calculate
the weights of the drawn samples. However, many data generating
models cannot evaluate the probability analytically. For example,
in [22], a variational autoencoder (VAE) model is used as a proposal
distribution, where the probability is evaluated by Monte Carlo
approximations.

There are two kinds of compound distributions that can evaluate
probability of samples analytically. One is latent variable machines
that use bidirectional transformations [5, 11, 15,21]. The other kind
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of distributions, which are called autoregressive distributions, are the
ones that can be factorized by the chain rule of conditional distri-
butions. In [13], it was shown that these two types of models are
equivalent under certain conditions. In this paper, we work within
the autoregressive framework.

Kernel density estimation is a commonly used non-parametric
density estimation method, and it is usually invoked in low dimen-
sion sample spaces. In terms of estimation of conditional distribu-
tions, there are several methods such as [9, 10]. Gaussian processes
allow for a powerful non-parametric conditional density estimation,
where the models of the data are conditional Gaussian distributions.

In this paper, we introduce a class of AIS methods that use
autoregressive distributions whose components are non-parametric
distributions, including kernel density estimation and Gaussian pro-
cesses, as proposal distributions. We provide two examples of this
class of methods, and they are based on AIS and adaptive multiple
importance sampling (AMIS). By numerical experiments, we show
that when the dimension of the target distribution is high, the pro-
posed methods outperform the state-of-the-art AMIS methods and
Gaussian mixture distributions.

The problem is defined in Section 2. In Section 3, we briefly re-
view AIS, autoregressive distributions, and Gaussian processes. We
propose our method in Section 4 and present results of numerical
experiments in Section 5. In Section 6, we discuss the results and
provide concluding remarks.

2. PROBLEM DEFINITION

Our goal is to draw samples from a given non-normalized target dis-
tribution 7(x). We assume that we can only evaluate 7(x) point-
wisely. We also assume that the integral of 7 (-) is not tractable and
that as a result, the partition function is not available. This is a com-
mon situation in Bayesian estimation when we want to draw sam-
ples from a posterior distribution: the partition function of a high-
dimensional posterior distribution is usually not available.

When x is high dimensional, the target distribution is sparse, and
the sampling process is very challenging. We address the problem
of sampling from target distributions of this type.

3. BACKGROUND

3.1. Adaptive importance sampling and its variations

We operate in settings when we do not have much information about
the target distribution 7 (x), and thus, handcrafting a proposal distri-
bution ¢(x) for importance sampling (IS) is challenging [8]. AIS is
a class of iterative importance sampling that optimizes the proposal
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distribution over iterations of IS [12]. We will use the subscript ¢ to
denote the iteration index. We start from some initialization of the
proposal distribution g1 (x), and in each importance iteration ¢, we
use the accumulated weighted samples (xgr?) , wgf?) ), to optimize an
updated proposal distribution g¢+1(x). This step is called “adapta-
tion.” There are many ways of adaptation, depending on the form of
the proposal distribution. Proceeding with iterations, we improve the
proposal distribution, and thereby the quality of the drawn samples
and the various statistics obtained from them.

Variations of AIS methods [2], such as AMIS [4] are usually
different because of the adopted form of the proposal distribution,
the process of adaptation, and how the results from previous itera-
tions are used. Many of these methods use Gaussian or Gaussian
mixture distributions as proposal distributions [3, 4]. The accuracy
of these methods degrades fast with the increase of the dimension of
the sample space. Therefore, an expressive proposal distribution that
can approximate the target distribution better in higher dimensions
is needed.

3.2. Autoregressive distributions

Autoregressive distributions are joint distributions that can be factor-
ized based on the conditional distribution expansion rule,

D

q(xe) = qe(@re) [ [ qoe(@aelxia—s), ey
d=2

where D is the number of dimensions of the sample space. Samples
of this distribution can be drawn by ancestral sampling [1]. Evalua-
tion of the log-probability of a sample can be achieved by separately
computing the factors corresponding to each dimension, and the sum
of the evaluations is the log-probability of that sample. When opti-
mizing the autoregressive distribution, each factor of the proposal
distribution can be optimized separately in parallel.

3.3. Gaussian processes

The Gaussian process regression [23] is a non-parametric Bayesian
model for estimation of functions from noisy data. They rely on con-
ditional Gaussian distributions, where their covariances are regulated
by “kernels” that measure similarities among data.

Suppose that training input and output data are given by
(xTN) (N where N is the number of training data. The
predictive distribution of y* conditioned on x* is modeled by

a(y'[x",0,0%) = N(y* | (x*,0), S (x*,0) + 0%),  (2)

where
(X", 0) = B x(Bx + 07Iy) "y,
Ti(X,0) = Diw — Bk (Bax + 07 Iy) '],
and
ke(x<1>,x<1>) k’e(X(l),X(N))
Yix = : : )

k@ (X(N> ) X(N))
lcg(x*,x(N)) } ,

ke( V), (1))

where 6 and o are hyperparameters of the GP model, and kg (-, -)
is the kernel function of the GP. In the proposed method, we use the
radial basis function (RBF) kernel.

However, it is hard for the GP to work with large datasets be-
cause the inverse of the covariance matrix requires O(N?) complex-
ity. There are many methods that aim to reduce the computational
complexity of Gaussian process regression [17]. In our work, we
utilize a python package GPy [7] that uses the deterministic training
conditional (DTC) approximation [19] to reduce the computational
complexity to O(n®) where n is the number of inducing input, and
n is much smaller than the data size V.

4. THE PROPOSED METHOD

4.1. AIS with non-parametric proposals

In the proposed AIS method, the proposal distribution has the
autoregressive form (1). Because the proposal distribution is non-
parametric, in the initialization step, we need to provide some ini-
tialization of the underlying data nglév()) Here we can use random
data drawn from a non-informative disﬁibution, such as a standard

Gaussian distribution,
: iid
Mibo ~ N0, 1), 3

where N is the number of drawn samples, and I, denotes the D-by-
D identical matrix.

The distribution of the first dimension ¢1 +(21,+) can be mod-
eled by kernel density approximation, which is non-parametric. Ker-
nel density estimation is usually not challenging in low dimensional
spaces. As we are using it for just one dimension, it will be suitable
for modeling the distribution of the first dimension,

q1,t(331,t

N
1 n
)= N ZN(ml,t|7]Lt)71,bf)7 )
n=1

where b; is the bandwidth of the smoothing kernel at iteration .

The conditional distributions are modeled by Gaussian pro-

cesses according to (2), with (7711(11\[)1 o néltN)

and output training data, or

) as underlying input

Qa,(Tae|X1:a—1,t, 0a,e,00.0) =
N (a|pe(X1:a=1,t,04,t), 2t (X1:a—1,¢, 0a,¢) + Ug,t) )]

When sampling from a distribution, we first draw samples from the
kernel density approximation and then we generate samples from the
conditional distributions sequentially, i.e.,

M) 5 N, ©)
mg t) N(Ult 1 7bt)
xfj t) ~ N(xd¢t|/lt(x17;7;717t7 Oa,t), Et(xgz),l,taed,t) +044) s

where DU(1 : N) means discrete uniform distribution that samples
integers from 1 to V.
The non-normalized sample weights are calculated by

@™ = exp(log(r(x{"™)) — log(g:(x{"™))), m

where the log-pdf evaluation of the proposal distribution is

log<qt(x§”)>>—log< [ZN "), >D ®)

D
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and LN denotes the log-pdf of a Gaussian distribution.

The proposal distribution is non-parametric, and therefore adap-
tations can be achieved by replacing the underlying data set of the
proposal distribution with resampled data from the accumulated
weighted samples. Note that the number of resampled samples
N does not have to be the same as the number of samples drawn
from the proposal distribution M. The resampling process can be
performed as follows:

By ~(l)
i) W es ot S Zli ~(z)) ©)
. t ~(LM)
e, er szw ~<z))

n)
ngn) *X(?fl) )7 n=1:N,

where s = maX(O,t — L+ 1), and L is the maximum number of
iterations that is kept. The earlier iterations are considered as burn-
in. The symbols C(z***) 1w 1**)) denote a categorical distribution
from which we draw z according to the weights w.

In addition to replacing the underlying data, we can also up-
date the hyperparameters based on the resampled samples for better
performance. The bandwidth of the kernel density estimation, the
hyperparameters of the Gaussian process kernel, the white noise of
the Gaussian process, and the inducing points can be updated by the
type-1I maximum likelihood as follows:

bis1 = argmax— Z log(q1,(n}, b)), (10)

nl

2
0d,t4+1,04,t+1 = argmax
04,02

N
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The inducing inputs are optimized by DTC using the GPy [7] pack-
age. The proposed AIS method is summarized by Algorithm 1,
which we refer to as autoregressive GP AIS (AGP-AIS).

Algorithm 1: AGP-AIS
Initialize the underlying data of the non-parametric
(1:N)
proposal 1, by (3).
fort > 1do
Draw samples x\"*) by (6).
Calculate the non-normalized weights by (7).

Resample nil:m from the last possible L iterations of
accumulated weighted samples by (9). Replace the
underlying data by the resampled data.

Update the hyper parameters b;41, 02:p,t+1, o2, D,t+1
of the proposal distribution by (10).

end
Result: Accumulated weighted samples (x; (1 M) ﬁ)iltM))

)

4.2, AMIS with non-parametric proposals

Our non-parametric proposal distribution can be used in different
variations of AIS. For example, it can be applied in the AMIS struc-

ture if we change the weighting process of AIS (7) to the following:

w(’”) _ (t_8+1) ( (m))
! Z: sql(XEM))

j=s:t,m=1:M, (1)

where ¢; is the exponent of (8). Note that in each iteration ¢, we need
to re-weight the history samples from iteration s to ¢. The proposed
AMIS method is summarized by Algorithm 2 AGP-AMIS.

Algorithm 2: AGP-AMIS

Initialize the proposal distribution go ().
fort > 1do

Draw samples x; q+(z) by (6) .
Recalculate the non—normalized weights in the last

possible L iterations by (11).
(1:N)

(1:M) zzd

Resample 7, ) from the last possible L iterations of
accumulated weighted samples by (9). Replace the
underlying data by the resampled data.

Update the hyper parameters b¢41, 02:p,¢41, US:D,tH
of the proposal distribution by (10).

end

Result: Accumulated weighted samples (x_; M) ~£:1,;M))

5. NUMERICAL EXPERIMENTS

The target distribution for all the experiments is a banana-shaped
distribution [4], which is defined by

(%) = fx(op,s) (@1, 22 + b(at — 0°), 23, ,zp),  (12)

where ¥ = diag(c?,1,---,1). In our experiments, we set the pa-
rameters to b = 0.03 and o = 10.

We ran experiments with the proposed AGP-AIS and AGP-
AMIS methods. For comparison purposes, we also tested AMIS
that uses a Gaussian mixture distribution with 10 components as a
proposal distribution.

Even though we only utilize point evaluation of the target dis-
tribution, it is actually possible to generate samples from the target
distributions directly by first drawing z**) from a standard Gaus-
sian distribution, and then twist its first two dimensions to acquire
xUM) that is to follow these steps:

21 A(0,1p), (13)
and then, form =1: M

e = o™, (14)

2y = 2" +b(o® + (1)),

Xy = 2.

In the experiment, the ideal samples are directly drawn from the
target distribution for benchmark performance comparisons.

The performance is measured in two ways. First, as suggested
in [4], we measure the difference between the following statistics
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and their theoretical values:

D D
= Z mean( x&lsﬂf)) Z E(zq), (15)
= d=1
2
Zvar (s ) = DV (a), (16)
d=1
D
Zvar a;dlsjvtf) Z V(zq). (17)
d=3

Second, we focus on the first two dimensions of the samples. Be-
cause we know the ideal samples can be acquired transforming
the standard Gaussian distribution samples, we can apply the in-
verse transformation of (14) on samples from the proposed methods
and measure the Gaussianity of the inverse transformed samples

T (x{™)), where T~ (-) is defined by

;
T (x1:2) = [%232 +b(o? + :c?)} . (18)

The performance is measured by the maximum difference be-
tween the sample cumulative distribution function (CDF) and the
standard Gaussian CDF, which can be further used in the Kol-
mogorov—Smirnov Gaussianity test.

We did two sets of experiments. In the first experiment, we used
M =1E5 and N =1E3 in all the compared sampling methods. We
performed 10 simulations of the methods for target distributions with
different dimensions D =5, 10, 15, 20. In this example, we see that
the performance decays quickly for GM-AMIS when the number of
dimensions increases, while the AGP-based methods remain with
very high accuracy.

In the second experiment, we used the same dimension of the
target distribution, D =10, and the same number of resampled sam-
ples for proposal adaptation /N =1E3 for all the tested methods but
drew different numbers of samples M =1E3, 1E4, 1ES from the
proposal distribution. In this example, we see that to achieve similar
performance, GM-AMIS needs to draw many more samples than the
AGP methods.

101 —e— GM-AMIS —e— GM.AMIS
o AGP-AIS
401 —e— AGP_AMIS

—e— direct

10
dimension of the samples

(b) P2

10
dimension of the samples.

(a) P1

—e— GM-AMIS
0104 —&- AGP-AIS

—e— AGP_AMIS
008 | —o— direct

—e— GM-AMIS
0.04{ - AGP-AIS
—e— AGP_AMIS
—e— direct

COF difference

—— ] po Y

10 15 10 15
dimension of the samples dimension of the samples.

(c) P3 (d) CDF difference

Fig. 1: Performance of the methods as a function of the dimension
of x. The definitions of P, P, and P3 are given by (15)-(17).

number of drawn samples number of drawn samples

(a) P1 (b) P2

—e— direct 030

COF difference

led
number of drawn samples

(c) P3

1e4
number of drawn samples

(d) CDF difference

Fig. 2: The performance of the methods as functions of the number
of drawn samples. The definitions of P, P>, and P3 are given by
(15)-(17).

() (d)

Fig. 3: (a) and (c) are log-histograms of the samples acquired from
one realization of the proposed methods with 1ES5 samples drawn
from a 20-dimensional banana-shaped distribution, where (a) is ob-
tained by AGP-AIS and (c) is obtained by AGP-AMIS. The lines are
contours of the log target distribution. (b) and (d) are transformed
samples from (a) and (c) correspondingly. The lines are contours of
the log standard normal distribution.

Because the target distribution becomes sparser in high dimen-
sions, the Gaussian process-based distribution, which is more ex-
pressive, can estimate the target distribution better. The method is
non-parametric, and it makes full use of the weighted samples. Thus,
it needs less samples than the Gaussian mixture-based methods.

6. CONCLUSIONS AND DISCUSSIONS

In this paper, we proposed a class of adaptive importance sampling
methods that use auto-regressive generative models and Gaussian
processes for obtaining proposal distributions. Our numerical exper-
iments suggest that the methods are efficient in the number of sam-
ples, more accurate, and less sensitive in dimensions than existing
methods.
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