
 
 

 
 

 
Materials 2021, 14, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/materials 

Article 1 

In-situ characterization of pore formation dynamics in pulsed wave laser powder bed fusion 2 

S. Mohammad H. Hojjatzadeh 1, 2, Qilin Guo 1,2, Niranjan D. Parab 3, Minglei Qu 1,2, Luis I. Escano 1, Kamel Fezzaa 3, 3 
Wes Everhart 4, Tao Sun 5, * and Lianyi Chen 2,* 4 

1 Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA. 5 
2 Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 6 

53706, USA. 7 
3 X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA. 8 
4 Department of Energy’s Kansas City National Security Campus Managed by Honeywell FM&T, Kansas City, 9 

Missouri 64147, USA. 10 
5 Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, 11 

USA. 12 
* Correspondence: lianyi.chen@wisc.edu (Lianyi Chen); ts7qw@virginia.edu (Tao Sun) 13 

Abstract: Laser powder bed fusion (LPBF) is an additive manufacturing technology with the capa- 14 
bility of printing complex metal parts directly from digital models. Between two available emission 15 
modes employed in LPBF printing systems, pulsed wave (PW) emission provides more control over 16 
the heat input compared to continuous wave (CW) emission, which is highly beneficial for printing 17 
parts with intricate features. However, parts printed with pulsed wave LPBF (PW-LPBF) commonly 18 
contain pores, which degrades their mechanical properties. In this study, we reveal pore formation 19 
mechanisms during PW-LPBF in real time by using in situ high-speed synchrotron x-ray imaging 20 
technique. We found that vapor depression collapse proceeds when the laser irradiation stops 21 
within one pulse, resulting in occasional pore formation during PW-LPBF. We also revealed that 22 
the rapid melt pool solidification during pulsed-wave laser melting resulted in cavity formation and 23 
subsequent formation of pore pattern in the melted track. The pore formation dynamics revealed 24 
here may provide guidance on developing pore elimination approaches. 25 

Keywords: Laser powder bed fusion; Additive manufacturing; Pore; Pulsed emission; X-ray imag- 26 
ing 27 
 28 

1. Introduction 29 

Laser powder bed fusion (LPBF) additive manufacturing (AM) process is a 3D printing 30 
technology, which selectively melts powders in successive thin layers to build three di- 31 
mensional parts directly from digital models without the constraints of traditional man- 32 
ufacturing methods. Currently, the LPBF is rapidly growing among multiple industrial 33 
applications, such as medical, aerospace, defense, and automobile [1].  34 

    One of the primary distinctions between commercial LPBF systems, is the type of laser 35 
emission mode employed [2]. In continuous wave LPBF (CW-LPBF) systems, the laser 36 
delivers energy continuously without interruption; while in pulsed wave LPBF (PW- 37 
LPBF) systems, the laser power is fast modulated to turn on and off repeatedly, delivering 38 
energy in pulses [3,4]. The short burst of energy with PW-LPBF creates a melt pool with 39 
more flexible control over the heat input, which is highly advantageous for printing finer 40 
features such as lattice structures [5]. However, parts printed with PW-LPBF exhibit pores 41 
because the pulsated laser intrinsically causes instability in the melt pool leading to for- 42 
mation of pores [6]. Pore is the major defect in parts printed by LPBF AM, which adversely 43 
affects the mechanical properties [7], especially the fatigue performance [8]. 44 
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    While, pore formation during CW-LPBF process has been studied extensively by post- 45 
processing diagnostic techniques [9], in situ x-ray imaging technique [10–16] and high fi- 46 
delity simulations [13], the research on pore formation and its underlying mechanisms 47 
during PW-LPBF is limited. Therefore, it is imperative to implement in-process diagnostic 48 
tools, such as state-of-the-art in situ x-ray imaging techniques, to perform fundamental 49 
studies on pore formation during PW-LPBF process in real time. 50 

    In this study, we revealed the dynamics and mechanisms of pore formation during 51 
the PW-LPBF process by utilizing in-situ high-speed x-ray imaging with 100 ps temporal 52 
resolution and ~2 μm spatial resolution. The results of this study are vital for developing 53 
processing parameters to mitigate pore formation and therefore improve the mechanical 54 
performance and reliability of parts printed by the PW-LPBF. In addition, the results of 55 
this research may have implications in other areas where pulsated laser is used [17–21].  56 

2. Materials and Methods 57 

High-speed high-resolution x-ray imaging (at the beamline 32-ID-B of the Advanced Pho- 58 
ton Source, Argonne National Laboratory) was utilized to probe pore formation dynamics 59 
during PW-LPBF in real time[22]. The schematic of x-ray imaging system is displayed in 60 
Figure 1. The high-speed x-ray imaging system is composed of a miniature laser powder 61 
bed setup which is clamped between two glassy carbon as the container walls. A pseudo 62 
pink x-ray beam, with 1st harmonic energy at (24.7~25.3) keV penetrates through the 63 
metal and powder while a downstream detection system converts the transmitted x-ray 64 
beam into a visible light image using a scintillator. The converted signal is then recorded 65 
by a high-speed camera with a 10× magnification and spatial resolution of approximately 66 
2 μm per pixel [22–25]. A recording frame rate of 50 kHz was used in this study. The 67 
experiments were performed inside a stainless-steel vacuum chamber, under 1 atm argon 68 
atmosphere. Ti-6Al-4V and Al6061 plates with the thicknesses of 0.4 and 0.7 mm, respec- 69 
tively, were used as the metal substrates. A layer of Al6061 powder with a thickness of 70 
~100 μm was spread on the top of the Al6061 substrate metal to perform pulsed-LPBF AM 71 
experiments. In the experiments with Ti-6Al-4V substrate, no powder was added on the 72 
top of the substrate metal.  73 

    The key parameters to define the pulse in pulsed laser melting are frequency and laser 74 
duty cycle. The frequency (𝒇𝒇) is defined as: 75 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝒚𝒚 =
𝟏𝟏

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷
=

𝟏𝟏
𝒕𝒕𝒐𝒐𝒐𝒐 + 𝒕𝒕𝒐𝒐𝒐𝒐𝒐𝒐

 (1) 

where ton is defined as the time period when the laser is “on” in each pulse, called laser- 76 
on period, and toff denotes the time period when laser is “off” between the end of the pulse 77 
and the beginning of the consecutive pulse, called laser-off period (see the inset of Figure 78 
1). The laser duty cycle is the percentage of how long the laser is “on” in the given modu- 79 
lated period and is defined as:  80 

𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 =
𝒕𝒕𝐨𝐨𝐨𝐨

𝒕𝒕𝐨𝐨𝐨𝐨𝐨𝐨 + 𝒕𝒕𝐨𝐨𝐨𝐨
 × 𝟏𝟏𝟏𝟏𝟏𝟏% (2) 

    An ytterbium fiber laser with the wavelength of 1070 nm, maximum output power of 81 
520 W and a D4σ diameter of ~100 μm was modulated by a square wave to emit with a 82 
given peak power at varying laser frequency (up to 50 kHz) and laser duty cycle (up to 83 
99%) to make single track laser melting on both powder bed and bare substrate samples. 84 
The laser scan velocity was varied from 0.3 to 1.5 m/s in the experiments.  85 
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    The recorded x-ray images were processed using ImageJ to reduce the noise and en- 86 
hance the contrast in each frame. The solid-liquid interface was identified in x-ray images 87 
by image processing where the image intensity at each pixel of Frame (i) was divided by 88 
the intensity of corresponding pixel in Frame (i+2), such that the motionless part in the 89 
image was converted to blank background [25].  90 

 91 

92 

Figure 1. Schematic of the x-ray imaging experiment and the temporal characteristics of PW-LPBF 93 
process. The figure shows the temporal characteristic of square shaped pulses used in the experi- 94 
ment and the definition of laser on and off period. Note that the actual output of the pulse shape 95 
may deviate from the perfect square shape specified in the laser control program. 96 

3. Results 97 

Pore formation during PW-LPBF process was studied by performing a series of x-ray im- 98 
aging experiments at the frame rate of 50 kHz under varying laser frequency and laser 99 
duty cycle. Figure 2 and Supplementary Movies 1-3 show pore formation during PW- 100 
LPBF process of Al6061 under varying laser frequency (4, 7, and 10 kHz) and a constant 101 
laser duty cycle (50%). Pores are observed to form occasionally via the rapid collapse of 102 
the vapor depression at the end of the laser-on period in one pulse which is reminiscence 103 
of pore formation at the end of laser track during CW-LPBF AM. The mechanism of pore 104 
formation when the laser is turned off at the end of the track has been extensively studied 105 
before[11,13,15,22]. Under constant laser duty cycle (while laser power and scan speed are 106 
also kept constant), the melt pool size is observed to be the function of laser frequency. As 107 
the laser frequency increased (from 4 to 10 kHz), smaller melt pool and therefore shal- 108 
lower depression zone formed. This caused formation of pores from vapor depression 109 
collapse at the depth closer to the interface between the substrate and the powder layer, 110 
as can be directly observed in Figure 2.  111 
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Figure 2. Pore formation under varying laser frequencies at a constant laser duty cycle: (a-l) Dynamic x-ray images show- 113 
ing pore formation during PW-LPBF of Al6061 at laser frequencies of 4 kHz (a-d); 7 kHz (e-h); and 10 kHz (i-l) under a 114 
laser duty cycle of 50%, a laser power of 470 W and a scan speed of 0.4 m/s. In d, h and l, the melt pool boundary is not 115 
indicated to avoid blocking the pores. Note that images do not display the complete duration of one pulse. The compiled 116 
movies showing complete duration of two consecutive pulses are available in the Supplementary Material. 117 

    Similarly, vapor depression collapse at the end of laser on period occasionally caused 118 
pore formation in the melt pool under varying laser duty cycle and a constant laser fre- 119 
quency, as shown in Figure 3 and Supplementary Movies 4-6. The increase in laser duty 120 
cycle and therefore longer laser exposure time in these experiments resulted in formation 121 
of larger melt pool and subsequently formation of pore at the larger depth relative to the 122 
interface between the substrate and the powder layer. From these experimental observa- 123 
tions, neither the size nor the number of pores were identified to be correlated with the 124 
change of laser frequency or duty cycle (Figures 2 and 3), which is ascribed to the random 125 
pore formation from vapor depression collapse during PW-LPBF. 126 
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Figure 3. Pore formation under varying laser duty cycles at a constant laser frequency: (a-l) Dynamic x-ray images show- 128 
ing pore formation during PW-LPBF process of Al6061 at the laser duty cycle of 40% (a-d); 60% (e-h); and 75% (i-l) at a 129 
laser frequency of 7 kHz, a laser power of 470 W and a scan speed of 0.4 m/s. In d, h and l, the melt pool boundary is not 130 
indicated to avoid blocking the pores view. Note images do not display the complete duration of one pulse. The compiled 131 
movies showing the complete duration of two consecutive pulses are available in the Supplementary Material.  132 

    Low laser frequency is associated with longer pulse duration (𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 = 𝟏𝟏
𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇

) 133 
and therefore longer laser irradiation time. To further our understanding of pore for- 134 
mation at low laser frequency, we performed a series of x-ray imaging experiments during 135 
pulsed-wave laser melting of Ti-6Al-4V at 4 kHz under varying laser duty cycle. Figure 4 136 
and Supplementary Movie 7 display the x-ray image sequences during pulsed-wave laser 137 
melting of Ti-6Al-4V substrate at a laser frequency of 4 kHz and a duty cycle of 50%. The 138 
first frame (t0, Figure 4a) shows the onset of the laser pulse when laser irradiation starts. 139 
Within 120 µs, the laser irradiation stops, leading to a rapid freezing of the melt pool and 140 
formation of a cavity, mirroring the shape of the depression zone (Figure 4d). As the con- 141 
secutive laser pulse begins, the depression zone emerges at a location of ~220 µm far away 142 
from the center of the first cavity (t0 + 300 µs, Figure 4f). The laser irradiation stops again 143 
after 120 µs and resulted in formation of the second cavity in the substrate (Figure 4h). As 144 
the laser moves forward, the cavity formation proceeds and a pattern of cavity is formed 145 
in the substrate material (t0 + 900 µs, Figure 4p).  146 
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Figure 4. Cavity pattern formation at low laser frequency: (a-p) Dynamic x-ray images showing formation of 148 
cavity during pulsed-wave laser melting of Ti-6Al-4V substrate at a laser frequency of 4 kHz, a duty cycle of 149 
50%, a laser power of 420 W, and a scan speed of 0.8 m/s. Note that some image frames during laser-on time 150 
and laser-off time have been skipped. The compiled movies showing the details are available in the Supple- 151 
mentary Material. 152 

    In the modulated laser, the distance that laser travels at the time interval between 153 
pulses (commonly called as the point distance) is decreased via the decrease in laser scan 154 
speed. This results in formation of the overlap between melt pools of the consecutive 155 
pulses. Figure 5 and Supplementary Movie 8 show x-ray imaging experiment during 156 
pulsed-wave laser melting of Ti-6Al-4V substrate at a laser frequency of 4 kHz, a duty 157 
cycle of 60% and a laser scan speed of 0.5 m/s. The cavity forms after the rapid freezing of 158 
the melt pool at the end of laser on period. As the consecutive pulse begins, the vapor 159 
depression emerges at a location where it interacts with the cavity, turning the cavity into 160 
a closed pore (Figure 5 a-o). As the laser melting continues, a pattern of pore forms in the 161 
substate via this pore formation mechanism (Figure 5p). 162 

 163 
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Figure 5. Pore pattern formation from cavity at low laser frequency: (a-p) Dynamic x-ray images showing the formation 165 
of pore from the cavity during pulsed-wave laser melting of Ti-6Al-4V at a laser frequency of 4 kHz, a duty cycle of 60%, 166 
a laser power of 470 W and a laser scan speed of 0.5 m/s. The pore formation from cavity in two consecutive pulses has 167 
been shown in (a-o). Note that some image frames during laser-on period and laser-off period have been skipped. The 168 
movies showing pore formation dynamics are available in the Supplementary Material.    169 

4. Discussion 170 

We constructed schematics to illustrate the formation mechanisms of the cavity pattern 171 
and pore pattern. The mechanism of cavity pattern formation is displayed in Figure 6a-f. 172 
During the laser melting, vapor cavity is formed progressively in the substrate material 173 
by a strong vaporization induced recoil pressure. The melt pool that forms in one pulse is 174 
observed to be only slightly larger than the vapor depression (as indicated in Figure 4g), 175 
appearing to form a layer of liquid around the vapor depression. A strong recoil pressure 176 
around the vapor depression pushes the molten metal to move rapidly along the vapor 177 
depression walls and ultimately ejects away near the rim of the vapor depression in the 178 
form of a melt ligament and spatter (Figures 6b and c). As a result, a large amount of liquid 179 
metal is ejected away rapidly from the melted area around the vapor depression during 180 
laser melting. This phenomenon was recently simulated by a high-fidelity model [13]. As 181 
the laser turns off, the temperature at the back of the depression zone decreases abruptly, 182 
which results in rapid solidification of the remaining liquid around the vapor depression, 183 
before the liquid fills the cavity (Figures 4h and 6d-f).  184 
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    At the laser parameters setting used here, we did not observe the cavity pattering 185 
mechanism in Al6061 substrates. This can be ascribed to the higher thermal conductivity 186 
of Al6061 relative to Ti-6Al-4V (90 W/mK compared to 35 W/mK [26,27]). In Ti-6Al-4V, 187 
pulsed laser melting results in formation of a small melt pool in each pulse which starts 188 
to cool and solidify as soon as the pulse is complete. In Al6061 substrate material with 189 
higher thermal conductivity, on the other hand, a larger melt pool with longer solidifica- 190 
tion time forms in each pulse, which appears like a continuous melt pool by looking at 191 
consecutive pulses. As the laser irradiation stops in each pulse, there is sufficient melt 192 
around the vapor depression to reverse the direction towards the vapor depression side 193 
walls and fills the vapor cavity [28]. Similar cavity formation phenomena may be observed 194 
in Al6061 substrate by reducing the pulse duration and increasing the laser power. The 195 
mechanism of pore pattern formation from cavity is schematically shown in Figure 6g-l. 196 
The first cavity forms as a result of rapid solidification of the melt pool when laser is 197 
switched off at the end of the laser-on period (Figure 6g-i). With the onset of the consecu- 198 
tive pulse, a new melt pool is created where it connects with the cavity formed in the 199 
previous pulse (Figure 6j). As the melted zone moves forward and grows in depth with 200 
the laser translating, the upper and middle portion of the cavity is filled with the liquid 201 
flowing from the melt pool, and the bottom portion of the cavity remains as a closed pore 202 
in the substrate material (Figure 6j-l). This process can continue until a pattern of pore is 203 
observed in the substrate material.  204 

  205 

Figure 6. The mechanisms of pore and cavity pattern formation at low laser frequency: (a-f) Cavity formation 207 
mechanism; (g-l) Mechanism of pore formation from cavity at low laser frequency. 208 

5. Conclusions 209 

In summary, pore formation dynamics during pulsed wave LPBF AM process was di- 210 
rectly observed by utilizing synchrotron x-ray imaging technique. The main conclusions 211 
are as follows: 212 
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1. The collapse of vapor depression, when laser irradiation stops at the end of laser on 214 
period in one pulse, was observed to occasionally induce pores during PW-LPBF process 215 
under varying laser frequencies and duty cycles.  216 

2. The melt pool and depression zone size changed with laser frequency and duty cycle. 217 
With increase of the laser frequency or decrease of the duty cycle, the melt pool size and 218 
consequently depression zone size decreased during PW-LPBF.   219 

3. Our experimental observations did not reveal any correlation between the size nor the 220 
number of pores and the laser frequency or duty cycle. 221 

5. In the depression/keyhole mode laser melting, at a low laser frequency with large point 222 
distance, cavity formation proceeds via the rapid solidification of the thin molten metal 223 
layer around the vapor cavity, which subsequently results in the formation of cavity pat- 224 
tern in the substrate material. 225 

6. In the depression/keyhole mode laser melting, at a low laser frequency with small point 226 
distance, the interaction of the cavity with the melt pool in the consecutive pulse results 227 
in the formation of closed pores and pore pattern.  228 

7. The results of this study will help the understanding of the PW-LPBF process and guide 229 
the development of processing approaches to mitigate pores.  230 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Movie S1: 231 
The dynamics of pore formation during pulsed wave LPBF of Al6061 at a laser frequency of 4 kHz, 232 
duty cycle of 50%, laser power of 470 W, and laser scan speed of 0.4 m/s; Movie S2: The dynamics 233 
of pore formation during pulsed wave LPBF of Al6061 at a laser frequency of 7 kHz, duty cycle of 234 
50%, laser power of 470 W, and laser scan speed of 0.4 m/s; Movie S3: The dynamics of pore for- 235 
mation during pulsed wave LPBF of Al6061 at a laser frequency of 10 kHz, duty cycle of 50%, laser 236 
power of 470 W, and laser scan speed of 0.4 m/s; Movie S4: The dynamics of pore formation during 237 
pulsed wave LPBF of Al6061 at a duty cycle of 40%, laser frequency of 7 kHz, laser power of 470 W, 238 
and laser scan speed of 0.4 m/s; Movie S5: The dynamics of pore formation during pulsed wave 239 
LPBF of Al6061 at a duty cycle of 60%, laser frequency of 7 kHz, laser power of 470 W, and laser 240 
scan speed of 0.4 m/s; Movie S6: The dynamics of pore formation during pulsed wave LPBF of 241 
Al6061 at a duty cycle of 75%, laser frequency of 7 kHz, laser power of 470 W, and laser scan speed 242 
of 0.4 m/s; Movie S7: The dynamics of cavity pattern formation during pulsed-wave laser melting 243 
of Ti-6Al-4V substrate at a laser frequency of 4 kHz, duty cycle of 50%, laser power of 420 W, and 244 
scan speed of 0.8 m/s; Movie S8: The dynamics of pore pattern formation during pulsed-wave laser 245 
melting of Ti-6Al-4V substrate at a laser frequency of 4 kHz, duty cycle of 60%, laser power of 470 246 
W and laser scan speed of 0.5 m/s.  247 
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