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Abstract: Drug delivery through the skin offers many advantages such as avoidance of hepatic
first-pass metabolism, maintenance of steady plasma concentration, safety, and compliance over
oral or parenteral pathways. However, the biggest challenge for transdermal delivery is that only
a limited number of potent drugs with ideal physicochemical properties can passively diffuse and
intercellularly permeate through skin barriers and achieve therapeutic concentration by this route.
Significant efforts have been made toward the development of approaches to enhance transdermal
permeation of the drugs. Among them, microneedles represent one of the microscale physical en-
hancement methods that greatly expand the spectrum of drugs for transdermal and intradermal
delivery. Microneedles typically measure 0.1-1 mm in length. In this review, microneedle materi-
als, fabrication routes, characterization techniques, and applications for transdermal delivery are
discussed. A variety of materials such as silicon, stainless steel, and polymers have been used to
fabricate solid, coated, hollow, or dissolvable microneedles. Their implications for transdermal
drug delivery have been discussed extensively. However, there remain challenges with sustained
delivery, efficacy, cost-effective fabrication, and large-scale manufacturing. This review discusses
different modes of characterization and the gaps in manufacturing technologies associated with
microneedles. This review also discusses their potential impact on drug delivery, vaccine delivery,
disease diagnostic, and cosmetics applications.

Keywords: 3D printing; characterization; drug delivery; advanced manufacturing; microneedle;
polymers; therapeutics; transdermal

1. Introduction
1.1. Drug Delivery System

Drugs have been delivered in a variety of pathways to improve the quality of
health and extend human life. Drug delivery systems have seen drastic improvements
from chewing of therapeutic leaves to capsules, pills, injectables, and implantable devic-
es [1]. Over the years, the therapeutic efficacy of a drug has been enhanced by targeting
the localized ailment region while reducing its toxic effect to healthy cells [2]. Higher
absorption and transport of the drug can be achieved to relieve distressing symptoms
for patients.

There are different routes for drug delivery into the human body, which include
oral, parenteral, inhalation, transdermal, etc. [3]. The oral route is the oldest route that is
convenient for patients with acceptable ease of administration. For long-term medica-
tions, the oral route has side effects because it impacts vital organs such as the liver and
kidneys. The parenteral route introduces hydrophobic drugs to the human body using
intramuscular, subcutaneous, and intravenous pathways [4]. As parenteral drug deliv-
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ery is a rapid delivery method, it is considered the optimal choice of drug delivery in an
emergency [5]. However, the parenteral route can often be quite painful and is thus not a
preferred route for many patients. The inhalation route is designed to transport the drug
directly to the lungs. This route is painless, comfortable, and designed to target diseases
linked with the respiratory systems or certain drugs that are shown to be efficacious via
the air-blood barrier [6]. There are however certain disadvantages and risks associated
with overdosing through self-administration by the patients that require multiple doses
(3 to 4 times) each day [7]. Attempts have been made to further improve dose efficacy
and potency of such types of drugs to reduce their risk to patients by identifying optimal
material matrices and tunable release kinetics [8-12]. Finally, the transdermal drug de-
livery (TDD) route focuses on administering drugs through the layers of skin discussed
in detail through the next few sections. For example, TDD can be used as an alternative
to oral drug delivery in neonates and geriatric patient populations who may often
struggle to swallow oral drugs. TDD may also provide a better alternative for pro-
tein/peptides/macromolecules to bypass the digestive tract and provide better bioavaila-
bility. TDD also has the potential to not directly affect vital organs when delivering po-
tent drugs and provides a mechanism for sustained delivery [13-16].

1.2. Transdermal Drug Delivery (TDD)

Transdermal drug delivery starts with applying the drug directly to the skin. The
drug penetrates through the stratum corneum passing through the epidermis and der-
mis [13]. The drug is available for absorption when it reaches the dermal layer [14]. This
method aims to deliver the drug molecules to the bloodstream by controlling diffusion
through the skin [15]. Different transdermal drug delivery systems are presented in Fig-
ure 1 [16].

Topical Hypodermic Microneedle patch Transdermal patch
cream needle
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Figure 1. Different types of transdermal drug delivery systems [16]. Reprinted from Biomedicine
& Pharmacotherapy, Vol. 109, Tejashree Waghule et al., Microneedles: A smart approach and in-
creasing potential for transdermal drug delivery system, Pages 1249-1258, Copyright (2019), with
permission from Elsevier.

Prausnitz and Langer have divided the transdermal drug delivery history into four
generations as shown in Figure 2 [17]. The first generation focused on providing a low
drug load by introducing patch-based technologies using natural diffusion. The second
generation focused on using the chemical precursors to actuate drug delivery. The third
generation include technologies such as thermal ablation, electroporation, and mi-
croneedles, which can precisely target the drug upon entry into the stratum corneum.
Finally, the fourth generation involves the combination of sensing modalities along with
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drug delivery microneedles to control the release of pharmaceutical agents with high
precision.
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Figure 2. (a) Schematic illustration of the human skin. (b) First-generation transdermal drug delivery technology via
natural diffusion of drugs. (c) Second-generation transdermal drug delivery technology for actuated drug delivery via
external stimulation. (d) Third-generation transdermal drug delivery technology for enhanced drug transport via mi-
croneedle-mediated destruction of skin layer and various functionalities accompanying microneedles. (e) Fourth-
generation transdermal drug delivery technology for patient-customized therapy with the assistance of wearable devices
[18]. Reprinted from Advanced drug delivery reviews, Vol. 127, Hyunjae Lee et al., Device-assisted transdermal drug
delivery, Pages 35-45, Copyright (2018), with permission from Elsevier.

Transdermal drug delivery (TDD) has several advantages over other drug delivery
methods. TDD has the ability to deliver the drug to the blood with the desired dosage in
a sustained and well-controlled manner [19]. Another advantage of the transdermal
route is the reduction of the side effects of drugs by preventing drugs from reaching crit-
ical organs such as the liver and kidneys [20]. Moreover, many oral drugs have low bio-
availability; this issue can be addressed by using the transdermal drug delivery system
[17], specifically for the delivery of macromolecules, peptides, and proteins that typically
have low bioavailability via the oral route [21]. Michal Goodman compared transdermal
and oral delivery and concluded that the transdermal delivery has a higher safety profile
compared to oral preparations in different domains [21]

However, passive transdermal drug delivery is not suitable for drugs with high
doses [22] or molecular weights [23], where typically an active penetration enhancer
might be needed. Furthermore, transdermal drug delivery may need custom manufac-
turing and patient-specific formulations which may result in slightly expensive therapy
[24]. Perhaps the biggest challenge for TDD is that it has so far been limited to about 22
potent drugs with ideal physicochemical properties and not commercially viable. These
include compounds such as nitroglycerine, nicotine, and estradiol, which can passively
diffuse and intercellularly permeate through skin barriers to achieve therapeutic concen-
trations [25]. The stratum corneum is the outermost, biphasic skin layer of 10 to 20 mi-
crometers with both hydrophilic and hydrophobic regions that form the major barrier to
limit drug flux into the skin [26]. Significant efforts have been made to enhance trans-
dermal permeation of the drugs across the stratum corneum with the assistance of chem-
ical or physical enhancer [27]. Microneedles provide a physical enhancer or create a
physical disruption in the stratum corneum and thus enable the delivery of most drugs
through the skin. Once the stratum corneum is breached, drugs can diffuse through the
skin once they come in contact with the interstitial fluids. Thus, it is possible to deliver
hydrophilic drugs through this method or one may utilize sweat glands as an alternate
mechanism. Microneedles address certain key challenges within transdermal delivery
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such as collapsing veins with a repetitive injection, needle phobia, sustained delivery,
etc. Microneedles provide a useful alternative method to avoid these issues [27].

1.3. Microneedle (MN) for Transdermal Drug Delivery

MN technology is a mode of active transdermal drug delivery and is intended to be
used a as a replacement to the traditional syringe injections. The MN array is used to
penetrate the stratum corneum and deliver the drug with a minimally invasive action
[14]. These arrays are micro-sized needles with a height ranging from 25 to 2000 um [28].
MNs have been used for different applications such as drug and vaccine delivery, cos-
metic, and disease diagnostics. MN have various structural arrangements, shapes,
forms, and materials along with different manufacturing methods which are further il-
lustrated in this review paper. Figure 3 show some current commercial MN devices.
Donnelly et al. argued that 30% of the most recent scientific literature in “transdermal
delivery technology” accounted for microneedle studies [29].

The MN drug delivery route can be impacted by external environments such as
skin physiology, physiochemical properties, and ambient conditions [30]. These include
the relative humidity and temperature in the vicinity of the application area. Too sparse
(low humidity) will retard the release of drugs to the skin layers, however too high hu-
midity (such as sweat) can interfere in the drug release kinetics due to excess water and
presence of other salts thereby changing the osmotic gradient for transdermal drug de-
livery. Furthermore, an excess of perspiration can prevent the adhesion of the micronee-
dle patch to the skin further retarding elution of drugs through the skin. Similarly, very
low or very high pH ranges around the skin region can result in lower permeability of
the drug into the stratus corneum and beyond [31]. Excessive lipid films on the skin
form a barrier layer to the stratus corneum and defatting this layer can assist in trans-
dermal absorption [32]. Raising the skin temperature can enhance permeation of drugs
due to increase diffusivity and vasodilation of skin vessels [33].

Dosage loading and metering accuracy of microneedles is an important aspect
while administering sensitive drugs such as insulin and chemotherapeutics. Typically,
microneedle patches require lower dosage as compared to oral ingestion for providing
equivalent therapeutic efficacies as digestion and first-pass metabolism are circumvent-
ed [18]. The pharmacokinetics of microneedles shows rapid uptake in the bloodstream
that can be advantageous for treating localized ailments with much lower drug loading
when compared to the oral route. Hollow microneedles serve as drug reservoirs and
have the potential to carry higher dosages as compared to solid microneedles. Solid mi-
croneedles made from ceramic or metal materials can be coated using inkjet and spray
atomization techniques with highly precise drug formulations [34]. The quantity of drug
loading for microneedle is highly dependent on the drug type, desired treatment plan,
and patient profile. MNs offer a highly precise delivery mechanism due to control of
manufacturing processes and drug loading procedures [35]. However, the dissolution of
the drug within the skin interfaces can depend on the skin physiology, ambient envi-
ronmental conditions, and application mode to the skin surface.
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Figure 3. Current microneedle devices (single needle with applicator, microneedles array patch,
microneedles pen, microneedle pump patch, and microneedle roller) [36]. Reprinted from Emerg-
ing nanotechnologies for diagnostics, drug delivery and medical devices, Rubi Mahato, Micronee-
dles in Drug Delivery, 331-353, Copyright (2017), with permission from Elsevier.

1.3.1. Economic Value and Statistics

The economic value of microneedle patches into the current influenza vaccine mar-
ket in United States was assessed by utilizing a susceptible-exposed-infectious-recovered
(SEIR) transmission model [37]. The results show that the incremental cost-effectiveness
ratios (ICERs) with healthcare provider administration are less than or equal to $23k per
quality-adjusted life years and a market share of 10 to 60% [26]. On the other hand, the
ICERs are less than $1.4k for self-administration.

The MN market rose from $5 billion in 2000 to $24 billion in 2013 [38]. By 2025, the
market size of global TDD is estimated to expand to about $95 billion [39]. According to
a Future Market Insight recent report, by 2030, the MN drug delivery system market will
approach $1.2 billion with a Compound Annual Growth Rate (CAGR) of 6.6% [40].

1.3.2. Advantages

A MN is considered to be one of the best ways for transdermal drug delivery due to
the fact that drugs administered though this procedure bypass vital human organs such
as the liver [41]. Furthermore, it eliminates the pain associated with IV injection by
providing a pain-free experience [42]. As a result, it is considered the best choice for
people who have needle phobia (trypanophobia). Microneedle transdermal drug deliv-
ery application does not require trained personnel thus facilitating ease of use [43]. Fur-
thermore, this reduces the risk of transmitting infection into the body [44].

The stratum corneum acts as a barrier to prevent molecules of any therapeutic agent
to pass through the skin and reach the epidermis or dermis layer [16]. A microneedle has
the ability to bypass the stratum corneum barrier and deliver the drug into the epider-
mis or the upper dermis layer without causing any pain [45]. Furthermore, the MN array
is long enough to penetrate the stratum corneum and short enough to prevent damage
to the dermis or reach nerve endings thus painless [14].

1.3.3. Disadvantages

The use of a microneedle for transdermal drug delivery introduces disadvantages
such as extended application time, multiple patches within a given area, requirement of
specific mechanical strength, and a good biocompatible material [46]. Rzhevskiy et al.
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stated that the difficulty in acquiring significant pharmacokinetic data via the MN patch
route can impact the dosing parameters and could potentially result in adverse side ef-
fects [47]. Bariya et al. argued that MN depth design should also be strongly considered
while contemplating the differences in the thickness of the stratum corneum and other
layers of the skin from a varied patient populations [48]. The effectiveness of drug deliv-
ery and permeation kinetics also depends on the MN device being inserted orthogonal
to the skin surface. There is a possibility that the drug dose may escape, or the needles
may struggle to penetrate the skin at non-conformal angles. Moreover, repetitive appli-
cations of microneedles may result in scarring of the skin surface. There may also be cer-
tain drawbacks with respect to the shapes and conformation of needle structures, thus
affecting their efficacy. For hollow MNs, for example, their micropores can sometimes
get blocked due to compressed tissue for certain skin types, thus affecting their delivery
kinetics and penetrability. There are however certain innate drawbacks of using TDD
technologies in general that are not specific to just MNs. These include skin irritation,
redness, pain, swelling, infection at the application site, etc. [49,50].

2. Microneedle History

Over the years, microneedle concepts have evolved from the use of large needles to
the current modern design of microneedles (Figure 4). In 1905, Dr. Ernst Kromayer, a
German dermatologist, treated scarring, hyperpigmentation, and other skin ailments by
using different sizes of motor-powered dental burs [51]. The first piece of literature that
mentions microneedle use was in 1921 by Chambers where he injected the needle into
the egg’s nucleus [52]. In the 1960s, delivering drugs by injection into the stratum
corneum began to attract attention [53]. Subsequently, the microneedle concept was in-
troduced in the 1970s [54]; however, this concept was not demonstrated experimentally
until the 1990s [55]. In 1979, the first transdermal system was approved for use to deliver
scopolamine by applying a three day patch to treat motion sickness [17]. In 1994, a sub-
cision surgery was performed by Orentreich where he inserted a tri-beveled hypodermic
needle into the skin to release fibrous strands [56]. This surgery targeted the cutaneous
defects located under the skin which were responsible for depressed scars and wrinkles.
The first microneedle for transdermal delivery was proposed in 1998 and was fabricated
from silicon wafers through ion etching and photolithography [57]. The study described
the use of microfabricated microneedles for the purpose of enhance drug delivery across
the skin. This paper led to extensive research conducted in the microneedle domain. Dif-
ferent materials such as glass, ceramic, metal, and polymers were introduced to fabricate
microneedles. In 2004, a microneedle array was used to pierce holes into the skin for
transdermal drug delivery [58], which led to several fabrication methods and materials
being explored for the purpose of TDD. Solid, coated, hollow, dissolvable, and hydrogel-
forming MNs are all different types of MNs. Furthermore, various manufacturing meth-
ods such as laser ablation, photolithography, micro-injection molding, etc. These discov-
eries led to the first reports of a dissolvable microneedle being used for TDD in 2005 [59].
According to clinicalTrials.gov website, to date, 43 clinical trials have been completed
using microneedles, with the first microneedle clinical trial completed in 2007 (accessed
on 30 June 2021, 5 p.m.). Recently, additive manufacturing methods to fabricate MN
molds were developed to provide low cost solutions for micro-mold manufacturing
[60,61]. Reports showing the use of commercially available 3D printers to fabricate the
MN master mold presented a new age for device fabrication and possibilities for custom
built large-volume manufacturing of MNs [62,63].
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Figure 4. Historic timeline for MN technologies.

3. Microneedle Types

A variety of materials such as silicon, stainless steel, sugar, and polymers have been
used to fabricate solid, coated, hollow, or dissolvable microneedles (Figure 5). Each type
of the microneedle has their unique characteristics, advantages, disadvantages, applica-
tions, and material type (Table 1)

(a) SOLID (k) COATED () DISSOLVING (d) HOLLOW
MICRONEEDLE ~ MICRONEEDLE MICRONEEDLE MICRONEEDLE

=STRATUM CORNEUM

= EPIDERMIS

== DERMIS

Before needling

WV Vv Ty

L

After needling

Figure 5. Different types of microneedles: (a) Solid microneedles with a poke with patch approach
are used for pre-treatment of the skin. (b) Coated microneedles use the coat and poke approach,
where a coating of the drug solution is applied on the needle surface. (c) Dissolving microneedles
are made of biodegradable polymers. (d) Hollow microneedles are filled with the drug solution
and deposit the drug in the dermis [16]. Reprinted from Biomedicine & Pharmacotherapy, Vol.
109, Tejashree Waghule et al., Microneedles: A smart approach and increasing potential for trans-
dermal drug delivery system, Pages 1249-1258, Copyright (2019), with permission from Elsevier.

3.1. Solid Microneedle

This type of microneedle structure is designed to penetrate the stratum corneum in
order to enhance drug delivery to the dermis to improve the bioavailability and kinetic
transport across the skin [64,65]. In comparison to intramuscular delivery, the solid mi-
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croneedle is suitable for delivery of vaccines as it lasts longer and possesses a more ro-
bust antibody response [66]. Solid microneedles are easy to manufacture, have superior
mechanical properties, and sharper tips when compared to hollow microneedles [67].
Moreover, the solid microneedle can be fabricated from different materials such as sili-
con, metals, and polymer (Figure 6) [41].

Silicon

Metal

Polymer

Figure 6. Solid microneedles made of (a—d) silicon, (e-h) metals and (i-1) polymer [41]. Reprinted
from Advanced Drug Delivery Reviews, Vol. 64, Yeu-Chun Kim et al., Microneedles for drug and
vaccine delivery, Pages 1547-1568, Copyright (2012), with permission from Elsevier.

3.2. Hollow Microneedle

The hollow microneedle consists of a design with a hollow/empty core/chamber in
which drug fluid is injected/stored (Figure 7) [16]. Compared to the solid microneedle,
the hollow microneedle can handle a large dose/amount of drug solution [68]. A hollow
microneedle also has the ability to deliver the drug into the viable epidermis or dermis
which is suitable for high molecular weight compounds [69]. Additionally, it controls
the drug release over time which makes it suitable for use with liquid vaccine formula-
tions [70]. Unlike solid microneedles, which primarily elute drugs based on the osmotic
gradient, hollow microneedles are an active drug delivery system forming a conduit for
drug diffusion into the dermis based on a non-pressurized drug reservoir. Both material
formulation and fabrication parameters of hollow microneedles can be leveraged to ena-
ble tunable release kinetics. Higher concentration drugs can result in burst release drug
profiles, whereas matrix-loaded drugs can enable a steady-state drug release lasting
days to weeks depending on the application intent [71]. Analogous to hypodermic nee-
dles, hollow microneedles can be designed to permit modulation of flow rate and pres-
sure. Process parameters such as microneedle aspect ratio (height to base diameter ratio)
can be controlled for rapid release, slow infusion, or time-varying delivery rate [72].
Over the years, the hollow microneedle has successfully been applied to a variety of vac-
cine/inoculations [59]. However, this type of microneedle received less attention com-
pared to the solid microneedle as the hollow microneedle is relatively weaker and re-
quires intensive care in terms of needle design and insertion method [73]. Furthermore,
the hollow microneedle suffers from technical difficulties such as leakage and clogging
during the injection process [59].



Polymers 2021, 13, 2815

9 0f 33

Figure 7. Hollow microneedles fabricated out of silicon, metal, and glass imaged by optical and
scanning electron microscopy. (A) Straight-walled metal microneedle from a 100-needle array fab-
ricated by electrodeposition onto a polymer mold (200 um tall). (B) Tip of a tapered, beveled, glass
microneedle made by conventional micropipette puller (900 um length shown). (C) Tapered, metal
microneedle (500 pm tall) from a 37-needle array made by electrodeposition onto a polymeric
mold. (D) Array of tapered metal microneedles (500 um height) shown next to the tip of a 26-
gauge hypodermic needle [74]. Reproduced with permission from Devin V. McAllister et al., Mi-
crofabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication
methods and transport studies; published by National Academy of Sciences, 2003.

3.3. Coated Microneedle

The coated microneedle is a solid-type MN coated with a drug solution (Figure 8).
Typically, it carries a smaller amount of the drug depending on the thickness of the coat-
ing layer [75]. The success of delivering drug using a coated MN depends on the ability to
reliably coat a controlled drug layer onto MNs [76]. A coated MN has the ability to deliver
proteins and DNA in a minimally invasive manner [77]. An advantage of a coated MN is
rapid delivery of the drug to the skin; however, the remnant drug at the tip of the needle
might infect other patients [78]. Finally, the results of the delivery of the vaccine using
coated MN were similar to vaccines using intradermal and intramuscular routes [59].
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Figure 8. Fabrication of the coated polymer MNs: (A) A schematic diagram of the process to fabri-
cate the coated polymer MNs. The coated polymer MNs were fabricated by (I) covering up the
surface of the polydimethylsiloxane (PDMS) cavities with heated and melted PLA, (II) filling the
mold cavities with melted PLA, (III) exerting pressure on the melted PLA and cooling it down to
room temperature, (IV) dipping the coating solution using PLA MNs, and (V) drying the coated
polymer MNs. Image (A1) is an image of the 650 um long PLA MNs. Image (A2) is an image of the
650 um long MNs coated with formulation III. Image (B) is a schematic diagram of the adjustable
apparatus that can be lifted and lowered. Image (B1) shows the portable holder with the PLA MNs
descending into the reservoir. Image (B2) shows the PLA MNs dipped in the coating solution, and
image (B3) shows the portable holder rising from the reservoir [79]. Reprinted from Journal of
Controlled Release, Vol. 265, Yang Chen et al., Fabrication of coated polymer MNs for transdermal
drug delivery, Pages 14-21, Copyright (2017), with permission from Elsevier.
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3.4. Dissolving MN

The dissolvable MN first appeared in 2005 [59] and is a promising technique based
on its characteristics. These characteristics include facilitating the rapid release of mac-
romolecules [80], and a one-step drug application which promulgates the ease of drug
administration [81]. Due to improvement observed in applying dissolvable MNs follow-
ing “poke-and-release”, this approach is consider better than other approaches [82]. The
dissolvable MN tip can be loaded in a timely manner via a two-step casting method
(Figure 9) [81]. Upon insertion of the dissolvable MN into the skin, the drug-load releas-
es and diffuses easily by dissolution of the needle tip [59]. Water-soluble materials are
most appropriate for the manufacture of the dissolvable MN [83]. Likewise, the micro-
mold method of fabrication is most suitable for the production of the dissolvable MN
[69]. The design and production of a dissolvable MN array requires technical expertise
[59]. However, this type of MN requires complete insertion which is often difficult to ac-
complish, and also undergoes a delay in dissolution [16].
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Figure 9. Schematic illustration of the process to fabricate the tip-loaded fast-dissolving HA MN patch [84]. Reprinted
from Journal of Controlled Release, Vol. 286, Xiao Zhao et al., Tip-loaded fast-dissolving MN patches for photodynamic
therapy of subcutaneous tumor, Pages 201-209, Copyright (2018), with permission from Elsevier.

4. MN Material

The primary reason behind the production of MNs is their ability to penetrate the
skin without breaking or bending. Several factors, such as material, manufacturing
method, and design, have been considered in tackling the MN manufacturing challenge.
A variety of materials have been used to fabricate different types of MNs (Figure 10).
Examples of these materials are silicon, metals, ceramic, and polymers [84-88] (Table 2).
A combination of different material types have been utilized for biomedical applications
in the area of delivery drugs, tissue engineering, and biomedical implants [89-98].



Polymers 2021, 13, 2815

12 of 33

Metals and Alloys Ceramics
s

/\ Alumma
Stainless Sb

./

/

y:

Nickel-Titanium

0 \ /
£
:200’ *Silicon / o
aga' k- \Tanralum
H - \
100 tural Materials .\
o PC T —
> /——Polymers ___ / \ Nickel
Cj\ Ch|toson
50
PMMA -~
[ Glasses
Epoxy Borosnllcate

i é lb 2‘0 00 260
Young's modulus (GPa)

Figure 10. Yield strength vs. Young’s modulus of different materials used for the fabrication of
MN:s. Plastics: PC,Epoxy, PMMA, PGA, PLA. Metals and alloys: nickel, stainless steel, tantalum,
and nickel-titanium. Ceramics: alumina and silicon. Chitison and Borosilicate glass [99]. Reprinted
(adapted) with permission from (Cahill, Ellen M., and Eoin D. O’Cearbhaill. “Toward biofunction-
al MNs for stimulus responsive drug delivery.” Bioconjugate chemistry 26, no. 7 (2015): 1289—
1296). Copyright © 2021, American Chemical Society.

4.1. Silicon

In the 1990s, the first MN was fabricated from silicon material [100]. Silicon pos-
sesses numerous advantages over other materials, including its innate flexibility, which
allows for easy manufacturability in terms of desirable shapes and sizes of MNss. Silicon
has been used to fabricate solid, hollow, and coated MNs [53]. On the other hand, there
are limitations associated with using silicon such as time-consuming fabrication [101],
high cost [29], and the possibility of causing fractures in the skin [102].

4.2. Metal

Metals are utilized in the manufacture of MNs as they have good biocompatibility
and mechanical properties [103]. Metals have high fracture toughness [104] and yield
strength values. Compared to silicon, metals are stronger and harder to break [16]. The
first metal utilized in the fabrication of a MN was stainless steel [105] followed by titani-
um. Despite the ability of metal MN to pierce the skin, the application of metal MN
might cause an allergic reaction [14].

4.3. Ceramic

Due to their superior chemical properties and compression resistance, ceramic ma-
terials such as alumina have been used to fabricate a MN [106]. However, alumina pos-
sesses a lower tensile strength compared to other materials. Calcium sulfate dihydrate
and calcium phosphate dihydrate are additional types of ceramics utilized in the fabrica-
tion of MNs [16]. A micro-mold technique can be used to fabricate a MN using ceramic
material. This technique offers scaled-up production at low cost [107]. A study conduct-
ed by Bystrova et al. showed that MNs fabricated from alumina fractured upon manual
application to the skin [108].

4.4. Polymer

Polymers offer a promising material alternative for MN. They have excellent bio-
compatibility, low toxicity, and low cost [109]. However, they also possess lower
strength compared to silicon and metals [104]. Polymers are usually employed in the
production of dissolvable and hydrogel-forming MN'’s arrays [71], solid, coated, and
hollow MN arrays [53]. Various types of drugs have been applied to the skin using bio-
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degradable MNs [110]. Types of polymers used in the fabrication of MNs included poly
(methyl methacrylate) (PMMA), polylactic acid (PLA), poly (carbonate), polystyrene,
and SU-8 photoresist [16].

Table 2. Overview: MN Materials.

Manufacturi
MN Type Advantages Disadvantages AnuACturing  MN Type Fit References
Method
Flexible enough to manufactur Time-consuming fabrication. Solid
Silicon ~ C0.C SHOUST to manuacture High cost. Etching Hollow [29,53,55,100,110-112]
desirable shapes and sizes. - .
Possibility of skin fracture Coated
cood :}tz;?gfazfﬂ;x:: ame Re uire? lilgtsizgrl;fa:i?)i. rocess Laser ablation Solid
Metal , properties. quired p P : Etching [14,16,101-103,113-115]
High fracture toughness May cause an allergic .. Hollow
. Injection mold
Strong and hard to break. Reaction.
Ceramic Possesses 'chemu:.al and com- Low tension strength Ml.cromoldlng Solid [16,104,105,116,117]
pression resistance. Lithography Hollow
Excellent biocompatibility. in'];:g;gﬁgl}gn HS(:)lllfw
Polymer Low toxicity. Low strength ) ; & [16,53,71,106-109,114,118,119]
Casting Coated
Low cost. . . .
Laser ablation Dissolving
5. MN Manufacturing Method
There exist several methods of fabricating the MN arrays. The most common meth-
ods are laser ablation, micro-molding, additive manufacturing, injection molding, chem-
ical isotropic etching, surface/bulk micromachining, and lithography-electroforming-
replication (Table 3).
Table 3. Overview: MN Manufacturing Method.
Manufacturing Description Advantages Disadvantages References
Method P & &
Might cause a crack or fatigue re-
Laser Ablation Uses a focused optical light beam to fabri- Less time consuming. sistance on the .substrate (MN array). [109,118,120-140]
cate a MN array on a substrate. High cost.
Not suitable for large production.
Produces MN from a vari-
Transfers the master pattern of the geo- tv of material
Lithography metric shapes onto the surface of a sub- ety ot materia. Time consuming. [53,118,134,141-153]

Very precise geometries

strate. . .
Smooth vertical sidewall.

Controls the depth of penetration.
Drug load capacity. [14,154-157]
Mechanical behavior.

Replicates a master mold and casts the Used for mass production.

Micro-molding mold with a solution. Cost effective.

High initial cost (machine equip-
Mass production. ment cost). [67,80,107,158,159]
Complex processes.

Injecting molten plastic materials into a

Injection molding mold

Additive manufac- Requires a high-quality 3D printer.

Printing the MN’s 1 layer. tomizable Design. 160-172
furing rinting the s layer by layer Customizable Design Offer limited accuracy. [60,63,160 ]

5.1. Laser Ablation

Laser ablation incorporates the use of a focused optical light beam in eliminating
material from a substrate to create MN arrays. Lasers have been used to process differ-
ent materials ranging from micro- and nano-scale for several applications [111-123]. Var-
ious laser types have been studied for the manufacture of MN arrays. These include CO:
[124,125] (Figure 11), UV excimer [126,127], and femtosecond laser machine [128]. The
laser ablation method is considered an effective and fast method for MNs fabrication.
The laser beam takes 10 to 100 nanoseconds to approach the burn point in the material
sheet [109]. Laser could also be used to shape any metal. This method is associated with
thermal effects at the cutting surface that result in the alteration of MN structure and
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mechanical properties [129]. This might lead to undesirable effects in MNs such as crack-
ing, or fatigue resistance [130]. The laser ablation method is a non-contact process [131]
and subjects low heat loads to the substrate [132]. However, the cost of the laser is higher
compared to other types of equipment [109]. The laser ablation method is not suited for
large scale manufacturing [129].

b
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Figure 11. Fabrication of MN mold: (a) CO: laser cutter was used to fabricate MN acrylic mold us-
ing the proposed cross-over lines (COL) technique. (b) The acrylic mold was used to fabricate pol-
ydimethylsiloxane (PDMS) MNs mold, which can be used to fabricate a variety of polymer-based
MN:s [125]. Reproduced with permission from Hojatollah Rezaei Nejad et al., Low-cost and clean-
room-free fabrication of MNs; published by Springer Nature, 2018.

5.2. Lithography

The lithography technique is used to transfer the master pattern of the geometric
shapes onto a surface of a substrate [133-140]. Photolithography is primarily used for
pattern transfer due to its wide applicability in the field of microelectronics [141]. Other
techniques such as microelectronic and micromachining use lithography as the first step
in fabricating a MN [53]. Lithography requires precise processing of the photoresist
[142]. This technique contributes to approximately 30-35% of costs for manufacturing in-
tegrated circuits [143]. Lithography possesses the ability to create products from a varie-
ty of materials such as glass, metal, ceramics, and plastics [144]. It also produces precise
geometries and smooth vertical sidewalls [109] (Figure 12). However, this technique re-
quires an advanced facility (cleanroom) and extended production time [125].

5.3. Micro-Molding

The micro-molding process consists of making replicates of the master mold. The
mold is casted with a solution containing a polymer and active pharmaceutical sub-
stances [14] (Figure 13). Micro-molding is considered a cost-effective method and is used
for mass production [146]. Micro-molding is commonly used with polymer material for
MN fabrication [147]. The PDMS has several advantages in micro-molding techniques
such as low cost, ease of use, low surface energy, and thermal stability [148,149]. The
limitations associated with this technique are difficulties associated with controlling the
depth of penetration, drug load capacity, and mechanical behavior of the polymer [147].
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Figure 12. Drawing lithography to produce a 3D UHAR MN. The inset shows a drawing system
with patterned pillars for drawing lithography. Stainless drills with a diameter of 200mm and a
length of 3 mm were used as pillars and fixed in a 3 x 3 array on a PDMS frame. (a) The SU-8 2050
photoresist was spin coated and cooled. (b) After the photoresist contacted the patterned pillar,
drawing lithography was performed. (c¢) Drawing caused the appearance of an extended conical-
shaped bridge between the substrate and pillar. (d) The desired UHAR micro-needle mold was
cured to generate a rigid structure. (e) The separation of the 3D microstructure bridge produced a
solid MN mold. (f) Chemical deposition on the solid MN molds. (g) The upper portion of the MN
mold was coated with electroless material using a drawing system. (h) Nickel electroplating on
conducted solid MN molds. (i) The hollow metallic MN array was created upon elimination of the
electroless protection and the photoresist MN mold [145]. Reproduced with permission from
Kwang Lee et al., Drawing Lithography: Three-Dimensional Fabrication of an Ultrahigh-Aspect-
Ratio MN; published by John Wiley and Sons, 2010. Copyright © 2021 WILEY-VCH Verlag GmbH
& Co. KGaA, Weinheim.

5.4. Injection Molding

Injection molding is another MN fabrication method. The process of fabricating
MNs using injection molding and the hot embossing technique is shown in Figure 14.
Lhernould et al. used poly carbonate (PC) material to fabricate a 4 x 4 hollow polymer
MN array [150]. The MNs were shown to withstand high force and were used for multi-
ple insertions without blunting the needle. Another study used a micro-injection mold-
ing process to fabricate a solid MN [67]. These needles could deliver hydrophilic-high
molecular weight molecules. Sammoura et al. fabricated a polymeric MN by molding
plastic material [151]. The needles were used to successfully penetrate a fresh chicken
leg and beef liver and ~0.04 uL of liquid was drawn from these tissues. The proposed
method allows the mass production of MNs at low cost.

Micro-injection molding also offers high repeatability, accurate dosing, and high in-
jection flow rates when separating the plasticization and polymer melt injection [80]. The
limitation of applying injection molding technique is controlling the small shot size due
to the common size of screw which is approximately 15-150 mm and higher initial cost
of the equipment [152].
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Figure 13. Schematic fabrication process of multilayer MNs: (A) Aluminum master fabrication us-
ing micro-milling. (B) Replication of PDMS mold from the master. (C) Fabrication of PLA master
by micromolding and tip-sharpening using oxygen plasma. (D) Replication of PDMS mold from
the PLA master. (E) Spray deposition of drug-containing polymer solution to fill the mold cavity.
Multilayer MN is formed by sequential deposition of polymer solutions. (F) Application of back-
ing material (yellow) on the mold and drying at room temperature for polymer solidification. (G)
Demolding solidified multilayer MN array from the mold. Green and red represent PLGA and
PVP layers, respectively [147]. Reproduced with permission from Min Jung Kim et al., Fabrication
of Circular Obelisk-Type Multilayer MNs Using Micro-Milling and Spray Deposition; published
by Frontiers in Bioengineering and Biotechnology, 2018.
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Figure 14. Process steps of standard injection molding and step-and-repeat hot embossing [152].
Reproduced with permission from Herwig Juster et al., A review on microfabrication of thermo-
plastic polymer-based MN arrays; published by John Wiley and Sons, 2019. copyright © 2021 Soci-
ety of Plastics Engineers.
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5.5. Additive Manufacturing

In recent years, additive manufacturing (3D printing) has rapidly been gaining at-
tention as a means of producing MN arrays. A 3D printer builds an object by depositing
the desired material layer-by-layer. The biomedical device industry has seen a rapid rise
of 3D printing technologies in tissue engineering implants in recent years [153-164]. In
2019, Johnson et al. fabricated the first MN master using a commercial 3D printer [60].
Krieger et al. introduced a two-step called “print and fill” method to fabricate a MN
mold (Figure 15) [63]. Another study used a stereolithography technique to fabricate
MN patches [165]. An advantage of using 3D printers to manufacture a MN array is the
flexibility of design parameters and compressed lead times for processing [60].

a
— :"\;ﬁ
AN y
i
= . 3D printed needle
Design CAD model SLA 3D print model array basin
b r-
o (W — (
2 e Ny Lo+ % 7 e LLL o+ .
7 ' 3 S g
O il Y > | afifife ) — | sifffie
L N o N )
(i) 3D printed (i) Wash, UV (iii) Fill needle basin (iv) UV cure Obtain MNA mast
needle array basin cure and bake  with UV-curable resin and bake L an master

1
Q-8

(Y — ) -
(vii) Degas in vacuum w | A

followed by heat cure
in oven

§\

(vi) Silicone cast (viii) Demold to obtain
master MNA female mold

|Clear resin| | Grey resin | -

Figure 15. Overview of “Print and Fill” fabrication method: (a) Needle array basin design followed
by 3D printing of the design using a Form 2 SLA printer. (b) MNA master mold fabrication method
(i) take 3D printed needle array basin; (ii) washing followed by UV curing and baking of printed
needle array basin; (iii) filing of needle array basin with UV-curable resin; (iv) second UV curing and
baking; (v) obtain MNA master; (vi) silicone casting of MNA master; (vii) silicone mold is degassed
followed by heat cure in oven; (viii) demolding to obtain usable MN mold [63]. Reproduced with
permission from Kevin J. Krieger et al., Simple and customizable method for fabrication of high-
aspect ratio MN molds using low-cost 3D printing; published by Springer Nature, 2019.

6. MN Mechanical Characterizations

During the MN design phase, it is critical to consider the mechanical properties of
the MNs as they are subjected to an applied force for epidural insertion. To accomplish
this, the MNs need to possess requisite strength in order to avoid failure in the MN array
[166]. Lutton et al. argued that there is no single test that can simulate and observe the
mechanical property of the needle and the insertion of the MN in vivo [167]. Conse-
quently, a range of mechanical tests should be applied to the MN for characterization.
Various types of mechanical tests on MNs include axial force, transverse force, base
plate break, and insertion force (Table 4). Moreover, several investigations have been
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performed to study the relationship between mechanical characterization and MN man-
ufacturing parameters [168].

6.1. Axial Force

The axial force test is the most common, and it consists of applying force to the tips
of the needle in a vertical manner and to the base of the MN array [169]. This mechanical
test is important and serves to determine the failure force of the needles. Knowing the
failure force measurement of the needles is the best valuable information or called the
safety point since it gives an approximate range (expectation) of needle insertion force
[149].

Several axial force studies have been performed to determine the failure force of
MNs using different equipment and calculation methods. Davis et al. measured the fail-
ure (ScopeTestl, EnduraTEC, Minnetonka, MN, USA) by calculating the force and dis-
placement data [170]. Moreover, Demir et al. measured the fracture force by using a uni-
versal testing machine (Instron® Model 5969, Instron, Norwood, MA, USA) (Figure 16A)
[80]. Moreover, Khanna et al. studied the axial fracture tests using a compression load
cell (LCFA-500gF sensing capacity, Omega Co., Norwalk, CT, USA) and motorized actu-
ators (Z600 series Thorlabs Motorized Actuators, Morganville, New Jersey, USA) [171].
Donnelly et al. applied a compression mechanical tests by using a TA-XT2 Texture Ana-
lyzer (Stable Microsystems, Haslemere, UK) with the help of a light microscope
(GXMGE-5 digital microscope, Laboratory Analysis Ltd., Devon, UK) [172]. Park and
Prausnitz measured the failure test using a displacement-force test station (Model 921A,
Tricor System, Elgin, IL, USA) [173].

Figure 16. (A) Digital photograph of SA MN pressed against the metal mill during axial fracture force measurement
with the micromechanical tester (Instron® Model 5969; Instron, Norwood, MA). (B) MN shafts were transversely pressed
against the metal mill for measurement of the transverse fracture force by way of the micromechanical tester (Instron®
Model 5969, Instron, Norwood, MA) [80]. Reproduced with permission from Demir et al., Characterization of Polymeric
MN Arrays for Transdermal Drug Delivery; published by PLoS One, 2013.

6.2. Transverse Force

The transverse force test involves the application of a force parallel to the MN base
plate with the y-axis. The irregularity of the skin surface may lead to transverse bending
of the MN, and thus the measurement of the transverse fracture force is important [167].
Furthermore, along with the axial force, the transverse force completes the big picture of
the MN’s mechanical property and thus predicts MN bending behavior during insertion
[80]. The limitation of this test is that the metal probe has to be manually aligned with a
defined length of the MN [167].

Donnelly et al. measured the transverse failure force of MN arrays using TA.XT-
plus Texture Analyser (Stable Micro Systems, Surrey, UK) [169]. Another study was per-
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formed by Park et al. to measure the transverse force using a force-displacement station
and a microscope [174]. The MN was set vertically on a metal plate with perpendicular
loading by a PDMS structure. The transverse force was tested until the MNs were bro-
ken therefore concluding that displacement increases linearly with a MN base diameter.
Demir et al. tested the transverse force of the MN by using a micromechanical tester (In-
stron® Model 5969; Instron, Norwood, MA, USA) [80] (Figure 16B).

6.3. Insertion Test

The insertion test is more important and different from the axial force as the axial
force does not give an accurate measurement as the insertion test. Furthermore, different
skin subjects were targeted in this test which include pigs (Figure 17), rats (Figure 18),
and humans. One advantage of using a MN is the ability to load the drug and deliver it
to the skin. Despite having several mechanical tests simulate the fracture force of the
needle, it is important to validate the results with an actual skin.
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Figure 17. Microscopy images and histological examinations of hairy and hairless pig cadaver
skin: (a) Hairless pig cadaver skin before DMN insertion. (b) 50 um insertion of 600 um tall DMN.
The DMN was inserted 650 um deep into the skin. (c) The base area of the DMN that was inserted
100 um deep was less apparent on the skin surface compared with those inserted 50 um deep. His-
tological examination showed that the DMNs were inserted 700 um deep into the skin. (d) Hairy
pig cadaver skin before DMN insertion. (e) The appearance of DMNs inserted 50 um deep into
hairy skin was similar to the appearance of DMNs inserted into hairless pig cadaver skin. (f)
DMN s inserted 100 um deep into the hairy pig cadaver skin penetrated 700 um deep. Scale bars:
microscopy images, 2 mm; histological images, 500 um [175]. Reproduced with permission from
Shayan F. Lahiji et al., A patchless dissolving MN delivery system enabling rapid and efficient
transdermal drug delivery; published by Springer Nature, 2015.
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Figure 18. In vivo skin penetration study: (A) Troy MNs were assembled with an applicator into
an array (5 x 5). (B) The applicator was applied to rat dorsal skin vertically by hand. (C) Image of
skin with applied Troy MNs. The array of red spots indicates the penetrated site of rhodamine B-
encapsulated Troy MNs and the white dotted line represents the vertically sliced line used to ob-
tain sectional tissue. (D) Skin sectional image. Red spots mark delivered rhodamine B in the skin
and the white arrow indicates undissolved parts of DMNs. Scale bars, 10 mm (A,B) and 1.0 mm
(C,D) [176]. Reproduced with permission from Kim et al.,, The Troy MN: A Rapidly Separating,
Dissolving MN Formed by Cyclic Contact and Drying on the Pillar (CCDP); published by PLoS
One, 2013.

Lee et al. applied a pyramidal MN into a full-thickness cadaver pig skin (series
8900, WHAL, Sterling, IL, USA) with a force of 1.5 N [177]. After that, a microscope
(8ZX12, Olympus, Bethlehem, PA, USA) was used to obtain a better look at the MN’s
imprints. Donnelly et al. inserted a MN attached to a movable cylindrical probe into the
skin of a stillborn piglet [172]. After that, the skin surface was observed with a digital
microscope. Jun et al. measured the transverse compression load using a zwickiLine ma-
terial testing machine (Z5.0TN, Zwick/Roell, Ulm, Germany) [178]. Further, Khan et al.
applied different MN forces into a neonatal porcine skin to study the insertion depth us-
ing a texture analyzer [179]. Different insertion test studies were performed on three
Caucasian male skins by using (Model 921A, Tricor Systems, Elgin, IL, USA) done by
Davis et al. [170]. Another study applied optical coherence tomography (OCT) technolo-
gy in scanning the depth of the MN in human skin [180].

Table 4. Overview: MN Mechanical Characterization.

Description Importance Limitation References

Axial Force

Apply force into the tip of the
needle in vertical way (x-axis)

Determine the failure force of the tip needle. Simulation (not accurate)  [80,157,176-180]

Transvers Force

Apply force into the MN base in
parallel way (y-axis)

Determine the failure force of the needle base. Simulation (not accurate)  [80,174,176,181]

Insertion Test Appl}f the needles mt.o arat, Determllr}e the actual force on skin. Required a skin resource  [177,179,182-187]
pig, or human skin. Ability to release the drug.
7. MN Applications

MNs have attracted extensive interest by researchers, scientists, and industry partic-
ipants. Several studies have demonstrated the potential and ability to administrate MIN
in different fields. These include drug delivery, vaccine delivery, disease diagnostic, and
cosmetics application.
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7.1. Drug Delivery

The first application of MN for drug delivery was by using a solid silicon MN in
1998 [57]. A dissolvable MN patch was used to deliver human growth hormone for
transdermal delivery to hairless rat skin [181]. A dissolvable caffeine loaded MN patch
was able to control the weight of obese mice and work as an anti-obesity treatment plan
[182]. A coated MN patch was used to deliver salmon calcitonin [183]. A solid micronee-
dle was used to deliver a protein antigen (ovalbumin) into hairless guinea pig skin [184].
Solid silicon and metal MNs were used for the delivery of calcein [185], BSA, and insulin
[74]. Furthermore, MNs have been used for transdermal permeation for several drugs
such as ibuprofen, ketoprofen, and paracetamol [186]. Other drugs administrated via
microneedles include L-Ascorbic acid, riboflavin, aspirin, docetaxel, pilocarpine, lido-
caine, hydrochloride, ketoprofen, and glycerol [187]. Despite the fact that most studies
used microneedle array for drug delivery into mice, pig, human skin, there were other
studies which successfully demonstrated microneedle injection into chicken thigh [188],
and brain tissue [189].

7.2. Vaccine Delivery

A dissolvable MN is a common type of MN used for vaccine delivery purposes. The
dissolvable MNs were used to replace hypodermic injection needles that were typically
used to administer vaccines. Unlike other types of MN, the dissolvable MNs are bio-
compatible, robust, scalable, and do not generate biohazardous waste [190]. Dissolvable
MNs were used to deliver vaccines for malaria, diphtheria [191], influenza [192], Hepati-
tis B [193], HIV [194], and polio [195].

Even though dissolvable MNs are most frequently used for vaccine delivery, coated
MNs arrays have also been successfully used for vaccination purposes [53]. A study
used a simple, safe, and compliant vaccination method to improve the immune system
for pigs by administering bacillus Calmette-Guérin (BCG) vaccine with a coated MN
[196]. Another study successfully encoded hepatitis C virus protein in DNA vaccine
coated on microneedle [197]. The microneedle was effectively primed for specific cyto-
toxic T lymphocytes (CTLs) in mice. Furthermore, a coated microneedle carried influen-
za virus antigen for vaccination application in mice [198].

Hollow MNs have been used to deliver anthrax recombinant protective antigen
vaccine to a rabbit instead of regular injection [199]. A hollow microneedle was evaluat-
ed for vaccination against plaque in a mouse model [200]. A clinical trial conducted in
humans using hollow microneedle with influenza vaccination showed similar results
with the immune system when compared to intramuscular injection [201].

7.3. Disease Diagnosis

Disease diagnosis and therapeutic efficacy can be monitored via several established
bioassays that sample body fluids to assess and monitor health conditions. The current
methods induce pain, require specialized techniques, tailored equipment, and profes-
sional medical personnel [202]. However, microneedle technology offers bioassays solu-
tion with painless experience and simple implementation [202].

A hollow MN has the ability to diagnose several diseases such as cancer [192], dia-
betes [203], and Alzheimer’s [204] disease. Patient health monitoring is another applica-
tion of the MNs. For example, a hollow glass MN may be used to investigate the glucose
level [205]. Furthermore, O'Mahony et al. proposed the MNs system for electrocardiog-
raphy signal optimization [206]. A microneedle-based enzyme was functionalized to
monitor alcohol in artificial interstitial fluid [207]. Microneedles with nanoparticles were
able to identify the biomarkers in early stage of osteoarthritis [208]. Microneedles were
used as sensors for hydrogen peroxide, lactate, dissolved oxygen, and glutamate [187].
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7.4. Cosmetic Application

MNs have widely been used in cosmetic applications such as skin treatment and
hair growth (Figure 19). Kim et al. developed a hyaluronic acid-based dissolvable MN
patch for the intradermal delivery of ascorbic acid and retinyl retinoate [209]. Kumar et
al. showed an enhancement of local delivery of eflornithine (used to reduce facial hir-
sutism) in vitro and in vivo using a solid MN [210]. Further, MN technology was able to
treat two patients suffering from alopecia areata disease [211]. These patients experi-
enced hair growth after treatment. Effective clinical trials have been conducted in
atrophic facial scarring [212], atrophic acne scars [213], and hypertrophic burn scars
[214] using a MN. Microneedles are considered as an effective treatment for cosmetic
applications related to aging, skin lesions, vulgaris, and wrinkles [208]. With an increas-
ing demand of cosmetic products, microneedles (patches and rollers) have a high poten-
tial in the future [194].

MICRONEEDLING GROUP MINOXIDILGROUP

Baseline

After 1 week

Figure 19. Faster hair re-growth at 1 week noted in Microneedling treated group [215]. Repro-
duced with permission from Rachita Dhurat et al., A Randomized Evaluator Blinded Study of Ef-
fect of Microneedling in Androgenetic Alopecia: A Pilot Study; published by International Journal
of Trichology, 2013.

8. Gaps in Research and Future Outlook

This paper illustrates the benefits of MN utilization for several applications in com-
parison to other techniques. Moreover, several studies suggest different manufacturing
methods, materials, and needle types for the fabrication of a MN array. A massive clini-
cal trial was proposed for the adoption of MNs for different usage purposes. However,
there are still gaps in the field of MN array production. In this section, we present a fu-
ture outlook for MNs with respect to scale-up of manufacturing processes, predictive
modeling of materials and manufacturing methods, and next-generation methods in-
cluding additive manufacturing and usage towards the COVID-19 testing and vaccina-
tion.
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8.1. Manufacturing Process Scale-Up

With the recent increase in the application for MNs and shortage of commercial MN
products (only 13 MNs products are currently available) [216], the potential for large-
scale MN manufacturing is in high demand. Bhatnagar et al. have stated that possessing
more knowledge about manufacturing materials and chemistry will help industries
achieve their financial goals, along with large-scale production [217] and increased prof-
its. Most current MN fabrication methods require a number of steps to produce a single
MN array [53]. Tackling this limitation unlocks future research opportunity regarding
the reduction or integration of the number of processes required to fabricate a MN.

8.2. Predictive Model for MN Manufacturing

The design parameters for the fabrication of MNs lacks detailed understanding and
warrants further exploration. Chung and Tu extended their study on fabricating the MN
array to integrating CO: laser processing and polymer molding by studying the PDMS
MN'’s dimensions with different laser power and scanning speed values [218]. Aoyagi et
al. studied the influence of pulse shot number and hole diameter on fabrication depth.
Furthermore, they noted an influence of repetition rate and hole diameter on sidewall
smoothness [126]. However, there was no study investigating fabrication approaches to
MN:ss arrays based on the manipulation of process parameters. Several types of predic-
tive models have been used in literature to improve the performance of manufacturing
processes [219-224] which can be extended for MN fabrication. Prior literature has
demonstrated that computational modeling [225-230] coupled with novel manufactur-
ing processes can deliver complex biomolecules for biomedical applications. Further-
more, a predictive model is required that can relate fabrication parameters to drug elu-
tion properties as well as sensing applications.

8.3. Next Generation of MN

Different studies have conducted in vivo studies of a fabricated MN to deliver drugs
and vaccines. However, an upcoming challenge is the fabrication of a MN that has the
ability to deliver macromolecules with high molecular weights and high hydrophilicity
[69,231-233]. Other issues associated with using a MN for drug delivery are irritation, skin
allergy, and redness [16]. Different MN devices such as Dermaroller are available in the
market, however no biodegradable polymer MN is being commercialized yet [234]. More-
over, commercially there exist no MN that can incorporate protein products [235].

8.4. MN and Additive Manufacturing

Additive manufacturing is a promising technology that offers a high-quality resolu-
tion, low cost, and less fabrication time [236,237]. Using a 3D printer to fabricate a MN
array would be advantageous given that device dimensions and formulation can be
modified with minimal postprocessing steps when compared to conventional MN man-
ufacturing methods. In addition, direct-write processes [238-246] can be utilized to coat
the MNs with different biomolecules for efficient drug release. Recently, the first study
that used a commercial 3D printer to manufacture a MN structure was done by Johnson
and Procopio [60]. They used an Autodesk Ember printer with optimized antialiasing
and lower layer height to produce fine needles. Another recent study was done using an
affordable SLA 3D printer to fabricate MN array [63]. This study was extended to test
the insertion of MN into the skin by applying a force of 30N.

8.5. Covid19 and MN

With the impact of the Coronavirus (Covid19) pandemic being felt worldwide, the
MN approach serves as a good candidate in fighting the pandemic. Chen et al. intro-
duced a MN-based oropharyngeal swabs to be used to reduce the false negatives in
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COVID-19 testing [247]. This concept allows the doctors to identify between positive and
negative samples by capturing the virus with high efficiency. As the COVID-19 vaccine
is available these days, the vaccine could be carried in MNs and distributed to people
who are able to self-administer the vaccine.

9. Conclusions

The importance of overcoming the stratum corneum barrier is central to efficient
MN-mediate transdermal and intradermal delivery. This paper summarizes MNs tech-
nology in the transdermal drug delivery era. Extensive studies and research have been
conducted in the fabrication of MNs due to its advantages. Various MN design types,
material, and manufacturing methods have been illustrated in this paper.

Over the past few decades, a variety of MN systems with distinct delivery mecha-
nisms have been developed and used for the delivery of small or macromolecules. Re-
cent investigations showed that temporary disruption of the skin microchannel lifetime
enhances transdermal delivery efficiency of small molecular drugs, salt forms, excipi-
ents, and other formulation factors as highlighted in this comprehensive review. Intra-
dermal and transdermal delivery of macromolecules including therapeutic peptides and
proteins, vaccines, and synergistic effect of combined enhancement in addition to MN
treatment were briefed. Moreover, MN mechanical tests and their characterization are
explored in the literature.

Finally, this paper exposes the gap in research for MN fabrication. Although there
are several new transdermal products mediated by MNs, these, however, have not
reached full maturity. As the understanding of MN-mediated advances, it becomes in-
creasingly evident that there is a gap in enabling cost-effective manufacturing for large-
volume production of MNs.
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