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Abstract—Due to the dense deployment of a small base station
(SBS), wired backhauling is not always available, nor it is effi-
cient. Therefore mmWaves are introduced to serve as backhauling
links that offer high backhauling throughput and low CAPEX.
However, mmWaves suffer from a high attenuation rate as the
distance between SBSs and a macro base station (MBS) increases,
which can severely degrade the system performance. Therefore,
it is more efficient to use some SBSs to aggregate from different
SBSs to MBS. On the other hand, densely deployed SBSs with
wireless backhauling can cause high energy consumption in the
system. In this work, we present a new network model in which
SBSs are able to harvest energy from a renewable source and
utilize it for backhauling and their associate UEs. A mathematical
Optimization problem is formulated to solve UEs association, dy-
namic sleeping, backhauling, and transmission power. Moreover,
due to the complexity of the formulated problem, a heuristic
algorithm is introduced. Namely, a heuristic backhauling and
dynamic sleeping (HBDS) algorithm is introduced to decomposes
the formulated problem into two parts and solve it iteratively.
Finally, computer simulation results that demonstrate the model’s
performance are presented for comparison between optimal solu-
tion and HBDS, which shows that HBDS has better computation
efficiency with minimum performance difference.

I. INTRODUCTION

In recent years, there has been increasing acknowledgment
of the need for ultra-dense networks (UDNs) by utilizing
SBS deployments to improve capacity gain by utilizing the
enhanced area spectral efficiency of the system. However,
mobile network operators face fundamental challenges, such
as the operative expenditure (OPEX) and capital expenditure
(CAPEX), in order to deliver the target capacity for the 5G/6G
system as the tremendous growth in the SBS deployment and
the need for backhauling [1], [2]. The Integrated Access and
Backhaul (IAB) in the 5G/6G millimeter wave (mmWave)
network can lower the OPEX and CAPEX, and the 3GPP
identifies it as a practical alternative to the traditional fiber
infrastructure. IAB enables wireless backhaul by utilizing
mmWave spectrum to backhaul base stations while only a few
of them are connected to fiber infrastructures.

Although UDN deployment is considered as one of the
promising solutions in the 5G/6G to enhance capacity gain,
energy consumption can be significant for mobile network
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operators and users [3], [4]. The energy efficiency can be de-
creased significantly in dense deployment scenarios because of
the energy consumption of the SBSs at idle mode. Therefore,
power consumption may increase the OPEX to mobile network
operators, where the CAPEX can also be increased due to
the cost of power wiring per SBS. Recently, different energy
harvesting schemes have generated worldwide interest in the
development of green communication networks. Thanks to the
smart grid’s continued deployments, renewable energies, such
as solar and wind, can be utilized in green communication
networks to increase energy efficiency [3], [5].

The literature proposes several approaches that enable the
5G/6G backhaul and access with mmWave transmission to
reduce costs, interference, and complexity [1]–[7]. In [1],
different topology setup strategies for realistic IAB deploy-
ment scenarios at mmWave are adopted to demonstrate the
latency and overall throughput performance. In [2], an IAB
approach based on mmWave frequencies is developed for
SBSs, where a combination of fiber, non-line-of-sight (NLOS)
microwave links, and line-of-sight (LOS) mmWave links are
utilized to provide low-latency high capacity backhauling
connections. In [3], a renewable energy allocation issue is
studied for a cellular backhaul network to allocate and price
renewable energy storage for the sake of forwarding the traffic.
In [4], an integrated fiber-wireless access network with an
energy conservation scheme is proposed for EPON-WLAN
to minimize the total energy consumption. In [6], a spectrum
allocation approach in the IAB architecture is proposed by
developing a framework based on deep reinforcement learning.
In [7], an IAB’s energy-saving scheme is also considered to
minimize energy consumption while satisfying the throughput
requirements. However, the surveyed IAB schemes do not
consider the energy efficiency issue, even though the energy
consumption needs to be jointly considered in the UDN. Thus,
energy consumption can be significant for mobile network
operators. The scheme in [7] is explicitly proposed to minimize
energy consumption in the IAB by formalizing an optimization
problem to find the optimal power transmission. However,
none of the previous works consider the potential benefits
of harvesting energy from renewable sources to minimize the
network’s reliance on the traditional power supply.

The contribution of this paper is as follows:
1) A mathematical optimization problem is formulated to

optimally solve the IAB backhauling, UEs-SBSs associ-
ation, transmission power, and energy transfer.



2) A heuristic algorithm is proposed,namely HBDS, which
is based on decomposing the mathematical problem
into two parts: First, binary variables are solved using
a modified version of Base Station Centrality (BSC).
Second, continuous variables are solved by a nonlinear
problem (NLP) approximation based on the mathematical
optimization problem.

3) Finally, a validation and a comparison between the heuris-
tic approach and the optimal solution are presented using
computer simulation, which shows significant computa-
tion efficiency improvement.

The paper is organized as follows: Section II describes
the proposed IAB and energy harvesting system model. The
formulation of the optimization problem is introduced in
Section III. In section IV, a decomposition of the original
problem is presented with a heuristic algorithm, that shows
the detailed steps for providing the solution. User association
and dynamic sleeping are proposed using centrality analysis.
Section V discusses the selected numerical results of the
simulation. Finally, the paper is concluded in Section VI.

II. SYSTEM MODEL

In this section, we introduce a system model for HetNet
with mmWave backhauling. We consider a HetNet comprised
of a set of SBSs and a single MBS, denoted by (b =
0, 1, ..., B) where b = 0 denotes MBS. The SBSs are deployed
densely and can interfere with each other. Every SBSs is
backhauled, using mmWave, to the MBS, which uses optical
fiber technology to connect to the core network. Fig. 1 shows
the topology of the network, where SBSs and UEs follow
homogeneous Poisson Point Processes (PPPs) ΦSBS and ΦUE
whose densities are λSBS and λUE , respectively. We assume
that UEs and SBSs are both equipped with directional antennas
that have steering capability, where beamforming is performed
between UEs, SBSs, and MBS. All SBSs share the same
spectrum and connect to the MBS with constrained mmWave
backhaul links. The MBS is connected to the core network
with fiber-optic links.

A. Model of mmWaves Backhauling Network

Let (m = 1, ...,M) denotes the set of point-to-point
line-of-sight backhaul links that SBSs are using to backhaul
their traffic to MBS. Let zmij denotes a binary indicator for
backhauling links between any BSs, and equals 1 if SBS i is
using this link to backhaul its data to BS j and zero otherwise
and since MBS is using fiber optics for backhauling, zm0j = 0.
Moreover, assume εm indicates the maximum capacity of link
m, therefore the total aggregated rate in link m:

Rmij =
B∑
i=1

B∑
j=1

Wm
ij log10(1 + SINRmij ) ≤ εm (1)

where Wm
ij is the backhaul bandwidth, and SINRmij is the

signal to interference and noise ratio. Due to the high atten-
uation rate in mmWaves, interference can be negligible and
assume SINR = SNR. With:

SNRmij =
pmijh

m
ij

Wm
ijN0

(2)

where pmij is backhauling transmission power between SBS
i and any BS (SBS or MBS)j using link m and hmij is
backhauling channel gain. The backhauling channel can be
modeled by the flat-top model, which has a constant gain in
the main lobe and zero gain outside. This model is an ideal
case, where in practice, the main lobe gain varies, and side
lobes have non zero values. However, 3GPP presented simple
and practical two-dimensional directional antenna with gain
G(θ) [8]:

G(θ) =

{
Gmain10

− 3
10 (

2θ
ωmain

) |θ| ≤ θmain
2

Gside
θmain

2 ≤ |θ| ≤ π
(3)

where ωmain denotes half-power beamwidth, and θmain is
the main lobe beamwidth. Gmain and Gside are the main lobe
and side lobes gains, respectively. Backhauling channel gain
between SBS i and any BS j is as follows [9]:

hmij = G(θ, i)G(θ, j)
λ2d−α

d30(4π)2
(4)

where G(θ, i) and G(θ, j) represent transmit and receive
directional antenna gains, respectively. d and α denote the
propagation distance and the path loss exponent, respectively.
λ is the wavelength, and d0 is the free space reference distance.

B. Model of UEs Association and Achievable Rate
Let (u = 1, 2, ...U) denotes mobile UEs that employ one

or more of the available channels to associate with SBSs. A
time slotted system with fixed duration slots (n = 1, 2, ..., N)
is used where UEs are considered stationary during this time.

Let xub[n] be a binary indicator that is equal to 1 if UE u
and SBS b are associated in n, or 0 otherwise. On the other
hand, let yb[n] denotes the SBS on/off status, where it is 0 if
the SBS is OFF during the time slot n and 1 if the SBS is
ON, where the channel gain hub[n] between UE u and SBS b
is defined as follows:

hub[n] =
β0

dαuf [n]
(5)

where β0 denotes the channel gain at the reference distance
of d0 = 1m, and α0 is the path loss exponent. Thus, the
interference at a UE u which is associated with SBS b from
all other SBSs at a time slot n will be:

Iub[n] =
B∑
i6=b

piu[n]hui[n], (6)

Then, the signal to interference and noise ratio SINR for
every user is:

SINRub[n] =
pub[n]hub[n]

Icub[n] +WubN0
, (7)

where N0 is the channel noise spectral density, which is
assumed to be Additive White Gaussian Noise AWGN, and
WubN0 is the noise variance σ2. Thus, the data rate for every
UE u during a time slot is as follow: T

Rub[n] =Wub log(1 + SINRub[n]) (8)



Fig. 1: A network with SBSs powered by renewable energy and connected to a smart grid.

C. Model For SBS Energy Harvesting

In this subsection, a model for energy harvesting for SBSs
is presented, where every SBS is equipped with two power
sources: non-renewable power from a smart grid (SG) and
power from renewable sources. Renewable energy is not a
reliable source since the amount of harvested energy for each
SBS depends on several factors such as location, time of the
day, and weather forecast. Therefore, the grid power source is
utilized to work as a backup power supply if the renewable
source does not provide enough power. On the other hand,
there is a possibility that some SBSs harvest energy more than
their requirement in a given time slot. Hence, in this section,
we will model an energy harvesting model and energy transfer
model using SG to transfer energy from an SBS with excessive
renewable energy supply to another SBS suffering from an
energy shortage. In other words, every SBS is set to use the
energy from a renewable source first and then request power
from the grid. However, because SG technology allows a two-
way flow of power [10], it can be used here to transfer HE
between SBSs.

The SBSs harvest energy from a renewable source, where
the amount of HE for every SBS b and time slot n is denoted
by Hb[n], and it follows a normal distribution. Therefore, at
the end of every time slot, an SBS will either transfer the
surplus of its harvested energy or request energy from other
SBSs to compensate for its deficit. If the energy surplus of the
other SBSs cannot match the energy demand of the SBS with
the shortage, then the SBS will request non-renewable energy
from the smart grid directly.

The HE is utilized for transmission between SBS and its
associated UEs and for backhauling transmission. Therefore,
the transmission power between UE u and BS b during the

time slot n is [11]:

pub[n] = pub,g[n] + pub,r[n] (9)

where pub,g[n] is the power drawn from the grid and pub,r[n]
is the power drawn from the renewable source including HE
transferred from other SBSs.

Similar to [11], at every time slot, each SBSs will either
inject its excessive harvested energy or request energy equals
its energy shortage. Let βb[n] and κb[n] denote the amount of
the harvested energy SBS b is injecting into or receiving from
the SG at the end of slot n, respectively. SG will provide
storage for the excessive harvested energy that SBSs are
injecting into the SG (however, the storage should not be actual
storage; instead, SG will keep records of all injected energy
and keep these records as virtual storage ). Then, the amount
of the harvested energy transferred into the SG equals the
harvested energy drawn from the SG, where η is the transfer
efficiency.

B∑
b=1

n∑
n=1

κb[i]η ≤
B∑
b=1

n∑
n=1

βb[i] (10)

III. PROBLEM FORMULATION

In this section, a mathematical optimization problem is
presented to minimize the energy consumption of the system
model by performing the UEs association, SBSs active sleep-
ing strategy, and backhauling association. The optimization
problem will work on forcing all SBSs to first use harvested
renewable energy for transmission and backhauling and then
request energy from the SG. The problem will also force
as many SBSs to deactivate and keep harvesting energy to



transfer it to other SBSs that require more energy than it can
harvest. This approach guarantees that the network employs
the harvested energy first. After depleting all the harvested
energy, the network will request energy from the traditional
power grid to compensate for any energy shortage.

The optimization problem is presented as follows:

P1 :

Minimize
pub[n],κb[n],βb[n],yb[n],zmij ,xub[n],p

m
ij

B,U,N∑
b,u,n=1

pub,g[n]τ +

B,B,M∑
i,j,m=1

pmij τ +
B∑
b=1

N∑
n=1

Ebyb[n]

subject to

C1 : Rmin ≤
B∑
b=1

Rub[n] ∀u, ∀n,

C2 :
B∑
i=1

Rmib +
U∑
u=1

Rub[n] ≤ εm ∀m, ∀n, ∀b,

C3 : HB [n] = βb[n] +
U∑
u=1

pub,r[n]τ ∀n, ∀b

C4 :

U∑
u=1

pub,r[n]τ =

n∑
i=1

ηκb[i] +

n∑
i=1

HB [i] ∀b, ∀n,

C5 :
U∑
u=1

pub[n] ≤
U∑
u=1

xub[n]Pmaxb ∀b, ∀n,

C6 :

B∑
j=1

M∑
m=1

pmbj ≤
B∑
j=1

M∑
m=1

zmbjP
max
b ∀b,

C7 :
B∑
j=1

M∑
m=1

pmbj +
U∑
u=1

pub[n] ≤ yb[n]Pmaxb ∀b, ∀n,

C8 :
B∑
b=1

xub[n] ≤ 1 ∀u, ∀n,

C9 :
B∑
j=0

M∑
m=1

zmbj = 1 ∀b 6= 0,

C10 :

∑U
u=1 xbu[n]

#ofUEs
≤ yb[n] ≤

U∑
u=1

xbu[n], ∀ b, ∀n,

The optimization problem P1 is minimizing the total energy
consumption by forcing lightly utilized SBSs to deactivate and
implementing the harvested energy first, then using grid source
power. C1 assures a quality of service QoS with minimum
throughput for each UE. C2 is enforcing a cap on backhaul
links where the total amount of data that is transmitted through
it cannot exceed a maximum threshold εm for each m. C3 and
C4 are for energy causality where transmission power from
renewable source and energy injected into the grid must not
exceed the total harvested energy. Constraints C5, C6 and C7
set the limit for the maximum transmission power for each
SBS that is used for backhauling and data transmission to
its associated UEs.Constraints C8, C9 and C10 are binary
variables constraints for UEs association, backhauling and
dynamic sleeping, respectively.

Problem P1 is a mixed-integer nonlinear problem (MINLP),
which is an NP-hard problem and is extremely difficult to
solve. Moreover, the SINR term in constraint C2 is causing the
constraint to be non-convex, which increases the complexity of
the problem. Therefore, a new heuristic approach is presented
in the following section to present an efficient solution to the
problem.

IV. PROBLEM DECOMPOSITION AND HEURISTIC
APPROACH

This section presents a heuristic approach to solve problem
P1. Problem P1 is decomposed into two parts: Binary vari-
ables part (UEs association, backhauling, and SBSs dynamic
sleeping) and continuous variables part (transmission power
and energy transfer). The binary variables are solves in two
steps. First, the backhauling association variable zmij is solved
according to the best initialized SNRmij . Second, the UEs
association and dynamic sleeping are solved according to a
modified version of the BSC approach [11]. The BSC is a
method that assigns each SBS a value according to its position
within a network, where an SBS at the center of the network,
which is surrounded by many SBSs that have higher BSC
value than an SBS that is at the edge of the network. BSC
helps in deciding which SBS can be deactivated and which is
not, since SBS that is at the middle of the network (hence, has
higher BSC) is more probable on being deactivated without
affecting the performance of the network than an SBS that is
at the edge of the network.

The candidate solution of the binary variables from BSC,
(ȳb[n], z̄mij , x̄ub[n]) is utilized to solve the following problem:

P2 :

Minimize
pub[n],κb[n],βb[n],pmij

P =

B,U,N∑
b,u,n=1

pub,g[n]τ +

B,B,M∑
i,j,m=1

pmij τ +

B∑
b=1

N∑
n=1

Ebȳb[n]

subject to
C1− C4,

C11 :

U∑
u=1

pub[n] ≤
U∑
u=1

x̄ub[n]Pmaxb ∀b, ∀n,

C12 :
B∑
j=1

M∑
m=1

pmbj ≤
B∑
j=1

M∑
m=1

z̄mbjP
max
b ∀b,

C13 :
B∑
j=1

M∑
m=1

pmbj +
U∑
u=1

pub[n] ≤ ȳb[n]Pmaxb ∀b, ∀n,

Problem P2 is NLP and is less complex than P1. All binary
variables in P2 are treated as constants and are provided from
the first step. Algorithm 1 is presenting the detailed steps for
the heuristic method.

Algorithm 1 can be divided into three parts: initialization
and association, backhauling, and association using BSC, and
the third is evaluating the continuous variables by solving P2.

Algorithm 1 starts by randomly initializing transmission
power and dynamic sleeping variables. Then, steps 4 and 5



Algorithm 1 Heuristic Backhauling and Dynamic Sleeping.

1: Input:HB [n];hub[n];hmij ;Rmin;Pmaxb ;Wub;N0; εm;

2: Initialize: p[0]ub[n]; p
m[0]
ij ; y

[0]
b ; k = 0

3: while True do
4: Calculate SINRub[n] ∀u, ∀b, and associate users with

active BSs according to the highest SINR.
5: Calculate SNRmij ∀i, ∀j ∈ B, and set zmij = 1 for

SBS i and BS j with the highest SNR.
6: if

∑U
u=1 xbu[n] = 0 ∀u∀n then

7: yb := 0 ∀b
8: end if
9: Utilize BSC algorithm in [11] to find ȳb[n] and x̄ub[n]

10: Solve problem 2 and the solution is:[
p̄
[k]
ub [n], p̄

m[k]
ij , κ̄

[k]
b [n], β̄

[k]
b [n]

]
11: if P̄[k] ≤ P̄[k−1] then
12: T∗ :=

[
p̄
[k]
ub [n], p̄

m[k]
ij , κ̄

[k]
b [n], β̄

[k]
b [n]

]
13: x∗ub[n] := x̄

[k]
ub [n]

14: y∗b [n] := ȳ
[k]
b [n]

15: z∗mij := z̄
[k]m
ij

16: else if problem 1 is infeasible then
17: Go back to 9
18: end if
19: k:=k+1
20: Break after calculating BSC for all SBSs.
21: end while
22: Output: T∗, y∗b [n], x∗ub[n], z∗mij

are to calculate SNRub and SNRmij and associate UEs with
SBS that offer the highest SINR and backhaul each SBS
with BS that has the highest SNR. Steps 6 and 7 are for
dynamic sleeping where each SBS with no associated UEs
is deactivated and used for harvesting and backhauling. Step
9 is invoking the BSC algorithm to calculate the association
and dynamic sleeping. The solution from BSC is utilized to
solve P2 for the continuous variables. If the provided solution
is better than the previous solution, the candidate solution is
assigned as the optimal solution. If P2 is infeasible, BSC is
invoked again to provide a new solution. After calculating BSC
for all SBSs, T∗, y∗b [n], x∗ub[n], z∗mij will be the final optimal
solution.

V. SIMULATION RESULTS

This section provides simulation results that demonstrate the
performance of the system model shown in Fig. 1 to minimize
energy consumption. The parameters in all simulations, unless
stated otherwise, are presented on Table I.

In this simulation we consider an area of 100×100m2 where
SBSs and UEs are distributed using homogeneous Poisson
point processes. In solving the optimal problem we used used
Convex Over and Under ENvelopes for Nonlinear Estimation
(Couenne) which is based on branch-and-bound framework
[12].

Fig. 2 investigates the performance difference between the
optimal solution in P1 and algorithm 1. In this scenario, the
number of SBSs is 6 with n = 4, and the number of UEs in

Table I: List of used parameter values for simulation.

Parameter Value Parameter Value
N 5 λ 4.10675mm
U 20 εm 50Gbps
EB 10J Gside -2dBm. [13]
B 10 Gmain 20dBm.
M 5 Pmax 30dBm. [13]

Rmin 10Mbps. α 1.2
η 0.9 τ 1s
N0 -174dBm/Hz Wub 20MHz
Wm

ij 5GHz. d0 1m

6 8 10 12 14 16 18 20 22 24 26
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Fig. 2: A Comparison between Optimal solution and
HBDS algorithm.

the network is u = 8. From the figure, we can see that as the
minimum required rate increases, the total energy consumption
increases too. This is understandable since a higher data rate
requires higher transmission power. On the other hand, the
sudden increase in energy consumption (from 140 to more
than 200) is caused by the increase of active SBSs (from 3
to 4) since the active SBSs could not provide the minimum
required data rate. Moreover, we can see the performance
difference between the optimal solution and algorithm 1 where
the performance difference is less than 12%.

Table II shows the computation time required to provide
results for both approaches: optimal solution form P1 and al-
gorithm 1. As the number of SBSs increases, the computation
time for the optimal solution increases exponentially until it
requires more computation resources than available. On the
other hand, HBDS provided reasonable performance with a
linear increase in computation time as the number of SBSs
increases.

In Fig. 3, we show the advantage of utilizing SBSs as
aggregators for other SBSs in comparison with each SBS that
uses mmWave to backhaul directly to MBS. The results show

Table II: Required Computation Time for P1 and HBDS.

# of SBSs Optimal comp. time (in hours) HBDS comp. time (in hours)
4 5 0.01
6 16 0.03
8 Machine resources not enough 0.12

10 Machine resources not enough 0.22
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Fig. 3: The effect of the total number of SBSs on the
backhauling.

significant energy saving in using aggregated backhauling in
comparison with direct backhauling. Moreover, the energy-
saving increases as the number of SBSs increases; this is
understandable since the more the active SBSs, the more
backhauling links are required, which consumes more energy.

Fig. 4: The effect of increasing Rmin on Pr and Pg .

Fig. 4 shows the minimum required rate effect on power
consumption from the harvested energy, power grid, and
energy transfer efficiency. For less Rmin, algorithm 1 con-
sumes energy for communication solely from the harvested
energy and non from the grid. Further, when Rmin increases,
algorithm 1 starts requesting power from the power grid. For
high Rmin, pr will saturate since algorithm 1 utilized all
the available harvested energy, and pg increases to support
a higher data rate. Moreover, energy transfer efficiency plays
an important role in minimizing energy consumption, where
better η means better utilization of the harvested energy.

VI. CONCLUSION

In this work, HetNets with IAB, dynamic sleeping, and
energy harvesting are investigated, where mmWave back-
hauling between SBSs is performed in order to minimize
the total energy consumption in the network. Moreover, an
optimization problem is formulated that provides UEs asso-
ciation, dynamic sleeping, and transmission power for the
network. The optimization problem forces all SBSs to use
first harvested energy for transmission and backhauling, then
request energy from the SG. The problem also forces as many
SBSs to deactivate and keep harvesting energy to transfer
it to other SBSs. This approach guarantees that the network
employs the harvested energy to its maximum before turning
the power supply. However, due to the problem’s complexity, a
heuristic algorithm is introduced by decomposing the problem
into two parts and invoking BSC to an efficient solution to
the problem. Finally, computer simulation is performed to
demonstrate the performance of HBDS in energy consumption
and computation efficiency.
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