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Abstract

Motivation: As experimental efforts are costly and time consuming, computational characterization of enzyme capa-
bilities is an attractive alternative. We present and evaluate several machine-learning models to predict which of 983
distinct enzymes, as defined via the Enzyme Commission (EC) numbers, are likely to interact with a given query mol-
ecule. Our data consists of enzyme-substrate interactions from the BRENDA database. Some interactions are attrib-
uted to natural selection and involve the enzyme’s natural substrates. The majority of the interactions however in-
volve non-natural substrates, thus reflecting promiscuous enzymatic activities.

Results: We frame this ‘enzyme promiscuity prediction’ problem as a multi-label classification task. We maximally
utilize inhibitor and unlabeled data to train prediction models that can take advantage of known hierarchical relation-
ships between enzyme classes. We report that a hierarchical multi-label neural network, EPP-HMCNF, is the best
model for solving this problem, outperforming k-nearest neighbors similarity-based and other machine-learning models.
We show that inhibitor information during training consistently improves predictive power, particularly for EPP-HMCNF.
We also show that all promiscuity prediction models perform worse under a realistic data split when compared to a ran-
dom data split, and when evaluating performance on non-natural substrates compared to natural substrates.

Availability and implementation: We provide Python code and data for EPP-HMCNF and other models in a reposi-
tory termed EPP (Enzyme Promiscuity Prediction) at https://github.com/hassounlab/EPP.

Contact: soha@cs.tufts.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Characterizing activities of enzymes plays a critical role in advanc-
ing biological and biomedical applications. While enzymes are trad-
itionally assumed specific, acting on a particular molecule, many
enzymes, if not all, have promiscuous activities acting on ‘non-nat-
ural’ substrates, ones other than those that the enzyme evolved to
transform (D’Ari and Casadesús, 1998; Khersonsky et al., 2006;
Khersonsky and Tawfik, 2010; Nobeli et al., 2009). Despite efforts
in understanding types of promiscuity (substrate versus catalytic
promiscuity) and cataloguing enzyme activities on various substrates
in databases, comprehensive characterization of enzyme promiscuity
remains elusive.

Several applications drive the development of computational
tools to analyze enzyme promiscuity. The prediction of promiscuous
products of Cytochromes P450 is enabled by techniques such as
Metaprint2D-react (Adams, 2010), and PROXIMAL (Yousofshahi
et al., 2015). Predicting products of metabolism, e.g. the MINEs
database (Jeffryes et al., 2015) and BioTransformer (Djoumbou-

Feunang et al., 2019), facilitates suggesting chemical identities for
compounds collected through untargeted metabolomics. The ap-
proach proposed by PROXIMAL (Yousofshahi et al., 2015) was
extended to enzymes other than Cytochromes P450 enzymes to fa-
cilitate annotation of untargeted metabolomics (Hassanpour et al.,
2020) and for suggesting enzymatic activities responsible for cata-
logued products in metabolomics databases (Amin et al., 2019a, b).
Prediction of putative enzymatic links, e.g. Selenzyme (Carbonell
et al., 2018), XTMS (Carbonell et al., 2014) and ELP (Jiang et al.,
2020), allows the construction of novel biosynthesis or biodegrad-
ation pathways. The study of enzyme promiscuity also elucidates
the evolution of metabolic networks (Carbonell et al., 2011).
Further, enzyme promiscuity can be tuned and exploited for novel
protein engineering applications (Chen and Arnold, 2020).

We investigate in this paper data-driven approaches to predict
enzyme classes, as defined via the Enzyme Commission (EC) num-
bers, that are likely to interact with a given query molecule. One ap-
proach is based on k-nearest neighbor (k-NN) similarity, where
fingerprint similarity is calculated between the query molecule and
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the ‘natural’ (native) substrates that are known to be catalyzed by
the enzyme under natural selection and under cellular physiological
conditions. The remaining four approaches are novel adaptations of
several machine-learning models that frame the problem as multi-
label classification, where each predicted label corresponds to an EC
number. Each model has an architecture that embeds a different
information-sharing paradigm across enzymes. Some models exploit
hierarchical relationships encoded in the EC Nomenclature, which
provides a tree-structured hierarchical classification of enzymes.

While there are works that predict enzymatic reaction similar-
ities (Carbonell and Faulon, 2010; Rahman et al., 2014), or use
sequences to predict protein function in terms of Gene Ontology
(GO) terms (Feng et al., 2018; Kulmanov et al., 2018; Roy et al.,
2012) or EC numbers (Concu and Cordeiro, 2019; Dalkiran et al.,
2018; Kumar and Choudhary, 2012; Li et al., 2018; Ryu et al.,
2019), or to predict the likelihood of a sequence catalyzing a reac-
tion or to quantify the affinity of sequences on substrates (Mellor
et al., 2016), the problem solved herein predicts enzyme classes that
act promiscuously on a query molecule. To train our models, we
utilize data from the BRENDA database (Schomburg et al., 2017),
which lists natural and non-natural substrates interreacting with the
catalogued enzyme classes. The listed compounds for each enzyme
are predominantly non-natural substrates. As we train our models
using this dataset of predominantly promiscuous substrate-enzyme
interacting pairs, we refer to this problem as the ‘enzyme promiscuity
prediction’ problem. Solving the enzyme promiscuity prediction prob-
lem efficiently as proposed herein allows for the quick exploration of
enzyme classes that act on molecules. These findings can be further
refined by identifying specific sequences that interact with the mole-
cules and that are compatible with the host. Our best-in-class tech-
nique, EPP-HMCNF, can therefore be integrated with a variety of
tools to explore biotransformation routes (Moura et al., 2013), assess
solubility within the host (Amin et al., 2019a,b), or determine the like-
lihood of an enzyme sequence acting on a molecule borrowing from
drug-target interaction prediction techniques (Chen et al., 2018).

A major challenge when addressing this problem is the lack of
available data with sufficiently representative examples of negative
cases (non-interacting pairs). The BRENDA database provides cases
of positive enzyme-molecule interactions. The BRENDA database also
lists inhibitor molecules, those that bind with the enzyme (similar to
positive cases) but where the catalytic activity is inhibited. Inhibitors
thus do not uniformly represent the negative set and cannot be utilized
as such. To address the lack of negative data (non-interacting enzyme-
substrate pairs), we select molecules from the BRENDA database that
are not in the enzyme’s positive nor inhibitor lists, referred to herein as
unlabeled molecules, and treat them as negatives during training and
testing. This assumption is reasonable as negative interactions far out-
number positive interactions in nature. Importantly, to make judicious
use of this unlabeled data during training, we apply a probabilistic
weight to each such example to reflect our confidence in the negative
label, deriving the weight from the molecule’s structural similarity
score to the enzyme’s most similar positive example.

Our results show that the best model for predicting enzyme prom-
iscuity is EPP-HMCNF, a model based on Hierarchical Multi-label
Classification Network (known as HMCN-F, where F indicates a
feed-forward architecture) (Wehrmann et al., 2018). EPP-HMCNF
provides information sharing along the EC hierarchy and across
enzymes at each level of the hierarchy. We investigate the perform-
ance of EPP-HMCNF against similarity-based methods, finding that,
while similarity is a competitive baseline, EPP-HMCNF delivers better
performance and stands to offer further improvement as more labeled
data becomes available. The main contributions of this work are:

• We develop and evaluate machine-learning classifiers with a

range of different patterns of information sharing across enzymes
• We demonstrate the effective utilization of a large dataset of pro-

miscuous interactions. We provide predictions for 983 enzyme

classes, a huge increase over previous efforts that made predictions

for four specific enzymes (Pertusi et al., 2017) using SVMs and ac-

tive learning.

• While substrate similarity is widely used for determining promis-

cuity in metabolomic engineering practice (Pertusi et al., 2015),

there is currently no large-scale systematic evaluation of the ef-

fectiveness of similarity in predicting enzyme promiscuity across

enzymes or enzyme classes. Further, prior works have shown no con-

sensus on a similarity level that deems a query molecule sufficiently

similar to a native substrate. Our work offers such a study.

Importantly, our work shows that machine learning outperforms

similarity-based methods on several metrics including R-Precision (R-

PREC), the metric that is most significant from a user’s perspective as

it best correlates with downstream usefulness for an experimentalist.
• Our experiments show that inhibitors are hard negative exam-

ples and that including inhibitor information during training

consistently improves predictive power, particularly for EPP-

HMCNF.
• Our results show that all promiscuity prediction models perform

worse under a realistic data split (Martin et al., 2017), when

compared with a random data split, and when evaluating per-

formance on non-natural substrates compared to natural

substrates.

2 Materials and methods

2.1 Dataset
All positive and inhibitor molecules were collected from BRENDA,
excluding co-factors because these metabolites are common among
many enzymatic reactions. The Morgan fingerprint, with a radius of
2 and 2048 binary features (Rogers and Hahn, 2010), is used to rep-
resent each molecule. Compounds in BRENDA that could not be
mapped to a specific molecular structure were discarded. By the end
of the conversion process from names in BRENDA to Morgan fin-
gerprints, we identified 25 872 positive pairings between molecules
and EC numbers, based on 8295 unique molecules. Within this
same set of molecules, we also identified 13 087 inhibiting interac-
tions, based on 2165 unique inhibitors. Some enzymes had limited
positive data. We focused on enzymes that had a minimum of 10
positive examples, so there would be enough data for both training
and assessment. Using these inclusion criteria, our dataset consisted
of 983 distinct EC numbers, of which 730 had at least one known
inhibitor. All 983 EC numbers came from top-level classes 1-6, as
we excluded the recently established top-level class 7 due to insuffi-
cient data. Of all positive pairings, only approximately 13% are
associated with an EC class paired with a natural substrate. These
pairings are associated with in vivo metabolism as specified under
each EC Number’s ‘Natural Substrates Products’ section in the
BRENDA database. The ratio of natural substrate to total interact-
ing positive molecules, listed under the ‘Substrates/Products’ section,
varied per EC Number (Fig. 1).

For every EC number, each of the 8295 molecules that were not
known to be positive nor inhibitors are considered unlabeled in the
BRENDA database. Per EC number, these unlabeled molecules were
treated as negative examples during training, as were the inhibitors.
Across enzymes, the ratio of positive-to-all molecules was on aver-
age 0.0032, with a standard deviation of 0.0044. The 10th percent-
ile of this distribution was 0.0013, while the 90th was 0.0057.

Since inhibitors bind with enzymes, they might be considered
‘closer’ to the positive molecules and thus be more difficult (harder)
to classify. In machine-learning applications, including such ‘hard
negative’ examples can fine-tune the decision boundary between
positives and negatives (e.g. Radenovi�c et al., 2016). We validated
that inhibitor molecules across enzymes are, on average, more simi-
lar (based on Tanimoto score) to their respective positive molecules
than a similar-size randomly selected set of unlabeled molecules
(Supplementary File S1, Supplementary Section S1, Supplementary
Fig. S1), thus confirming their status as hard negative examples.

Data was further organized in a tree hierarchy to match the
structure of the EC nomenclature. There were 6 nodes at the class
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level (top of hierarchy), 50 nodes at sub-class level, 146 nodes at
sub-subclass level and 983 leaf nodes (distinct EC numbers). At all
non-leaf nodes in the hierarchy, positive examples consisted of the
union of all positive examples at any child. Similarly, inhibitor (hard
negative) data consisted of inhibitors at any child unless already
labeled positive due to a positive label from any other child node. At
each node, any molecule that is not positive nor an inhibitor is con-
sidered unlabeled. In the cases in which a molecule’s label is con-
flicted between positive and inhibitor, which may occur at internal
nodes of the hierarchy, only the positive label is assigned.

2.2 Models
We implemented one model based on fingerprint similarity and four
machine-learning models. The machine-learning models (Supplementary
Fig. S2) are presented in the order corresponding to the amount of
information sharing they allow across enzymes: no sharing (predic-
tions for each leaf node are developed independently); top-down
hierarchical sharing (each leaf uses learned representations from
parents); horizontal sharing (each leaf uses learned representations
common across all enzymes); and horizontal-plus-hierarchical shar-
ing (each leaf predictor uses shared representations, as well as repre-
sentations common to leaves that share a parent).

2.2.1 k-NN similarity (no sharing)

Each EC Number-molecule pair in the test set was scored by com-
puting the mean similarity between the test molecule and the k most
similar positive molecules for the relevant EC Number in the train-
ing set. Similarity is evaluated via the Tanimoto score (Bajusz et al.,
2015) on the Morgan fingerprints. Hyperparameter k was individu-
ally optimized for each EC Number via 3-fold cross-validation grid
search on the training set, selecting the value with the best average
precision score. The search considered the following values of k: 1,
3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and ‘all’, where ‘all’ indicates that
the mean similarity was computed between the test molecule and all
positive molecules in the training set. A value of k¼1 corresponds
to computing the maximum similarity, while the ‘all’ value corre-
sponds to computing the mean similarity.

2.2.2 No-share RF (no sharing)

An independent Random Forest (RF) binary classifier (Breiman,
2001) was built for every leaf in the tree (distinct EC number). Each
RF classifier was composed of 50 decision trees. At each internal de-
cision node, a decision tree was trained to optimize the Gini metric
while allowing for the selection of a random subset of features of
size proportional to the square root of the number of features.
During training, we selected model complexity hyperparameters
(the minimum size of any tree’s terminal node) by performing a 5-
fold cross-validation grid search. The grid search considered min-
imum terminal node sizes of 1, 3, 5, 10, 20, 50 and 100, selecting
the value with best average precision score.

2.2.3 Hierarchical RF (greedy top-down hierarchical sharing)

This model (Fig. 2) uses a tree-like architecture that mimics the EC
nomenclature hierarchy. A hierarchical cascade of random forests
(RFs) was trained, with one RF predictor at each internal node and
leaf node of the tree. Each of the six top-level enzyme categories had
a root predictor trained to produce probabilistic predictions given
data and binary labels. Then, an RF regressor at each lower-level
node was trained to predict the residual error of the estimator at the
parent node. The overall probabilistic prediction at a node is thus
formed by adding its prediction to those from all preceding levels
(thresholding to keep a valid probability in the unit interval). The
hyperparameters of the RF predictors and RF regressors were
selected in the same way as in No-Share RF.

2.2.4 Multi-label NN (horizontal sharing)

This model consists of a fully connected, Multi-Label Neural
Network (NN) (Tsoumakas and Katakis, 2007). To make promiscu-
ity predictions, each molecule’s input features are fed through a NN
with four hidden layers to obtain a learned representation common
to all enzymes, and then a final output layer with sigmoid activation
produces enzyme-specific probabilistic predictions given this com-
mon representation. In this way, all enzymes share a common fea-
ture transformation trained to improve performance across all
enzymes. However, unlike Hierarchical RF, there is no specific
usage of hierarchical information that would prioritize sharing be-
tween enzymes of the same class, sub-class or sub-sub-class.

Each layer is fully connected with ReLu activation followed by
batch normalization and dropout. Residual connections are present
between the hidden layers. Binary cross entropy was used as loss.
We used the Adam optimizer with a batch size of 12. The learning
rate was manually set to 0.0002, and the model converged after 70
epochs. We cross-validated our model using random search
(Bergstra and Bengio, 2012) across 12 pairs of dropout and layer
size values that were sampled from uniform distributions between
0.01 and 0.6, and between 128 and 384, respectively. We selected
values that maximized the average precision score.

2.2.5 EPP-HMCNF (horizontal plus hierarchical sharing)

We adapt HMCN-F, a state-of-the-art NN architecture for hierarch-
ical multi-label classification (Wehrmann et al., 2018) for our task.
HMCN-F consists of one global predictor, which predicts all labels

Fig. 1. Distribution of per EC number percentage of natural compounds to all com-

pounds in our dataset

Fig. 2. Partial structure of the Hierarchical RF. RF classifiers are trained at the top-

level nodes, while RF regressors are trained at the lower-level nodes. Example calcu-

lations of probabilistic predictions are shown at some nodes
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in the hierarchy (producing a probability for each internal node and
leaf node), and local predictors for each level in the hierarchy, which
predicts labels only for that specific level. The global and local pre-
dictions are then merged into a final prediction. In our adaptation
(Fig. 3), our model EPP-HMCNF was implemented with four global
hidden layers and four local hidden layers, one dedicated to each en-
zyme class. Each layer is fully connected with ReLU activation fol-
lowed by batch normalization and dropout. Probabilistic
predictions are made via fully connected output layers with sigmoid
activation. Residual connections are present between the hidden
layers in the global predictor. EPP-HMCNF was trained similarly to
the Multi-Label NN, for 70 epochs. The final prediction is obtained
by equally weighting the predictions from the global and local pre-
dictors. Information is therefore shared across enzymes both in the
horizontal fashion of the Multi-Label NN as well as in the vertical
fashion across the EC hierarchy, as in Hierarchical RF. Unlike
Hierarchical RF, however, training is not greedy across the hier-
archy, but happens simultaneously at all levels.

2.3 Confidence weighting of unlabeled data
Providing a per-example weight (a scalar positive value) to make
some examples more important during training is a common tech-
nique to overcome label balance issues or to account for unlabeled
data that may unknowingly contain positive examples (Liu et al.,
2003). We assign an overall weight wm;e to each molecule-enzyme
pair ðm; eÞ that is the product of a scalar similarity weight and a sca-
lar label weight:

wm;e ¼ SimWm;e�LabelWm;e

The similarity weight SimWm;e is used to denote our confidence
in the provided positive or negative label. This value will be set to 1
for positive examples and inhibitors (since we are confident in their
negative label). However, when a molecule is unlabeled for an en-
zyme in BRENDA, we assign it a negative label with a similarity
weight between 0 and 1. This value is set to one minus the maximum
similarity between the unlabeled molecule and all molecules associ-
ated with the corresponding enzyme in the positive set. Similarity is
scored using the Tanimoto score for two molecular fingerprints.

To overcome the challenge of negative labels far outnumbering
positive examples, all examples are given a label weight LabelWm;e,
which is the same for all examples of the same label. The label
weight is set to 1.0 for positive molecule-enzyme interactions. For
negative examples, it is set as:

LabelWm;e ¼
NumPositivem;eP

m SimWm;e

This weight enforces that the aggregate weight of samples in the
negative class is equal to that of the positive class for each enzyme,
thus balancing the influence of each binary class during training.

We provide these weights when training RF predictors using the
‘sample_weight’ keyword argument in Scikit-Learn (Pedregosa
et al., 2011). For the NNs, we scaled the contribution of each

molecule-enzyme to the loss function with its relative weight. If ŷm;e

is the predicted probability and y the true binary label, then:

loss ¼
X

m;e

wm;e�binaryCrossEntropyðym;e; ŷm;eÞ

While we use weighted datasets for training to obtain more ro-
bust models, during model evaluation all examples are unweighted.

3 Results

We first trained and evaluated our models under the classic random
train-test split. Using confidence weighting of unlabeled data, we
trained the No-Share RF, Hierarchical RF, Multi-Label NN and
HMCN-F. We then evaluated the models, together with k-NN
Similarity. We compared our methods against a baseline ‘Random’
model, where every enzyme-molecule pair in the test set is assigned a
likelihood of interaction value that is selected from a uniform distri-
bution between 0 and 1.

We perform our experiments on several test sets. The ‘Full Test
Set’ comprises all enzyme-molecule paired interactions that were
saved for testing, corresponding to 20% of the total interactions col-
lected from BRENDA. The ‘Inhibitor Test Set’ includes only the
positive and inhibitor interactions, and none of the unlabeled ones,
for each enzyme. The positive and inhibitor interactions were
selected from the Full Test Set. Only 885 out of the 983 EC
Numbers presented inhibitors, and only 671 EC Numbers presented
inhibitor interactions among the data saved for testing. Therefore,
only these 671 were considered for testing. The ‘Unlabeled Test Set’
contains positive and unlabeled examples, but excludes known
inhibitors, in the same positive-to-total ratio as the Inhibitor Test
Set. For all test sets, unlabeled molecules are uniformly sampled
within each EC Number’s set. To generate a more competitive and
realistic testing scenario, we split the molecular data into training
and testing under a realistic split (Martin et al., 2017), and repli-
cated some experiments under this split.

We measured the performance of our models via three metrics:
Mean Area Under the Receiver Operating Characteristic (AUROC),
Mean Average Precision (AP) and Mean R-Precision (R-PREC)
(Manning, 2009). Each overall summary score is respectively com-
puted by averaging the per-EC-Number scores across all EC
Numbers in the corresponding dataset. These metrics were selected
as they do not require thresholding and instead consider the ranking
of positive examples relative to the unknowns in the test data. This
is particularly well suited for our purposes, since the similarity mod-
els do not return results that can be interpreted as probabilities, and
thus thresholding would have required ad hoc and likely unjustifi-
able assumptions. To compute R-PREC, we are given a list of candi-
date molecules as input with knowledge that some number R of
them is truly relevant, and then we compute the precision among the
R top-scoring candidates as ranked by the predictor. A model with
high R-PREC has a high probability of ranking positive molecules
ahead of unknown molecules. The top-ranked molecules are natur-
ally the first ones that the user will consider for experimental testing.
Therefore, a model with high R-PREC on a test set is most likely to
be useful for end users.

3.1 Comparing the performance of models trained

without known inhibitors
To train without including inhibitor information, inhibitors are
treated as unlabeled molecules and are assigned similarity-based
confidence weights. Figure 4 A–C shows a comparison of all models
for each metric. Each score is reported with 61 standard deviation
across all EC Numbers. The results show that k-NN Similarity is a
strong baseline for our classification task, thus confirming that sub-
strate similarity is a valuable tool to predict promiscuity. However,
similarity is outperformed by most machine-learning techniques.
Increasing information-sharing across EC Numbers improves per-
formance, with EPP-HMCNF showing the best mean scores across
AP and R-PREC and tying with Multi-Label NN in terms of

Fig. 3. EPP-HMCNF Structure. Global predictors are for each node in the hierarchy.

Local predictors are for each level of the hierarchy. Junctions (circles with a dot in-

side) denote concatenation
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AUROC. Hierarchical RF performs worse than No-Share RF with
regards to all metrics. The greedy training of Hierarchical RF may
limit its ability to fix any mistakes made at higher levels of the hier-
archy. Notably, the 61 standard deviation intervals are overlapping
across all models, indicating that the difference in performance
across models is smaller than the difference across ECs.

We also measure the relative performance of our models by
ranking them on each of the 983 binary classification tasks (one per
EC Number) and then summarize the results by computing the aver-
age rank. Whenever two or more models tie in rank on a particular
EC Number, we assign to all disputing models the average of the dis-
puted ranks; this occurs more frequently on R-PREC scores, since its
computation considers only a handful of predictions per EC
Number. We repeat this for each of the three performance metrics
(Fig. 4D). EPP-HMCNF ranks best for AP and R-PREC, tying with
Multi-Label NN with regards to AUROC, consolidating itself as
best model for this task. Overall, the results in Figure 4D are consist-
ent with those in Figure 4A–C: models with higher scores in
Figure 4A–C generally have lower (i.e. better) rank in Figure 4D.

We analyzed the average performance of the k-NN and EPP-
HMCNF models for each EC Class (Supplementary File S1,
Supplementary Section S4, Supplementary Fig. S3). We found that
some enzymes are easier to characterize than others. Class 3 hydro-
lase enzymes and Class 5 isomerase enzymes are consistently easiest
to classify. Furthermore, we found that EPP-HMCNF outperforms
k-NN similarity for all classes.

We analyze the average performance of the models across EC
Numbers as a function of the number of positive examples. We
evaluate the performance of EC Numbers with the most and least
number of positive examples (Supplementary File S1,
Supplementary Section S5). We show that all models have a better
than average R-PREC performance and less R-PREC variability for
enzymes with more labeled positive data, indicating that prediction
quality is likely to increase as more data becomes available.
Hierarchical RF is the model that most benefits from higher data
availability, even slightly outperforming k-NN. While low data
availability for some enzymes is partly responsible for the high

variability in scores across enzymes seen in Figure 3A–C, most of the

variability is best explained by suggesting that some enzymes are
much easier to characterize than others, as indicated by the still high

standard deviation of scores when evaluating EC Numbers with the
most and least positive examples (Supplementary Fig. S3).

3.2 Training with inhibitor information
To evaluate the impact of including known negative examples in the
form of inhibitors, we retrained our models including inhibitor in-

formation, setting the similarity weight to 1 for each inhibitor. We
then perform two sets of experiments. First, we test the models on
the ‘Full Test Set’ and compare our findings against the result from

the no-inhibitor models. Table 1(A) summarizes the differences
among the models and reports the percentage of EC Numbers for

which the use of each training technique yields a better score.
Hierarchical RF and HMCN-F are the models that consistently
benefit the most from training with inhibitors, with EPP-HMCNF

experiencing a significant boost for all metrics.
Next, we considered the same metrics on the Inhibitor Test Set.

The goal of using this set is to show the capacity of each model in
distinguishing between positive molecule and inhibitor molecules,
the only true negative examples in our dataset. We also tested our

models on the Unlabeled Test Set. Since this set contains positive
and unlabeled interactions with the same ratio as the ratio between

positive and inhibitor interactions of the Inhibitor Test Set, any dif-
ference in scores between the Inhibitor and the Unlabeled Test Sets
can be attributed entirely to group differences between the inhibitor

molecules and unlabeled molecules. Results on the two test sets for
all models, trained with and without inhibitor information, are

shown in Figure 5. In the Inhibitor Test Set and in the Unlabeled
Test Set, the positive-to-total ratios across EC Numbers are much
higher than in the Full Test Set. This is important to note since AP

and R-PREC scores correlate with the positive-to-total ratio. For each
of these sets, the average ratio is 0.579, with a standard deviation of

0.199, a 10th percentile of 0.286, and a 90th percentile of 0.833.

Fig. 4. Evaluation of promiscuity prediction models trained without including inhibitor information under random split (top row), and under realistic split (bottom row), and

evaluated using the Full Test Set. (A, E) Mean AUROC, (B, F) Mean AP, (C, G) Mean R-PREC and (D, H) Average rank per method. Intervals shown in (A, B, C, E, F, G) rep-

resent 61 standard deviation
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All scores are lower on the Inhibitor Test Set than on the
Unlabeled Test Set, indicating that it is harder for the models to dis-
tinguish between positives and inhibitors than it is to distinguish be-
tween positives and unlabeled. The higher standard deviation also
shows that the task of discerning inhibitors from positives is harder
for some EC Numbers than for others. This is further confirmation
that the inhibitors can be designated as ‘hard’ negative examples.
However, EPP-HMCNF trained with inhibitors is the best model at
discerning inhibitors from positives (Fig. 5B), confirming EPP-
HMCNF as our model of choice.

3.3 Realistic split
We analyzed our models based on a ‘realistic data split’ that contain
potentially novel query compounds in comparison to the training
dataset (Martin et al., 2017). We clustered the molecules in our data-
set on the molecular fingerprints with an average cluster size of 10.
We used UPGMA (the unweighted pair group method with arithmet-
ic mean), a simple bottom-up hierarchical clustering method (Sokal
et al., 1958). We saved molecules from singletons and smaller

clusters, up to 20% of the total molecules, for testing. This split
reduced the similarity between test and training molecules when com-
pared to the similarity obtained under a random split (Fig. 6A and B).

The realistic split affects the distribution of positive data in the
training and testing sets. Figure 6C and D plots the distribution of the
ratio r ¼ ðpositivesintestÞ=ðpositiviesintrainÞ per EC Number under
each splitting strategy. Under the random split, r appears to have a
unimodal, symmetric distribution centered at 20%. Under the realistic
split, r follows an asymmetric distribution concentrated near 0% and
decaying at larger values, similar to an exponential distribution. This
distribution’s shape results in high number of EC Numbers with either
no positive test data, or no or little training data.

Under the realistic split, models could be trained only for 680
EC Numbers, with an EC hierarchy composed of 6 Classes, 45
Subclasses and 122 Sub-subclasses. The relative performance of the
models under the random split on this reduced dataset (Table 1B) is
consistent with the full test set (Table 1A) across all metrics and in
terms of average ranking per method. We compare the performance
on this reduced dataset under the two different data splits (Table 1B
and C). The relative performance of all models is lower under the
realistic split than under the random split, with models trained with
inhibitor data demonstrating slightly less degradation in mean AP
and mean R-PREC. These results show that it is more difficult to ob-
tain good model performance under the more challenging realistic
split. Importantly, mean scores for almost all metrics are improved
when training with inhibitors, with Multi-Label NN also experienc-
ing a consistent boost. Crucially, EPP-HMCNF trained with inhibi-
tor information is still the best model for the task (Mean R-PREC
0.126 versus 0.096 of k-NN Similarity).

3.4 Predicting on natural versus non-natural query

molecules
We evaluated the difference in performance of our best performing
classifier, EPP-HMCNF trained with inhibitor information, on

Table 1. Evaluation of training without and with inhibitors

AUROC AP R-PREC

No-

Share

RF

Hierarchical

RF

Multi-

Label

NN

EPP-

HMCNF

No-

Share

RF

Hierarchical

RF

Multi-

Label

NN

EPP-

HMCNF

No-

Share

RF

Hierarchical

RF

Multi-

Label

NN

EPP-

HMCNF

(A) Random Data Split

Mean score

across ECs

No inhibitors 0.940 0.928 0.969 0.965 0.312 0.251 0.381 0.402 0.274 0.230 0.334 0.351

With inhibitors 0.937 0.931 0.967 0.973 0.310 0.264 0.384 0.414 0.267 0.241 0.335 0.359

% Difference �0.32 0.32 �0.21 0.83 �0.64 5.18 0.79 2.99 �2.55 4.78 0.30 2.28

% ECs for which

technique is

better

No inhibitors 49 45 52 41 50 45 49 43 51 48 50 47

With inhibitors 51 55 48 59 50 55 51 57 49 52 50 53

(B) Random Data Split on Reduced Dataset

Mean score

across ECs

No inhibitors 0.932 0.921 0.964 0.960 0.291 0.233 0.350 0.367 0.264 0.220 0.312 0.331

With inhibitors 0.928 0.925 0.962 0.968 0.290 0.247 0.353 0.375 0.255 0.233 0.317 0.334

% Difference �0.43 0.43 �0.21 0.83 �0.34 6.01 0.86 2.18 �3.41 5.91 1.60 0.91

% ECs for which

technique is

better

No inhibitors 49 44 52 42 51 42 49 45 51 47 49 48

With inhibitors 51 56 48 58 49 58 51 55 49 53 51 52

(C) Realistic Data Split on Reduced Dataset

Mean score

across ECs

No inhibitors 0.809 0.793 0.836 0.849 0.128 0.083 0.120 0.131 0.108 0.063 0.100 0.111

With inhibitors 0.812 0.811 0.833 0.857 0.133 0.091 0.142 0.149 0.112 0.072 0.119 0.126

% Difference 0.37 2.27 �0.36 0.94 3.91 9.64 18.33 13.74 3.70 14.29 19.00 13.51

% ECs for which

technique is

better

No inhibitors 53 44 52 45 50 42 47 46 50 48 47 46

With inhibitors 48 56 48 55 50 58 53 54 50 52 53 54

Note: (A) Under random data split on the full test set, (B) under random split on the reduced dataset (i.e. only including ECs for which models could be trained

under the realistic split) and (C) under realistic split. Scores in bold indicate that the model trained with inhibitors has better performance for that metric.

Fig. 5. Results of training with inhibitor information. (A) Evaluation on the un-

labeled test set and (B) evaluation on the inhibitor test set
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enzyme classes acting on natural and non-natural substrates in the
Full Test Set (under the random split). For both sets of predictions,
we plotted (Fig. 7) the ratio of probabilistic predictions above a ser-
ies of thresholds between 0 and 1. As all test instances in this experi-
ment are positive, higher probabilistic predictions are desirable,
which translate to a higher area under the curve (AUC). The predic-
tions on the interactions with the natural substrates have higher
AUC than the predictions on the interactions with the non-natural
ones (0.846 versus 0.761). We restricted the comparison to EC num-
bers that had both natural and non-natural test compounds. For

each EC Number, we computed the mean of the predictions on the
natural versus non-natural test compounds. The AUC for the former
is higher than the AUC of the latter (0.852 versus 0.761). These
results suggest that it is easier for EPP-HMCNF to discern enzyme
class interactions with natural substrates than with non-natural
ones. Importantly, per Figure 7, the model still classifies over 61%
of non-natural compounds as positive with a probability above
90%, and over 78% of non-natural as positive with probability
above 50%. This illustrates the potential of machine learning mod-
els to identify new non-natural compounds, and thus promiscuous
interactions, for our EC Numbers.

3.5 Speed and scalability of training and inference
We report training and inference speed of all models, each with their
respective optimized set of hyperparameters, and trained for all 70
epochs where applicable (Table 2). The time complexity (discussed
in Supplementary File S1, Supplementary Section S6) is also
reported. All measurements are made when training the models on
the Training set and Full Test set generated via random split.
Models were trained and evaluated on an Intel(R) Xeon(R) CPU
X5675 with a speed of 3.07 GHz and 64 GB RAM. Further speed-
ups can be obtained via training on GPUs. K-NN similarity is expen-
sive during inference, whereas, for all our dataset of 1659
molecules, all machine learning-based models ran under 1.5 min,
generating predictions for 983 EC Numbers. The fastest models at
inference time are the NN-based models. Their runtime is independ-
ent of the number of EC Numbers of interest as the output layer cal-
culates all predictions simultaneously, thus making them appealing
for large and comprehensive sets of predictions. As more data
becomes available, Multi-Label NN and EPP-HMCNF hold promise
to be the fastest and most scalable inference models.

4 Conclusion and discussion

This work proposed and evaluated several machine learning models
to predict enzyme promiscuity on a query molecule. Our results
show that sharing information both horizontally across enzymes
and vertically across the EC hierarchy results in large and consistent
gains in prediction quality. EPP-HMNCF implementation trained
with inhibitor information is the best model for the enzyme promis-
cuity prediction task, achieving a Mean R-PREC of 0.359 across
983 EC numbers, against the 0.265 Mean R-PREC of k-NN
Similarity. For a typical enzyme, slightly more than 1 in 3 wet-lab
trials would succeed if we selected the top-ranked molecules using
EPP-HMNCF, while a similarity-based method would yield success
for 1 in 4 molecules. Thus, although similarity is a competitive base-
line, it is outperformed by machine learning methods. Further, simi-
larity is less consistent than EPP-HMCNF across EC Classes. Our
data analysis and experiments show that inhibitors are hard negative
examples. Indeed, EPP-HMCNF trained with inhibitor information
performs with a Mean R-PREC of 0.955 on the Unlabeled Test set,
while yielding a Mean R-PREC of 0.873 on the Inhibitor Test Set,
indicating that inhibitors are harder to distinguish from positives
when compared to unlabeled molecules. Furthermore, EPP-
HMCNF trained with inhibitor information is the best model at dis-
cerning known positives from known inhibitors.

Fig. 7. Sensitivity across thresholds on natural and non-natural test interactions

Fig. 6. Data distributions under random versus realistic split. (A) Histogram of max-

imum similarity between one test compound and all training compounds under ran-

dom split. (B) Maximum similarity between one test compound and all training

compounds under realistic split. (C) Distribution of r, the ratio of number of posi-

tive examples in test set over the number of positive examples in the training set per

EC Number, under random split. (D) Distribution of r under realistic split

Table 2. Training and inference times reported in hh:mm:ss, and time complexity on training and inference

Train. Time Infer. Time Time complexity on training Time complexity on inference

k-NN Similarity 00:00:00 00:12:54 No training Oðeci pec
� mÞ

No-Share RF 00:12:36 00:00:21 Oðect nlog nð ÞÞ Oðeci m DÞ
Hierar-chical RF 00:20:48 00:01:22 Oðecn nlog nð ÞÞ Oðeci m DÞ
Multi-Label NN 04:06:10 00:00:03 Oðn ectÞ Oðm ectÞ
EPP-HMCNF 09:38:40 00:00:06 Oðn ecnÞ Oðm ecnÞ

Note: n; number of training molecules; m; number of inference molecules, D; maximum tree depth across all random forests; pec; number of training positive

molecules for a specific EC Number; pec
�; average number of training positive molecules across EC numbers; ect ; number of EC Numbers on which the model is

trained; ecn; number of nodes in the EC hierarchy used in training (note: ect < ecn � 4ect); eci; number of EC Numbers for which inference is performed (note:

eci � ect).
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The realistic data split generates a more challenging test set than
when using the traditional random split, allowing more ‘realistic’ as-
sessment of how well these models are likely to generalize to com-
pounds which are different from those in the training set. EPP-
HMCNF trained with inhibitor information remains the best model
even on this harder task, with a mean R-PREC across 680 EC
Numbers of 0.126. Thus, we expect a 1 in 8 wet lab hit rate, in con-
trast with the 1 in 10 hit rate provided by similarity. While it is im-
portant to evaluate models under circumstances that most closely
mimic practical scenarios, splitting the data in a non-uniform way in-
evitably leads to per-label biasing under a multi-label setting, which
may bias the models in making more accurate predictions for some
labels over others. Future work should further address this issue.

Overall, our results suggest that predicting enzyme promiscuity
through machine learning techniques that leverage existing know-
ledge in databases hold promise to advance biological engineering
practices. The work presented here can be improved by integrating
alternative methods from the PU learning literature (Bekker and
Davis, 2020; Zhang and Zuo, 2008) and by considering learned rep-
resentations that better capture molecular structure than binary fin-
gerprint vectors, e.g. (Jin et al., 2018).
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