Automatic Summarization of Open-Domain Podcast Episodes

Kaigiang Song,* Chen Li,® Xiaoyang Wang,” Dong Yu,® Fei Liu®

#Computer Science Department, University of Central Florida
®Tencent Al Lab, Bellevue, WA

kgsong@knights.ucf.edu

{ailabchenli, shawnxywang,dyu}@tencent.com

feiliu@cs.ucf.edu

Abstract

We present implementation details of our ab-
stractive summarizers that achieve competitive
results on the Podcast Summarization task of
TREC 2020. A concise textual summary that
captures important information is crucial for
users to decide whether to listen to the podcast.
Prior work focuses primarily on learning con-
textualized representations. Instead, we inves-
tigate several less-studied aspects of neural ab-
stractive summarization, including (i) the im-
portance of selecting important segments from
transcripts to serve as input to the summarizer;
(ii) striking a balance between the amount and
quality of training instances; (iii) the appropri-
ate summary length and start/end points. We
highlight the design considerations behind our
system and offer key insights into the strengths
and weaknesses of neural abstractive systems.
Our results suggest that identifying important
segments from transcripts to use as input to
an abstractive summarizer is advantageous for
summarizing long documents. Our best sys-
tem achieves a quality rating of 1.559 judged
by NIST evaluators—an absolute increase of
0.268 (+21%) over the creator descriptions.

1 Introduction

Podcast is a promising new medium for reaching
a broad audience. A podcast series usually feature
one or more recurring hosts engaged in a discussion
about a particular topic.! New platforms developed
by Spotify, Apple, Google and Pandora encompass
a wide variety of topics, ranging from talk shows to
true crime and investigative journalism. Our data
are provided by Spotify (Jones et al., 2020), con-
taining 100,000 podcast episodes comprised of raw
audio files, their transcripts and metadata. The tran-
scription is provided by Google Cloud Platform’s
Speech-to-Text API.?

1https://en.wikipedia.org/wiki/Podcast
2https://cloud.google.com/speech—to—text

Segments of a Podcast Transcript

What's good? Everybody is of all trades here with the game
llluminati. Hope you guys are having a great day. So far. If you guys
didn’t get a chance to check out our last video. Be sure to check out
the link down in the description box below. We are back for another
Triple Threat Sports podcast. Now before we get into the Super Bowl
edition of Triple Threat Sports podcast. | got to introduce you guys
to my co-host first co-host. Say what up C ewan’s what up next you
guys know him as UT X JG to dine, but he’s also known as the ...

The LA Rams supporter and he’s going to the Superbowl. Say what
up, GG don't it? Feel so good though. It feels so good. The lone
person the triple threat Sports podcast by team is going to the shelf
and people are mad and we gonna talk about it man. We got we
definitely going to talk about it for sure. So at the time of this
recording we've already gone through the Pro Bowl which was
yesterday. I'm sure some of you guys watched it and you know
whoopty whoopty Doo I've ...

Interest in the Pro Bowl after like | turned | 15 but AFC 126 to 7, but
we're going to talk about these NFL Conference Championship
games. You got to between the Rams and the Saints which whoo,
boy, there’s a lot of controversy behind that one and then the Chiefs
and the Patriots before we get to the smoke and everything like that
because jg’'s been handing them out all this week. Let’s go ahead
and start going into the NFL conference championships for the
Patriots and the Chiefs now, I'll go with you ...

Creator Description

The Guys are back for another Triple Threat Sports Podcast! This
time UTXJGTHEDON is giving out all the smoke as his Los Angeles
Rams is heading to the Super Bowl to face the New England Patriots.
— Support this podcast: https://anchor.fm/triplethreatsportspodcast

Our Summary

In this episode of the Triple Threat Sports Podcast, JG and UTX
discuss the NFL Conference Championship games between the
Patriots and Chiefs and the Rams and Saints. They also discuss
the controversy between the Chiefs and Patriots and what they
had to say about it. The guys also give their predictions for the
Super Bowl and what teams they think are going to win the game.

Table 1: A snippet of the podcast transcript, its original cre-
ator description and an abstract produced by our summarizer.

We seek to generate a concise textual summary
for any podcast episode, which a user might read
when deciding whether to listen to the podcast. An
ideal summary is required to accurately convey all
the most important attributes of the episode, such as
topical content, genre and participants. It is best for
the summary to contain no redundant material that
is not needed when deciding whether to listen. In
Table 1, we show a snippet of the podcast transcript
and its creator description. The snippet contains 3
segments, each corresponds to 30 seconds of audio.
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Figure 1: An illustration of our system architecture. UCF_NLP1 truncates the transcript to a length of L=1,024 tokens, before
feeding it to the BART model to produce a concise abstract. UCF_NLP2 produces an abstractive summary in a similar fashion.
It enhances content selection by identifying important segments from the transcripts to serve as input to BART. The selected

segments are limited to a length of L=1,024 tokens.

The major challenge in performing podcast sum-
marization includes (a) the unique characteristics
of spoken text. Disfluencies and redundancies are
abundant in spoken text; its information density is
often low when compared to written text. The pod-
casts are of various genres: monologue, interview,
conversation, debate, documentary, etc. and tran-
scription is more challenging and noisier; (b) the
excessive length of transcripts. It exceeds the limit
imposed by many neural abstractive models. A
podcast transcript contains on average 80 segments
and 5,743 tokens. It serves as the input to a pod-
cast summarization system to produce an abstract.
The creator description is part of the metadata. It
contains 81 tokens on average and is used as the
reference summary.

This work draws on our rich experience in sum-
marizing meeting conversations (Liu et al., 2009;
Liu and Liu, 2009, 2013; Koay et al., 2020) and
building neural abstractive systems (Lebanoff et al.,
2019, 2020; Song et al., 2020). We have chosen an
abstractive system over its extractive counterpart
for this task, as neural abstractive systems have
seen significant progress (Raffel et al., 2019; Lewis
et al., 2020; Qi et al., 2020). Not only can an ab-
stract accurately convey the content of the podcast,
but it is in a succinct form that is easy to read on a
smartphone. Our system seeks to fine-tune a neural
abstractive summarizer with an encoder-decoder ar-
chitecture (Lewis et al., 2020) on podcast data. We
especially emphasize content selection, where an
extractive module is developed to select salient seg-
ments from the beginning and end of a transcript,
which serve as the input to an abstractive summa-
rizer. In this work, we systematically investigate
three crucial questions concerning abstractive sum-
marization of podcast transcripts.

* Is it sufficient to feed the leading sentences of
a transcript to the summarizer to produce an
abstract, or are there advantages to be gained
from selecting salient segments with an extrac-
tive module to use as input to the summarizer?
(Content Selection)

* Should we remove training pairs with noisy,
low-quality reference summaries in entirety,
or can we improve their quality, and thus strike
a balance between the amount and quality of
training examples? (The Quality of Reference)

* What summary length would be most appro-
priate for podcast episodes to serve our goal
of assisting users in deciding whether to listen
to the podcast? (Summary Postprocessing)

2  Our Method

We aim to produce a concise textual summary from
a podcast transcript that captures the most impor-
tant information of the episode to help users de-
cide whether to listen to that episode. Our method
makes use of podcast transcripts only but not raw
audio. It utilizes the BART model (Lewis et al.,
2020) to condense a source text into an an abstrac-
tive summary, which employs an encoder-decoder
architecture. The model is pretrained using a de-
noising objective. The source text is corrupted by
replacing spans of text with mask symbols. The
encoder encodes the corrupted text using a bidi-
rectional model, and the decoder learns to recon-
struct the original source text by attending to hid-
den states of the final layer of the encoder using a
cross-attention mechanism.

Our implementation is based on BART-LARGE.
The encoder and decoder each contain 12 layers of
Transformer blocks. The hidden state and embed-



ding size is 1,024. Byte-Pair Encoding (BPE; Sen-
nrich et al., 2016) is used to tokenize the source text.
It has a vocabulary of 50,265 subword units. The
BART model is fine-tuned on CNN (bart-large-cnn)
then on podcast data; the latter contain 79,262/500
examples for training and validation. Our system is
evaluated on a test set with 1,027 examples. Given
a transcript, we compare two methods to generate
the source text that serves as the input to BART, cor-
responding to two runs we submitted to the Podcast
Challenge. Our system architecture is illustrated in
Figure 1 and details are described as follows.

* UCF_NLP1 The transcript is truncated to a
length of L=1,024 tokens. The method takes
the lead sentences of a transcript, feeds them
to the BART model to produce a succinct ab-
stractive summary that captures important in-
formation about the podcast episode.

* UCF_NLP2 It produces an abstractive sum-
mary from a podcast transcript in a similar
fashion. Crucially, the method enhances con-
tent selection by identifying summary-worthy
segments from the transcript to serve as input
to BART. The selected segments are limited
to a length of L=1,024 tokens.

2.1 Content Selection

We seek to empirically answer the question: “Is it
sufficient to feed the lead sentences of the transcript
to an abstractive summarizer, or are there advan-
tages to be gained from selecting salient segments
with an extraction module to use as input to the
summarizer?” We consider segments produced by
the Google Speech-to-Text API as basic units of ex-
traction, each corresponds to 30 seconds of audio.
We opt for segment- rather than sentence-based
extraction for two reasons. First, the information
density of single utterances is often low. In con-
trast, the segments are lengthier and more detailed.
They tend to have similar lengths and are less likely
to be misclassified due to length variation. Second,
comparing to sentences, concatenating segments to
form a source text that serves as the input to BART
can help preserve the context of the utterances ex-
tracted from the transcript.

We introduce a hybrid representation for the ¢-th
candidate segment that combines deep contextual-
ized representations and surface features. Particu-
larly, each segment is encoded by RoBERTa (Liu
et al., 2019). It contains 24 layers of Transformer
blocks, has a hidden size of 1024 and 16 attention

heads. A special token [cLs] is added to the begin-
ning of the segment and [sep] is added to the end.
We use the output vector corresponding to the [cLS]
token as the contextualized representation for the
segment, denoted by h{ € RD.

A segment containing salient words is deemed
to be important. We measure word salience by its
duration (in seconds) and TF-IDF score, which are
orthogonal to contextualized representations and
aim to capture the topical salience. To characterize
a segment using its containing words, we compute
12 feature scores for a candidate segment, includ-
ing (a) the sum and average of word TF-IDF scores;
(b) the sum and average of word durations; (3) the
average of word TF-IDF scores (and durations),
limiting to 5/10/15/20 words per segment that yield
the highest scores. Each feature score is discretized
into a binary vector using a number of bins whose
sizes are {2, 3, 5, --- 31, 37} (12 prime numbers).
E.g., a feature score is mapped to a 2-dimensional
vector [0,1] (bin size=2) if its value is in the upper
half of all values; otherwise it is [1,0]. By con-
catenating binary vectors of different bin sizes, and
vectors corresponding to different feature scores,
we obtain a 2,364-dimentional vector for each seg-
ment. The vector is passed through a feedforward
layer to generate a surface feature vector of size D,
denoted by h$ € RP.

We take 33 segments from the beginning and 7
segments from the end of each transcript to be the
candidate segments. This amounts to a total of 40
segments per episode. The selection is bounded by
the GPU memory, but allows us to cover 81% of the
ground-truth summary segments. Each segment is
characterized by its contextualized representations
h{, surface features hf, and a position embedding
hf , all of which are added up in an element-wise
manner to serve as input to a 2-layer Transformer
encoder, with a hidden size of D=1,024, 16 atten-
tion heads and no pretraining, to produce a vector
for each candidate segment of the transcript. Each
vector is fed to a feedforward and a softmax layer
to predict if the segment is salient.

The ground-truth segment labels are derived by
comparing segments with creator descriptions. We
calculate the ROUGE-2 Recall score for a segment
against any sentence of the creator description. A
segment is labelled as positive if the score is greater
than a threshold (7=0.2), otherwise negative. The
positive-to-negative ratio is 1:18 among candidate
segments, and no downsampling was performed.



Creator Description

The Guys are back for another Triple Threat Sports Podcast! This
time UTXJGTHEDON is giving out all the smoke as his Los Angeles
Rams is heading to the Super Bowl to face the New England Patriots.
— Support this podcast: https://anchor.fm/triplethreatsportspodcast

Clean Reference Summary

The Guys are back for another Triple Threat Sports Podcast! This
time UTXJGTHEDON is giving out all the smoke as his Los Angeles
Rams is heading to the Super Bowl to face the New England Patriots.

Table 2: Our data cleansing method focuses on improving the
quality of reference summaries using a number of heuristics,
rather than eliminating noisy reference summaries in entirety.
It thus strikes a good balance between the quality and amount
of training examples.

Our preliminary results suggest that using a hybrid
representation that combines surface features with
contextualized representations for the segments can
lead to an improvement in extraction performance
(+0.53% F-score).

2.2 The Quality of Reference

One of the significant challenges in abstractive sum-
marization is the scarcity of labelled data. While
it is common practice to remove training examples
containing noisy, low-quality reference summaries,
it is not obvious whether this is the best path to
take for data curation, as a significant amount of
examples may be eliminated from the training set.
Thus, we raise the question: “Should we remove
training examples with noisy low-quality reference
summaries in entirety, or can we improve their qual-
ity, and thus strike a balance between the amount
and quality of training examples?”

The training data provided by the Podcast Chal-
lenge contain over 100,000 episodes and short de-
scriptions written by their respective creators. The
organizers find that about a third are less useful de-
scriptions, and have since filtered out descriptions
that are (a) too long (greater than 750 characters)
or short (less than 20 characters); (b) too similar to
other descriptions (cut-and-paste or template); (c)
too similar to its show description (no new info).
This practice results in 66,245 training examples,
corresponding to a 34% reduction of training data,
which has a visible effect on performance.

Instead of eliminating noisy examples in entirety,
we strive to enhance the quality of creator descrip-
tions using heuristics. Our goal is to identify sen-
tences that contain improper content and remove
them from the descriptions. We compute a salience
score for each sentence of the description by sum-
ming over word IDF scores. A low IDF score indi-
cates the word frequently appears in other episodes,

and thus is uninformative.> We remove sentences
if their salience scores are lower than a threshold
(0=10). The remaining sentences of a creator de-
scription are concatenated to form a clean reference
summary. Our method results in 79,912 training
examples. It reduces the average length of the refer-
ence summary from 81 to 76 words. In Table 2, we
show an example containing reference summaries
before and after data cleansing.

2.3 Summary Postprocessing

We next describe our efforts at postprocessing the
summaries generated by BART. The length_penalty
of BART penalizes the log probability of a sum-
mary (a negative value) by its length, with an ex-
ponent p, setting p=2.0 promotes the generation of
longer summaries. We set no_repeat_ngram_size
to be 3, which stipulates that a trigram cannot occur
more than once in the summary. After a grid search
in the range of [35,42], we set the min_length of a
summary to be 35 subwords for UCF_NLP1 and 39
for UCF_NLP2. The max_length of a summary is
set to 250 subwords. We use a beam size of K=4
for summary decoding.

BART may optimize well with the inductive bias,
but it remains necessary to apply a series of heuris-
tics to the output summaries to alleviate any over-
fitting that has led to the generation of template
language and improve the summary presentability.
Among others, the heuristics include (a) removing
the content after “— (e.g., “— This episode is
sponsored by,” “— Send in a voice message”); (b)
removing URLS; (c) removing brackets and the con-
tent inside it; (d) removing any trailing incomplete
sentence if the summary is excessively long (>128
tokens); (e) removing duplicate sentences that oc-
cur three times or more across different episodes.
We observe that a handful of sentences appeared
in summaries of different episodes. They are unre-
lated to the transcripts, but are generated possibly
due to overfitting (e.g., The Oops podcast examines
the mistakes that change the trajectory of people’s
lives: the bad decisions, the aftermath, the path to
redemption and all things in between.)

3We perform data normalization by replacing URLs, Email
addresses, @usernames, #hashtags, digits and tokens that are
excessively long (greater than 25 characters) with placeholders
before computing word IDF scores. Only words occurring 5
times or more in the corpus and with IDF scores greater than
1.5 are considered when computing sentence salience scores.



(3) Excellent

The summary accurately conveys all the most important attributes of the episode, which could include topical content, genre,
and participants. In addition to giving an accurate representation of the content, it contains almost no redundant material
‘which is not needed when deciding whether to listen. It is also coherent, comprehensible, and has no grammatical errors.

The summary conveys most of the most important attributes and gives the reader a reasonable sense of what the
episode contains with little redundant material which is not needed when deciding whether to listen. Occasional

The summary conveys some attributes of the content but gives the reader an imperfect or incomplete sense of what the
episode contains. It may contain redundant material which is not needed when deciding whether to listen and may contain

(2) Good

,,,,,,,,,,,,,,,, grammatical or coherence errors are acceptable.
(1) Fair

,,,,,,,,,,,,,,, repetitions or broken sentences. .
(0) Bad

The summary does not convey any of the most important content items of the episode or gives the reader an incorrect or
incomprehensible sense of what the episode contains. It may contain a large amount of redundant information that is not
needed when deciding whether to listen to the episode.

Table 3: The qualitative judgments performed by NIST. The rating is a number from 0-3, with 0 being Bad and 3 being Excellent.

Q1 | Does the summary include names of the main people (hosts,
guests, characters) involved or mentioned in the podcast?

‘Q2| Does the summary give any additional information about
the people mentioned (such as their job titles, biographies,
personal background, etc)?

'Q3 | Does the summary include the main topic(s) of the podcast?

‘Q4 | Does the summary tell you anything about the format of
the podcast; e.g. whether it's an interview, whether it's a chat
between friends, a monologue, etc?

'Q5 | Does the summary give you more context on the title
of the podcast?

'Q6 | Does the summary contain redundant information?

'Q7 | Is the summary written in good English?

'Q8 | Are the start and end of the summary good sentence and
paragraph start and end points?

Table 4: There are eight yes-or-no questions asked about the
summary. The judgments are performed by NIST. An ideal
summary should receive a “yes” (1) for all questions but Q6.

3 Results and Conclusion

There were 29 submitted runs for the podcast sum-
marization task of TREC 2020. Each run contains
a set of summaries generated for the full test set
with 1,027 episodes. Among these, 179 episodes
were selected by NIST evaluators in a random fash-
ion to perform qualitative judgments on the sum-
mary quality. An evaluator quickly skimmed the
episode, and made judgments for each summary for
that episode, in a random order. Intermixed in the
submitted summaries were the creator description
(“DESC”) for an episode, and a “filtered” summary
from Spotify (“FILT”). Our system runs are denoted
by “UCF_NLP1” and “UCF_NLP2”. The latter used
an additional extraction module to identify salient
segments from the transcripts.

The evaluation criteria used by NIST evaluators
are shown in Table 3. The summary quality rating
is a number from 0-3, corresponding to four levels:
Bad/Fair/Good/Excellent. Additionally, there were
eight yes-or-no questions asked about the summary
(Table 4). They were designed to evaluate the vari-
ous aspects of summaries. An ideal summary will
receive a “yes” for all questions but Q6.

We present our results in Tables 5-9. Our system
“UCF_NLP2” has achieved a quality rating of 1.559.
This is an absolute increase of 0.268 (+21%) over
episode descriptions. We raise awareness of pos-
sible inconsistencies between ROUGE and human
judgments of summary quality. The inconsisten-
cies could stem from the deficiencies of ROUGE in
capturing semantic meanings, or it could be due to
episode descriptions are not the most appropriate
reference summaries. We find content selection to
remain important for podcast summarization. A
summary containing only partial information about
an episode may hamper the reader’s understanding.
Further, we caution that it is challenging to gener-
ate abstractive summaries that are fully accurate
to the content of the podcast. Not only are there
transcription errors, but subtle change of meaning
can happen in system abstracts. Even humans may
not spot some subtle errors without a careful com-
parison of system abstracts and transcripts.
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