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Abstract: This research investigates deformation behavior of polystyrene (PS) as a thermoplastic resist
material for the thermal nanoimprint lithography (T-NIL) process. Molecular dynamics modeling
was conducted on a PS substrate with dimensions 58 x 65 x 61 A that was imprinted with a rigid,
spherical indenter. The effect of indenter size, force, and imprinting duration were evaluated in terms
of indentation depth, penetration depth, recovery depth, and recovery percentage of the polymer.
The results show that the largest indenter, regardless of force, has the most significant impact on
deformation behavior. The 40 A indenter with a 1 uN of force caused the surface molecules to descend
to the lowest point compared to the other indenters. An increase in indenter size resulted in higher
penetration depth, recovery depth, and recovery percentage. Higher durations of imprint cycle
(400 £s) resulted in plastic deformation of the PS material with minimal recovery (4 A). The results
of this research lay the foundation for explaining the effect of several T-NIL process parameters on
virgin PS thermoplastic resist material.

Keywords: deformation mechanism; molecular dynamics; nanoimprint lithography; polystyrene;
spherical indenter

1. Introduction

Nanoimprint lithography (NIL) is a versatile high precision method to produce nanoscale features
by mechanical deformation of an ultra-thin film polymer resist [1]. NIL was developed as a high
throughput fabrication technique by Stephen Chou and his research team [2,3]. NIL has been applied
to several applications including biological [4], photonic, and semiconductor electronics [5].

Nanoimprint lithography is broadly classified as thermal nanoimprint lithography (T-NIL) and
ultra-violet lithography (UV-NIL). In the UV-NIL process, ultra-violet light is used to cure the polymer
resist material on a substrate to fabricate nanoscale features using a transparent patterning mold. In this
research, our group employs the T-NIL method, wherein a thermoplastic resist is applied onto a rigid
substrate and imprinted by a rigid mold [6]. Typically, thermoplastic polymers transform to a glassy
phase and aid deformation when heated up to their glass transition temperature (Tg). Different types of
mold materials and geometries are implemented depending on the features to be imprinted [7]. Molds
are fabricated using focused ion beam (FIB) technology from silicon and silicon dioxide materials.
The NIL cycle begins with heating the ultra-thin film thermoplastic polymer to its glass transition
temperature (Tg) on a substrate and inserting the mold to replicate its pattern. After complete insertion
of the mold, it is held within the polymer for a desired duration followed by cooling to ambient
temperature. Further, the mold is retracted from the polymer to retain its negative replica within the
ultra-thin film resist material.
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Nanoimprinting has been studied by various researchers from both experimental [4,8,9] and
computational modeling [6,10,11] standpoints. The three critical process parameters in NIL, which
include temperature, pressure, and imprint time, determine deformation behavior of the resist
materials [12]. However, additional dependent variables such as layer thickness of resist material,
geometry of indenter, aspect ratio of indenter, and application of an anti-stick layer also determine the
NIL results [13-15]. Though experimental findings shed light on macroscopic behavior of polymers,
the underlying physics and deformation mechanism needs further investigation. Atomistic models
provide a seamless bridge to explaining this relationship [16-19]. Molecular dynamics (MD) simulations
are vital in understanding surface interactions of materials at the atomistic scale. MD modeling can
assist in understanding material deformation behavior in the NIL process, which cannot be captured
by continuum-based models [20,21].

Molecular dynamics models of glassy atactic polystyrene under the influence of uniaxial mechanical
deformation have been simulated for both initial elastic and postyield behavior [22]. MD modeling
of bulk atactic polystyrene has been performed for chains up to 320 monomer units around Tg in a
broad pressure range from 0.1 to 1000 MPa [23]. The authors further studied the correlated segmental
dynamics in amorphous atactic polystyrene revealing Rouse behavior [24]. Eslami and Miiller-Plathe
have explored the solubility of different gasses in polystyrene over a wide range of temperatures and
pressures [25]. Lie et al. have noted that the mechanical properties of polystyrene have been enhanced
by embedding single-walled carbon nanotubes with repeat unit arrangements [26]. Ayyagari et al.
have performed a molecular dynamics simulation study of atactic polystyrene (a-PS) and its dimer
2,4-diphenylpentane (DPP) using a previously derived quantum-chemistry-based explicit atom force
field [27]. The X-ray structure factor of a-PS obtained from simulations was found to be in good
agreement with the experiment. Yang et al. developed size and rate dependent finite deformation
elastic—plastic constitutive relations for thin films of polystyrene [28]. Different modes of deformation
were considered and homogenized to yield parametric representations of the constitutive model.
A hybrid method was employed to study the mechanical behavior of silica—polystyrene nanocomposites
(NCs) under uniaxial elongation [29]. Molecular dynamics and a finite element framework were used
to study the interphase effects in silica—polystyrene composites.

Research conducted by in Zharick et al. [30] in 2018 showed that PS could be utilized to create
nanostructures using electron beam lithography (EBL). Ma et al. [31] also demonstrated that a pattern
of 20-nm period line array and 15-nm dot array could be achieved for an EBL resist. The authors also
determined that PS is considerably more resistant to dry etching than PMMA. Thus, PS has been shown
to be a low-cost alternative to PMMA for producing nanoscale features. There exist many molecular
dynamics investigations of the chemical formulation of PS and studies pertaining to the mechanical
behavior of PS, but no research currently utilizes PS as a thermoplastic resist for the molecular dynamics
study of nanoimprint lithography. Our work investigates the interplay of different process parameters
on the deformation behavior of PS in nanoimprint lithography using molecular dynamics modeling.

2. Materials and Methods

2.1. Polymer Formation

PS was used as the resist material for the NIL process. The chemical formula for PS, and its
molecular structure of CgHg [24,32], is shown in Figure 1. Initial polymer chains were created in
BIOVIA Materials Studio 6.0 [21,33]. One syndiotactic chain of PS was built and replicated to form
the polymeric chain. The number of monomers per chain was 20. This polymer chain was replicated
4 times in the horizontal plane. Further, these were replicated into 5 vertical stacks to form a total
polymer chain count of (4 x 5) = 20. Using a Materials Studio tool called Geometry Optimization,
the placement of the molecules was arranged in a Newton consistent fashion. After initial formulation
of the polymer chains, the entire system was relaxed similar to Kang et al. [34]. Relaxation was
performed to bring the system to a state of thermal equilibrium. After the initial set-up, energy in
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where @@ is the torsion angle between the planes formed by the first-second and second-third
adjacent bond, with (Z)g) being equilibrium. K;L) represents the torsional stiffness of the i-th
covalent bond, d® and n® being integers parameterized for specific atomic systems.
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where () is the angle between the i-th pair of covalent bonds, with Qéi) being equilibrium. KS)
represents the angular stiffness of i-th covalent bond, and 74 is the number of covalent bonds.

Torsional rotational potential is given as:
, , a 1\2
o K(Tl)[l + d0cosn®( 1 - o) ] )

where @(?) is the torsion angle between the planes formed by the first-second and second-third adjacent
(i)
) T

and n() being integers parameterized for specific atomic systems.

Van der Waals pair potential is defined as:

bond, with @éi) being equilibrium. K" represents the torsional stiffness of the i-th covalent bond, d(
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where 7;; is the distance between the two atoms, and N is the total number of atoms in the system.
Ajj = JAiAj, Bijj = /BiBj, and A and B are parameters for systems represented by i and j.
Electrostatic pair potential is defined as:
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where 7 is the distance between two atoms i and j. ¢; and g; are the partial charges on the atoms i and j,
respectively. € is the permittivity of free space. N is the number of atoms in the atomistic systems.
The full potential is given by summing all components:

E=Ep+Es+Er+Ep, +Ep, (8)

Table 1. Consistent valence force field (CVFF) parameters for PS.

Masses

Atom Atomic mass (amu)

C 12.01115

H 1.00797

Bond parameters

Bond type 1o (A) Kg (Kcal mole™1)

H-C 1.105 340.6175

C-C 1.34 480.00

Angle parameters

Angle type 6y (degrees) K, (Kcal mole™1)

H-C-H 106.4 39.5

H-C-C 110.0 444

C-C-C 110.5 46.6

Torsion parameters

Angle type ¢Pp (degrees) n K4 (Kcal mole™)
H-C-C-C 0 3 0.1581
Van der Waals parameters

Atom type A B

C 0.389999952 3.875409636

H 0.38000011 2.4499714540

Cut-off distance = 9.5 A
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2.2. Conversion to LAMMPS Readable Format

Materials Studio outputs data in the .msi format, or alternately, .car and .mdf. The large-scale
atomistic massively parallel simulator (LAMMPS) was used as a source code to model the NIL
systems [40]. LAMMPS has a built-in package called “msi2lmp” that converts .car and .mdf files to
.data files. The molecular configuration used to conduct dynamics for simulations was stored in these
files. In order to conduct MD simulation of NIL processes, specific input files must be written to
produce the computational representation of all physical phenomena applied to the system. The scripts
govern the different phases that represent the MD-NIL process.

Modifying the indenter size and force causes noticeable changes in indentation depth (Ip),
penetration depth (Pp), recovery depth (Rp), and recovery percentage (Rp). Ip is defined as the amount
that a group of surface atoms moves from their initial position at the beginning of the simulation.
Only the z dimension of motion was considered for consistency purposes [15,41]. Pp differs slightly
from Ip because penetration is instantaneous while indentation occurs over the entire course of the
sinpatation, slroenEER®E g@ssociated with the molecules displaced, while penetration is identified by
the mold. Rp is the distance that a group of molecules travels from their lowest point of penetration
(Lp) to their fimall restingessittons RReoveeyyppezeatige ¢ K Bris sibp percentageramounhihatgrgupu
afoleldaslastradiotromhdihgivgitsinan dethedadenter s ko théhefindhadswatingpierations.

Rp iis defiined as follows:
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2.4. Molecular Dynamics Simulation

In this research, spherical indenters were used to deform the PS resist material. The indenters
were treated as a rigid body with no adhesion interaction with the PS resist. Figure 2 presents an
overview of the NIL process. The indenter was initiated at a fixed distance away from the resist
(Ficure 2a). After the temberature was rambped up to the T- of PS [42]1 the indenter was lowered into
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2.4. Molecular Dynamics Simulation

In this research, spherical indenters were used to deform the PS resist material. The indenters
were treated as a rigid body with no adhesion interaction with the PS resist. Figure 2 presents an
overview of the NIL process. The indenter was initiated at a fixed distance away from the resist
(Figure 2a). After the temperature was ramped up to the T of PS [42], the indenter was lowered into
the resist material. The indenter force, size, and initial position are parameters that govern movement
of the indenter. The indenter force was varied to evaluate its effect on the deformation behavior of the
polymer. Once the indenter had penetrated the resist, it continued its descent until it was held in place
for a fixed duration of time. Before the indenter was removed from the resist, the temperature of the
entire system was cooled down to room temperature (~300 K) [43].

The constant-energy, constant-volume ensemble (NVE) boundary conditions were applied to
simulations with a time step of 0.005 fs. The units assigned to the model were LAMMPS “real.”
The type of indenter used was modeled after a spherical mold. Figure 3 shows the actual temperature
distribution throughout the NIL process. The simulation had an initial stabilization phase of 50,000 time
steps. Temperature was ramped up to room temperature (298 K) over 15,000 time steps. Following
this initial temperature rise, temperature was ramped up above the T of PS (373 K) for 50,000 time
steps. In the next phase, temperature was kept constant at 373 K for 50,000 time steps. The indenter
was lowered into the resist material while holding temperature constant at 373 K for 60,500 time steps.
When the indenter reached the lowest point in the resist material, the temperature was cooled from 373
to 298 K for 50,000 time steps. After the system attained room temperature, the mold was retracted
from the PS resist. Finally, after mold removal, the system was allowed to stabilize for 80,000 time steps.

The OVITO visualization program was used to analyze molecular interactions [44]. Important
physical characteristics such as displacement and position of the PS molecules were used to make
inferences about indentation, penetration, and recovery behavior of the resist. The results were
post-processed using Microsoft Excel and MATLAB. OVITO was used to track the displacements of the
polymer chains. These output metrics were exported to MATLAB, and a custom code was developed
to track the molecules directly beneath the lowest point of the spherical mold and surface molecules on
the top of the resist material [45].

3. Results

Molecular dynamics model results were analyzed for different indenter sizes and applied forces.
Deformation behavior of PS substrate atoms for different phases of the NIL process revealed distinct
patterns depending on the abovementioned process variables. Figure 4 shows a 0.9 nm thick
cross-sectional view of PS resist at different phases of the nanoimprint lithography process. During
the onset of indentation, the surface atoms of the resist experience deformations for different indenter
sizes. The lowest point displays the lowest position of the indenter, consistent with the graphic in
Figure 4b. Figure 2 demonstrates how surface atoms were affected by the size of the indenter for
different applied forces. The final frame shows the resting position of the surface atoms at the end of
the simulation. The 40 A indenter with a 1 uN force displayed the deepest indentation and lowest
recovery of the PMMA resist as compared to other indenters (Figure 5c). Similar trends were observed
for the 30 A indenter, wherein an increase in indenter force resulted in higher plastic deformation and
consequently lower recovery of PMMA. The 40 and 30 A indenters both show consistent deformation
within the layers of the PS chains from the surface to subsurface regions. However, the 20 A indenter
had a localized indentation similar to a dimple-shaped asperity with minimal plastic deformation
(Figure 4a). This is evident from the localized deformation of the PS chains on the surface layers as
shown in Figure 4a for the 20 A indenter. Higher forces had a deeper imprint for 30 and 40 A indenters.
An increase in the indenter size and force resulted in higher compaction of the PS chains, as seen in
Figure 4. Indentation resulted in elongation of the polystyrene chains to accommodate the indenter
without breakage of the chains. Thus, differences in indenter sizes and applied forces have a profound
impact on the nanoimprinted profiles.
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3.1. Effect of Indenter Size and Applied Force on Indentation Depth

Indentation depth (Ip) is determined by the distance that a group of surface atoms moves from
their original position. In this case, Ip was graphed and analyzed over the span of the entire
simulation. An increase in force for each size of indenter resulted in faster descent into the material.
This was particularly observed for the 40 A indenter (Figure 5c), whereas a lower force of 100 nN was
adequate to cause deformation of the resist (Figure 5d). Higher indentation forces did not reveal
significant differences in deformation behavior for the 20 A indenter (Figure 5a). Figure 5d shows a
“trough-shaped” profile for lower force (100 nN) that transitions to a deeper profile for higher forces
(Figure 5e,f). Thus, higher forces and large diameter indenters had deeper indentations. The 40 A
indenter with 1 uN of force caused the surface molecules to descend to the lowest point as compared
to the other indenters. The surface molecules descended to the lowest position and recovered to a
plateau region within the void where permanent material deformation occurred. Varying indenter
size and keeping the force constant had a significant influence on the indentation profile versus
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indenter with 1 pNN of force caused the surface molecules to descend to the lowest point as compared
to the other indenters. The surface molecules descended to the lowest position and recovered to a
plateau region within the void where permanent material deformation occurred. Varying indenter size
and keeping the force constant had a significant influence on the indentation profile versus keeping
the indenter size constant and varying the force.

3.2. Effect on Penetration Depth

Penetration depth (Pp) is defined by the average distance between the lowest point of indentation
and the atoms of the top row of the resist. Penetration of each indenter size within PS can be correlated
to the hoop stresses generated by external applied forces. The semi hemispherical region of the mold
deforms the PS chains as they reach the Tg, thereby setting plastic deformation of the PS. Figure 6
shows that deeper penetration occurs in the substrate atoms as the force increases. For a small indenter
ditiicee Q20 3 ReBE R REVEHoN occurred as compared to larger indenters. However, smaller indentts
can g.(i,nk in the PS du% to higher stres}-s1 conctentra‘%qn based or% the lowego%rost—segltilon I\%e ion agd
s SeRe B hSS Sgﬁlelseslr}tlkﬂgﬂe; didnler forcest50 e f KR RO AR Ao N RS s
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