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Abstract

Motivation: The complete characterization of enzymatic activities between molecules remains incomplete, hindering
biological engineering and limiting biological discovery. We develop in this work a technique, enzymatic link predic-
tion (ELP), for predicting the likelihood of an enzymatic transformation between two molecules. ELP models en-
zymatic reactions cataloged in the KEGG database as a graph. ELP is innovative over prior works in using graph
embedding to learn molecular representations that capture not only molecular and enzymatic attributes but also
graph connectivity.

Results: We explore transductive (test nodes included in the training graph) and inductive (test nodes not part of the
training graph) learning models. We show that ELP achieves high AUC when learning node embeddings using both
graph connectivity and node attributes. Further, we show that graph embedding improves link prediction by 30% in
area under curve over fingerprint-based similarity approaches and by 8% over support vector machines. We com-
pare ELP against rule-based methods. We also evaluate ELP for predicting links in pathway maps and for reconstruc-
tion of edges in reaction networks of four common gut microbiota phyla: actinobacteria, bacteroidetes, firmicutes
and proteobacteria. To emphasize the importance of graph embedding in the context of biochemical networks, we il-
lustrate how graph embedding can guide visualization.

Availability and implementation: The code and datasets are available through https://github.com/HassounLab/ELP.
Contact: liping.liu@tufts.edu or soha.hassoun@tufts.edu

1 Introduction

Characterizing enzymes through sequencing, annotation and hom-
ology has enabled the creation of complex system models that have
played a critical role in advancing many biomedical and bioengin-
eering applications. Insufficient characterization of enzymes, how-
ever, fundamentally limits our understanding of metabolism and
creates knowledge gaps across many applications. For example,
while nearly 300 f-glucuronidases (gut-bacterial enzymes that
hydrolyze glucuronate-containing polysaccharides such as heparin
and hyaluronate as well as small-molecule drug glucuronides) have
been cataloged, functional information is available for only a small
fraction (<10%) (Pellock et al., 2019), thus limiting our ability to
analyze host-microbiota interactions. Importantly, most enzymes if
not all are promiscuous, acting on substrates other than the
enzymes’ natural substrates (Hult and Berglund, 2007; Khersonsky
and Tawfik, 2010). At least one-third of protein superfamilies are
functionally diverse, each superfamily catalyzing multiple reactions
(Almonacid and Babbitt, 2011). Despite progress in functional an-
notation, the complete characterization or curation of enzyme func-
tion and the reactions they catalyze remains elusive. Computational
prediction of enzymatic transformations promises to complement
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existing databases and provide new opportunities for biological
discovery.

A common predictor of enzyme-compound interaction is com-
pound and/or enzyme similarity to those within known enzymatic
reactions. In biological engineering, molecular similarity between a
query molecule and native substrates that are known to be catalyzed
by the enzyme inform putative enzymatic transformations (Pertusi
et al., 2015). A high similarity score indicates a likely transform-
ation. In drug—protein interaction analysis, molecular similarity and
machine learning are utilized to predict the likelihood of interactions
(Kurgan and Wang, 2018). Some techniques quantify similarity be-
tween reactions. EC-BLAST quantifies similarities between enzym-
atic reactions based on the similarities of bond changes, reaction
centers and substrates and products (Rahman et al., 2014). SimCAL
computes reaction similarity at different levels such as the trans-
formation region between substrates and products, or the similarity
across all products-substrates within a reaction (Sivakumar et al.,
2018).

In addition to predicting aspects of enzymatic reaction similar-
ities, there are rule-based methods to predict products of promiscu-
ous reactions. Typically, such rules specify how a substrate molecule
can be transformed to a product molecule. The rules can be hand
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curated based on common biotransformations (Li et al., 2004;
Morreel et al., 2014), extracted from existing sources, e.g. the
KEGG RPAIR (Kotera et al., 2004) RCLASS database (Kotera et al.,
2014b) or automatically extracted from reactions (Sivakumar et al.,
2016). As each rule is associated with a particular set of reactions,
the presence of a rule directly correlates with the ability of predicting
its associated enzymatic transformations.

In this article, we address the problem of predicting enzymatic
transformations (links) between two molecules, a problem known as
‘link prediction’, where a link is a connection between two nodes
within a network graph (Liben-Nowell and Kleinberg, 2007). Earlier
work used the Tanimoto coefficient to score the maximum common
substructure (MCS) between two molecules (Kotera et al., 2008).
Citing the computational inefficiency of MCS, an NP-hard problem,
Kotera et al. (2013b, 2014a) utilized support vector machines (SVMs)
to predict such links. Compound pairs in the KEGG RPAIR data
were used as positive examples, while unknown interactions between
compound pairs were utilized as negative examples. Feature vectors
were constructed using either common or differential features based
on various fingerprints. The use of SVMs along with additional sub-
structures in the format of KCF-S [KEGG Chemical Function (KCF)-
and-Substructures (Kotera ef al., 2013a)] and of aligned molecular
graphs (Yamanishi er al., 2015) further improved link prediction.
Tabei et al. (2016) utilized joint-learning classifiers for link prediction
and for predicting enzyme orthologs that could catalyze predicted
transformations between compound pairs.

We present in this article a novel technique, enzymatic link pre-
diction (ELP), for predicting enzymatic transformations between
two molecules. ELP advances over the state of the art in two ways.
First, ELP maps known enzymatic reactions already cataloged in
databases [here, the KEGG database (Kanehisa and Goto, 2000)] to
a graph structure, where compounds are represented as graph nodes
while reactions are represented as graph edges. While snippets of
such graph structures have been previously utilized as training data
for multi-step pathway reconstruction (Kotera et al., 2014a) and
exploited during synthesis pathway construction (Yousofshahi et al.,
2011), ELP utilizes all graph connectivity when predicting enzymatic
links. Second, ELP uses graph embeddings (Cai et al., 2018; Goyal
and Ferrara, 2018) to learn molecular representations that reflect
not only molecular structural properties but also relationships with
other molecules in the network graph. Such embeddings have pro-
ven effective in predicting missing information, identifying spurious
interactions, predicting links appearing in future evolving network,
and analyzing biomedical networks (Cai et al., 2018; Goyal and
Ferrara, 2018; Yue et al., 2019). We analyze both transductive (test
nodes included in the training graph) and inductive (test nodes not
part of the training graph) models. We evaluate ELP when learning
node embeddings using both graph connectivity and node attributes
and compare to similarity-based approaches.

2 Materials and methods

2.1 Constructing graph from the KEGG database
While proteins can interact with other proteins, the focus of this art-
icle is on enzymatic transformations between small molecules (those
with masses less than 1000 Da). Such transformations form the back-
bone of metabolic networks. The KEGG database catalogs such
enzymatic reactions and can be used to construct a data graph.
Molecules in the KEGG database are represented as nodes. Each
substrate-product pair within a reaction is modeled as an edge in the
graph. As most KEGG reactions are reversible, we construct a non-
directional graph. Biochemical networks have cofactor molecules
(e.g. NADP, H,O) that participate in many reactions, forming high-
connectivity hub nodes within the graph (Ravasz et al., 2002). As we
aim to predict connectivity between non-cofactor metabolites, such
high-connectivity nodes and their edges are excluded from the graph.
Nodes are assigned molecular fingerprints as attributes. The fin-
gerprints are encoded as binary vectors of fixed length K. We select
two fingerprints that reflect the presence or absence of pre-defined
structural molecular fragments: the MACCS fingerprint with

K =166 structural keys (Durant et al., 2002), and the PubChem fin-
gerprint with K =881 structural keys (Kim et al., 2016).

Enzymatic reaction data are assigned as edge attributes. Each
edge is assigned the enzyme commission (EC) number that catalyzes
the associated chemical reaction. EC numbers are represented as
four numbers separated by periods (e.g. L-lactate dehydrogenase is
assigned EC number 1.1.1.27). Each edge is also assigned an
RCLASS label (Kotera et al., 2014b), five digit label. Each such label
is associated with a group of reactions that share the same localized
structural change between a substrate and a product (e.g. the add-
ition or removal of a hydroxyl group). Although a reaction may be
associated with one or more RC labels, each substrate-product pair
is associated with only one RC label. If a reaction has no label, we
assign it a null label. Thus, each edge in the graph is associated with
an EC label and a RC label. A graph G = (V, E) therefore consists
of a set of vertices V and a set of edges E. Every node i € V repre-
sents a molecule and every edge (i,7) € E for some (i,j) € V repre-
sents an enzymatic reaction connecting two molecules i and ;.

2.2 The ELP method

ELP has two steps (Fig. 1): (A) learning embedding vectors of graph
nodes, and (B) predicting interaction between a pair of nodes from
their embedding vectors. Embeddings are low-dimensional vector
representations of each node. An embedding is characteristically
similar to molecular fingerprint in the sense that they both quantita-
tively describe the molecules. Unlike fingerprints, however, entries
in an embedding vector cannot be directly interpreted, but rather
can be decoded by a suitable learning algorithm. Importantly,
embeddings capture the inherent structure of the graph as well as
attributes of the nodes and edges in the graph, which allow them to
be used as input for downstream tasks such as link prediction. For
the first step, we use the embedding propagation (EP) algorithm
(Garcia-Duran and Niepert, 2017). EP was selected because it al-
most consistently outperformed several other methods in the pres-
ence of node attributes on several datasets. Further, EP has the
advantage of fewer parameters and hyperparameters when com-
pared to other methods (e.g. Grover and Leskovec, 2016; Perozzi
etal., 2014; Tang et al., 2015). For the second step, we train a neur-
al network that takes pairs of learned embedding vectors as input
and predicts the connectivity of two molecules.

2.2.1 Connectivity-based learned embeddings

The simplest form of EP is to learn a set of node embedding vectors
U={uy eR?:ie V}, where d is the embedding size. Embeddings
are randomly initialized prior to training. Node embeddings are
learned via an iterative process, by propagating forward (representa-
tions of nodes) and backward (gradients) messages between neigh-
boring nodes. The iterative process repeats until a convergence
threshold is reached. Suppose N(i) = {j € V : (i,j) € E} is the set of
neighboring nodes of node i. The model aims to reconstruct embed-
dings u; from the embeddings of i’s neighbors. The reconstructed
node embedding u; for node i is:

~ 1
uizmzuj (1)

JEN (i)

The learning objective of EP is to maximize the similarly between
u; and u;. Instead of maximizing the absolute values of inner prod-
ucts for all such nodes, EP maximizes their values in a relative sense:
the reconstruction should be more similar to the corresponding
embedding vector than any other embedding vectors. The error in

A B Likelihood of
Molecular Learned Embedding interaction
Fingerprint [ | Embedding  for molecule 1 N Neural between
—_— — MNetwork —
Graph Embaridng Embedding /' ST molecule 1 and
Connectivity for molecule 2 molecule 2

Fig. 1 ELP Overview. (A) Molecular representations are learned using graph embed-
ding. (B) Learned embeddings are used to predict links
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reconstruction is therefore minimized through a margin-based rank-
ing loss (Garcia-Duran and Niepert, 2017):

£=>"%" max{y—§ u+1u;0} 2)
i€V jeV j#i

where y > 0 is a chosen margin hyperparameter. The objective is
optimized by stochastic gradient descent. However, summing over
all nodes as indicated by the inner sum is very expensive. For per-
formance, we randomly select one node as the negative example for
each real node in every iteration to compute an estimation of £ and
its gradient, as was done in Garcia-Duran and Niepert (2017).

2.2.2 Attribute-based learned embeddings

To incorporate information from edge attributes, EP learns embed-
ding vectors Z = {z. € R:c=1,..., C} for the C reaction labels.
The reconstructed node embedding u; for node i is modified as
follows:

_ 1
u; = m Z Uj + 0Zy( ), (3)

JEN (i)

where 7;;, is the edge label of the edge (4, j) and z,(i,) is the corre-
sponding edge embedding. The hyperparameter o € {0,1} weights
the importance of edge features. The vector zy corresponding to null
edge attributes is fixed to zero to avoid affecting the reconstruction.
Embeddings based on edge attributes can be learned simultaneously
while learning connectivity-based embeddings. While the edge
embeddings are used during training, they are not used to compute
the final embeddings of nodes after EP training.

EP can also learn K fingerprint embedding vectors
V={v eR?:k=1,...,K}. Specifically, the node-attribute-based
embedding u; of a node i is the mean of fingerprint embeddings v,
corresponding to positive fingerprint entries in the fingerprint vector
f; e {0,1}%:

p_ 1 &
L o )
I

When computing embeddings based on node attributes, we opti-
mize the fingerprint embeddings V, instead of U, through the learn-
ing objective in Equation (2). An advantage of the EP algorithm is
its ability to learn only one of the node embedding types or all. If
both node attributes and connectivity embeddings are trained, we
simply concatenate u; and u{p to form the final node embedding vec-
tor of node 7 before applying the link prediction model. L2 regular-
ization is applied to all variables U, V and Z.

2.2.3 Link prediction

The trained node embeddings are used as inputs to a logistics link
prediction model. Pairs of embeddings of nodes involved in a known
reaction are positive examples; pairs of embeddings of nodes that
have no or unknown interaction are treated as negative examples.
To make link predictions, the neural network outputs the likelihood
of an edge for every pair of input node embeddings. The final result
of the model is evaluated based on the area under curve (AUC) met-
ric, wherein the false positive rate and true positive rate are eval-
uated at every threshold to compute the area under the receiver
operating characteristic (ROC) curve.

2.3 Training and testing

We explore two learning scenarios—transductive and inductive—
that we apply to ELP and our baseline methods. In the transductive
setting, we train on all available nodes and evaluate the edge recov-
ery for a set of test edges that were withheld from training. Hence,
the graph is split into training and testing sets by partitioning on the
edges. During training, all non-training edges are considered nega-
tive examples, including those that are test edges. During testing, we
evaluate the AUC using the withheld test edges as positive examples
and an equal-sized sample of the negative edges as the negative

examples. In the inductive scenario, the model predicts interactions
for out-of-sample nodes excluded from the training set. In the case
of ELP, we compute embeddings for out-of-sample nodes from their
attributes and predict possible enzymatic reactions for them. Due to
the lack of prior connectivity information for out-of-sample nodes,
only embeddings based solely on node attributes are learned during
training for the ELP method. To generate the training and testing
sets, we reserve a certain portion of nodes and their incident edges
for the test graph. All other nodes and edges are included in the
training graph. Similar to the evaluation of the transductive learning
scenario, we sample a set of negative edges equal in size with the test
edges.

For all experiments, the embedding dimension is set to 128. The
learning rate for the EP framework is set to 0.01, the regularization
to 0.0002, and the y margin is set to 10. The embedding vectors are
trained batch size of 2048 for 500 epochs or until convergence,
whichever one comes earliest. The deep neural network decoder pre-
dicts the connectivity of two molecules based on their embeddings
consists of two hidden layers of sizes 32 and 16. It is trained for 40
epochs on a batch size of 2048 with a learning rate of 0.01. The
margin hyperparameter 7y > is set to 10. In experiments using edge
features, o is set to 1.

3 Results

Once cofactors were excluded, and MACCS and PubChem finger-
prints were generated for all our nodes, our dataset representing the
biochemical network underlying the KEGG database consisted of
7049 nodes and 12 507 edges, with an average node degree of 3.5.
We evaluate both scenarios and all techniques using 5-fold cross-
validation.

3.1 Transductive link prediction

Results for several transductive scenarios are reported [Table 1, par-
titions (A)—(D)]. When performing connectivity-based prediction
(partition A), we compare ELP against different variants of node2-
vec (Grover and Leskovec, 2016), an algorithm for learning node
embeddings based on random walks of the graph. Node2vec maxi-
mizes the probability of occurrence of nearby nodes in fixed-length
random walks, thus preserving higher-order proximity between
nodes. The characteristics of the random walks can be specified
using the return (backtrack) parameter p, the in—out parameter g,
the length of the walks / and the context window k, which controls
for the neighborhood of nodes considered as nearby. The embedding
dimension of node2vec is fixed to be the same as the one used in
ELP. We compare ELP to several node2vec variants. The first vari-
ant (default) is the node2vec model with default parameters p =1,
g=1,1= 80, and k = 10; the second variant (short walks) reduces
the length of the walk to 10 and the context size to 5. Based on the
improvement in AUC from 0.80 to 0.82 using shorter walks, we fix
I =10 and k = 5 and explore the differences between a DFS-style
random walk and a BFS-style random walk, which is defined as p =
1,g=0.5 and p =1, q =2, respectively. We found a DFS-style
random walk led to poorer results (0.75 AUC) but a BFS-style ran-
dom walk gave the best node2vec result (0.83 AUC), suggesting that
localized neighborhoods are more effective in learning node repre-
sentations than larger neighborhoods. In contrast, ELP, which expli-
citly considers only the immediate neighbors of every node,
outperforms all node2vec variants with an AUC of 0.88.

Partition (B) explores the effects of using only the MACCS or
PubChem fingerprints without utilizing graph-connectivity embed-
dings. As a baseline, we apply the Jaccard similarity model on the
fingerprints of every substrate-product pair in the test set. The
Jaccard AUC results are 0.67 using MACCS and 0.65 using
PubChem. Another baseline for this partition, denoted L2SVM, is a
link prediction model similar to Kotera et al. (2013b) based on mo-
lecular fingerprints. It uses the similarities and differences between
the two fingerprints of a given pair of molecules as inputs to an
SVM. We chose the L2-regularized SVM as it was the best perform-
ing model in Kotera et al. (2013b). The original model proposed by

120z Jequialdas 0g UO 1senB Aq 81.8226S/€6./9/LE/IOIIE/SOIEULIOJUIOIG/LWL0D dNO"OIWSPEDE//:SANY WO PAPEOIUMOQ



796

J.Jiang et al.

Table 1 Link prediction results for the transductive learning
scenario

Model Connectivity Fingerprint Enzyme AUC
label
A. Connectivity only
node2vec (default) Yes — — 0.80*+.011
node2vec Yes — — 0.83+.020
(short walks)
node2vec (DFS) Yes — — 0.75+.152
node2vec (BFS) Yes — — 0.83+.004
ELP Yes — — 0.88=.003
B. Fingerprints only
Jaccard No MACCS — 0.67*.006
Jaccard No PubChem — 0.65+.006
L2SVM No MACCS — 0.89=.002
ELP No MACCS — 0.93x£.004
ELP No PubChem — 0.93+.002
C. Connectivity and
# fingerprint
ELP Yes MACCS — 0.97%.003
ELP Yes PubChem — 0.97=.001
D. Connectivity,
# fingerprint, and
# enzyme labels
ELP Yes MACCS EC 0.97=.001
ELP Yes PubChem RC 0.97+.001

The AUC results and the standard deviations obtained using 5-fold cross-
validation. We partitioned the experiments to facilitate comparisons. (A)
Using only network connectivity to learn embeddings. (B) Using only MACCS
or Pubchem fingerprints. ELP still uses network connectivity to indirectly
learn fingerprint embeddings. (C) Using both network connectivity and finger-
prints. (D) Using network connectivity, fingerprints and enzyme labels.

Kotera et al. (2013b) uses reactant pairs based on an earlier defin-
ition of “main” type transformations that was present in the RPAIR
database within KEGG (Kotera et al., 2013b). To facilitate a mean-
ingful comparison, we apply Kotera et al. (2013b)’s model directly
on our described network, maintaining the assumption that all
substrate-product pairs are reversible. Using L2ZSVM on the MACCS
fingerprints yields a mean AUC of 0.89. L2SVM requires significant
compute time and memory to process all possible ordered pairs of
molecules. As such, the experiment using L2SVM on the PubChem
fingerprints required over 1 terabyte of memory on a CPU
Processor. The experiment could not be completed using our avail-
able resources. As for the ELP model, both the MACCS and
PubChem fingerprints achieve a mean AUC of 0.93. Using ELP with
MACCS fingerprints leads to slightly larger variabilities (+0.002
std) across S-fold cross-validation than with the PubChem
fingerprints.

Per partition (C), using a combination of both connectivity infor-
mation and fingerprint attributes with ELP yields the best results,
with both MACCS and PubChem fingerprints achieving an AUC of
0.97. We see again that the MACCS fingerprints lead to 0.002 more
variation in terms of standard deviation, but the computational
advantages of using MACCS fingerprints is its smaller size (K = 166)
compared to PubChem fingerprints (K=881). In partition (D) we
incorporate enzyme labels as edge labels. This addition does little to
enhance predictive accuracy but decreases the standard deviation,
indicating that the inclusion of enzyme labels leads to more stable
results. There is little difference in AUC when utilizing the two en-
zyme labels.

Figure 2 presents plots for two scenarios using ELP: (A) connect-
ivity only and (B) connectivity with MACCS fingerprints as node
attributes. The plot reveals that the lower AUC performance is most-
ly attributed to having a higher FPR when there is a higher TPR. In
other words, we can achieve an almost 0.50 TPR at little cost (little

10 T e - "'._.'.__;_—a"-i--='-:;~
;J_,n ‘-"___._.-— .
_ ‘/"
051 L .+ "Random
I S y=X
e 061 )
= I Connectivity only
0473 —** AUC 0.89
0.2 4 Ii Connectivity and
’ . MACCS fingerprint
AUC 0.97
0.0 1 d : : . 1
0.00 0.25 0.50 0.75 1.00
FPR

Fig. 2 ROC curve plot for transductive learning with and without MACCS finger-
print as node attributes

Table 2 Link prediction results for the inductive learning scenario

Model Connectivity Fingerprint AUC

Jaccard No MACCS 0.68 =0.004
Jaccard No Pubchem 0.67 =0.014
ELP No MACCS 0.93 £0.005
ELP No Pubchem 0.94 = 0.005

The AUC results and the standard deviations obtained using five random
sample of held-out test nodes (5% of all nodes). All models are tested on
recovering edges incident to the test nodes.

sacrifice in FPR), but as the need to observe improvement in TPR
increases, the FPR rises dramatically.

3.2 Inductive link prediction

Several inductive scenarios were investigated (Table 2). In these
scenarios, 5% of all nodes were removed from the graph during
training. ELP based on MACCS node attributes achieves an AUC of
0.93 and ELP based on PubChem node attributes achieves an AUC
of 0.94. This performance is nearly identical to ELP’s performance
in the transductive learning scenarios, wherein an AUC of 0.93 is
achieved using either MACCS or PubChem fingerprints. Despite the
out-of-sample nodes in the test set not being part of the training
graph, ELP robustly leveraged fingerprint information for nodes
within the training graph to achieve higher AUC. Similarity analyses
based on the Jaccard similarity scores are much lower, with 0.68
and 0.67 AUCs for MACCS and PubChem, respectively.

3.3 Pathway reconstruction

To evaluate how ELP recovers links within metabolic pathways, we
reconstruct pathway edges that are omitted during training. We se-
lect the same set of pathway groups that was used in Kotera et al.
(2013b). For each pathway, we reserve its edges as the test graph
and use an equal-size random sample of negative edges in the test
graph. We evaluate the ability of the ELP model with the MACCS
fingerprints to recover edges within each individual pathway.

We illustrate our results in Figures 3 and 4. Similar to earlier
findings (Kotera et al., 2013b), the results for individual pathways
are overall lower than a random 5-fold split (Fig. 3), with a mean
AUC of 0.88. The results for the glycan biosynthesis and metabolism
pathway group spans a wide range from 0.5 (same as pure chance)
to 1 (perfect prediction). The variability is due to the small number
of edges within these pathways, where some have as little as 2 true
edges. In general, there is little difference in the reconstruction of dif-
ferent pathway maps using ELP. To further benchmark our results,
we applied the Jaccard similarity scoring on the same task. Figure 4
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Fig. 3 AUC results using the ELP model for each pathway within each pathway
group, shown for various functional pathway groups. The size of each marker is
proportional to the number of edges being tested for each pathway

1_0- . T . b & .
® ) |/ p -
y = o gue,
0.81 , SO8% @«
oNe
o
g L
< 0.6 1 : X=y
o
o .
[=]
E 0.4 1 @ Amino acid metabolism Lipid metabolism
— Xenobiotics biodegradation @ Nucleotide metabolism
i and metabolism Metabolism of other
Carbohydrate metabolism ® amino acids
0.2 4 Biosynthesis of other Metabolism of
secondary metabolites ® terpenu_ids and
Energy metabolism polykend.es )
Metabolism of cofactors @ Glycan biosynthesis
0.0 - and vitamins and metabolism

T T

0.0 0.2 0.4 0.6 0.8 1.0
Jaccard Score Model AUC

Fig. 4 AUC results using the Jaccard score model and the ELP model shown for vari-
ous functional pathways groups. Markers are color-coded by pathway groups and
the size of each marker is proportional to the number of edges being tested

Table 3 Organism reconstruction result (mean AUC scores and the
standard deviation) for each phylum

Phylum # Test Edges Jaccard AUC ELP AUC

Proteobacteria 4982 0.77 = 0.007 0.89 £0.001
Firmicutes 5454 0.77 =0.010 0.91 = 0.004
Bacteroidetes 3674 0.76 £0.009 0.90 = 0.005
Actinobacteria 5968 0.77 £0.010 0.91 £0.001

Each phylum is repeated five times, each with five different random sam-
ples of 1024 test edges.

shows that our results are almost always better than results given by
Jaccard scores (above the x =y line).

3.4 Organism reconstruction

We assess how ELP recovers enzymatic reactions at the organism
level. We explore link reconstruction for four gut microbiota phyla:
actinobacteria, bacteroidetes, firmicutes and proteobacteria
(Rinninella et al., 2019). For each phyla, we retrieved available cor-
responding organisms from the KEGG database. Due to the high
number of affiliated edges for each phylum (Table 3) and the conser-
vation of metabolism across many organisms, we tested link
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Fig. 5 Histogram distribution of the number of graph edges associated with reac-
tions in each RCLASS

Table 4 Rule reconstruction results of the top 20 rules with the
most number of associated test edges

Rule # Test edges Jaccard AUC ELP AUC
RC00003 1364 0.79 0.95
RC00006 565 0.74 0.89
RC00392 550 0.66 0.93
RC00049 438 0.74 0.82
RC00014 279 0.40 0.76
RC00171 210 0.61 0.75
RC00021 207 0.77 0.79
RC00041 205 0.71 0.77
RC00010 171 0.58 0.82
RC00055 169 0.71 0.77
RC00020 152 0.71 0.83
RC00046 141 0.80 0.86
RC00062 136 0.67 0.87
RC00008 124 0.62 0.76
RC00279 121 0.14 0.69
RC00460 102 0.66 0.90
RC00523 101 0.62 0.79
RC00466 92 0.64 0.93
RC00059 89 0.76 0.83
RC00661 81 0.60 0.85

construction for a large subset of such edges. We test the reconstruc-
tion of 1024 randomly sampled edges per phylum. We report the
average AUC and standard deviation across five 1024-edge recon-
structions for each phylum using the Jaccard similarity model and
the ELP model with MACCS fingerprints. For all phyla, the Jaccard
similarity model consistently yields AUCs between 0.76 and 0.77
with standard deviations around 0.01. The ELP model achieves
higher AUCs ranging between 0.89 and 0.91, and the results show
smaller variations.

3.5 Rule reconstruction

In contrast to a data-driven machine learning framework like ELP,
rule-based models [e.g. PROXIMAL (Yousofshahi ez al., 2015) and
ReactPred (Sivakumar ez al., 2016)] rely on transformation rules.
The accuracy of rule-based methods depends entirely on the avail-
ability of transformation rules and the ability to apply such rules to
query substrate molecules. We design a rule reconstruction experi-
ment with the goal of evaluating how ELP recover edges associated
with the most prevalent rules.

To this end, we compile a list of reaction rules (RCLASSES) in
the KEGG database. Given that cofactors were not included in our
graph, we remove RLCASSES associated with cofactors, which
accounts for less than 5% of all RCLASSES. For each RCLASS, we
find the list of associated graph edges through all reactions linked to
the RCLASS. Figure 5 depicts the distribution of the number of asso-
ciated edges of RCLASSES. We observe that the distribution is heavy
tailed, where the majority of rules have very few associated edges
and a few rules have many associated edges. To test the reconstruc-
tion of one rule, we hide all of its associated edges and train on the
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rest of the edges using the ELP model with the MACCS fingerprints.
Similar to previous testing frameworks, we evaluate the reconstruc-
tion of the associated edges against a randomly sampled set of nega-
tive edges of equal size. We evaluate ELP’s performance when
hiding the top 20 most popular RCLASSES, one RCLASS at a time.

We report our ELP results along with the Jaccard similarity scor-
ing results as a baseline comparison (Table 4). The AUC results over
the top 20 RCLASSES using the Jaccard similarity have a mean of
0.65 and standard deviation of 0.15. In contrast, the results using
ELP are higher and vary considerably less with a mean and standard
deviation of 0.83 and 0.07, respectively. The AUC results using ELP
are consistently above 0.75, with the exception of RC00279 (0.69).
This RCLASS is associated with enzymes with E.C. numbers 2.5.1.*
and denotes the transfer of alkyl or aryl groups other than methyl
groups. All edges in the KEGG graph associated with this RCLASS
involve isopentenyl diphosphate and a larger molecule, resulting in
low similarity between substrate and product. This RCLASS there-
fore presents an ostensibly difficult rule to predict, as demonstrated
by its Jaccard AUC of 0.14. Importantly, ELP performance is not
negatively impacted by the prevalence of rules. This result shows
that even with the lack of certain rules all together, ELP is successful
at recovering missing reactions and its performance is stable, sug-
gesting that ELP is a promising framework in place of rule-based
prediction models that completely fail to recover missing reactions if
the relevant rule is not considered.

3.6 Biochemical network visualization

To further illustrate the importance of graph embedding in the con-
text of biochemical networks, we show how graph embedding can
be used for visualization. Figure 6 presents a visualization of the
embeddings for two reference pathways, the citrate cycle (TCA)
cycle and Glycolysis/Gluconeogenesis, as documented in the KEGG
database. The resulting subgraph for the TCA cycle consists of 25
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Fig. 6 2D t-SNE (Maaten and Hinton, 2008) visualization of embeddings for two
transductive scenarios using ELP. Top: using graph connectivity only. Bottom: using
both graph connectivity and MACCS fingerprints

nodes and 70 edges, while the subgraph for glycolysis/gluconeogene-
sis pathway consists of 46 nodes and 126 edges. Twelve compounds
are common to both pathways, and include phosphate, diphosphate,
pyruvate, thiamine diphosphate, lysine, oxaloacetate and phosphoe-
nolpyruvate. These compounds contribute to 23 edges that overlap
in both pathways. To visualize embeddings of these metabolites, we
reduce the dimensionality of the embeddings to 2 via t-SNE (Maaten
and Hinton, 2008). For the connectivity only plot (top), we observe
tight clustering of metabolites within each pathway, while we ob-
serve looser clustering when using MACCS fingerprints as node
attributes (bottom). Nodes that are embedded far away from the
clusters, phosphate, diphosphate, and carbon dioxide, exhibit high
connectivity within the KEGG graph, with node degrees of 460,
398, and 545, respectively. On the contrary, nodes within the
KEGG graph have an average degree of 3.5, and nodes within the
two reference pathways have an average degree of 5.5.

3.7 Runtime

A single reconstruction using embeddings in ELP has worst case
time complexity linearly proportional to the maximum degree of a
node (Garcia-Duran and Niepert, 2017). Combined with negative
sampling, a single iteration of ELP takes O(K|V|deg,,.(V)), where
K is the length of fingerprints. The space complexity of ELP is
O(dKn), where d is the embedding dimension. For benchmarking
purposes, our experiments using ELP with MACCS fingerprints
completed in under 40 min of wall-clock time with 50 GB of avail-
able memory. In contrast, each experiment using L2SVM with the
MACCS fingerprints took 75 min with 500 GB of available mem-
ory. SVM is space bound due to the large number of #* ordered
compound pairs and requires O(K#?) memory.

4 Conclusion

This work uses EP to learn molecular representations that capture
both graph connectivity, enzymatic properties and structural mo-
lecular properties. We show that link prediction using only graph
connectivity is on par with using molecular similarity. Importantly,
we show high accuracy in link prediction when using both graph
connectivity and molecular attributes. Link prediction outperforms
prior techniques based on similarity methods, SVMs and rule-based
methods. Link prediction was shown effective in reconstructing
metabolic pathways and reactions within the gut microbiota. This
work has broader and practical impact. ELP can be used to guide
many biological discoveries and engineering applications such as
identifying catalyzing enzymes when constructing novel synthesis
pathways or predicting interaction between microbes and human
hosts. Graph embedding can be used for other applications such as
biochemical network visualization, as demonstrated herein. Further,
while our approach is applied to biochemical enzymatic networks, it
can enhance link prediction in chemical networks, where rule-based
and path-based link prediction respectively yielded 52.7% and
67.5% prediction accuracy (Segler and Waller, 2017).
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