
704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

RoadNet-RT: High Throughput CNN Architecture
and SoC Design for Real-Time

Road Segmentation
Lin Bai , Graduate Student Member, IEEE, Yecheng Lyu , Graduate Student Member, IEEE,

and Xinming Huang , Senior Member, IEEE

Abstract—In recent years, convolutional neural
network (CNN) has gained popularity in many engineering
applications especially for computer vision. In order to achieve
better performance, more complex structures and advanced
operations are incorporated into neural networks, which results
in very long inference time. For time-critical tasks such as
autonomous driving and virtual reality, real-time processing
is fundamental. In order to reach real-time processing speed,
a lightweight, high-throughput CNN architecture namely
RoadNet-RT is proposed for road segmentation in this article.
It achieves 92.55% MaxF score on KITTI road segmentation
dataset. The inference time is about 9 ms per frame when
running on GTX 1080 GPU. Comparing to the state-of-the-art
network, RoadNet-RT speeds up the inference time by a factor
of 17.8 at the cost of only 3.75% loss in accuracy. What is more,
on CamVid dataset its accuracy is 92.98%. Several techniques
such as depthwise separable convolution and non-uniformed
kernel size convolution are optimized in the hardware accelerator
design. The proposed CNN architecture has been successfully
implemented on a ZCU102 MPSoC FPGA that achieves the
computation capability of 331 GOPS using INT8 quantization.
The system throughput reaches 196.7 frames per second with
input image size of 280 × 960. The source code is published at
https://github.com/linbaiwpi/RoadNet-RT.

Index Terms—Road segmentation, real-time, FPGA, neural
network.

I. INTRODUCTION

NOWADAYS autonomous vehicles have become one of
the most promising technologies. Owing to the continu-

ous development of Convolutional Neural Networks (CNNs),
many recent research were focused on improving the accu-
racy performance of the perception system for autonomous
vehicles, such as vehicles or pedestrians detection [1], [2],
depth completion [3], road segmentation [4], [5] and object
tracking [6]. However, most of these neural networks are
very deep with a huge number of parameters. Even running

Manuscript received June 9, 2020; revised August 26, 2020 and October 16,
2020; accepted November 4, 2020. Date of publication November 23, 2020;
date of current version January 12, 2021. This work was supported in part by
the U.S. NSF under Grant CCF-2006738 and in part by The MathWorks
Fellowship. This article was recommended by Associate Editor S. Yin.
(Corresponding author: Xinming Huang.)

The authors are with the Department of Electrical and Computer Engi-
neering, Worcester Polytechnic Institute, Worcester, MA 01609 USA (e-mail:
xhuang@wpi.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2020.3038139.

Digital Object Identifier 10.1109/TCSI.2020.3038139

Fig. 1. Processing speed v.s. accuracy on the KITTI road segmentation
test dataset. Red star indicates our method, and colored dots represent other
methods. All of these solutions are tested on GPU/CPU which listed in KITTI
leaderboard of road segmentation task. Red line is the border of real-time.

on a state-of-the-art GPU, few of them are able to process
sensor data in real-time. This prevents them being applied
to time-critical tasks such as autonomous driving. Therefore,
a fast lightweight CNN with reasonable accuracy is valuable
to those time-critical applications.

Road segmentation is one of the fundamental perception
tasks for autonomous driving, which tells the vehicles where
the drivable region is. This task has been well studied by many
researchers concerning to the accuracy performance measured
by benchmarks. While as a time-critical task, only 3 of the
existed methods are able to process in real-time as illustrated
in Fig. 1, where the red line indicates the real-time processing
speed at 30 frames per second (fps), and none of their
throughput exceeds 40 fps. As a fundamental task prior to path
planning and dynamic control, road segmentation is expected
to process input images at a much faster frame rate, such
that it guarantees the real-time response of an autonomous
driving system. Thus, there is an urgent need of real-time road
segmentation that can process each image within a very short
time while maintaining good accuracy, which bridges the gap
between academic research and industry practice.

In this article, we propose RoadNet-RT, a real-time road
segmentation network, which is able to run in real-time on
a GPU. Besides, we have summarized some optimization

1549-8328 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2324-9779
https://orcid.org/0000-0002-3077-8214
https://orcid.org/0000-0003-0584-3448

BAI et al.: RoadNeT-RT: HIGH THROUGHPUT CNN ARCHITECTURE AND SoC DESIGN FOR REAL-TIME ROAD SEGMENTATION 705

techniques aiming to convert ordinary CNN structures into
hardware friendly ones. As a demonstration, RoadNet-RT has
been successfully implemented on an FPGA by applying these
techniques, resulting real-time processing on hardware. The
contributions of this article are summarized as following:

• A lightweight high throughput CNN named RoadNet-RT
is proposed, whose segmentation accuracy is 92.55%
on KITTI road segmentation leaderboard. RoadNet-RT
extracts features from two branches, one shallow branch
for spatial information and one deep branch for context
information. Its inference time on NVIDIA GTX 1080 is
about 9 ms. When comparing to the state-of-the-art
RBANet [4], this network reduces the inference time by
94.4%, with only 3.75% loss in accuracy.

• Aimed at providing the general guidelines on how to
transform a segmentation CNN into a hardware friendly
one with both computation and bandwidth efficiencies,
we investigate several hardware optimization techniques
through a series of experiments with quantitative results.
For instance, how to employ depthwise separable con-
volution, how to deal with convolutions with different
kernel size and dilated convolution, and whether using
batch normalization are studied.

• An efficient hardware accelerator has been implemented
on a ZCU102 MPSoC FPGA platform. By balancing the
bandwidth and computation capability, this accelerator
can process 196.7 image frames per second with INT8
quantization, equivalent to the efficiency of 331 Giga
Operations Per Second (GOPS).

The rest of the paper is organized as following: Sec. II sum-
marizes the existing research on road segmentation, real-time
segmentation CNNs and the FPGA implementations of seg-
mentation networks. In Sec. III, the proposed segmentation
network model is described together with its training details.
An in-depth study of network optimization techniques for
hardware efficiency and accuracy performance is presented in
Sec. IV. The FPGA implementation and its results are dis-
cussed in Section V and VI, respectively. Sec. VII concludes
the entire paper.

II. RELATED WORK

A. Road Segmentation

Lots of research efforts have been paid on road segmentation
task in KITTI. The RBANet proposed in [4] adopted the clas-
sical encoder-decoder structure. Instead of using the direct skip
connection in U-Net [7] and SegNet [8], a residual refinement
module bridged encoder and decoder parts, which consisted of
reversed attention and boundary attention mechanisms. So that
high-resolution spatial details were preserved for decoding.
Atrous Spatial Pyramid Pooling (ASPP) module was also
utilized in RBANet. For images size 360 × 720 running on
GTX Titan XP, the processing time was 0.16 second per frame.
In [9], SSLGAN served to train unlabeled data and enhanced
road feature representations using a discriminator from GAN.
Labeled data contain many redundant areas, so training both
labeled and unlabeled data prevents the overfitting problem
and accelerates the convergence speed. Its processing speed

was 0.7s per frame on TITAN X. A road and road boundary
detection network (RBNet) was proposed in [5]. Based on
a Bayesian network, RBNet could simultaneously estimate
the probabilities of a pixel on the image belonging to the
road and road boundary so that the road and road boundary
detection were combined into a single process. It was able
to process each frame in 0.18s on Tesla K20c (5 GB).
StixelNet [10] posed generic static obstacles represented as
stixels and learnt directly using a CNN. StixelNet II [10]
was a unified network with real-time detection capability for
both categorized and un-categorized objects. This network
performed well on column-based obstacle detection and road
segmentation but was not sensitive to the distinction of road
boundaries. MultiNet [11] utilized the same encoder which
was based on VGG16 to supply features to different decoders
for classification, segmentation, and detection tasks. In seg-
mentation decoder, the low-resolution segmentation feature
map was convoluted and then upsampled using transposed
convolution. It was claimed that MultiNet could perform
inference at 23 fps. The structure of Up-Conv-Poly [12] was
very similar to U-Net. It achieved MaxF score 93.83%. For
images with size 500 × 500, this network could process each
frame within 83 ms on TITAN X GPU.

Other CNN based road segmentation algorithms such as
DEEP-DIG [13] and MAP [14] generated a precise drivable
region but required heavy computational power.

In our previous work RoadNetV3 [15], we introduced
Long-Short Term Memory (LSTM) to help finding the contour
of the road. It extracted features via a FCN-like encoder. After
that, several convolutional-LSTM layers followed to predict
the contours of drivable region. It achieved 93.08% in accuracy
but 300 ms per frame.

B. Real-Time Segmentation

In recent years, some researchers have shifted their focus
to real-time segmentation tasks. Their solutions are generally
categorized into two groups (Fig. 2), one is encoder-decoder
network and the another one is bilateral network.

FPENet [16] adopted the encoder-decoder structure.
By using a feature pyramid encoding block to encode
multi-scale contextual features with depthwise dilated convo-
lutions in all stages and a mutual embedding upsample module
as decoder, FPENet efficiently aggregated of high-level seman-
tic features and low-level spatial details. Through introducing
an efficient spatial pyramid (ESP), ESPNet [17] brought great
improvement in both speed and performance. In its improved
version, ESPNet-V2 [18] further enlarged the receptive field
and reduced the calculation of parameters. In [19], DABNet
balanced the efficiency and accuracy via stacking lightweight
blocks with different dilation rates. DFANet [20] aggregated
multi-scale features from different layers to gain higher accu-
racy in spatial details. The lightweight backbone of DFANet
guaranteed its real-time processing speed.

ContextNet [21] proposed the solution of bilateral structure
for the first time. A deep but low-resolution network extracted
the context information. And a shallow but high-resolution
network focused on detailed spatial information. BiSeNet [22]

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

706 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 2. The mainstream structures for real-time semantic segmentation.
(a) illustrates the u-shape encoder-decoder structure and (b) demonstrates
the bilateral structure.

inherited the solution of ContextNet and improved the feature
fusion modules by creating attention residual module and
feature fusion module. Via adding global pooling layer and
residual layer, BiSeNet outperformed ContextNet. In ICNet
[23], the authors borrowed the image pyramid thinking from
PSPNet [24]. One more branch was added to acquire more
spatial details. Plus, the label guided training for each branch,
ICNet had better accuracy than BiSeNet but longer processing
time. BiSeNet-V2 [25] improved the first version by replacing
feature fusion module into aggregation module and using Seg
Head to guide the loss of each feature extractor layer. Other
networks like LBN-AA [26], CANet [27] also used similar
structure.

Solutions other than the two mentioned above also represent
good results. FarSee-Net [28] applied Cascaded Factorized
Atrous Spatial Pyramid Pooling (CF-ASPP) at the end of fea-
ture extraction layers to guarantee enough spatial information
was captured. What is more, to reduce the number of opera-
tions, sub-pixel convolution was deployed, so that FarSee-Net
accepted low-resolution input and generated high-resolution
output.

C. FPGA Implementation of Segmentation

To accelerate the inference speed, a great amount of effort
focused on FPGA implementation of segmentation neural
networks. The key to hardware accelerator for CNNs was
the trade-off between bandwidth and computation capability.
U-Net [7] and FCN [29] are both implemented in [30].
By utilizing convolution plus board removing method, this
accelerator operated transposed convolution efficiently. Its
performance was 107 GOPS and supported up to 17 fps for
512×512 images. A straight-forward fully convolution neural
network for segmentation has been proposed and implemented
on FPGA [31], [32]. Without changing the channel depth
for each layer and skip connections used in U-Net [7], this
accelerator pushed its performance to process 79.4 fps for
input size 64 × 180 × 14. Liu merged the convolution and

Fig. 3. Real-time road segmentation network RoadNet-RT structure.

transposed convolution into one vector multiplication unit and
fused all intermediate feature maps in on-chip memory [33].
And the FPGA implementation reached 1578 GOPS, which
was 57 fps for 256×256×3 images. Another hardware archi-
tecture combining the convolution and transposed convolution
operations was proposed in [34]. Its computation capability
was 151.5 GOPS and 94.3 GOPS for convolution and trans-
posed convolution respectively. besides, a 3D segmentation
CNN accelerator was implemented in [35].

III. PROPOSED NETWORK

The proposed road segmentation network is inspired by
ContextNet [21], BiSeNet [22] and ICNet [23]. It consists of
two branches for context information and spatial information
extraction respectively, as shown in Fig. 3.

The context branch is a deep network for extracting the
context information, which consists of an input convolutional
layer and two residual modules from ResNet18 [36]. Subse-
quently, the extracted features are fed to the ASPP module
in order to concatenate the features from different fields of
perception (dilated rates are 2, 4, 8 and 16, depth are 32 for
each, in Fig. 4). Next, a Global Attention Module (GAM)
is introduced to refine the context information. The GAM
(Fig. 5a) is modified from the Attention Refinement Module
in [22]. The GAM consists of a global average pooling layer
together with a 1 × 1 convolutional layer who extracts global
context feature. These refined global features are applied to
context features via multiplication. The sigmoid layer decides
whether to apply the global features or not. Since the context
path does not have to focus on spatial details, we shrink the
input image size by half in both width and height, as a step
to further reduce the computation.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: RoadNeT-RT: HIGH THROUGHPUT CNN ARCHITECTURE AND SoC DESIGN FOR REAL-TIME ROAD SEGMENTATION 707

Fig. 4. Structure of ASPP.

Fig. 5. (a) structure of GAM, (b) structure of FFM [22].

For spatial path, which focuses on spatial details of the input
images, contains only four convolution layers. To enhance
its capability of noticing details, no image resize is applied
here. The context and spatial branches are fused in a residual
refinement way, called Feature Fusion Module (FFM) [22]
(Fig. 5b). The residual of FFM is the product of input feature
map and its global attention path, including global average
pooling layer, 1 × 1 convolutional layer, activation layers
(ReLU and Sigmoid). At the end of the network, to reproduce
the output with the same size as input, the output of FFM is
upsampled 8 times by the bi-linear resize algorithm.

The number of channels is chosen to be factor of 32. This is
based on the number of parallelisms the hardware accelerator
could support, in order to maximize the efficiency of it.

A. Training Details

This road segmentation network is implemented using Keras
and trained from scratch on a single GeForce GTX 1080 GPU.
All the convolutional layers were initialized using the Xavier
uniform initializer [37]. During training, the batch size is set
to 24. The Adam optimizer works with learning rate 1e-3.
When in plateau, a reduction rate of 0.8 is applied to the

TABLE I

KITTI EVALUATION COMPARISON ON URBAN_ROAD BENCHMARK.

TABLE II

ROAD SEGMENTATION RESULTS ON THE CAMVID TEST DATASET.

learning rate. A hybrid loss function combining Dice loss and
Focal loss is deployed here expecting to balance the positive
and negative samples.

Data augmentation for training includes random horizontal
flip, Gaussian noise adding, random brightness contrast, ran-
dom blurring, etc.

B. Dataset and Evaluation

1) KITTI: The dataset for training and evaluation is the
KITTI road segmentation dataset, which contains 289 training
images and 290 testing images. The training image size ranges
from 370 × 1224 to 375 × 1242. The evaluation job is done
by an online evaluation server supplied by KITTI. The evalu-
ation (Tab.III is divided into Urban Unmarked (UU), Urban
Marked (UM) and Urban Multiple Marked lanes (UMM).
URBAN_ROAD is the comprehensive evaluation of the above
three.

When running on GeForce GTX 1080 GPU, this network
can process each image with 280 × 960 pixels in 9 ms. Four
samples of predictions are demonstrated in front view and bird
eye view by Fig. 6 and Fig. 7 respectively, where green area
represents the overlap between prediction and ground truth,
red area is road in ground truth but not correctly predicted by
our network, and blue area is not road but recognized as road
by our network.

Tab. I shows the performance comparison among
RoadNet-RT and other state-of-the-art networks. The
FNR (False Negative Rate) reflects the ratio of pixels, which
are road but are wrongly recognized as non-road. While the
FPR (False Positive Rate) calculates the ratio of pixels, which
are non-road but are wrongly classified as road. From Tab.I,
we can see RoadNet-RT has much higher FNR (7.84%) than
the peers. Considering moving autonomous vehicles, high
FNR would pose more restrictions on the drivable region.
On the contrary, a high FPR means the neural network
classifies more non-road pixels as road. For example, vehicles
may recognize other cars on the roadside or bush as drivable
region. Thus, high FPR would cause a safety issue. In FPR
column of Tab.I, RoadNet-RT’s FPR is comparable to the
peers. Therefore, we consider Roadnet-RT is as safe as other
state-of-the-art networks listed in Tab. I.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

708 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 6. Road segmentation results in camera view.

Fig. 7. Road segmentation results in Bird-Eye View.

Fig. 8. Comparison between RBANet (top) and RoadNet-RT (bottom).

As shown in Fig. 8, comparing to RBANet, most of the
classification errors of RoadNet-RT occurred near the bound-
ary of the road since we choose not to include boundary
attention in the model owing to the computation complexity.
These errors won’t affect autonomous driving due to path

planning algorithm does not consider boundary of the drivable
area.
2) CamVid: Besides the well-known KITTI dataset, the

RoadNet-RT has also been evaluated on the CamVid dataset
to verify its effectiveness on various road scenes (Tab. II). For

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: RoadNeT-RT: HIGH THROUGHPUT CNN ARCHITECTURE AND SoC DESIGN FOR REAL-TIME ROAD SEGMENTATION 709

TABLE III

PERFORMANCE EVALUATION FROM KITTI ONLINE TEST SERVER.

F1 score, RoadNet-RT achieves 92.98% accuracy on CamVid
test dataset, which is 3.74% less when comparing to the SOTA
network RBANet [4]. Since the processing time of RBANet on
CamVid is not provided in [4], we skip the processing speed
comparison on CamVid.

IV. NETWORK OPTIMIZATION FOR HARDWARE

In this section, we summarize some guidelines to opti-
mize specific CNNs toward FPGAs accelerator implementa-
tion. So that on-chip resources efficiency and computation
efficiency FPGA design are maximized. Different from the
conventional optimization techniques, the goal of this step is
to balance the number of operations, number of weights and
computation patterns, while remaining the accuracy within a
reasonable range.

A. Depthwise Separable Convolution

Depthwise separable convolution is initially introduced in
[38]. It has been widely adopted by a great number of
lightweight neural networks such as Xception [39], MobileNet
series [40], [41]. The main idea of depthwise separable con-
volution is to decompose standard convolution into a 3 × 3
depthwise convolution and a 1 × 1 pointwise convolution
to achieve smaller number of weights and consequently less
operations. Assuming DK is the size of convolution kernel,
M is the depth of input feature maps and N is the number of
convolution kernels (also the channel number of output feature
maps).

During depthwise convolution, a single filter is applied
to each input channel. And then the pointwise convolution
applies a 1 × 1 convolution to combine the outputs of the
depthwise convolution. The number of weights required by
standard convolution and depthwise separable convolution are
calculated in (1) and (2) respectively.

DK · DK · M · N (1)

DK · DK · M + M · N (2)

Therefore, when replacing standard convolution with depth-
wise separable convolution, the reduction ratio of weights is

DK · DK · M + M · N
DK · DK · M · N = 1

N
+ 1

D2
K

(3)

Besides the parameter reduction and operation number
decreasing, from the hardware implementation point of view,
depthwise separable convolution need not as large size accu-
mulator as required by standard convolution. In standard
convolution, every element of output feature map is the sum
of DK · DK · M elements. While in depthwise separable

TABLE IV

COMPARISON OF ROADNET-RT WITH AND WITHOUT DEPTHWISE

SEPARABLE CONVOLUTION.

convolution, that is the sum of DK · DK and M elements for
depthwise convolution and pointwise convolution respectively.
On the other side, separating standard convolution into depth-
wise convolution and point convolution requires intermediate
feature map buffering, and hence demands larger bandwidth.

Applying this to RoadNet-RT proposed in this article, the
total number of parameters is reduced from 756K to 134K,
which is illustrated in Tab. IV. Although the accuracy loss is
1.37%, the number of parameters reduces by a factor of 5.64.

B. Large Kernel Size Convolution

The most commonly used kernel size for convolution
is 3 × 3. However, in order to have large size of field of
perception, especially in the first layer, large kernel size is
usually desired (7 × 7 in ResNet [36] for instance).

Algorithm 1 Cascaded Loop of Standard Convolution
for no in Nof do � output channel,loop-4

for (y,x) in (Noy,Nox) do � feature map,loop-3
for ni in Nif do � input channel,loop-2

for (ky,kx) in (K,K) do � kernel,loop-1
Fout [no,y,x]+=
Fin [ni,y-ky,x-kx] *K [no,ni,ky,kx]

Fout += bias[no]

However, to deal with different kernel size filters affects
either parallelism of processing or the efficiency of buffer
usage. From matrix multiplication point of view (in Alg. 1),
through keeping the loop-1, hardware accelerator can handle
different size of filters without extra multipliers consumed. But
the penalty is the parallelism of loop-1 loss. However, different
size of filter requires different size of on-chip memory. Con-
sider a feature map with size W · H ·C , to buffer it for K · K
filter, memory size (W+K−1)·(H+K−1)·C is need. So that

1Since KITTI online test sever limits the submission to be 3 times per
month, therefore 20% of the training set has been split as validation set to
evaluate the methods we proposed. Here we choose IOU as the main metric
to estimate the performance of different methods. IOU is one of the most
important and the most widely used metrics for segmentation performance
evaluation.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

710 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 9. Strategy for large convolutional layer replacement.

TABLE V

COMPARISON BETWEEN 7 × 7 CONVOLUTION AND ITS REPLACEMENT
(Ci IS THE INPUT FEATURE MAP CHANNEL NUMBER AND Co IS THE

OUTPUT FEATURE MAP CHANNEL NUMBER, THEY EQUAL 32 AND

64 RESPECTIVELY IN THIS EXPERIMENT).

TABLE VI

PERFORMANCE COMPARISON BETWEEN DILATED CONVOLUTION (3 × 3
WITH DILATED RATE 3) AND ITS REPLACEMENT.

the feature map buffer for 7×7 filter is 4·(W+H+4)/(W ·H)
times larger than that for 3 × 3 filter.

To pursue the same perceptive field of 7×7, three cascaded
convolutional layers with kernel size 3 × 3 can replace one
convolutional layer with kernel size 7 × 7. If so, there is no
extra resource needed including both multipliers and memory.
Besides, the number of operations decreases. As illustrated
in Fig. 9, for input feature map size W · H · Ci and output
feature map size W · H · Co, if 7 × 7 filter is applied, totally
(W ·H ·7 ·7×Ci ·Co) = 49 ·W ·H ·Ci ·Co GOPS costs. In case
of three 3×3 convolutional layers, 3 · (W ·H ·3 ·3 ·Ci ·Co)) =
27 · W · H · Ci · Co.

The performance comparison between these two options
mentioned above is shown in Tab. V. When replacing the first
convolutional layer (7 × 7) with three 3 × 3 convolutional
layers, the accuracy loss in IOU is 0.19%. Since there is only
one layer of 7 × 7 convolution, the save in operations and
parameters are negligible.

In the segmentation networks, dilated convolution [42] is
the most widely used method to enlarge the perceptive field
without introducing more weights. Unfortunately, during con-
volution with dilated kernel (3×3 with dilated rate equals 3 for
instance), the region required from feature map is still 7 × 7.
This will introduce the dilemma described above still. The only
difference is, if using three 3×3 convolutional layers instead of
one dilated 3 × 3 convolutional layers with dilated rate as 3,
two times more weights and two times more operations are
unavoidable. However, since the dilated convolutional layer
usually won’t dominant, this penalty is still affordable.

C. Consideration of Channel Depth

In our hardware implementation, after considering the given
resources on ZCU102 board, loop-2 in Alg. 1 has been

TABLE VII

THE PERFORMANCE COMPARISON WITH AND WITHOUT BN LAYER,
BOTH OF THEM ARE TRAINED USING THE SAME BATCH

SIZE AND THE SAM GPU.

unrolled with 32 feature maps processed in parallel. To maxi-
mum the computation efficiency of accelerator, it’s better that
the input feature map depth of all layers align to integer factor
of 32.

D. Batch Normalization

During inference, Batch Normalization (BN) is downgraded
into 1 × 1 convolution and further merged into convolu-
tional layer prior than it. The merged weights and bias
follow (4) and (5), where W and b represent weights and bias
respectively.

Wmerge = WBN · Wconv (4)

Wmerge = WBN · bconv + bBN (5)

Batch normalization layer is helpful for fast convergence
but not always a necessary layer concerning to the accuracy
(PointNet [43] for instance). The contribution of BN layer
is evaluated in Tab.VII, from which we find in our segmen-
tation neural network, BN helps to increase the accuracy by
0.28% without too much difference in convergence. Therefore,
BN layers are kept in RoadNet-RT.

Some experiments declared that BN after ReLU usually
shows better result [44]. But this may vary from one network
to another.

E. Quantization

To maximize the computation capability of FPGA, fixed
point operations is preferred. Quantization aware training
has been performed for 8-bit and 16-bit respectively with
the help of model optimization library from QKeras [45].
Brute-force quantization may lead to unacceptable precision
loss. While quantization aware training restricts the bit-width
during training. This not only compensates the precision loss
but introduces more non-linearity.

The performance after quantization is shown in Tab. VIII.
The IoU accuracy of 8-bit implementation is 92.36%, while
that of 16-bit quantization is 92.40%. The accuracy of 16-bit
quantization is 0.04% higher than that of 8-bit quantization,
but it requires twice much memory for weights storage. Here
we choose the 8-bit INT quantization for hardware implemen-
tation, 1) from storage perspective, memory space for 8-bit
weights is only half of that for 16-bit quantization, 2) from
hardware resources perspective, each DSP48E2 core could
perform two 8-bit multiplications simultaneously but only one
for 16-bit multiplication [46].

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: RoadNeT-RT: HIGH THROUGHPUT CNN ARCHITECTURE AND SoC DESIGN FOR REAL-TIME ROAD SEGMENTATION 711

TABLE VIII

PERFORMANCE OF 8-BIT AND 16-BIT QUANTIZED NETWORKS.

TABLE IX

PERFORMANCE COMPARISON FOR DIFFERENT TECHNIQUES.

Fig. 10. System overview of RoadNet-RT accelerator.

F. Progressive Impact of Optimization Techniques

Considering the impact on precision loss, all the opti-
mization (opt) techniques described above have been applied
to RoadNet-RT progressively. The corresponding changes in
IOU precision are listed in Tab. IX. As mentioned earlier,
7 × 7 kernel can be computed using 3 × 3 convolutions and
there is no degradation of accuracy. Next, we use 3 × 3 con-
volution to replace dilated convolution with different dilated
rates. There are four dilated convolutions in RoadNet-RT,
which accounts for a performance drop to 0.05%. Depthwise
separable convolution sharply compresses the computation
complexity at the penalty of reduced network capacity, result-
ing an additional (0.55%) precision loss. Finally we apply
fixed-point quantization to the model, which contributes to
the largest precision loss (1.08%) among all optimization
techniques.

V. SYSTEM-ON-CHIP IMPLEMENTATION

To fully utilize the computation resources, the whole system
is partitioned into software part (done by ARM processor)
and hardware part (running on FPGA). The software part job
is image resize for both input and output of neural network
(Fig. 3). With the help of OpenCV library [47], image resize
can be easily done on PYNQ platform.

Fig. 11. Block diagram of depthwise convolution module.

Combining the depthwise and pointwise convolution into
one process engine array is possible, but may result in output
feature map reshape before sending to DDR memory and con-
sequently decrease the efficiency of the accelerator. Thereby,
we decide to separately implement these two computation
modules. The overview of hardware architecture is demon-
strated in Fig. 10. It consists of depthwise convolution mod-
ule, and pointwise convolution module, feature map buffers,
weights buffers. A finite state machine controls the running
order of CNN operations. All the modules mentioned above
are configurable based on the on-chip resources available on
the target FPGA platform.

We chose 32 as the depth of process engine array, due to
1) target ZCU102 development kit supplies 2520 DSPs and
32.1Mb BRAM, which is sufficient for 32 process engines
and corresponding feature map buffers 2) considering except
the input layer and output layer, the depth of all the layers
in RoadNet-RT are the product of 32, therefore using 32 can
maximize the utilization of each multiplier, 3) as the greatest
common divisor, using 32 as depth can minimize the data
transporting for convolutions whose depth is large.

A. Depthwise Convolution Module

Depthwise convolution module (Fig. 11) contains line
buffers, process engines (PEs) and adder trees. As descried
in the previous section, to unroll the kernel loop (loop-1
in Alg. 1), line buffer is needed to generate the sliding
patch. Since kernel size of all the convolutional layers in
this segmentation network is 3 × 3, a multiplier array with
length equal to 9 follows the line buffer. Correspondingly,
an adder tree in the end sums the products up. To balance the
computation efficiency and on-chip resources, the batch size
of depthwise convolution module is set to 32.

B. Pointwise Convolution Module

To align to the depthwise convolution module to fit the
same size of feature buffers, the pointwise convolution module
(Fig. 12) is designed to handle 32 × 1 vector - 32 × 32 matrix
multiplication. There are 3 components multiplier array, adder
tree, and ReLU module form the Pointwise convolution mod-
ule. If the batch normalization layer is placed before ReLU
layer, it can be merged and completed by multiplier array and
adder tree. Otherwise, 1 extra multiplier and 1 extra adder is
necessary to perform the batch normalization operation.

C. GAM Module and FFM Module

Both GAM and FFM modules require operations with
totally different computation patterns. Global average pooling

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

712 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

Fig. 12. Block diagram of pointwise convolution module.

Fig. 13. Task partitioning of RoadNet-RT on SoC.

is to calculate the average value of one entire channel. There-
fore, an accumulator plus one multiplier for each channel has
been implemented. The following 1 × 1 convolution is math-
ematically vector-matrix multiplication, which can be either
routed into pointwise convolutional module or implemented
with extra resource, given the resource consumption of this
operation is small. Sigmoid function is approximated by the
piece-wise function and implemented using a Look-Up Table.

D. Buffers

The on-chip memory are divided into buffers for feature
maps, weights and global pooling result respectively. In this
design, 1) there is no biases, so that no extra buffer is needed
for bias storage, and 2) since the weights occupy only small
portion of the on-chip memory, so that they can be hard coded
into on-chip memory.

To boost the processing speed, one effective way is to
reduce the number of time data transmission (between FPGA
and DDR memory). Multiple feature map buffers with size
35 × 120×32 have been implemented as ping-pong buffers to
decrease data swap as much as possible.

E. Tasks on ARM Processor

Referring to Fig. 10, the entire CNN is implemented on
FPGA side. In order to fully utilize the available computation
resources on SoC, the rest of the task has been assigned to the
ARM processor. Thus, the whole RoadNet-RT are partitioned
to both ARM processor and FPGA as shown in Fig. 13. All the
three tasks are overlapped and pipelined, and this consequently
speeds up the system speed.

VI. RESULTS AND DISCUSSION

The implementation tools used in this article are Xil-
inx Vivado HLS and MATLAB HDL Coder Toolbox. The
whole system has been implemented on ZCU102 develop-
ment kit, with the PYNQ system installed (The system setup

Fig. 14. Setup of the road segmentation system.

TABLE X

FPGA ON-CHIP RESOURCE USAGE OF ROADNET-RT.

TABLE XI

PERFORMANCE COMPARISON BETWEEN FLOATING POINT

AND FIXED POINT.

is show in Fig. 14). There are 548,160 Flip-Flops (FFs),
274,080 Look-Up Tables (LUTs), 1824 (32.1 Mb) Block
RAMs (BRAMs) and 2,520 DSPs on the board. The FPGA
resources consumption of this accelerator for both 16-bit and
8-bit quantization formats are shown in Tab. X.

Since each DSP48E2 slice can handle two 8-bit×8-bit
multiplication while the number for 16-bit number is one, thus
8-bit format accelerator consumes almost the same DSP slices
and BRAMs as that in 16-bit format but twice the number
of input images. To maximum the computation capability of
hardware, we quantize all the weights into 8-bit. When running
at 250 MHz, this 8-bit accelerator’s processing speed is 196.7
fps. In Tab. XII, all the image-based road segmentation solu-
tions in the KITTI leaderboard are summarized and compared
to our solution in GPU and FPGA. Most of the existing
methods cost 100 ms or longer. One of the only two real-time
solutions FCN-LC [48] runs on TITAN X GPU, which requires
600-650W power supply on PC to support. Therefore, our
solutions supply a well-balanced and practical way to run this
the road segmentation task on embedded devices.

In this accelerator, there are 8 feature map buffers are
allocated. But this number may vary according to the bal-
ance between available resources on the target FPGA and
required processing speed. More feature map buffers can store
more intermediate feature maps and consequently increase the
processing speed. While less feature map buffers require more
temporary data stored in external memory rather than on-chip
ones. And thus leads to longer processing time.

The FPGA performance on the KITTI valid dataset is
shown in Tab. XI. After replacing all the large kernel, dilated
convolution into convolutions with uniform kernel size and
quantization, when using INT8 format weights, the IOU of
network on FPGA is 91.99%, which is 1.68% less than the
proposed floating point RoadNet-RT.

VII. CONCLUSION

This article presents a real-time, high-throughput convolu-
tional neural network architecture for road segmentation. Sev-
eral optimization techniques are applied to reduce the number

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

BAI et al.: RoadNeT-RT: HIGH THROUGHPUT CNN ARCHITECTURE AND SoC DESIGN FOR REAL-TIME ROAD SEGMENTATION 713

TABLE XII

PERFORMANCE COMPARISON OF ALL THE IMAGE-BASED ROAD SEGMENTATION SOLUTIONS IN THE KITTI LEADERBOARD
(BLANK MEANS IT IS NOT MENTIONED IN THE ORIGINAL PAPER).

of operations while preserving the accuracy performance. This
networks achieves 92.55% MaxF score on KITTI dataset with
111 fps on GTX 1080 GPU (for image size 280 ×960). More
importantly, using RoadNet-RT as an example, we present
a systematic approach on how to perform CNN network
optimization for hardware implementation. Following this as a
guideline, one can easily convert any existing CNN structure
into a computation efficient, high-throughput architecture for
FPGA with little loss in accuracy. Several experiments have
been conducted to support the proposed approach. In the end,
a SoC design has been successfully demonstrated on ZCU102
FPGA development kit, which speeds up the processing time
by a factor of 1.72 comparing to its GPU implementation.

REFERENCES

[1] X. Du, M. H. Ang, S. Karaman, and D. Rus, “A general pipeline for 3D
detection of vehicles,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2018, pp. 3194–3200.

[2] Z. Yang, Y. Sun, S. Liu, X. Shen, and J. Jia, “STD: Sparse-to-dense 3D
object detector for point cloud,” in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2019, pp. 1951–1960.

[3] X. Cheng, P. Wang, C. Guan, and R. Yang, “CSPN++: Learning
context and resource aware convolutional spatial propagation networks
for depth completion,” 2019, arXiv:1911.05377. [Online]. Available:
http://arxiv.org/abs/1911.05377

[4] J.-Y. Sun, S.-W. Kim, S.-W. Lee, Y.-W. Kim, and S.-J. Ko, “Reverse and
boundary attention network for road segmentation,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. Workshop (ICCVW), Oct. 2019, pp. 876–885.

[5] Z. Chen and Z. Chen, “RBNeT: A deep neural network for unified road
and road boundary detection,” in Proc. Int. Conf. Neural Inf. Process.
Cham, Switzerland: Springer, 2017, pp. 677–687.

[6] W. Choi, “Near-online multi-target tracking with aggregated local flow
descriptor,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3029–3037.

[7] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[8] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A deep
convolutional encoder-decoder architecture for image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495,
Dec. 2017.

[9] X. Han, J. Lu, C. Zhao, S. You, and H. Li, “Semisupervised and weakly
supervised road detection based on generative adversarial networks,”
IEEE Signal Process. Lett., vol. 25, no. 4, pp. 551–555, Apr. 2018.

[10] N. Garnett et al., “Real-time category-based and general obstacle detec-
tion for autonomous driving,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops (ICCVW), Oct. 2017, pp. 198–205.

[11] M. Teichmann, M. Weber, M. Zollner, R. Cipolla, and R. Urtasun,
“MultiNet: Real-time joint semantic reasoning for autonomous driving,”
in Proc. 4th IEEE Intell. Vehicles Symp., Jun. 2018, pp. 1013–1020.

[12] G. L. Oliveira, W. Burgard, and T. Brox, “Efficient deep models for
monocular road segmentation,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2016, pp. 4885–4891.

[13] J. Munoz-Bulnes, C. Fernandez, I. Parra, D. Fernandez-Llorca, and
M. A. Sotelo, “Deep fully convolutional networks with random data
augmentation for enhanced generalization in road detection,” in
Proc. IEEE 20th Int. Conf. Intell. Transp. Syst. (ITSC), Oct. 2017,
pp. 366–371.

[14] A. Laddha, M. K. Kocamaz, L. E. Navarro-Serment, and M. Hebert,
“Map-supervised road detection,” in Proc. IEEE Intell. Vehicles Symp.
(IV), Jun. 2016, pp. 118–123.

[15] Y. Lyu, L. Bai, and X. Huang, “Road segmentation using CNN and
distributed LSTM,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2019, pp. 1–5.

[16] M. Liu and H. Yin, “Feature pyramid encoding network for real-time
semantic segmentation,” in Proc. Brit. Mach. Vis. Conf. (BMVC), 2019,
pp. 1–13.

[17] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
“ESPNeT: Efficient spatial pyramid of dilated convolutions for seman-
tic segmentation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 552–568.

[18] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi, “ESPNetv2:
A light-weight, power efficient, and general purpose convolutional neural
network,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 9190–9200.

[19] G. Li and J. Kim, “DABNeT: Depth-wise asymmetric bottleneck for
real-time semantic segmentation,” in Brit. Mach. Vis. Conf. (BMVC),
2019, pp. 1–12.

[20] H. Li, P. Xiong, H. Fan, and J. Sun, “DFANet: Deep fea-
ture aggregation for real-time semantic segmentation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 9522–9531.

[21] R. P. K. Poudel, U. Bonde, S. Liwicki, and C. Zach, “ContextNet:
Exploring context and detail for semantic segmentation in real-time,”
in Proc. Brit. Mach. Vis. Conf. (BMVC), 2018, p. 146.

[22] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “Bisenet: Bilateral
segmentation network for real-time semantic segmentation,” in Proc.
Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 325–341.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

714 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 2, FEBRUARY 2021

[23] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNeT for real-time semantic
segmentation on high-resolution images,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 405–420.

[24] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 2881–2890.

[25] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen, and N. Sang,
“BiSeNet v2: Bilateral network with guided aggregation for real-time
semantic segmentation,” 2020, arXiv:2004.02147. [Online]. Available:
http://arxiv.org/abs/2004.02147

[26] G. Dong, Y. Yan, C. Shen, and H. Wang, “Real-time high-performance
semantic image segmentation of urban street scenes,” IEEE Trans. Intell.
Transp. Syst., early access, 2020, doi: 10.1109/TITS.2020.2980426.

[27] Q. Tang, F. Liu, J. Jiang, and Y. Zhang, “Attention-guided chained con-
text aggregation for semantic segmentation,” 2020, arXiv:2002.12041.
[Online]. Available: http://arxiv.org/abs/2002.12041

[28] Z. Zhang and K. Zhang, “FarSee-Net: Real-time semantic seg-
mentation by efficient multi-scale context aggregation and feature
space super-resolution,” 2020, arXiv:2003.03913. [Online]. Available:
http://arxiv.org/abs/2003.03913

[29] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[30] S. Liu, H. Fan, X. Niu, H.-C. Ng, Y. Chu, and W. Luk, “Optimizing
CNN-based segmentation with deeply customized convolutional and
deconvolutional architectures on FPGA,” ACM Trans. Reconfigurable
Technol. Syst., vol. 11, no. 3, pp. 1–22, Dec. 2018.

[31] Y. Lyu, L. Bai, and X. Huang, “Real-time road segmentation using
LiDAR data processing on an FPGA,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), May 2018, pp. 1–5.

[32] Y. Lyu, L. Bai, and X. Huang, “ChipNet: Real-time LiDAR processing
for drivable region segmentation on an FPGA,” IEEE Trans. Circuits
Syst. I, Reg. Papers, vol. 66, no. 5, pp. 1769–1779, May 2019.

[33] S. Liu and W. Luk, “Towards an efficient accelerator for DNN-based
remote sensing image segmentation on FPGAs,” in Proc. 29th Int. Conf.
Field Program. Log. Appl. (FPL), Sep. 2019, pp. 187–193.

[34] L. Bai, Y. Lyu, and X. Huang, “A unified hardware architecture for
convolutions and deconvolutions in CNN,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[35] J. Shen, D. Wang, Y. Huang, M. Wen, and C. Zhang, “Scale-out accel-
eration for 3D CNN-based lung nodule segmentation on a multi-FPGA
system,” in Proc. 56th Annu. Design Autom. Conf., Jun. 2019, pp. 1–6.

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[37] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell.
Statist., 2010, pp. 249–256.

[38] L. Sifre and S. Mallat, “Rigid-motion scattering for image classification,”
Ph.D. dissertation, Dept. d’Informatique, Ecole Normale Superieure,
Paris, France, Oct. 2014.

[39] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jul. 2017, pp. 1251–1258.

[40] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[41] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[42] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” 2015, arXiv:1511.07122. [Online]. Available:
http://arxiv.org/abs/1511.07122

[43] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “PointNet:
Deep learning on point sets for 3D classification and segmentation,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 652–660.

[44] (2016). BatchNorm After ReLU. Accessed: May 3, 2020. [Online].
Available: https://github.com/gcr/torch-residual-networks/issues/5

[45] Qkeras: A Quantization Deep Learning Library for Keras.
Accessed: Dec. 6, 2019. [Online]. Available: https://
github.com/google/qkeras

[46] Y. Fu, E. Wu, A. Sirasao, A. Attia, K. Khan, and R. Wittig, “Deep
learning with int8 optimization on xilinx devices,” Xilinx, San Jose,
CA, USA, White Paper WP486, 2017.

[47] G. Bradski, “The OpenCV library,” Dr. Dobb’s J. Softw. Tools, 2000.
[Online]. Available: https://github.com/opencv/opencv/wiki/CiteOpenCV

[48] C. C. T. Mendes, V. Fremont, and D. F. Wolf, “Exploiting fully
convolutional neural networks for fast road detection,” in Proc. IEEE
Int. Conf. Robot. Autom. (ICRA), May 2016, pp. 3174–3179.

[49] S. Zhang, Z. Zhang, L. Sun, and W. Qin, “One for all: A mutual
enhancement method for object detection and semantic segmentation,”
Appl. Sci., vol. 10, no. 1, p. 13, Dec. 2019.

[50] F. A. L. Reis, R. Almeida, E. Kijak, S. Malinowski, S. J. F. Guimaraes,
and Z. K. G. do Patrocinio, “Combining convolutional side-outputs for
road image segmentation,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2019, pp. 1–8.

[51] R. Fan et al., “PT-ResNet: Perspective transformation-based residual net-
work for semantic road image segmentation,” 2019, arXiv:1910.13055.
[Online]. Available: http://arxiv.org/abs/1910.13055

[52] D. Levi, N. Garnett, and E. Fetaya, “StixelNet: A deep convolutional
network for obstacle detection and road segmentation,” in Proc. Brit.
Mach. Vis. Conf., 2015, pp. 1–109.

[53] T. Kuhnl, F. Kummert, and J. Fritsch, “Spatial ray features for real-time
ego-lane extraction,” in Proc. 15th Int. IEEE Conf. Intell. Transp. Syst.,
Sep. 2012, pp. 288–293.

[54] M. Oeljeklaus, F. Hoffmann, and T. Bertram, “A fast multi-task CNN for
spatial understanding of traffic scenes,” in Proc. 21st Int. Conf. Intell.
Transp. Syst. (ITSC), Nov. 2018, pp. 2825–2830.

[55] M. Passani, J. J. Yebes, and L. M. Bergasa, “Fast pixelwise road
inference based on uniformly reweighted belief propagation,” in Proc.
IEEE Intell. Vehicles Symp. (IV), Jun. 2015, pp. 519–524.

[56] L. Xiao, B. Dai, D. Liu, D. Zhao, and T. Wu, “Monocular road detection
using structured random forest,” Int. J. Adv. Robotic Syst., vol. 13, no. 3,
p. 101, Jun. 2016.

[57] M. Passani, J. J. Yebes, and L. M. Bergasa, “CRF-based semantic
labeling in miniaturized road scenes,” in Proc. 17th Int. IEEE Conf.
Intell. Transp. Syst. (ITSC), Oct. 2014, pp. 1902–1903.

[58] J. M. Alvarez, T. Gevers, Y. LeCun, and A. M. Lopez, “Road scene
segmentation from a single image,” in Proc. Eur. Conf. Comput. Vis.
Cham, Switzerland: Springer, 2012, pp. 376–389.

Lin Bai (Graduate Student Member, IEEE) received
the B.S. degree in integrated circuits design and
integrated system from the University of Electronic
Science and Technology of China in 2009, and the
M.S. degree in electrical engineering and informa-
tion technology from the Swiss Federal Institute
of Technology, Zürich, in 2012. He is currently
pursuing the Ph.D. degree with the Worcester Poly-
technic Institute, USA. He was an FPGA engineer
in industry. His current research interest includes the
hardware acceleration of deep learning algorithms on
FPGA and ASIC.

Yecheng Lyu (Graduate Student Member, IEEE)
received the B.S. degree from Wuhan University,
China in 2012, and the M.S. degree from the
Worcester Polytechnic Institute, USA, in 2015,
where he is currently pursuing the Ph.D. degree in
autonomous vehicles. His current research interests
include sensor fusion, autonomous vehicle percep-
tion, and deep learning.

Xinming Huang (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from
Virginia Tech in 2001. He was a Member of Tech-
nical Staffs with the Bell Labs, Lucent Technolo-
gies. Since 2006, he has been a Faculty with the
Department of Electrical and Computer Engineering,
Worcester Polytechnic Institute (WPI), where he is
currently a Chair Professor. His current research
interest includes circuits and systems, with emphasis
on autonomous vehicles, deep learning, the IoT, and
wireless communications.

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 30,2021 at 03:07:39 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TITS.2020.2980426

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

