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Abstract: This research investigates deformation behavior of polystyrene (PS) as a thermoplastic resist
material for the thermal nanoimprint lithography (T-NIL) process. Molecular dynamics modeling
was conducted on a PS substrate with dimensions 58 × 65 × 61 Å that was imprinted with a rigid,
spherical indenter. The effect of indenter size, force, and imprinting duration were evaluated in terms
of indentation depth, penetration depth, recovery depth, and recovery percentage of the polymer.
The results show that the largest indenter, regardless of force, has the most significant impact on
deformation behavior. The 40 Å indenter with a 1 µN of force caused the surface molecules to descend
to the lowest point compared to the other indenters. An increase in indenter size resulted in higher
penetration depth, recovery depth, and recovery percentage. Higher durations of imprint cycle
(400 fs) resulted in plastic deformation of the PS material with minimal recovery (4 Å). The results
of this research lay the foundation for explaining the effect of several T-NIL process parameters on
virgin PS thermoplastic resist material.

Keywords: deformation mechanism; molecular dynamics; nanoimprint lithography; polystyrene;
spherical indenter

1. Introduction

Nanoimprint lithography (NIL) is a versatile high precision method to produce nanoscale features
by mechanical deformation of an ultra-thin film polymer resist [1]. NIL was developed as a high
throughput fabrication technique by Stephen Chou and his research team [2,3]. NIL has been applied
to several applications including biological [4], photonic, and semiconductor electronics [5].

Nanoimprint lithography is broadly classified as thermal nanoimprint lithography (T-NIL) and
ultra-violet lithography (UV-NIL). In the UV-NIL process, ultra-violet light is used to cure the polymer
resist material on a substrate to fabricate nanoscale features using a transparent patterning mold. In this
research, our group employs the T-NIL method, wherein a thermoplastic resist is applied onto a rigid
substrate and imprinted by a rigid mold [6]. Typically, thermoplastic polymers transform to a glassy
phase and aid deformation when heated up to their glass transition temperature (Tg). Different types of
mold materials and geometries are implemented depending on the features to be imprinted [7]. Molds
are fabricated using focused ion beam (FIB) technology from silicon and silicon dioxide materials.
The NIL cycle begins with heating the ultra-thin film thermoplastic polymer to its glass transition
temperature (Tg) on a substrate and inserting the mold to replicate its pattern. After complete insertion
of the mold, it is held within the polymer for a desired duration followed by cooling to ambient
temperature. Further, the mold is retracted from the polymer to retain its negative replica within the
ultra-thin film resist material.
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Nanoimprinting has been studied by various researchers from both experimental [4,8,9] and
computational modeling [6,10,11] standpoints. The three critical process parameters in NIL, which
include temperature, pressure, and imprint time, determine deformation behavior of the resist
materials [12]. However, additional dependent variables such as layer thickness of resist material,
geometry of indenter, aspect ratio of indenter, and application of an anti-stick layer also determine the
NIL results [13–15]. Though experimental findings shed light on macroscopic behavior of polymers,
the underlying physics and deformation mechanism needs further investigation. Atomistic models
provide a seamless bridge to explaining this relationship [16–19]. Molecular dynamics (MD) simulations
are vital in understanding surface interactions of materials at the atomistic scale. MD modeling can
assist in understanding material deformation behavior in the NIL process, which cannot be captured
by continuum-based models [20,21].

Molecular dynamics models of glassy atactic polystyrene under the influence of uniaxial mechanical
deformation have been simulated for both initial elastic and postyield behavior [22]. MD modeling
of bulk atactic polystyrene has been performed for chains up to 320 monomer units around Tg in a
broad pressure range from 0.1 to 1000 MPa [23]. The authors further studied the correlated segmental
dynamics in amorphous atactic polystyrene revealing Rouse behavior [24]. Eslami and Müller-Plathe
have explored the solubility of different gasses in polystyrene over a wide range of temperatures and
pressures [25]. Lie et al. have noted that the mechanical properties of polystyrene have been enhanced
by embedding single-walled carbon nanotubes with repeat unit arrangements [26]. Ayyagari et al.
have performed a molecular dynamics simulation study of atactic polystyrene (a-PS) and its dimer
2,4-diphenylpentane (DPP) using a previously derived quantum-chemistry-based explicit atom force
field [27]. The X-ray structure factor of a-PS obtained from simulations was found to be in good
agreement with the experiment. Yang et al. developed size and rate dependent finite deformation
elastic–plastic constitutive relations for thin films of polystyrene [28]. Different modes of deformation
were considered and homogenized to yield parametric representations of the constitutive model.
A hybrid method was employed to study the mechanical behavior of silica–polystyrene nanocomposites
(NCs) under uniaxial elongation [29]. Molecular dynamics and a finite element framework were used
to study the interphase effects in silica–polystyrene composites.

Research conducted by in Zharick et al. [30] in 2018 showed that PS could be utilized to create
nanostructures using electron beam lithography (EBL). Ma et al. [31] also demonstrated that a pattern
of 20-nm period line array and 15-nm dot array could be achieved for an EBL resist. The authors also
determined that PS is considerably more resistant to dry etching than PMMA. Thus, PS has been shown
to be a low-cost alternative to PMMA for producing nanoscale features. There exist many molecular
dynamics investigations of the chemical formulation of PS and studies pertaining to the mechanical
behavior of PS, but no research currently utilizes PS as a thermoplastic resist for the molecular dynamics
study of nanoimprint lithography. Our work investigates the interplay of different process parameters
on the deformation behavior of PS in nanoimprint lithography using molecular dynamics modeling.

2. Materials and Methods

2.1. Polymer Formation

PS was used as the resist material for the NIL process. The chemical formula for PS, and its
molecular structure of C8H8 [24,32], is shown in Figure 1. Initial polymer chains were created in
BIOVIA Materials Studio 6.0 [21,33]. One syndiotactic chain of PS was built and replicated to form
the polymeric chain. The number of monomers per chain was 20. This polymer chain was replicated
4 times in the horizontal plane. Further, these were replicated into 5 vertical stacks to form a total
polymer chain count of (4 × 5) = 20. Using a Materials Studio tool called Geometry Optimization,
the placement of the molecules was arranged in a Newton consistent fashion. After initial formulation
of the polymer chains, the entire system was relaxed similar to Kang et al. [34]. Relaxation was
performed to bring the system to a state of thermal equilibrium. After the initial set-up, energy in
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the system was minimized over the course of 50,000 time steps using the smart minimizer function
in Materials Studio. Graphical processing units (GPUs) from NVIDIA® Corporation (K40 and K20,
with 2880 and 2496 cores, respectively) were employed to execute the simulations [35].
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Figure 1. Molecular formulation of PS chains.

Materials Studio implements a smart minimizer that combines steepest descent and conjugant
gradient (cg) methods. The conjugant gradient is a general method to minimize a function f(x), where f
can be any function of points in an N-dimensional space. The conjugant gradient searches the optimal
design along the conjugate direction defined by:

nk =
−∇f

(
xk

)
‖∇f(xk)‖

+ βknk−1, (1)

where βk =
‖∇f(xk)‖
‖∇f(xk−1)‖

represents the scale factor, nk is search direction, xk is initial design, f
(
xk

)
is

functional value, and ∇f
(
xk

)
is gradient vector. The steepest descent is found using an algorithm that

continues in the direction, which will minimize the value of a function, given the current point.

x(k+1) = x(k) + tk∆x(k), (2)

where x(k+1) is a point that takes steps of certain length, tk, at direction ∆x(k) from the previous
point, x(k).

In addition to minimization parameters, specifications about the force field must be identified.
In this model, consistent valence force field (CVFF) force field was chosen. CVFF is applicable to many
polymer systems based on [36–39]. CVFF provides for intermolecular interactions that occur within a
polymeric MD simulation. The CVFF parameters for PS are shown in Table 1.

CVFF is parameterized by the following:
Bond stretching energy

EB =
∑nB

i=1
K(i)

B

(
r(i) − r(i)0

)2
, (3)

where r(i) is separation between the atoms constituting the i-th covalent bond, r(i)0 is equilibrium

separation, K(i)
B represents the angular stiffness of i-th covalent bond, and nB is the number of covalent

bonds.
Angle bending potential

EA =
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(
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(i)
0

)2
, (4)
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where θ(i) is the angle between the i-th pair of covalent bonds, with θ(i)0 being equilibrium. K(i)
A

represents the angular stiffness of i-th covalent bond, and nA is the number of covalent bonds.
Torsional rotational potential is given as:

ET =
∑nT

i=1
K(i)

T

[
1 + d(i)cosn(i)

(
∅(i)
−∅(i)

0

)2
]
, (5)

where ∅(i) is the torsion angle between the planes formed by the first-second and second-third adjacent
bond, with ∅(i)

0 being equilibrium. K(i)
T represents the torsional stiffness of the i-th covalent bond, d(i)

and n(i) being integers parameterized for specific atomic systems.
Van der Waals pair potential is defined as:

EPV =
1
2

∑N

i=1; j,i

Ai j

r12
i j

−
Bi j

r6
i j

, (6)

where ri j is the distance between the two atoms, and N is the total number of atoms in the system.
Ai j =

√
AiA j, Bi j =

√
BiB j, and A and B are parameters for systems represented by i and j.

Electrostatic pair potential is defined as:

EPC =
1

4πε0

∑N

i=1; j,i

[qiq j

ri j

]
, (7)

where r is the distance between two atoms i and j. qi and q j are the partial charges on the atoms i and j,
respectively. ε0 is the permittivity of free space. N is the number of atoms in the atomistic systems.

The full potential is given by summing all components:

E = EB + EA + ET + EPV + EPC , (8)

Table 1. Consistent valence force field (CVFF) parameters for PS.

Masses

Atom Atomic mass (amu)
C 12.01115
H 1.00797
Bond parameters
Bond type r0 (Å) KB (Kcal mole−1)
H-C 1.105 340.6175
C-C 1.34 480.00
Angle parameters
Angle type θ0 (degrees) KA (Kcal mole−1)
H-C-H 106.4 39.5
H-C-C 110.0 44.4
C-C-C 110.5 46.6
Torsion parameters
Angle type φ0 (degrees) n KA (Kcal mole−1)
H-C-C-C 0 3 0.1581
Van der Waals parameters
Atom type A B
C 0.389999952 3.875409636
H 0.38000011 2.4499714540
Cut-off distance = 9.5 Å
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2.2. Conversion to LAMMPS Readable Format

Materials Studio outputs data in the .msi format, or alternately, .car and .mdf. The large-scale
atomistic massively parallel simulator (LAMMPS) was used as a source code to model the NIL
systems [40]. LAMMPS has a built-in package called “msi2lmp” that converts .car and .mdf files to
.data files. The molecular configuration used to conduct dynamics for simulations was stored in these
files. In order to conduct MD simulation of NIL processes, specific input files must be written to
produce the computational representation of all physical phenomena applied to the system. The scripts
govern the different phases that represent the MD-NIL process.

Modifying the indenter size and force causes noticeable changes in indentation depth (ID),
penetration depth (PD), recovery depth (RD), and recovery percentage (RP). ID is defined as the amount
that a group of surface atoms moves from their initial position at the beginning of the simulation.
Only the z dimension of motion was considered for consistency purposes [15,41]. PD differs slightly
from ID because penetration is instantaneous while indentation occurs over the entire course of the
simulation. Indentation is associated with the molecules displaced, while penetration is identified by
the mold. RD is the distance that a group of molecules travels from their lowest point of penetration
(LP) to their final resting positions. Recovery percentage (RP) is the percentage amount that a group of
molecules travels from their position at the indenter’s LP to their final resting positions.

RP is defined as follows:

RP =
PD − LP

PD
× 100, (9)

where PD and RD are penetration depth and recovery depth, respectively. Figure 2a shows the
schematic of the nanoimprint lithography process for polystyrene. Herein the spherical indenter causes
plastic deformation of the PS, which results in a permanent set of indenters in the substrate. Figure 2b
depicts the comparative cross-section area when comparing cylindrical versus spherical indenters.
The hoop stress of both the cylindrical and spherical indenters would exert a force circumferentially
(perpendicular both to the axis and radius of the object) in both directions on the polystyrene chains.
However, conventional NIL molds with a square profile or linear grating patterns will exert force
perpendicular to the mold loading direction. Thus, the stress distribution pattern and resultant
polymer deformation behavior are closely dependent on the NIL mold geometry. In this research,
we investigate the deformation behavior of the spherical NIL mold based on variations in indenter size
and applied force.
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Figure 2. (a) Schematic of overall nanoimprint lithography (NIL) process for PS. (b) Cylindrical versus
spherical indenter.

2.3. Importance of Glass Transition Temperature

Choosing a suitable glass transition temperature (Tg) for the polymers is important to produce
high quality imprints. Tg is identified by plotting the specific volume of the polymer as a function of
temperature. When the slope changes, thermal transitions occur [42]. The literature [42] states that the
Tg of PS can range from 323–373 K. Figure 3 shows that the onset of thermal transitions appeared at
about 360 K and continued through about 380 K. This preliminary simulation was essential to be able
to determine the Tg value for simulations.
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2.4. Molecular Dynamics Simulation

In this research, spherical indenters were used to deform the PS resist material. The indenters
were treated as a rigid body with no adhesion interaction with the PS resist. Figure 2 presents an
overview of the NIL process. The indenter was initiated at a fixed distance away from the resist
(Figure 2a). After the temperature was ramped up to the Tg of PS [42], the indenter was lowered into
the resist material. The indenter force, size, and initial position are parameters that govern movement
of the indenter. The indenter force was varied to evaluate its effect on the deformation behavior of the
polymer. Once the indenter had penetrated the resist, it continued its descent until it was held in place
for a fixed duration of time. Before the indenter was removed from the resist, the temperature of the
entire system was cooled down to room temperature (~300 K) [43].

The constant-energy, constant-volume ensemble (NVE) boundary conditions were applied to
simulations with a time step of 0.005 fs. The units assigned to the model were LAMMPS “real.”
The type of indenter used was modeled after a spherical mold. Figure 3 shows the actual temperature
distribution throughout the NIL process. The simulation had an initial stabilization phase of 50,000 time
steps. Temperature was ramped up to room temperature (298 K) over 15,000 time steps. Following
this initial temperature rise, temperature was ramped up above the Tg of PS (373 K) for 50,000 time
steps. In the next phase, temperature was kept constant at 373 K for 50,000 time steps. The indenter
was lowered into the resist material while holding temperature constant at 373 K for 60,500 time steps.
When the indenter reached the lowest point in the resist material, the temperature was cooled from 373
to 298 K for 50,000 time steps. After the system attained room temperature, the mold was retracted
from the PS resist. Finally, after mold removal, the system was allowed to stabilize for 80,000 time steps.

The OVITO visualization program was used to analyze molecular interactions [44]. Important
physical characteristics such as displacement and position of the PS molecules were used to make
inferences about indentation, penetration, and recovery behavior of the resist. The results were
post-processed using Microsoft Excel and MATLAB. OVITO was used to track the displacements of the
polymer chains. These output metrics were exported to MATLAB, and a custom code was developed
to track the molecules directly beneath the lowest point of the spherical mold and surface molecules on
the top of the resist material [45].

3. Results

Molecular dynamics model results were analyzed for different indenter sizes and applied forces.
Deformation behavior of PS substrate atoms for different phases of the NIL process revealed distinct
patterns depending on the abovementioned process variables. Figure 4 shows a 0.9 nm thick
cross-sectional view of PS resist at different phases of the nanoimprint lithography process. During
the onset of indentation, the surface atoms of the resist experience deformations for different indenter
sizes. The lowest point displays the lowest position of the indenter, consistent with the graphic in
Figure 4b. Figure 2 demonstrates how surface atoms were affected by the size of the indenter for
different applied forces. The final frame shows the resting position of the surface atoms at the end of
the simulation. The 40 Å indenter with a 1 µN force displayed the deepest indentation and lowest
recovery of the PMMA resist as compared to other indenters (Figure 5c). Similar trends were observed
for the 30 Å indenter, wherein an increase in indenter force resulted in higher plastic deformation and
consequently lower recovery of PMMA. The 40 and 30 Å indenters both show consistent deformation
within the layers of the PS chains from the surface to subsurface regions. However, the 20 Å indenter
had a localized indentation similar to a dimple-shaped asperity with minimal plastic deformation
(Figure 4a). This is evident from the localized deformation of the PS chains on the surface layers as
shown in Figure 4a for the 20 Å indenter. Higher forces had a deeper imprint for 30 and 40 Å indenters.
An increase in the indenter size and force resulted in higher compaction of the PS chains, as seen in
Figure 4. Indentation resulted in elongation of the polystyrene chains to accommodate the indenter
without breakage of the chains. Thus, differences in indenter sizes and applied forces have a profound
impact on the nanoimprinted profiles.
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3.1. Effect of Indenter Size and Applied Force on Indentation Depth

Indentation depth (ID) is determined by the distance that a group of surface atoms moves
from their original position. In this case, ID was graphed and analyzed over the span of the entire
simulation. An increase in force for each size of indenter resulted in faster descent into the material.
This was particularly observed for the 40 Å indenter (Figure 5c), whereas a lower force of 100 nN
was adequate to cause deformation of the resist (Figure 5d). Higher indentation forces did not reveal
significant differences in deformation behavior for the 20 Å indenter (Figure 5a). Figure 5d shows a
“trough-shaped” profile for lower force (100 nN) that transitions to a deeper profile for higher forces
(Figure 5e,f). Thus, higher forces and large diameter indenters had deeper indentations. The 40 Å
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indenter with 1 µN of force caused the surface molecules to descend to the lowest point as compared
to the other indenters. The surface molecules descended to the lowest position and recovered to a
plateau region within the void where permanent material deformation occurred. Varying indenter size
and keeping the force constant had a significant influence on the indentation profile versus keeping
the indenter size constant and varying the force.

3.2. Effect on Penetration Depth

Penetration depth (PD) is defined by the average distance between the lowest point of indentation
and the atoms of the top row of the resist. Penetration of each indenter size within PS can be correlated
to the hoop stresses generated by external applied forces. The semi hemispherical region of the mold
deforms the PS chains as they reach the Tg, thereby setting plastic deformation of the PS. Figure 6
shows that deeper penetration occurs in the substrate atoms as the force increases. For a small indenter
diameter (20 Å), less penetration occurred as compared to larger indenters. However, smaller indenters
can sink in the PS due to higher stress concentration based on the lower cross-section region and
subsequent higher hoop stress. Higher indenter forces (500 nN and 1 µN) showed marginal differences
in penetration behavior. Thus, a threshold indentation force is required to form a permanent indentation
in the polymer. Larger force and larger size indenters equaled more penetration and vice versa.
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3.3. Recovery Behavior

Recovery depth (RD) is the distance a group of atoms traverses from their lowest point of
indentation to their final resting position. Figure 7 shows that as larger external forces are applied to
the indenter, recovery depth increases. Similarly, larger indenter sizes had higher recovery depths,
irrespective of the indenter force. Large force and small size lead to much less RD than indenters
with small force and large size. The highest recovery depth was observed for small force and large
size indenters and vice versa. This is because lower forces enable elastic recovery of the polymeric
chains of PS with limited plastic deformation. In addition, larger indenter sizes displace more PS
chains causing a permanent set. Polystyrene displays a localized yielding behavior called crazing in
the region of maximum deformation. Localized regions of yielding display an increase in volume
(dilatation) through formation of micro-cracks, which are bridged by polymeric chains. Crazing and
stress whitening are the typical deformation mechanism for polystyrene. This phenomenon occurs in
regions of high dilatational stress around the periphery of the spherical indenter. The above-described
results provide guidelines to design NIL molds and also estimate deformation behavior of PS.
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3.4. Recovery Percentage

Recovery percentage is an internally defined element based on previously determined parameters.
As the indentation force increased, recovery percentage increased. Recovery percentage (RP) is the
percentage amount that a group of molecules travels from their position at the indenter’s lowest
point of penetration (LP) to their final resting positions. Figure 8 shows that as the indentation force
increased, recovery percentage increased. Similarly, an increase in indenter size resulted in higher
recovery percentage. The lowest recovery percentage was observed for small size and large force
indentation. In general, smaller indenter sizes result in the lowest RD and RP. The resist experienced
similar amounts of penetration and recovery irrespective of applied force. Thus, for all the applied
forces an increase in indenter size resulted in higher penetration depth, recovery depth, and recovery
percentage. The 20 Å indenter penetrated the least amount into the resist and had the lowest amount
of recovery. The 40 Å indenter had around 70% recovery percentage, especially for higher forces.
All three indenter sizes showed similar recovery and penetration behavior regardless of the applied
force. However, the shear banding deformation phenomena in polystyrene is highly temperature and
rate dependent.
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3.5. Effect of Indenter Size and Indentation Hold Time

The indenter size had a significant impact on material deformation of the PS resist. As the size
of the indenter increased, surface molecules experienced permanent plastic deformation. The effect
of indentation time on deformation behavior was evaluated for the 30 Å indenter with an applied
force of 500 nN. Figure 9 shows that an increase in indentation hold time results in permanent plastic
deformation of the substrate. The original indentation hold time for all simulations was 175 fs. Herein,
the polymer chains are able to recover to higher positions due to the elastic component. However,
an increase in the indentation hold time to 400 fs resulted in lower recovery of the polymeric chains due
to permanent plastic deformation. These findings have implications for determining the indentation
hold time, which in turn can affect imprint quality for different sizes and applied forces to the indenters.
Our results are consistent with findings in literature [31], wherein polystyrene displays shear banding
and yield behavior in compression mode. The spherical indenter causes shear banding, which involves
localized orientation of the polystyrene. Thus, an optimal hold time exists for each mold geometry,
size, and material type.
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4. Conclusions

This research explains the deformation behavior of polystyrene (PS) in nanoimprint lithography
based on variations in process parameters using molecular dynamics modeling. Viscoelastic behavior
of PS was modeled using consistent valence force field. Different indenter sizes, forces, and imprinting
durations were varied to evaluate their effect on nanoimprinting of PS. The molecular mechanism
of nanoimprinting was characterized with respect to indentation depth, penetration depth, recovery
depth, and recovery percentage of the polymer. For larger indenter sizes, the polymer material
experienced a deeper indentation profile, more penetration, and high recovery rates. The 40 Å indenter
with a 1 µN of force caused surface molecules to descend to the lowest point compared to the other
indenters. Thus, varying indenter force and size provides insight into deformation behavior and
thereby potential application of PS. An increase in indentation hold time beyond 250 fs resulted in
higher plastic deformation of the PS. The molecular model developed in this research will be expanded
to include nanoimprint lithography of other polymer composites.
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