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ABSTRACT: We use the Northern Hemisphere Tree-Ring Network Development (NTREND) tree-ring database to examine
the effects of using a small, highly sensitive proxy network for paleotemperature data assimilation over the last millennium. We
first evaluate our methods using pseudoproxy experiments. These indicate that spatial assimilations using this network are skillful
in the extratropical Northern Hemisphere and improve on previous NTREND reconstructions based on point-by-point regres-
sion. We also find our method is sensitive to climate model biases when the number of sites becomes small. Based on these
experiments, we then assimilate the real NTREND network. To quantify model prior uncertainty, we produce 10 separate
reconstructions, each assimilating a different climate model. These reconstructions are most dissimilar prior to 1100 CE, when the
network becomes sparse, but show greater consistency as the network grows. Temporal variability is also underestimated before
1100 CE. Our assimilation method produces spatial uncertainty estimates, and these identify tree-line North America and eastern
Siberia as regions that would most benefit from development of new millennial-length temperature-sensitive tree-ring records. We
compare our multimodel mean reconstruction to five existing paleotemperature products to examine the range of reconstructed
responses to radiative forcing. We find substantial differences in the spatial patterns and magnitudes of reconstructed responses to
volcanic eruptions and in the transition between the Medieval epoch and Little Ice Age. These extant uncertainties call for the
development of a paleoclimate reconstruction intercomparison framework for systematically examining the consequences of
proxy network composition and reconstruction methodology and for continued expansion of tree-ring proxy networks.
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1. Introduction reconstructions (CFRs) can additionally capture the spatial
fingerprints of large-scale temperature anomalies caused by
radiative forcing and ocean—atmosphere dynamics (Mann et al.
1998; Evans et al. 2001; Seager et al. 2007; Cook et al. 2010a,b;
Phipps et al. 2013; Anchukaitis and McKay 2014; Goosse 2017).
CFRs have been developed using a number of methods (Tingley
et al. 2012; Smerdon and Pollack 2016) including point-by-point
methods (Cook et al. 1999, 2010a,b; Anchukaitis et al. 2017), vari-
ants of regularized expectation maximization (RegEM; Schneider
2001; Rutherford et al. 2003; Mann et al. 2009; Smerdon et al. 2011;
Guillot et al. 2015), and reduced space approaches (Fritts 1991;
Cook et al. 1994; Mann et al. 1998; Evans et al. 2002; Gill et al. 2016).

Recently, data assimilation (DA) has emerged as a prom-
ising CFR technique (e.g., Widmann et al. 2010; Bhend et al.
2012; Goosse et al. 2012; Steiger et al. 2014; Hakim et al. 2016;
Matsikaris et al. 2015; Okazaki and Yoshimura 2017; Steiger
et al. 2018; Franke et al. 2020). Assimilation methods integrate
the climate signals recorded in paleoclimate proxies with
dynamical constraints provided by climate models to pro-
duce spatially continuous climate field reconstructions and
associated uncertainty estimates. There are several existing
paleoclimate DA paradigms, including pattern nudging/
forcing singular vectors (van der Schrier and Barkmeijer
2005), particle filters (Goosse et al. 2012; Dubinkina and
Corresponding author: Jonathan King, jonking93@email.arizona.edu ~ Goosse 2013; Matsikaris et al. 2015), and ensemble Kalman

Past variations in surface temperatures can be used to
investigate a number of key characteristics of Earth’s climate
system, including the response to radiative forcing, the regional
effects of such forcings, and the role of internal modes of
coupled ocean-atmosphere variability (Hegerl et al. 1997,
Stott and Tett 1998; Delworth and Mann 2000; Meehl et al.
2004; Lean and Rind 2008; Stott and Jones 2009; Stott et al.
2010; Solomon et al. 2011; Phipps et al. 2013; Hegerl and Stott
2014; Kaufman 2014; Guillet et al. 2017; Neukom et al. 2019;
Zhu et al. 2020). Paleoclimate temperature reconstructions
using natural archives like tree rings are particularly useful
because they extend the short instrumental record to centen-
nial and longer time scales. These provide an opportunity to
characterize the patterns and magnitude of forced climate re-
sponse and internal variability (Hegerl et al. 2003, 2007;
Schurer et al. 2013; Masson-Delmotte et al. 2013). Climate field
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filters (Bhend et al. 2012; Steiger et al. 2014; Hakim et al. 2016;
Dee et al. 2016; Perkins and Hakim 2017; Steiger et al. 2018;
Tardif et al. 2019; Franke et al. 2020). Here, we focus on the
ensemble Kalman filter (EnKF) approach (Steiger et al. 2014;
Hakim et al. 2016), which has been shown to perform well
compared to other DA methods in a paleoclimate context (Liu
et al. 2017). EnKF methods update an ensemble of climate
states to more closely match paleoclimate proxy records. These
climate states are produced using one of two approaches: the
“online” method, in which the ensemble is generated by a set
of transient model simulations that propagate updates forward
through time (e.g., Perkins and Hakim 2017); and the “offline”
(or “no-cycling”’) method (Oke et al. 2002; Evensen 2003), in
which ensembles are constructed from preexisting climate
model output (e.g., Bhend et al. 2012; Annan and Hargreaves
2012; Steiger et al. 2014; Hakim et al. 2016; Valler et al. 2019;
Tardif et al. 2019; Franke et al. 2020). We focus here on the
offline approach, which has been shown to perform favorably to
online methods in paleoclimate contexts with reduced compu-
tational costs (Matsikaris et al. 2015; Acevedo et al. 2017). A key
requirement of EnKF methods is the ability to estimate equiv-
alent proxy values from climate model output. This is achieved
through the use of forward models that translate climate state
variables, like surface temperature, into proxy values, like tree-
ring width (TRW) or maximum latewood density (MXD). These
forward models can range in complexity from a simple linear
relationship to more detailed proxy systems models (PSMs) in-
corporating the physical processes that transform climate signals
to proxy records (Evans et al. 2013). The use of forward models
helps separate data and process level models in the data assim-
ilation framework (Goosse 2016).

An important decision in any assimilation is the selection of
the proxy network. Ultimately, this choice must balance spa-
tiotemporal coverage with sensitivity to the reconstructed field
and associated proxy uncertainties (Esper et al. 2005; Frank
et al. 2010; Wang et al. 2015; Wilson et al. 2016; Anchukaitis
et al. 2017; Esper et al. 2018; Franke et al. 2020; Cort et al.
2021). In general, large networks maximize coverage, but their
size often results from the inclusion of proxy records with
comparatively weak, complex, seasonally varying, or multi-
variate sensitivity to reconstructed variables. By contrast,
smaller curated networks consisting of well-understood and
strongly sensitive proxies provide a higher ratio of signal to
noise at the cost of reduced coverage (Frank et al. 2010). An
additional consideration concerns the implementation of
forward models: highly sensitive networks with a known cli-
mate response and seasonal window facilitate physically re-
alistic forward models, potentially improving assimilation
skill. Given the complexity of these trade-offs, network selec-
tion is not necessarily intuitive. Noisy proxies that covary
poorly with climate fields are down-weighted by the Kalman
filter algorithm; if this down-weighting renders the effects of
climate-insensitive proxies negligible on a reconstruction,
then a large network incorporating many proxies might appear
preferable. However, work by Franke et al. (2020) indicates
that EnKF temperature reconstructions using large proxy
networks do not correlate with target temperatures as well as
reconstructions produced using smaller, more sensitive networks.
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This result is supported by Tardif et al. (2019), who found that
additional screening of proxy records for temperature sensi-
tivity in an assimilation framework improved their ability to
reconstruct salient preindustrial climate features, such as
cooling during the Little Ice Age. The importance of proxy
sensitivity is further highlighted by Steiger and Smerdon (2017)
who note that skillful hydroclimate DA requires proxies sen-
sitive to the target reconstruction field.

Curated temperature sensitive proxy networks for data as-
similation include the Past Global Changes 2000 yr (PAGES2k;
Ahmed et al. 2013; Emile-Geay et al. 2017) and Northern
Hemisphere Tree-Ring Network Development (NTREND)
networks (Wilson et al. 2016; Anchukaitis et al. 2017). The
PAGES2k network has been commonly used in paleo-DA ap-
plications (Hakim et al. 2016; Dee et al. 2016; Okazaki and
Yoshimura 2017; Perkins and Hakim 2017; Tardif et al. 2019;
Neukom et al. 2019) and consists of proxy records identified as
temperature sensitive and meeting minimum temporal coverage
and age model precision criteria during the Common Era
(Emile-Geay et al. 2017). DA reconstructions using this network
may implement additional proxy screening but usually incor-
porate several hundred proxy records. The NTREND network
has stricter requirements for inclusion: it consists of 54 published
tree-ring chronologies selected by dendroclimatologists for
demonstrating an established and reasonable biophysical asso-
ciation with local seasonal temperatures (Wilson et al. 2016).
Franke et al. (2020) proposed that the additional coverage of the
PAGES2k network is preferable to the increased sensitivity of
the smaller NTREND network for global and hemisphere-scale
temperature reconstructions but found the NTREND network
provided the best reconstruction in the extratropical Northern
Hemisphere. To produce a maximally skillful reconstruction for
this region, we focus on assimilating the NTREND network but
acknowledge that this choice is accompanied by a reduced
spatial extent.

Before performing an assimilation, we seek to understand
the advantages and tradeoffs of offline EnKF related to both
the proxy data and climate model priors. We implement these
sensitivity tests using pseudoproxy experiments (Mann and
Rutherford 2002; Zorita et al. 2003; Smerdon 2012), which al-
low us to test the DA method’s ability to reconstruct known
climate fields within a controlled setting. Here, we note the
importance of model selection in DA pseudoproxy experi-
ments and distinguish between ‘““perfect model’”” and “biased
model” experimental designs. In a perfect-model experi-
ment, the same model is used to generate the target field and
as the model prior. Such designs are common in DA ana-
lyses (Annan and Hargreaves 2012; Steiger et al. 2014;
Okazaki and Yoshimura 2017; Acevedo et al. 2017; Zhu et al.
2020), where they are powerful tools for testing sensitivity to
variables like proxy noise, network distribution, and calibra-
tion intervals. Biased-model paradigms use different climate
models to generate target fields and assimilated model priors
and can help examine the effects of biases in a model prior’s
mean state and spatial covariance. Dee et al. (2016) found
model biases a potentially major source of error in paleo-EnKF
reconstructions, so we employ both perfect and biased-model
experiments in our investigations.
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In this study, we begin by first evaluating the sensitivity of
our DA method to proxy noise, network attrition, and climate
model biases in a suite of pseudoproxy experiments. We also
use the pseudoproxy framework to compare the skill of our
DA method to point-by-point regression (PPR), the technique
used for the original NTREND temperature field reconstruc-
tion (Anchukaitis et al. 2017). We then assimilate the real
NTREND tree-ring network to reconstruct mean May—-August
(MJJA) temperature anomalies. We produce an ensemble of
real reconstructions by assimilating NTREND with output
from multiple climate models in phase 5 of the Coupled
Modeling Intercomparison Project (CMIPS5; Taylor et al. 2012)
and the Community Earth System Model (CESM) Last
Millennium Ensemble (LME; Otto-Bliesner et al. 2016). We
quantify the skill of the DA reconstructions using spatial
temperature anomaly fields, mean Northern Hemisphere extra-
tropical (30°-90°N) May through August time series, and withheld
proxy data. Finally, we examine the climate response of the
ensemble-mean reconstruction to radiative forcings and compare
these responses against existing temperature field reconstructions.

2. Methods
a. Proxy network

The NTREND network is a curated set of 54 published
annual resolution tree-ring based summer-temperature proxy
records selected by dendroclimatologists to maximize sensi-
tivity to boreal summer temperatures while minimizing the
response to other climate variables (Fig. 1; Wilson et al. 2016;
Anchukaitis et al. 2017). Although tree growth at the
NTREND sites is primarily limited by summer growing
temperatures, the optimal summer season varies between
sites. Wilson et al. (2016) determined the season of highest
temperature sensitivity for each site and identified mean
MIJJA temperatures anomalies as the optimal reconstruc-
tion target for the network as a whole. The network only
includes sites between 40° and 75°N as lower-latitude trees
tend to exhibit sensitivity to multiple climate influences,
especially moisture limitations. Each record is derived from
TRW, MXD (Schweingruber et al. 1978), or a mixture of
TRW, MXD, and blue intensity (BI; McCarroll et al. 2002;
Bjorklund et al. 2014; Rydval et al. 2014; Wilson et al. 2019).
The network extends from 750 to 2011 CE, with maximum
coverage over the period from 1710 to 1988 CE. Spatial
coverage is greater over Eurasia (39 sites) than North
America (15 sites), with a distinct spatial imbalance prior to
1000 CE (20 vs 3). We end all reconstructions in 1988 CE as
network attrition limits the utility of assimilated NTREND
reconstructions after this point (Anchukaitis et al. 2017).

b. Data assimilation

Our data assimilation method uses an EnKF (Evensen 1994;
Steiger et al. 2014),

X, =X +K(Y-Y,), 1)

to update an initial ensemble of climate states X,, given proxy
data Y and model estimates of the proxy data Y.. These data
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FIG. 1. Locations of the 54 NTREND sites (Wilson et al. 2016).
NTREND records were developed using TRW (circles), MXD
(squares), or a mix of TRW, MXD, and BI (mixed; triangles).
Marker color denotes the century in which each record begins.

are combined via the Kalman gain K (detailed in the appendix)
to produce an updated ensemble X, in each reconstructed
annual time step. We use an EnKF variant known as the en-
semble square root Kalman filter (EnSRF; Andrews 1968),
with an “offline” (or “no cycling’’) approach (Oke et al. 2002;
Evensen 2003). The complete details of our approach are given
in the appendix and described in Steiger et al. (2014) and
Hakim et al. (2016). The Kalman filter can be expressed as a
recursive Bayesian filter (Chen 2003; Wikle and Berliner 2007),
wherein new information Y updates estimates of state param-
eters X. Hence, we will often refer to X,, as the model prior, and
the updated ensemble X, as the model posterior.

We implement a covariance localization scheme, which
limits the influence of proxies outside of a specified radius.
Localization was originally developed to limit spurious co-
variance arising from sampling noise in small ensembles of
m = 50 (Houtekamer and Mitchell 2001). Our offline approach
enables the use of much larger ensembles (2 > 1000), but we
note that spurious covariances may still arise from biases in a
climate model’s covariance structure. Consequently, localiza-
tion may improve the quality of assimilated paleoclimate re-
constructions even for large prior ensembles. The localization
radius is an important free parameter in this method and must
be assessed independently for different model priors, recon-
struction targets, and proxy networks (Table 1 and Table S1 in
the online supplemental material). The process used to select
localization radii for these experiments is detailed in the
appendix.

To generate model estimates of the proxy values, we follow
the methodology of Tardif et al. (2019) and use linear univar-
iate forward models trained on the mean temperature of each
site’s optimal growing season (Wilson et al. 2016), such that

_ prior
Yo = T BT @

Here, T}™" is a vector of mean growing-season temperature
anomalies extracted from the prior. The coefficients «; and B;
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TABLE 1. Calibrated localization radii. Localization radii for individual model priors are selected using the radius search and
calibration—validation procedure detailed in the appendix. Skill metrics are the median values obtained for the mean extratropical MJJA

time series relative to BEST for the set of validation periods.

Model Localization radius (km) Correlation RMSE (°C) o ratio Mean bias (°C)
BCC o 0.69 0.18 1.03 0.05
CCSM4 16 500 0.72 0.19 1.18 0.07
CESM o 0.72 0.18 1.08 0.06
CSIRO © 0.70 0.19 1.18 0.05
FGOALS o 0.70 0.18 1.02 0.07
HadCM3 o 0.69 0.19 1.18 0.05
IPSL 12750 0.70 0.19 1.19 0.06
MIROC 26375 0.71 0.19 1.18 0.06
MPI 27625 0.69 0.20 1.18 0.06
MRI o 0.71 0.17 1.01 0.05

are determined by regressing assimilated observations y;
against mean growing-season temperature anomalies from the
closest grid cell of the target field. We emphasize that these
target fields vary by application. For pseudoproxy experiments,
the target field is a specific model realization, whereas the real
assimilation uses CRU-TS 4.01 (Harris et al. 2014). Regardless
of the target, we perform each regression over the years in
which the real NTREND records overlap data from the closest
land grid cell in CRU-TS 4.01; this ensures that both pseudo-
proxy and real reconstructions use regressions with the same
temporal span. The variance of each record’s regression re-
siduals is used as the observation uncertainty (R;) in the
Kalman filter (see the appendix). This uncertainty ranges from
0.23 to 1.34 proxy units over the network.

We construct prior ensembles using output from the past1000
and historical experiments of CMIP5 (Taylor et al. 2012) as
well as LME (Otto-Bliesner et al. 2016). For a given assimi-
lation, we use values from a single climate model and desig-
nate each year of available output as a unique ensemble
member. We use static model priors, whereby the same prior
is used for each reconstructed time step. This scheme is jus-
tified by the limited forecast skill of climate models beyond
the annual reconstruction time scale (Bhend et al. 2012) and
is common in paleo-D A applications (e.g., Steiger et al. 2014;
Dee et al. 2016; Tardif et al. 2019). A summary of the model
ensembles is given in Table 2. The past1000 CMIP5 data for
each model are from the ensemble member designated
rlilpl, and LME output was selected from full-forcing run 2.
We assimilate temperature anomalies relative to the 1951-
1980 CE mean; this helps avoid the effects of climate model
mean state biases, but we note that model covariance biases
are unaffected. In all reconstructions, we update the mean
MIJJA temperature anomaly field, rather than individual
months. We assess the skill of each assimilation by comparing
the Pearson’s correlation coefficients, root-mean-square er-
rors (RMSEs), mean biases, and standard deviation ratios.

¢. Pseudoproxy reconstructions

Before assimilating the real NTREND network, we first
examine the skill of our DA method in a pseudoproxy frame-
work (Smerdon 2012). This approach allows us to test the
method’s ability to reconstruct known climate field targets
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within a controlled setting. Here, we specify the target fields as
surface temperatures from the years 850-2005 CE from either
the Last Millennium Ensemble full-forcing run 2 (CESM;
Otto-Bliesner et al. 2016), or from the combined last millen-
nium and historical runs of the Max Planck Institute for
Meteorology Earth System Model (MPI; Marsland et al. 2003;
Stevens et al. 2013). While this experimental design is inten-
tionally tractable, we caution that the observed spatial patterns
of skill will depend on the specific models used (Smerdon et al.
2011). Here, we are interested in examining the sensitivity of
EnSRF to the proxy network and climate model prior, so we
systematically explore the effects of noisy proxy records, net-
work attrition, and biased climate models on DA performance.
To examine the effects of model covariance biases, we test each
combination of target field and model prior for LME and MPI,
which allows us to alternate between perfect-model and
biased-model experimental designs.

After selecting a target field, we generate pseudoproxies using

y=a,+ b].T]t.arget +g, 3)

where ¥, is the jth pseudoproxy record and T;"™*" is the vector
of mean growing season temperature anomalies from the grid
cell closest to the proxy site in the target climate field. The
coefficients a; and b; are the intercept and slope obtained by
regressing the real NTREND network against mean growing-
season temperature anomalies from the nearest land cells in
CRU-TS 4.01; in this way, the pseudoproxies mimic the tem-
perature response of the real NTREND network for at least
the instrumental period.

We examine the effects of proxy noise by selectively
neglecting or adding Gaussian white noise to the pseudo-
proxies, such that

0, perfect
&~ {./1”(0, R.), )
ii
Here, R;j; is the proxy uncertainty weight for the jth NTREND
record and is the variance of the NTREND-CRU regression
residuals. When testing noisy proxies, we perform 101 assimi-
lations using different noise matrices and report the median
skill metrics. Here, we use white noise because it allows us to

noisy °
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TABLE 2. Summary of climate models used to construct data assimilation prior ensembles. Climate models are listed along with the
identifying acronym used in this study. The years of available output are provided with the experiment used to generate them. The size of
the model prior generated from these years is also provided. Taylor et al. (2012) provide more details on the PMIP3 and CMIPS ex-

periments, and Otto-Bliesner et al. (2016) describe the LME.

Model Acronym Years: experiment Sample size (m)

BCC_CSM1.1 BCC 850-2000: past1000 1151
850-1850: past1000

CesMd cesMd 1851-2005: historical 1156

CESM1.1(CAMS) CESM 850-2005: LME full-forcing 1156
851-1850: past1000

CSIRO MK3L-1.2 CSIRO 1851-2000: historical 1150

FGOALS-gl FGOALS 1000-1999: past1000 1000
850-1850: past1000

HadCMs3 HadCMs3 1859-2000: historical 1147
850-1850: past1000

IPSL-CMSA-LR IPSL 1851-2005: historical 1156
850-1849: past1000

MIROC-ESM MIROC 1850-2005: historical 1156
850-1849: past1000

MPI-ESM-P MPI 1850-2005: historical 1156

MRI-CGCM3 MRI 850-1850: past1000 1156

1850-2005: historical

directly tune the Rj; weight in the Kalman filter. The median
signal-to-noise ratio is 0.80 for the CESM pseudoproxies and
0.85 for the MPI pseudoproxies, which is consistent with values
found in other pseudoproxy experiments (Smerdon 2012). In
each test, we examine the effects of network attrition by first
assimilating the full set of pseudoproxies over the entire period
and then comparing this to an assimilation where the pseudo-
proxies are subjected to the same temporal attrition as the real
NTREND network.

After generating pseudoproxies for a given experiment, we
generate pseudoproxy estimates by applying Eq. (2) to the
prior ensemble. The coefficients «; and B; are determined by
regressing the pseudoproxies against the target field. Note that
pseudoproxy noise and sampling errors will affect the statistics
obtained from these regressions, so «; and B; are estimates of
the coefficients a; and b; used to generate the pseudoproxies.
This mimics how noise and sampling errors can introduce er-
rors into forward models calibrated on real NTREND data.
Once we obtain pseudoproxy estimates, we then determine an
optimal localization radius (see the appendix and Table S1).

A key feature of pseudoproxy experiments is that the target
reconstruction is known. Consequently, we can assess skill directly
against the correct answer. Here, we examine pseudoproxy re-
construction skill using mean Northern Hemisphere extratropical
(30°-90°N) MJJA temperature time series, and spatial gridpoint
time series over the full reconstruction period (850-1988 CE).

We compare the most realistic (biased model, noisy proxy,
temporal attrition) pseudoproxy DA reconstructions to anal-
ogous reconstructions generated using PPR. PPR is a “region
of interest” CFR technique that iteratively calculates a nested
multivariate principal components regression model between
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predictor network and each point in the target field (Cook
et al. 1999). The method was motivated by the premise that
proxies near a reconstructed grid point are more likely to
reflect climate at that site. Consequently, PPR uses a strict
search radius to select proxy predictor series for each grid-
point reconstruction. The method was first used for drought
reconstructions (Cook et al. 1999, 2010a,b) and later adapted
for continental temperature anomalies (Cook et al. 2013).
Anchukaitis et al. (2017) used the method to reconstruct
hemispheric temperature anomalies, and we follow their
implementation in this study.

In brief, given a target of gridded climate observation, the
method first identifies proxy sites within 1000 km of each
gridpoint centroid. If no proxy records are found within
1000 km, the search radius is expanded in 500-km increments
to a maximum of 2000 km until proxy sites are found within
the radius. All proxy sites found within the search radius are
then used as predictor sites for that grid point. If no predictors
are found within 2000 km, then no reconstruction is per-
formed for the grid. These radii are based on decorrelation
decay lengths in the observational temperature field from
Cowtan and Way (2014). A multivariate regression model is
then calibrated against the MJJA temperature values of the
target field (Cowtan and Way 2014) for each grid point over
the period 1945-1988 CE, and the reconstructions are vali-
dated using withheld temperature data for the period 1901—
1944 CE. As the number of records declines back through
time, the regression model is recalibrated and validated for
each change in network size and scaled to match the mean
and variance of the predictand during their overlapping time
period (Meko 1997; Cook et al. 1999). For a given grid point,
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TABLE 3. Temperature field reconstructions used to compare spatial patterns of climate response to radiative forcings in this study. We
provide a reference for each CFR along with the name used in this study. We also note the maximum size of the proxy network used in each

study along with the target temperature fields.

Name Reference Network size Reconstruction target
NTREND-DA This study 54 MIJA
NTREND-PPR Anchukaitis et al. (2017) 54 MIJJA
Guillet 2017 Guillet et al. (2017) 28 High-pass JJA
Zhu 2020 Zhu et al. (2020) 395 JJA
LMR 2.1 Tardif et al. (2019) 544 Annual (January-December)
Neukom (DA) Neukom et al. (2019) 210 Annual (April-March)

temperature anomalies are obtained for all years in which at
least one predictor record remains within the initial search
radius. Following Anchukaitis et al. (2017), we then screen
the final reconstructed field in each time step to only include
grid cells where the reduction of error (RE; Cook et al. 1994)
statisticis greater than zero. We use this screened field here as
the final PPR MJJA temperature reconstruction.

d. Real NTREND reconstruction

We next assimilate the real NTREND network. To examine the
effects of prior selection, we produce 10 real DA reconstructions
each using a different climate model to generate the prior (Table 2).
Since each prior is itself an ensemble, these 10 reconstructions ef-
fectively create an ensemble of ensembles. To minimize ambiguity,
we will henceforth refer to the set of 10 reconstructions as the
“multimodel ensemble”” and the DA ensemble for each individual
reconstruction as a “‘prior/posterior ensemble.”

Forward model estimates of the NTREND records in each
reconstruction are determined by applying Eq. (2) to CRU-TS
4.01. We assess the skill of each reconstruction using time series
of mean Northern Hemisphere extratropical (30°-90°N) MJJA
temperature, instrumental spatial field grid points, and inde-
pendent proxy records. The skill of the extratropical time series
is determined using a Monte Carlo calibration-validation
procedure (see the appendix). Spatial skill is computed
against the Berkeley Earth surface temperature field (BEST;
Rohde et al. 2013) over the period 1901-1988 CE. The BEST
instrumental record is not used in the forward model and
localization calibrations, which instead leverage the CRU
product. However, we caution that BEST is not a truly inde-
pendent dataset, as both BEST and CRU are partly based on
the same instrumental climate data. As an additional valida-
tion we assess the ability of DA to reconstruct withheld proxy
time series. We perform a series of leave-one-out assimilations
for each model by iteratively removing a single proxy time
series from the NTREND network and assimilating the re-
maining 53 records. In these experiments, we construct the
prior from the average temperatures over the removed site’s
optimal growing season at the grid point closest to the removed
site. This allows us to apply Eq. (2) to the posterior to estimate
the removed record from the reconstruction. We then compare
this estimate to the real withheld NTREND record.

We next calculate a mean reconstruction for the multimodel
ensemble. To do so, we first calculate ensemble-mean values from
the posterior of each of the reconstructions. The mean of the mul-
timodel ensemble is then calculated as the mean of these 10
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posterior ensemble means. We quantify uncertainty of the multi-
model mean using first the mean of the 10 posterior ensemble
widths:

10
O-rznullimodel_mean = % IZ{ Ugosterior_ensemble_i (5 )
and then the 20 width of the multimodel ensemble for the
series. We first determine the multimodel ensemble mean for
the extratropical MJJA time series. We next compute a mean
spatial reconstruction for the multimodel ensemble by linearly
interpolating each reconstruction to the lowest model resolu-
tion and averaging at each grid point.

We compare the multimodel mean spatial product to several
recent temperature CFRs summarized in Table 3. In brief,
Guillet et al. (2017) focused on reconstructing high-frequency
temperature anomalies associated with known volcanic erup-
tions using a network of a similar size and composition to the
NTREND network in a linear regression framework and their
work provides a comparison point with Anchukaitis et al. (2017).
The Last Millennium Reanalysis, version 2.1 (LMR2.1), re-
construction applied an offline EnSRF DA to the PAGES2k
network and allows us to compare DA reconstructions using
different proxy networks (Tardif et al. 2019). From Zhu et al.
(2020), we examine the reconstruction of mean June-August
(JJA) temperatures using PAGES2k trees. The Neukom et al.
(2019) DA offers another comparison point, using a proxy net-
work of intermediate size derived from a screened version of
PAGES2k. Neukom et al. (2019) performed an ensemble of
reconstructions using different methods and recommend using
the ensemble mean reconstruction for climate analysis; however,
we only focus on the DA product to emphasize the differences in
reconstructions that arise when using similar methodologies.

We examine the temperature response to external forcing
for both the reconstruction ensemble and temperature CFRs.
We compare temperature anomalies between the Medieval
Climate Anomaly (MCA; 950-1250 CE) and the Little Ice
Age (LIA; 1450-1850 CE) (Masson-Delmotte et al. 2013;
Anchukaitis et al. 2017), and separately use superposed epoch
analysis (Haurwitz and Brier 1981) to determine composite
mean responses to major tropical volcanic eruptions. For the
volcanic events, we follow Sigl et al. (2015) and identify years
containing a global eruption forcing magnitude equal to or
larger than the 1884 Krakatoa eruption (n = 20), which yields
the following event years: 916, 1108, 1171, 1191, 1230, 1258,
1276, 1286, 1345, 1453, 1458, 1595, 1601, 1641, 1695, 1809, 1815,
1832, 1836, and 1884 CE (Sigl et al. 2015; Anchukaitis et al. 2017).



1 SEPTEMBER 2021

MPI Prior
N

KING ET AL.

7097

CESM Perior

Perfect Perfect Noi 1
Full network 0.8
MPI Target e
g 0.6 &
0
Attrition 5
104 o
(®]
5
10.2 5
Full network g
o
4 0 o
CESM Target
1-0.2
Attrition
— -0.4

FIG. 2. Local Pearson’s correlation coefficients of pseudoproxy reconstruction temperature anomalies with the target fields. Correlation
coefficients are calculated over the period 850-1988 CE. Major rows indicate the model used to generate the target field, and major
columns show the model used to build the initial ensemble for each assimilation. Minor rows designate whether the proxy network exhibits
no time attrition or realistic time attrition. Minor columns indicate whether reconstructions use perfect or noisy proxies. The top-left and
bottom-right quadrants display the perfect-model experiments, while the top-right and bottom-left quadrants show the biased-model

cases. The black line in each map indicates 30°N.

We calculate temperature anomalies relative to the mean of the
five years preceding each of these event years.

3. Results
a. Pseudoproxy experiments

The pseudoproxy reconstructions are most skillful in the
extratropical Northern Hemisphere (Fig. 2). In this region,
ocean basin correlations are lower relative to land with notable
exceptions over the eastern and northwestern edges of the
Pacific. Correlations generally decline with increasing distance
from the extratropical Northern Hemisphere and the tree-
ring network, although significant spatial heterogeneity exists
throughout the tropics. The climate model covariance biases
cause the largest reductions in correlation coefficients and
sharply reduce skill outside of the extratropical Northern
Hemisphere. Network attrition and proxy noise have com-
paratively minor effects over the full period. Results for other
skill metrics show similar behavior (Figs. S1, S2, and S3).

We next compare the most realistic (biased-model, noisy-
proxy, temporal-attrition) DA experiments to PPR recon-
structions. Given the strict reconstruction radius in PPR, and
the spatial pattern of DA skill, we consider only the extra-
tropical Northern Hemisphere in our discussion. The skill
metrics for the mean extratropical time series are similar for
the two methods (Table S2; Figs. S4, S5). The regional spatial
correlations of the DA and PPR reconstructions for the CESM
and MPI targets (Figs. 3 and S6, respectively) are also com-
parable: each exhibits correlations with the target field greater
than 0.7 in Scandinavia, western Siberia, and western Canada,
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and these regions correspond to the best coverage by the proxy
network. Similarly, both methods exhibit low correlations in
southeastern Canada, eastern Siberia, and in the region of the
Black and Caspian Seas. The DA does, however, exhibit a
broader spatial region of high correlation than PPR, and DA
correlations are higher than PPR values at nearly all grid
points. Similarly, DA reconstructions exhibit lower RMSE
values at most grid points. Standard deviation ratios indicate
that the DA reconstructions underestimate temporal tempera-
ture variability, but this effect is less severe near the proxy sites.
In contrast with DA, PPR time series o ratios neither strictly
overestimate nor strictly underestimate temporal variability,
instead demonstrating a mixed response over the hemisphere. In
general, our DA reconstructions underestimate variability more
strongly than the PPR analogs. Mean biases are comparable,
with both methods exhibiting similar spatial patterns and bias
magnitudes, although it is interesting to note that the spatial
patterns of bias change markedly depending on the target field.

b. Real NTREND reconstruction

For the real NTREND data assimilation, validation statistics
for the mean extratropical MJJA time series are similar across
all priors (Table 1) with mean correlations of 0.70, RMSE of
0.19°C, and absolute mean bias of 0.06°C. Temporal variability
is close to the target with mean standard deviation ratios
of 1.11. Time series obtained using different model priors
(Fig. S7) have a mean range of 0.22°C over the period of full
coverage (1750-2988 CE; n = 54). However, the reconstructed
time series diverge as the network becomes sparse, with a
range of 0.76°C by the first year of the reconstruction (750 CE;
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FIG. 3. Pseudoproxy reconstruction skill for (left) DA, (center) PPR, and (right) a comparison of the two. Skill metrics are relative to a
CESM target field using noisy proxies and realistic temporal attrition. DA results are for a biased-model MPI prior. All skill metrics are
computed over the period 850-1988 CE. In order the rows detail local Pearson’s correlation coefficients, RMSE values, temporal standard
deviation (o) ratios, and mean biases. Comparison plots show DA skill minus PPR skill. The comparison plot of ¢ ratios only considers

grid points where o is underestimated in both the DA and PPR reconstruction.

n = 4). The model ensemble-mean time series exhibits similar
skill values as the reconstructions for the individual models
with a correlation of 0.72, RMSE of 0.18°C, temporal ¢ ratio of
1.06, and a mean bias of 0.05°C.

We compare the extratropical MJJA time series for the
multimodel mean to analogous time series extracted from the
BEST instrumental record and the Anchukaitis et al. (2017)
NTREND PPR reconstruction (Fig. 4). The DA series shows
similar behavior to BEST from 1880 to 1988 CE, although both
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the DA and PPR reconstructions of Anchukaitis et al. (2017)
diverge from this dataset over the earliest period from 1850 to
1879 CE. This may reflect a warm bias (Parker 1994; Frank et al.
2007; Bohm et al. 2010) and limited spatial coverage (Rohde et al.
2013; Anchukaitis et al. 2017) in the early instrumental tempera-
ture record. The DA and PPR time series show similar behavior
over most of the record, with a correlation coefficient of 0.88.
Temporal variability is generally higher in the PPR series than in
the DA. Prior to about 1100 CE, the series’ running standard
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FIG. 4. Extratropical MJJA time series for the multimodel mean reconstruction (blue),
Berkeley Earth instrumental records (yellow), and Anchukaitis et al. (2017) (red). We provide
two different measures of uncertainty for the DA time series: the average of the 2o posterior
ensemble width taken over the 10 reconstructions (light gray), and the 2o width of variability
arising from prior model selection (dark gray). Reconstructed temperature anomalies (°C) are
shown for (top) the instrumental era and (middle) full reconstruction. A 3-yr moving average
has been applied to the time series in the middle panel. (bottom) The 31-yr, running standard

deviation of the DA ensemble mean and Anchukaitis et al. (2017) time series.

deviations show larger differences, which is caused by the de-
crease in DA reconstructed variability.

Most spatial validation statistics show similar patterns to those
observed in the pseudoproxy experiments (Fig. 5). Correlation
coefficients and standard deviation ratios indicate the highest skill
over Scandinavia, central and northern Asia, and northwestern
North America, the regions of densest network coverage.
Correlation coefficients approach 0.8 and standard deviation
ratios approach 1 near the proxy sites themselves. Over land,
mean biases are typically below 0.5°C, with the largest over central
Canada and eastern Siberia and smallest over the Arctic
Archipelago, Alaska, and west-central Asia. Away from the
proxy sites, temporal variability is underestimated, particularly over
the oceans. However, most land grid points exhibit o ratios near 1
with a slight overestimate in central Asia and northern Japan. Much
of the temporal variability in the extratropical mean time series is
driven by land grid points, and this tendency helps reconcile Fig. 5
with extratropical mean time series ¢ ratios near 1. RMSE values
are typically less than 0.6°C but rise to values near 1°C over the
North Pacific, central Canada, and north of the Caspian Sea.
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Independent proxy validation statistics (Table 4) show me-
dian correlation coefficients near 0.5, and RMSE values near
1°C. Temporal variability is underestimated relative to the
target series with o ratios typically between 0.3 and 0.4. Mean
biases are variable and depend on the prior model used. Not
surprisingly given the sparsity of the NTREND network, re-
moving even a single proxy record from the assimilation can
substantially reduce the ability to reconstruct temperature
anomalies at nearby grid cells. Consequently, the leave-one-
out assimilation process we use to assess independent proxy
skill almost certainly underestimates overall field validation
skill. Nevertheless, these values are comparable to previous
efforts with median correlation coefficients somewhat higher
than those in Hakim et al. (2016) and Tardif et al. (2019).

c. Epochal temperature changes

We next examine the temperature change between the MCA
(950-1250 CE) and the LIA (1450-1850 CE) (Masson-Delmotte
et al. 2013; Anchukaitis et al. 2017). The reconstructions nearly all
indicate warmer temperatures during the MCA throughout the
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FIG. 5. Spatial skill metrics for the multimodel mean reconstruction. Maps detail (top left) Pearson correlation
coefficients, (top right) RMSE values, (bottom left) o ratios, and (bottom right) mean biases of reconstructed
gridpoint time series relative to the Berkeley Earth instrumental dataset over the period 1901-1988 CE. White
markers show the proxy network and marker symbols follow the convention in Fig. 1.

high latitudes with maximum anomalies typically over north-
eastern Canada (Fig. 6). However, anomaly magnitudes vary
across reconstructions with values ranging from over 1.6°C (for
CCSM4, MIROC, MPI priors) to less than 0.8°C (IPSL and
FGOALS priors). The spatial pattern also varies by model prior.
Many reconstructions show stronger anomalies in Fennoscandia,
northeastern Asia, and northwestern North America, but these
patterns do not occur in all models.

Comparing the MCA-LIA difference for our multimodel
mean reconstruction with other CFRs (Fig. 7), we find our
spatial anomaly patterns most similar to Anchukaitis et al.
(2017). Anomaly magnitudes are also comparable, except
over northeastern Canada. In the Anchukaitis et al. (2017)
reconstruction, this region exhibits anomalously high me-
dieval temperatures (>3°C), which they attribute to a de-
trendingartifact in a tree-ring record from Quebec. By
contrast, our DA reconstruction produces a maximum me-
dieval anomaly of 1°C for this region, in better agreement
with other proxy reconstructions (e.g., 0°~1.5°C; Sundqyvist et al.
2014). Comparing the results of this study to Neukom et al.
(2019), we observe that both NTREND DA and Neukom
et al. (2019) exhibit a positive anomaly over most of the
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high-latitude Northern Hemisphere; however, the anomalies in
the Neukom et al. (2019) product have much larger magnitudes
and the maxima of the North America features occur in dif-
ferent locations. Zhu et al. (2020) also indicate positive
anomalies in the Northern Hemisphere, but these are lower
magnitude than the other products and more spatially

TABLE 4. Withheld proxy verification statistics for individual
models. Reported skill metrics are the median for all individual
proxy comparisons over the 54 leave-one-out assimilations.

Model Correlation RMSE o ratio  Mean bias (°C)
BCC 0.53 0.98 0.42 0.12
CCSM4 0.52 0.98 0.42 0.06
CESM 0.50 1.03 0.35 0.27
CSIRO 0.54 1.01 0.31 0.13
FGOALS 0.47 1.04 0.34 0.06
HadCM3 0.49 1.03 0.39 0.25
IPSL 0.53 1.00 0.38 0.08
MIROC 0.53 1.01 0.37 0.25
MPI 0.53 0.99 0.39 0.11
MRI 0.55 0.98 0.32 0.16
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FIG. 6. Reconstructed temperature anomalies (°C) between the MCA (950-1250 CE) and LIA (1450-1850 CE) for the DA
reconstructions. Each map shows the results for a particular model prior.

localized. By contrast, the LMR2.1 product (Tardif et al. 2019)
exhibits an anomaly pattern notably different from the other
reconstructions, with a strong positive anomaly in the Arctic
Ocean north of Siberia. Since the Guillet et al. (2017) recon-
struction reflects high-pass filtered reconstructed tempera-
tures, we do not consider it in this comparison.

d. Volcanic response

We next examine the composite mean response to major
tropical volcanic eruptions. Our 10 reconstructions show
broadly similar responses to large tropical volcanic eruptions
(Fig. 8), with the spatial pattern characterized by a strong cold
anomaly in northern Canada and a second region of cooling
extending from Fennoscandia east of the Caspian Sea toward
central Asia. However, the extent and magnitude of these
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vary between the different reconstructions. Several regions
also exhibit markedly different spatial patterns across the 10
reconstructions. In particular, the response in central North
America and eastern Asia appears highly sensitive to the
choice of model prior.

Comparing the volcanic pattern for our multimodel mean
reconstruction with the other existing CFRs (Fig. 9) shows
large differences in spatial patterns, magnitudes, and even sign
of the anomalies. In general, most CFRs show some combi-
nation of cooling anomalies in northern North America and
northern Asia, with a slight neutral or warming anomaly in the
North Pacific. However, these features are not present in all the
CFRs and vary in maximum magnitude. The mean of our
model ensemble, Anchukaitis et al. (2017), and Guillet et al.
(2017) products all exhibit the northern Canada and western
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FIG. 7. As in Fig. 6, but for the temperature CFRs summarized in Table 3.

Asia cooling features, and the spatial extent is similar for the
two NTREND products. In contrast, the Guillet et al. (2017)
Canadian feature is centered farther east, and its northern
Asian feature is stronger (near 1.5°C) with a maximum more
strongly localized to northern Siberia. These two features are
also present in Zhu et al. (2020), but maximum cooling is
smaller in magnitude. The LMR2.1 does not show distinct
north Asian terrestrial cooling, although an anomaly of
0.6°C is reconstructed in the Arctic Ocean north of Siberia.
This reconstruction also demonstrates a North American
response pattern similar to Zhu et al. (2020) with a reduced
magnitude of cooling in northern Canada. The Neukom
et al. (2019) product again shows the largest anomalies, with
values greater than 1.5°C over much of northern Siberia and
Fennoscandia. This feature does not extend as far south as in
the NTREND DA ensemble mean but is zonally wider.
Neukom et al. (2019) also show a single strong North American
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feature with cooling magnitudes near 1.2°C. Interestingly,
Neukom et al. (2019) exhibits a North Pacific warming response
that strengthens one year after the volcanic event, a feature also
evident in the Anchukaitis et al. (2017) reconstruction that may
reflect changes in atmospheric circulation following an
eruption (e.g., Robock 2000; Stenchikov et al. 2006; Christiansen
2008; Schneider et al. 2009)

4. Discussion

The pseudoproxy experiments indicate that regions of
high reconstruction skill for the assimilated NTREND net-
work is limited to the extratropical Northern Hemisphere
when using biased climate model priors. This finding supports
work by Franke et al. (2020) and suggests that analyses of
temperatures using the NTREND network should be lim-
ited to this region, consistent with Wilson et al. (2016) and
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FIG. 8. Composite mean maps of the reconstructed temperature response in years containing a major tropical volcanic event. Events
(N = 20) are selected as tropical eruptions with a global forcing magnitude equal or larger than the 1884 Krakatoa eruption: this set
consists of 916, 1108, 1171, 1191, 1230, 1258, 1276, 1286, 1345, 1453, 1458, 1595, 1601, 1641, 1695, 1809, 1815, 1832, 1836, and 1884 CE (Sigl
et al. 2015; Anchukaitis et al. 2017). Temperature anomalies (°C) are determined relative to the mean temperature of the five years
preceding each volcanic event. Each map shows the results for a particular model prior.

Anchukaitis et al. (2017). In comparison with Anchukaitis et al.
(2017) (NTREND PPR), our DA method exhibits similar
skill at reconstructing mean Northern Hemisphere extra-
tropical MJJA time series using the NTREND network, but
also provides continuous field estimates of past temperature
and improves the spatial correlation and RMSE. We suggest
this improvement arises at least in part from the contrast
between PPR’s strict-limited search radius and the DA’s
longer localization radii. Many NTREND sites exhibit sta-
tistically significant covariance with the MJJA temperature
field outside of PPR’s 2000 km maximum search radius (see
Fig. 5 of Anchukaitis et al. 2017), and these distal covariances
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are not used to improve the PPR reconstruction. By contrast,
the DA uses no localization in these pseudoproxy experi-
ments (Table S1) and if the model prior provides a good es-
timate of a proxy site’s field covariance, the proxy record can
inform the reconstruction of distal grid points. Ultimately,
these results suggest that our DA method improves on the
spatial component of Anchukaitis et al. (2017) for reconstructing a
Northern Hemisphere temperature history of the Common
Era from the NTREND network. We note that, as is the case
for most field reconstruction methods (Ammann and Wahl
2007; Tingley et al. 2012), our offline DA method implicitly
assumes the broad-scale covariance patterns can be considered
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FIG. 9. Asin Fig. 8, but for the temperature CFRs summarized in
Table 3 (rows). We only show grid points with reconstructed values
for at least six eruptions. Maps show the composite mean response
(left) in years with a major tropical eruption and (right) in the year
following a major eruption.

stationary through time. Transient offline (e.g., Bhend et al.
2012; Valler et al. 2019; Franke et al. 2020) or online assimi-
lation techniques (e.g., Perkins and Hakim 2017) may offer
additional improvements.

Our results also highlight the sensitivity of the DA recon-
structions to the model prior. In the pseudoproxy experiments,
the introduction of model covariance bias reduces widespread
global skill to the high latitude Northern Hemisphere and the
regions nearest the proxy sites. Network attrition and proxy
noise cause comparatively small effects over the full period, a
finding in agreement with Dee et al. (2016). Given this po-
tential for perfect-model experiments to exaggerate the mag-
nitude and spatial extent of DA skill, we encourage future DA
proof-of-concept and sensitivity studies to consider perfect-
model experiments in conjunction with biased-model cases. In
contrast with these results, previous assimilation efforts have
found little sensitivity to the choice of prior (Hakim et al.
2016). The small size of the NTREND network may exacer-
bate this sensitivity, but even assimilations using larger net-
works may be sensitive to the choice of priors in those periods
with reduced proxy coverage.

Reconstructions are most sensitive to the prior when the
proxy network becomes small. For example, despite using the
same proxy network and reconstruction technique, mean
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extratropical MJJA temperature time series diverge by more
than 0.5°C in the earliest parts of the reconstruction when the
number of sites in our network is limited (Fig. S7). The use of
different priors also produces noticeable differences in spatial
MCA-LIA temperature anomaly patterns (Fig. 6), which
we interpret as arising from the reduced size of the proxy
network during the MCA. In contrast, the volcanic response
maps present a more consistent spatial pattern (Fig. 8),
which we attribute to the larger size of the proxy network
during most of the volcanic events. The magnitude of the
forced response may also contribute to similarity across the
priors; however, the volcanic response maps still exhibit
different spatial patterns in regions like East Asia where the
proxy network is sparse.

The consistency with which the DA underestimates the
temporal variability of the target field, particularly over the
oceans and far from the proxy sites, requires consideration. In
this study, we focus on time series derived from the posterior
ensemble mean at each time step. However, this focus on the
ensemble mean neglects the width of the full posterior en-
semble. Like many offline EnSRF studies (e.g., Hakim et al.
2016; Dee et al. 2016; Steiger et al. 2018), our method uses a
stationary prior in each time step; thus, the prior ensemble
mean is constant through time. As the proxy network becomes
sparse, update magnitudes decrease, and the posterior en-
semble more closely resembles the prior. When this occurs, the
reconstructed ensemble-mean time series will closely resemble
the mean of the prior ensemble, and the time series’ temporal
variability will approach zero. Similarly, regions far from
the proxy network will exhibit smaller update magnitudes,
so gridpoint time series far from the proxy sites have lower
o ratios. However, this reduction in temporal variability is
balanced by increased posterior ensemble width, which will
remain near the spread of the prior ensemble. Incorporating
the width of the posterior with ensemble-mean time series
can produce a range that encompasses target time series
variability, but it is not always clear how to use these ranges
in spatiotemporal analyses. Hence, we emphasize that users of
DA products with constant priors should carefully consider
how changes in the proxy network affect the temporal vari-
ability of posterior ensemble-mean time series and make use of
the posterior range when possible. We also note that allowing
the model prior to vary in each time step may help mitigate
these effects, which again may argue for expanded future use of
transient offline priors (e.g., Bhend et al. 2012; Valler et al.
2019; Franke et al. 2020) or online assimilation techniques
(e.g., Perkins and Hakim 2017) where possible.

The prior sensitivity and temporal variability effects un-
derscore the importance of understanding how the proxy net-
work affects the quality of the reconstruction (Esper et al. 2005;
Wang et al. 2014). A key feature of DA techniques is the ability
to estimate reconstruction uncertainty in each time step from
the width of the posterior ensemble. Figure 10 provides an
example of such an analysis for the multimodel mean by ex-
amining the temperature response following the 1257 CE
(Lavigne et al. 2013) and 1600 CE (de Silva and Zielinski 1998)
volcanic eruptions in conjunction with the full posterior width.
The uncertainty maps for both events show maxima in central
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FI1G. 10. Spatial characteristics in the year following volcanic eruptions in (top) 1257 and (bottom) 1600 (de Silva and Zielinski 1998;
Lavigne et al. 2013) in the multimodel mean reconstruction. (left) Temperature anomalies relative to the five preceding years in Celsius.
(center) The average 20 width of the 10 posterior ensembles. (right) The 20 width of the multimodel ensemble. White markers show the
proxy network for each event. Marker symbols follow the convention in Fig. 1.

North American and northeastern Asia and suggest that as-
sociated temperature anomalies should be interpreted more
cautiously. Notably, these regions correspond to areas that are
also sensitive to the prior in Fig. 8. By contrast, central and
east-central Asia, Fennoscandia, central Europe, and south-
western Canada exhibit a narrow posterior for both events, so
volcanic anomalies in these regions are better constrained.
Interestingly, the temperature response in 1601 CE is relatively
small over much of central Europe and reconstruction uncer-
tainty is relatively low, which suggests this feature may be a
robust feature of the posteruption climate anomaly. In addition
to supporting analysis of reconstructed climate features, these
uncertainty estimates can help identify regions that would
benefit from increased network density (Comboul et al. 2015).
In particular, we observe that northern North America and
eastern Siberia would benefit from the development of new
millennial-length temperature-sensitive tree-ring records.
The CFR comparison reveals the highly variable nature of
spatial patterns and magnitudes of reconstructed temperature
anomalies that result from different selections of proxy
networks, target fields, and reconstruction methodologies.
For example, despite using the same proxy network and
target field, the DA multimodel mean and PPR result from
Anchukaitis et al. (2017) have MCA-LIA anomalies that
differ by over 2°C in northeastern Canada (Fig. 7), which
relates to the outsized effect of the Quebec tree-ring width
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record (Gennaretti et al. 2014) on the Anchukaitis et al.
(2017) reconstruction. We note that the localization radii
used in our reconstructions (=9500km) allow proxies to
influence grid cells farther away than the maximum 2000-km
search radius used by Anchukaitis et al. (2017), so distant
proxies are able to counter the effects of the Quebec record
in the DA. Even within the same DA framework, our results
indicate that reconstructed temperature responses are highly
variable, particularly for MCA-LIA anomalies. These differ-
ences result from targeting different fields and leveraging dif-
ferent proxy networks. Aside from spatial and temporal
coverage, we note that using proxy records that are not strictly
temperature sensitive can introduce structural biases relative
to other temperature CFRs. For example, the LMR2.1 re-
construction includes proxies that are sensitive to more than
just temperature, which could possibly reduce update magni-
tudes and help explain the smaller magnitudes of the volcanic
responses. Similarly, the Neukom et al. (2019) DA product and
LMR2.1 incorporate proxies like corals and lake sediments
that are not present in the tree-ring-based CFRs, and it is
possible that these records influence the large magnitudes of
the Neukom et al. (2019) DA climate responses or the atypical
LMR2.1 MCA-LIA spatial pattern. However, we emphasize
that these hypotheses are strictly speculative at this moment
and that the differences in reconstructed climate response by
themselves do not indicate whether one proxy network or



7106

reconstruction is superior to another in representing past cli-
mate variability. Instead, our CFR comparison highlights that,
despite the recent decades of progress in understanding both
methods and paleoclimate data (Hughes and Ammann 2009;
Frank et al. 2010; Smerdon et al. 2011; Tingley et al. 2012;
Wang et al. 2014; Smerdon and Pollack 2016; Christiansen and
Ljungqvist 2017; Esper et al. 2018), differences in reconstruc-
tions of past temperature still arise when using different proxy
networks, different target seasons, and making different re-
construction choices, and these differences fundamentally in-
fluence our interpretation of the temperature response to
radiative forcing (cf. Wang et al. 2015). This observation calls
for a revival of paleoreconstruction intercomparison projects
(e.g., Ammann 2008; Graham and Wahl 2011; Anchukaitis and
McKay 2014) in order to examine the behavior, strengths, and
weaknesses of different proxy networks and reconstruction
choices in a systematic and community-driven manner.
Furthermore, such an effort would help identify regions
with consistently large reconstruction uncertainties and in-
dicate where to prioritize the development of new or the
extension of existing tree-ring records.

5. Conclusions

In this study, we assimilate a small but highly temperature-
sensitive tree-ring network based on expert assessment to re-
construct summer (MJJA) temperature anomalies from 750 to
1988 CE. Our method is skillful in the extratropical Northern
Hemisphere and improves on a previous spatial reconstruction
using the same network, thereby providing a new dataset with
which to examine temperature dynamics and climate response
to radiative forcing over the last millennium. In a set of pseu-
doproxy experiments, we find that our method is sensitive to
climate model biases, so we perform an ensemble of reconstruc-
tions using 10 different climate model priors. Reconstructed
temperature anomalies are sensitive to the selection of the model
prior when the proxy network becomes sparse, but the recon-
structed spatial patterns and time series converge to consistent
values as the number of sites in the NTREND proxy network
increases. As one consequence of using static offline priors, our
method underestimates temporal variability particularly when
the proxy network becomes small, which argues for the future
use of transient offline priors, online assimilation techniques in
DA paleoclimate reconstructions, and expanded proxy devel-
opment. There is also a need for continued development of
proxy system forward models, particularly for the important
MXD metric. The influence of the proxy network coverage on
the reconstructions emphasizes the importance of analyzing
reconstructed temperature anomalies in conjunction with es-
timates of their uncertainty. These uncertainty estimates
emerge naturally for both spatial fields and time series from
the DA posterior ensembles and are an enhancement over
previous reconstructions using the NTREND dataset. In
addition to gauging reconstruction validity, the uncertainty
estimates identify regions that would benefit from addi-
tional proxy records and support the development of more
millennial-length temperature-sensitive tree-ring records
in tree-line North America and eastern Siberia especially.
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Comparison of our reconstruction with other temperature
CFRs indicates that reconstructed temperature anomalies
have highly variable spatial patterns and magnitudes, even
within similar reconstruction frameworks and proxy network.
These different climate responses call for a renewed paleo-
reconstruction intercomparison framework in which to sys-
tematically examine the effects of network selection across
reconstruction techniques and prioritize regions for future re-
cord development.
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APPENDIX

Data Assimilation Methods
a. The ensemble Kalman filter

Our data assimilation method uses an ensemble Kalman
filter approach (Evensen 1994; Steiger et al. 2014; Hakim et al.
2016) to solve the update equation

X, =X, +K(Y-Y) (A1)
in each reconstructed annual time step. Here X, is an initial
ensemble of plausible climate states, an 7 X m matrix where n
is the number of state variables and m is the number of en-
semble members. The term X, is the updated ensemble (the
analysis), also an n X m matrix; Y is a d X m matrix of observed
proxy values, where d is the number of available proxy records
in a given time step. The term Y, is a d X m matrix consisting of
model estimates of the proxy values. Each row y,; is deter-
mined by applying the forward model for the jth proxy site to
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TABLE Al. As in Table 1, but using the RMSE optimization scheme.

Model Localization radius (km) Correlation RMSE (°C) o ratio Mean bias (°C)
BCC 18875 0.71 0.17 0.78 0.06
CCSM4 7375 0.71 0.18 0.81 0.07
CESM 15750 0.71 0.18 0.84 0.07
CSIRO 15750 0.70 0.18 0.80 0.06
FGOALS 19 000 0.72 0.18 0.77 0.08
HadCM3 13375 0.70 0.18 0.82 0.06
IPSL 6750 0.70 0.18 0.80 0.07
MIROC 11125 0.71 0.18 0.84 0.07
MPI 10250 0.70 0.18 0.80 0.07
MRI 20250 0.71 0.17 0.78 0.06

the ensemble via Eq. (2). The term K is the Kalman gain, ann X d
matrix that weights the covariance of proxy sites with the target
field by the uncertainties in the proxy observations and estimates.

We use an EnKF variant known as EnSRF (Andrews 1968),
which removes the need for perturbed observations (Whitaker
and Hamill 2002). Consequently, Y is a matrix with constant
rows. In the EnSRF formulation, ensemble deviations are
updated separately from the mean, as per

X, =X, + KFy-y,, and (A2)

X, =X —KY,, (A3)

where an overbar X denotes an ensemble average, and a tick
(X') indicates deviations from an ensemble mean. Here, the
ensemble mean is updated via the Kalman gain K:

K= cov(Xp,Ye) X [cov(Y,,Y,) + R]*l’ (A4)
and the deviations are updated via an adjusted gain K:
K =cov(X,,Y,) X [(y/cov(Y,,¥,) +R)"'T"
(AS5)

X [/eov(Y,.Y,)+R + VR] ™.

Here, R denotes the observation error-covariance matrix
(d X d). We do not consider correlated measurement errors in
this study, so R is a diagonal matrix whose elements are the
observation uncertainties determined from the variances of the
residuals for the forward model regressions.

b. Covariance localization

We implement a covariance localization scheme, modifying
the Kalman Gain equations to

K=W, ccov(X,,Y,) XY ccon(Y,.Y,) +R] ", and (A6)

- T
K =W, ccov(X,,Y,) X {[}/¥, ccov(¥,.Y,) + R] '}
X [/ ¥ipeocon(Y,,Y,) + R + VR] .

(AT)

Here, Wi, (n X d) and Y}, (d X d) are matrices of co-
variance localization weights applied to the covariance of
proxy sites with model grid cells (W),.) and proxy sites with
one another (Yj,.). We implement localization weights as a
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fifth-order Gaspari—Cohn polynomial (Gaspari and Cohn 1999)
applied to the distance between proxy sites and model grid cells
(W) or proxy sites with one another (Y),.). Weights are ap-
plied to covariance matrices via elementwise multiplication.

The localization radius is an important free parameter that
must be assessed independently for different model priors,
reconstruction targets, and proxy networks. Here, we select
localization radii using a two-step process. For a given model
prior and target field, we first assimilate the proxy network
from 1901 to 1988 CE using each localization radius from 250
to 50000 km in steps of 250 km and a run with no localization.
We then determine the o ratio of each reconstructed extra-
tropical MJJA time series in a calibration interval. We find the
o ratio closest to 1 and record the associated localization radius
as “optimal.” We then calculate skill metrics for the extra-
tropical MJJA time series over a validation interval using the
reconstruction with the optimal radius.

To limit the sensitivity of this method to the calibration
period (Christiansen et al. 2009), we perform this optimi-
zation using each set of 44 contiguous years from 1901 to
1988 CE once as a calibration interval and once as a vali-
dation interval. The final localization radius is the median of
the 88 ‘““optimal” radii, and the median validation skill
metrics are reported.

SELECTION CRITERION

In the development of this method, we tested an RMSE
selection criterion in addition to o ratios. We find that corre-
lation coefficients, RMSE values, and mean biases of the re-
constructed mean extratropical MJJA time series are all
insensitive to the choice of selection criteria (Table 1, Table A1),
but that o ratios are more sensitive. Specifically, mean o ratios
are near 0.8 for the RMSE selection criterion but rise to 1.11 for
the o ratio scheme. Since the ¢ ratio localization selection
criteria bring the o ratio skill metric closer to 1 without ap-
preciably altering the other skill metrics, and because of the
tendency for our DA method to underestimate temporal var-
iability, we use a o ratio selection criterion.
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