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Abstract. The Last Millennium Reanalysis (LMR) utilizes

an ensemble methodology to assimilate paleoclimate data for

the production of annually resolved climate field reconstruc-

tions of the Common Era. Two key elements are the focus

of this work: the set of assimilated proxy records and the

forward models that map climate variables to proxy mea-

surements. Results based on an updated proxy database and

seasonal regression-based forward models are compared to

the LMR prototype, which was based on a smaller set of

proxy records and simpler proxy models formulated as uni-

variate linear regressions against annual temperature. Val-

idation against various instrumental-era gridded analyses

shows that the new reconstructions of surface air temper-

ature and 500 hPa geopotential height are significantly im-

proved (from 10 % to more than 100 %), while improvements

in reconstruction of the Palmer Drought Severity Index are

more modest. Additional experiments designed to isolate the

sources of improvement reveal the importance of the updated

proxy records, including coral records for improving tropical

reconstructions, and tree-ring density records for tempera-

ture reconstructions, particularly in high northern latitudes.

Proxy forward models that account for seasonal responses,

and dependence on both temperature and moisture for tree-

ring width, also contribute to improvements in reconstructed

thermodynamic and hydroclimate variables in midlatitudes.

The variability of temperature at multidecadal to centennial

scales is also shown to be sensitive to the set of assimilated

proxies, especially to the inclusion of primarily moisture-

sensitive tree-ring-width records.

1 Introduction

Reconstructions of Earth’s past climate, particularly covering

periods prior to instrumental data sets, are key to understand-

ing the causes of natural climate variability. For example, un-

derstanding natural variability provides the basis for improv-

ing predictions of climate variability in the coming decades.

Information on past climates has traditionally been derived

either from climate proxy data (e.g., tree rings, ice cores) or

from Earth system model simulations, and synthesizing in-

formation from these two sources is one of the challenges of

paleoclimate science. Paleoclimate data assimilation (PDA)

has emerged as a powerful framework for such synthesis be-

cause it provides the optimal combination of climate sig-

nals recorded by proxies as constrained by the dynamics of

Earth system models. PDA-generated climate field recon-

structions have been used to investigate climate variability

prior to the instrumental era (Goosse et al., 2006, 2010; Wid-

mann et al., 2010; Bhend et al., 2012; Steiger et al., 2014;

Matsikaris et al., 2015; Franke et al., 2017; Okazaki and

Yoshimura, 2017; Steiger et al., 2018). Within this general

PDA framework, a flexible PDA system is being developed

for the Last Millennium Reanalysis (LMR) project for the
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production of annually resolved reconstructions of the Com-

mon Era. Hakim et al. (2016) describe a prototype configu-

ration of the LMR and show results in good agreement with

previous reconstructions of Northern Hemisphere mean near-

surface air temperature. Detailed comparisons with several

gridded instrumental temperature data products revealed sig-

nificant skill over tropical regions but less skillful reconstruc-

tions over Northern Hemisphere continental areas, where a

large proportion of proxy data are located.

As with any data assimilation system, two of three im-

portant components impacting the quality of the resulting

analyses are the set of assimilated observations (here, proxy

records) and the forward models that map variables from

climate model output to proxy measurements (“proxy sys-

tem models”; hereafter, PSMs). The third component is the

model providing the prior state, although it is not the fo-

cus of this work. Hakim et al. (2016) assimilated proxy

records from the first compilation of the PAGES 2k Consor-

tium (PAGES 2k Consortium, 2013) and modeled the prox-

ies through univariate linear regressions calibrated against

annually averaged instrumental temperature data. Here, we

examine the impact on LMR reconstructions of improve-

ments to these two key components: (1) an updated and ex-

panded proxy database, primarily composed of records from

PAGES 2k Consortium (2017), and assessment of the addi-

tional records described in Anderson et al. (2019); (2) more

realistic PSMs in which seasonality and, for tree-ring-width

proxies, temperature and moisture sensitivity are taken into

account. Motivation for expanding the proxy database de-

rives from evidence that climate reconstructions are gener-

ally sensitive to the set of proxy records used as input (e.g.,

Wang et al., 2015), while the introduction of more sophisti-

cated PSMs is motivated in part by the fact that comprehen-

sive reconstructions of temperature and hydroclimate vari-

ables depend on properly treating temperature-sensitive and

moisture-sensitive tree-ring proxies (e.g., Steiger and Smer-

don, 2017).

The focus of improvements in PSMs here is on regression-

based (i.e., statistical) forward models, in contrast to recent

efforts focusing on process-based PSMs (see, e.g., Breiten-

moser et al., 2014; Dee et al., 2016; Acevedo et al., 2017).

Our objective is to establish baseline skill of PDA reconstruc-

tions using statistical PSMs to serve as a benchmark for eval-

uating possible improvements associated with process-based

PSMs (e.g., Dee et al., 2016). Here, we develop a hierar-

chy of statistical PSMs to identify aspects that contribute in-

creased skill to reconstructed temperature and hydroclimate

states compared to the prototype LMR.

The remainder of the paper is organized as follows. Sec-

tion 2 outlines the LMR PDA-based framework and de-

scribes the proxy database and PSMs. Reconstructions based

on this configuration are presented in Sect. 3, with compar-

isons to the prototype described in Hakim et al. (2016). Sec-

tion 4 explores the contributions to improvements in the new

reconstructions. A concluding summary is given in Sect. 5.

2 Methods

Paleoclimate data assimilation has three main components:

proxy records, providing an indirect record of past climatic

conditions; climate models, providing prior estimates of the

climate; and proxy system models, providing the connection

between the model prior and the proxy values. The method

for each component is now described.

2.1 Data assimilation framework

LMR employs ensemble data assimilation (DA) to blend in-

formation from proxies and climate model data. DA is per-

formed using a variant of the ensemble Kalman filter, which

for our application appears to perform well compared to al-

ternative PDA methods such as particle filters (Liu et al.,

2017). The update equation is given by

xa = xb + K[y − ye]. (1)

Here, xb is the prior state vector, which contains the cli-

mate variables to be reconstructed, averaged over an appro-

priate timescale (here, annual), and xa is the posterior state

vector (i.e., the reanalysis, or reconstruction). The state vec-

tor may include scalars, such as climate indices, and/or grid-

point data for spatial fields. Vector y contains the assimilated

proxy data (i.e., observations), and ye is a vector containing

estimates of the proxies derived from the prior by

ye =H(xb), (2)

whereH is the forward model mapping the prior xb to proxy

space (i.e., the PSM; see Sect. 2.4). The innovation, [y–ye],

is the new information from the proxies not already contained

in the prior. This new information is weighted against the

prior through the Kalman gain matrix:

K = BHT
[

HBHT + R
]−1

, (3)

where B is the prior covariance matrix, R is the error covari-

ance matrix for the proxy data, and H is the linearization of

H about the mean value of the prior. Here, Eq. (1) is solved

using the ensemble square-root filter (EnSRF) approach of

Whitaker and Hamill (2002), in which the ensemble mean

and perturbations about the ensemble mean are solved sep-

arately. Moreover, R is taken as a diagonal matrix (uncor-

related observation errors) where the diagonal elements rep-

resent the error variance for each assimilated proxy record;

details on how these are estimated are provided in Sect. 2.4.

This allows for serial processing of observations, in which

observations are assimilated one at a time. This greatly sim-

plifies the implementation of covariance localization, which

is used to control sampling error in the prior covariance. So-

lutions for the ensemble mean, xa , and perturbations, x′
a , for
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the single kth proxy yk , are obtained from

xa = xb +
wloc ◦ cov(xb,ye,k)

var(ye,k) + Rk

(yk − ye,k) (4a)

x
′
a = x

′
b −

[

1 +

√

Rk

var(ye,k) + Rk

]−1

wloc ◦ cov(xb,ye,k)

var(ye,k) + Rk

(y′
e,k), (4b)

where ye,k is the prior estimate of the proxy from Eq. (2), Rk

is the diagonal element of R corresponding to proxy yk , and

cov() and var() represent the covariance and variance func-

tions, respectively. The ensemble of updated states is then

recovered by combining the posterior ensemble mean and

perturbations:

xa = xa + x
′
a . (5)

Covariance localization, given by a Schur product denoted

by ◦ in Eq. (4b) (i.e., element-wise multiplication), is a

distance-weighted filter wloc on the prior covariance matrix

(see, e.g., Hamill et al., 2001). Sections 4.2 and S5 in the

Supplement provide more details on localization.

We also use an “appended state vector” approach that

avoids the need to recompute Eq. (2) after each proxy is as-

similated. The ye proxy estimates from each record are ap-

pended to the state vector xb:

xb =


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, (6)

where the x1. . .xN elements contain the ensemble grid-point

data from model variables included in the state (e.g., tem-

perature, precipitation), with N the sum of the number of

variables multiplied by the number of grid points, and the

y1
e . . .yP

e are the ensemble proxy estimates for each of the P

proxy records considered. Each of the x1. . .xN and y1
e . . .yP

e

elements are of dimensions 1×Nens, where Nens is the speci-

fied size of the ensemble. Hence, xb is a matrix of dimension

(N+P )×Nens. With such an appended state, the ye elements

in Eq. (6) are updated through Eq. (4b) as any other state

variables, eliminating the need to re-evaluate ye with Eq. (2)

once the state has been updated. This simplification is par-

ticularly attractive in the context of LMR updates discussed

herein as it enables a straightforward implementation of sea-

sonal PSMs (i.e., forward models more accurately represent-

ing the seasonal responses of individual proxy records) as

discussed in Sect. 2.4. In our implementation for the recon-

struction of annually averaged states, the data assimilation

procedure follows this general algorithm.

1. The proxy estimates (ye) are precalculated using Eq. (2)

with either annually or seasonally averaged model data

as input (i.e., the xb in Eq. 2).

2. A sample ensemble of annually averaged model states is

randomly drawn from a pre-existing simulation to form

the main part of the prior state vector (i.e., the x1. . .xN

elements in Eq. 6).

3. The precalculated y1
e . . .yP

e proxy estimates are added

on to form the appended state as shown in Eq. (6). This

appended state becomes the xb in Eq. (1), which is de-

composed into an ensemble mean (xb) and perturba-

tions about the mean (x′
b) as shown in Eq. (4b).

4. Proxies forming the y vector are then serially processed,

with the updated state, including the proxy estimates,

obtained from Eq. (4b). The reanalysis is completed for

1 year once all proxies have been assimilated.

We note here that with a configuration involving seasonal

PSMs without the use of an appended state, the vector xb has

to include states with sufficient temporal resolution to allow

the calculation of the updated seasonal y1
e . . .yP

e proxy esti-

mates. In this scenario, an additional step to the ones listed

above is required, involving Eq. (2) using the appropriate sea-

sonally averaged updated states as input. With proxies char-

acterized by a wide range of seasonal responses, this require-

ment would impose an xb composed of monthly data which

would greatly increase the computational cost of the reanal-

ysis. Reanalysis results would also likely be adversely af-

fected by the larger noise level characterizing data at shorter

(i.e., monthly) timescales through its impact on ensemble es-

timates of prior covariances (see, e.g., Tardif et al., 2015).

As in Hakim et al. (2016), an “offline” DA approach is

used, where the prior ensemble is formed by random draws

of time-averaged states from a pre-existing millennium-long

model simulation, with the same randomly drawn ensemble

members used for every year in the reconstruction of a given

reanalysis realization (see Sect. 2.3 below). We note that in

the limit of no proxy information, this approach leads to a

posterior that reverts to the prior ensemble (see Eq. 1), which

randomly samples the model climate and therefore has no

skill over the model climatology. This is in contrast to on-

line DA (e.g., Matsikaris et al., 2015; Perkins and Hakim,

2017), where a numerical model is used to dynamically fore-

cast the evolution of climate states from the latest proxy-

informed analysis to the following year, when new proxy

observations are assimilated. The “offline” approach, intro-

duced by Oke et al. (2002) and Evensen (2003), and used

in an ocean DA system by Oke et al. (2005), offers sev-

eral practical advantages, particularly from a computational

cost perspective (Oke et al., 2007). Its use is further justi-

fied when model forecasts have limited skill over timescales

corresponding to the time interval between updates, as is the

case here with global climate models and proxies assimilated
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Figure 1. Locations (a, c) and temporal (b, d) distributions of proxy records available for assimilation (proxies for which linear PSMs

calibrated with GISTEMP version 4 are available). Panels (a, b) are used in the prototype version, (c, d) LMR proxy database updated to

PAGES 2k Consortium (2017) proxies.

on an annual basis. This scenario is further supported by the

PDA results of Matsikaris et al. (2015), who show similar

performance is achieved with online and offline approaches.

From a cost–benefit perspective, the high cost of running en-

sembles of comprehensive global climate model simulations

does not appear justified. However, ongoing research sug-

gests cost-effective online PDA may be achieved by using

simplified climate models (Perkins and Hakim, 2017).

2.2 Climate proxies

Our proxy database is updated to the latest PAGES 2k col-

lection (PAGES 2k Consortium, 2017, hereafter PAGES2k-

2017). This data set represents the community standard in

global proxy observations covering the Common Era (CE)

and serves as the core source of proxy information used

in our updated reanalysis. PAGES2k-2017 proxies were

screened to retain temperature-sensitive records, extensively

quality controlled, and described by more metadata com-

pared to previous collections. The additional records as-

sembled by Anderson et al. (2019)1, consisting in large

part of the tree-ring-width records from Breitenmoser et al.

(2014) (hereafter B14), are considered as a potential en-

hancement to proxy information used in our paleoreanalyses

(see Sect. 4.3).

As in the LMR prototype (Hakim et al., 2016, hereafter

H16), only records with sub-annual to annual resolutions are

considered; sub-annual records are averaged to annual. Fig-

ure 1 compares the PAGES 2k Consortium (2013) (hereafter

PAGES2k-2013) data set used in H16 and the PAGES2k-

2017 update. Only records for which a PSM can be estab-

lished are shown in Fig. 1, defined by proxy records with at

least 25 years of (non-contiguous) overlap with calibration

data (see Sect. 2.4). Compared to the proxies assimilated in

H16, PAGES2k-2017 data provide enhanced spatial coverage

in the tropics with additional coral δ18O and Sr/Ca records.

1An exception is the use of the Palmyra coral record from Cobb

et al. (2003) rather than the Emile-Geay et al. (2013) update, as

described in Anderson et al. (2019).
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Additional tree-ring wood-density records from Europe and

western North America are also included. The temporal dis-

tribution of the total number of records remains similar, ex-

cept for significant increases in the number of tree-ring-width

and coral proxies during 1800–2000 CE and tree-ring wood-

density records during 1500–2000 CE.

2.3 Climate model prior information

For all reconstruction experiments reported in this paper,

the prior state vector is formed with data from the Cou-

pled Model Intercomparison Project phase 5 (CMIP5) (Tay-

lor et al., 2012) Last Millennium simulation from the Com-

munity Climate System Model version 4 (CCSM4) cou-

pled atmosphere–ocean–sea-ice model. The simulation cov-

ers years 850 to 1850 CE and includes incoming solar vari-

ability and variable greenhouse gases, as well as stratospheric

aerosols from volcanic eruptions known to have occurred

during the simulation period (see Landrum et al., 2013). The

same “offline” DA methodology as in H16 is used, where

the prior ensemble is a random sample of model states, with

the same sample used for all years of the reconstruction.

The sampled states are deviations (i.e., anomalies) from the

temporal mean taken over the entire length of the simula-

tion. Therefore, the prior ensemble mean does not contain

time-specific information about climate events (e.g., a vol-

canic eruption) or trends characterizing specific periods (e.g.,

20th century warming). Consequently, all trends and tem-

poral structure in reconstructed fields result from informa-

tion provided by the proxies. Finally, the spatial resolution of

prior state variables is reduced from 0.95◦×1.25◦ of the Last

Millennium simulation to a 4.3◦ × 5.7◦ Gaussian grid as in

H16.

All reconstruction experiments are composed of 51 Monte

Carlo assimilation realizations, each using a different ran-

domly chosen 100-member ensemble and 75% of available

proxy records for assimilation. This Monte Carlo sampling

over subsets of prior states and proxy records is designed

to incorporate uncertainties in covariance estimates derived

from model states and uncertainties associated with proxy er-

ror estimates. Moreover, we have found that averaging over

ensembles from Monte Carlo realizations leads to more accu-

rate results. This is likely the result of averaging over random

errors introduced into the reanalysis from a few randomly

chosen proxy records with underestimated observation er-

rors. Little sensitivity to the use of 75 % of the proxies for

each realization has been found (not shown), while 100 mem-

bers have been chosen to maintain consistency with H16. In

the following, climate reanalyses are taken as the mean over

the 100-member DA ensembles and 51 Monte Carlo realiza-

tions (i.e., a 5100-member “grand ensemble”).

2.4 Proxy modeling

A critical component of PDA is the mapping of prior climate

state variables (e.g., temperature, precipitation from a cli-

mate model) to the assimilated proxies (e.g., tree-ring width).

This is expressed mathematically by Eq. (2), Sect. 2.1, where

the operator H (i.e., the forward model) ideally represents

the complete set of processes associated with proxy values,

i.e., a comprehensive physically based PSM. This remains

a major challenge as the information archive is often com-

plex, involving physical, biological and chemical processes

(Evans et al., 2013). Despite recent progress in the develop-

ment and use of process-based PSMs (e.g., Dee et al., 2015,

2016; Goosse, 2016; Steiger et al., 2017; Acevedo et al.,

2017), the focus here is on statistical PSMs, which offer dis-

tinct advantages: (1) ease of implementation and flexibility

with respect to forward modeling of multiple proxies, regard-

less of archive types, measurements, units, etc.; (2) observa-

tion error statistics for each assimilated record are well de-

fined from the regression (see below); and (3) regressions

are formulated on the basis of deviations from the mean over

a reference period (e.g., 1951–1980) of the driving climate

variable(s), therefore avoiding issues with absolute calibra-

tion where climate model bias is problematic, particularly

for PSMs having threshold transitions (see, e.g., Dee et al.,

2016). Statistical PSMs also have distinct disadvantages:

(1) PSMs cannot be calibrated without sufficient overlap with

calibration data (a threshold of at least 25 overlapping data

is imposed); (2) the accuracy of the models depends on the

limitations of the calibration data sets (e.g., less reliable anal-

ysis over the Southern Ocean and over high-latitude conti-

nental areas due to a lack of observations); (3) possible lack

of stationarity of the derived relationships established with

instrumental-era data; and (4) lack of representation of non-

linear and/or multivariate influences when PSMs are formu-

lated as linear univariate models. Despite these limitations,

statistical PSMs provide advantageous capabilities within the

context of the LMR and moreover define a baseline to mea-

sure future progress with the development of process-based

PSMs.

Here, univariate and bivariate statistical PSMs are consid-

ered:

yk = β0k + β1kX1
′ + ǫk, (7)

and

yk = β0k + β1kX1
′ + β2kX2

′ + ǫk, (8)

where yk are annualized observations from the kth proxy

time series, X1
′,X2

′ are anomalies, with respect to the mean

over a reference period, of key climate variables (e.g., near-

surface air temperature and precipitation) from calibration

instrumental-era data sets, β0 is the intercept, and β1,β2 are

the slopes with respect to the X1
′ and X2

′ independent vari-

ables, respectively, and ǫ is a Gaussian random variable with
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zero mean and variance σ 2. The overbar in Eqs. (7) and (8)

denotes time averages over annual periods, as in H16, or over

appropriate seasonal intervals for the seasonal PSMs. Cal-

ibration data concurrent with available proxy observations

are taken at the grid point nearest the proxy location and the

appropriate least-squares solution determines regression pa-

rameters (β0,β1,β2,σ ). In this version of LMR, PSM config-

uration is the same for each proxy category (e.g., univariate

for all coral δ18O, bivariate for all tree-ring-width records).

With the framework described above, the regression-

based approach measures the diagonal elements in matrix

R through the variance of regression residuals, i.e., Rk =

σ 2. This is a key parameter in PDA as it determines the

extent to which the information provided by the proxy is

weighted against prior information in the resulting reanal-

ysis. This method provides a sound basis through which as-

similated proxy records influence the reanalysis depending

on the strength of their relationship to the dependent climate

variables. For example, a record with a poor fit to calibration

data will be characterized by larger residuals, hence larger

observation error variance, and less weight in the reanalysis

relative to a record that has a stronger correlation with cli-

mate variables. We note that modestly different results are

obtained with different observational calibration data sets

(see H16).

The calibration data sets used in this study are the NASA

Goddard Institute for Space Studies (GISS) Surface Tem-

perature Analysis (GISTEMP) (Hansen et al., 2010) ver-

sion 4 for temperature and the gridded precipitation data set

from the Global Precipitation Climatology Centre (GPCC)

(Schneider et al., 2014) version 6 as the source of monthly

information on moisture input over land surfaces. The use of

precipitation instead of the more traditional Palmer Drought

Severity Index (PDSI) to account for moisture is described in

more detail in Sect. S4 of the Supplement.

2.4.1 Seasonality

Here, we take advantage of the availability of expert infor-

mation about the seasonal response to temperature for each

proxy record included in the PAGES2k-2017 metadata. This

information is not available in PAGES2k-2013, hence lead-

ing to the use of PSMs calibrated on annual averages for all

records in H16. Seasonality information is provided for each

record as a numerical representation of a sequence of con-

secutive months (e.g., JJA as [6,7,8]). Seasonal PSMs are de-

rived by using this sequence as the averaging period defining

X1
′ and X2

′ in Eqs. (7) and (8).

Precise information on proxy seasonality is, however, not

available for all records in the updated LMR proxy database.

The proxies from Anderson et al. (2019), for example, have

not been subjected to extensive community-wide screening

and vetting as with the PAGES2k-2017 proxies. In particular,

seasonality information for the large number of additional

tree-ring records from B14 has been encoded using a sim-

ple latitudinal dependence which does not attempt to repre-

sent possible record-by-record diversity (see Anderson et al.,

2019). This lack of expert-informed seasonality motivates

an objective alternative to the metadata seasonality informa-

tion for calibrating tree-ring-width (TRW) forward models.

We consider several potential seasonal periods, perform a re-

gression over each possible season and identify the linear re-

lationship providing the best fit to proxy values, as defined

by the maximum value of the adjusted R2, a goodness-of-fit

measure defined as (Goldberger, 1964, p. 217)

R2
adj = 1 −

[
(

1 − R2
)

(N − 1)

N − M − 1

]

. (9)

Here, R2 is the variance explained by the linear model, N

is the sample size, and M is the number of predictors in

the model. The adjusted R2 penalizes complexity (i.e., the

number of predictors) of the model in such a way that val-

ues characterizing a more complex model will increase only

if the additional predictors improve the fit more than would

be expected by chance. Test periods considered include, in

addition to the seasonal response in the proxy metadata (if

available), the calendar year, boreal summer (JJA) and bo-

real winter (DJF), and extended spring and fall growing sea-

sons (MAMJJA, JJASON for NH trees; SONDJF, DJFMAM

for SH trees) to account for ecosystem-dependent variations

in tree growth shifted toward the earlier or later parts of the

warm season (see, e.g., Sano et al., 2009; D’Arrigo et al.,

2005). With this test set of seasonal responses, the dominant

sensitivity of some TRW chronologies to winter tempera-

ture (D’Arrigo et al., 2012) is included, as well as the win-

ter and spring precipitation sensitivities characterizing some

tree species (see, e.g., Stahle et al., 2009; Touchan et al.,

2003). The latter point is germane to the calibration of sea-

sonal TRW models using precipitation as a predictor (see the

next section).

2.4.2 Tree-ring-width sensitivity to temperature and

moisture

Proxy number is strongly dominated by TRW records in

the LMR proxy database, particularly with the addition of

chronologies from B14. Furthermore, these records have not

been screened on temperature, which opens the opportunity

to measure moisture sensitivity through the regression frame-

work. The addition of an explanatory variable increases the

potential for overfitting, and our framework is designed to

measure that using the 25 % of proxies withheld from assim-

ilation, for which we can measure reconstruction errors and

compare results with proxies that were assimilated (see dis-

cussion of proxy verification results in Sect. 3).

Two methods are considered, both adding a dependence to

moisture input (as represented here with precipitation). The

first maintains the univariate approach (Eq. 7) but consid-

ers linear PSMs calibrated against either temperature or pre-
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cipitation. For each TRW record, distinct regressions with

either variable are established and the model providing the

best fit to proxy data is selected. Following a common prac-

tice in dendroclimatology, this approach determines whether

the record is predominantly temperature or moisture limited

(see, e.g., St. George, 2014). Similar univariate “temperature

or moisture” models (abbreviated as “TorM” hereafter) are

successfully used in Steiger et al. (2018). The second method

consists of simultaneously factoring both temperature and

moisture sensitivities through the bivariate relationship ex-

pressed in Eq. (8).

Seasonal univariate TorM and bivariate TRW models are

considered, with distinct sets of models calibrated using

proxy seasonality either from the proxy metadata or objec-

tively derived during calibration. This selection has impor-

tant implications for the representation of the proxy seasonal

response to moisture in particular. For the proxy metadata,

seasonality for moisture is assumed to be identical to temper-

ature, as this is the only information available, whereas the

objective approach allows for independent encoding of sea-

sonal responses to temperature and moisture. For TorM mod-

els, the objective seasonality for univariate moisture models

is independent of temperature as it is determined solely from

the fit to precipitation data. For bivariate PSMs, all possible

combinations of seasonal responses specified independently

for temperature and moisture are considered, and the com-

bination providing the best fit is selected. With such flexi-

bility, TRW models with objectively derived seasonality are

expected to provide a more realistic representation of the sig-

nificant variability in seasonal responses to moisture charac-

terizing TRW records (see, e.g., St. George et al., 2010). We

note that this approach is similar to the methodology used to

calibrate the VS-Lite model (Tolwinski-Ward et al., 2011),

in that grid cell temperature and precipitation data are used

to determine site-specific growth seasons and seasonally de-

pendent temperature and moisture growth parameters.

An examination of PSM characteristics, summarized here,

with more detail provided in Appendix A, confirms that prox-

ies are represented more accurately by seasonal models, par-

ticularly for tree-ring wood-density and width records (see

Table A1). Moreover, more accurate fits to TRW data are

obtained when proxy seasonal responses are determined ob-

jectively during model calibration. Finally, the addition of

moisture input as a climate driver in TRW modeling proves

most beneficial when implemented in bivariate models (see

Table A2). These findings serve as the basis for defining a

PDA configuration used for the reconstruction described in

the next section.

3 The updated reanalysis

We present a comparison between the updated reanalysis de-

scribed by the method in the previous section with the LMR

prototype described in H162. Specifically, the updated re-

analysis consists of proxy records from the PAGES2k-2017

collection, using objectively derived seasonal PSMs, with a

bivariate formulation for all TRW proxies and univariate for

all other proxy types. Covariance localization is applied with

a 25 000 km cut-off radius (see Sect. 4.2 for more details).

In the next section, we identify the sources of improvement

that contribute to the increase in skill of the updated recon-

struction. Results are evaluated against various 20th century

instrumental data and reanalyses, as well as verification per-

formed in proxy space, using the Pearson correlation coef-

ficient and the coefficient of efficiency (CE) (Nash and Sut-

cliffe, 1970). These skill scores are complementary since cor-

relation measures signal timing, while CE, based on mean

square error with climatology as a reference, is sensitive to

bias and errors in signal amplitude.

Figure 2a shows a comparison of reconstructed global-

mean temperature (GMT) between the prototype and updated

reanalyses over the entire Common Era. Similar features are

observed in the ensemble mean from both reanalyses, namely

the cooling trend over most of the Common Era, followed

by the industrial-era warming. Superimposed on these main

trends, significant multidecadal to multicentennial variability

characterizes both reanalyses, including a cool period prior

to the industrial warming, consistent with the Little Ice Age

(LIA). Differences also exist between the reanalyses, most

noticeably the absence in the updated LMR of the relatively

warm period during 870–1000 CE, representing the Medieval

Climate Anomaly (MCA). Also, warmer conditions prevail

in the prototype during the second half of the 15th century,

while cooler conditions occur during the early part of the

instrumental period in the prototype compared to the up-

dated reanalysis. We note, however, that verification against

instrumental-era temperature analyses (discussed later in the

section) provides evidence that the prototype reanalysis is too

cold during that period.

Ensembles provide access to useful diagnostics regarding

reconstruction uncertainty. It can be shown mathematically

that the assimilation of observations monotonically reduces

the variance of the posterior ensemble compared to the prior.

The ratio of ensemble variance of the posterior (reanalysis)

to the prior is a measure of the information provided by the

assimilated proxies. Figure 2b shows the temporal evolution

of 1 − var[xa]/var[xb], so that a value of 0 indicates no in-

fluence from proxies, and 1 implies that all error has been

removed. In the early part of the Common Era, when few

proxy data are available, variance decreases of only 10 %–

15 % occur in the prototype compared to 15 %–20 % for the

updated reanalysis. The influence of proxies gradually in-

creases after 450 CE, at similar rates in both reanalyses. The

2We use the experiment included in Fig. 12 of H16, with PSMs

calibrated using GISTEMP. Moreover, we use this configuration to

generate a reconstruction of the PDSI, which was not included in

H16.
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Figure 2. Comparison of the LMR global-mean 2 m air temperature (GMT) (a) grand ensemble mean (solid lines) and 5th—95th percentile

range (shading) from the prototype (blue) and updated (red) reanalyses over the Common Era and (b) 1 minus the mean (across Monte Carlo

realizations) ratio of the posterior and prior GMT ensemble variance. (c) Comparison of the LMR Northern Hemisphere 2 m air temperature

grand ensemble mean (solid lines) and 5th–95th percentile range (shading) from the prototype and updated reanalyses with reconstructions

from other authors; MBH1999: Mann et al. (1999), MJ2003: Mann and Jones (2003), RMO2005: Rutherford et al. (2005), MSH2005:

Moberg et al. (2005), Ju07cvm: Juckes et al. (2007), Ma08eivf: Mann et al. (2008), Ma09regm: Mann et al. (2009), PS2004: Pollack and

Smerdon (2004). All series in panel (c) represent anomalies (Kelvin, K) from the 1900–1980 mean and have been smoothed with a 30-year

low-pass Butterworth filter. The light gray shading in panels (a) and (b) indicates the verification period discussed in Fig. 3.

reductions in variance are roughly similar in both reanaly-

ses until 1700 CE, corresponding to the period with a signifi-

cantly larger number of proxies in the updated database (see

Fig. 1). The largest reduction, 68 % in the prototype com-

pared to 78 % in the updated reanalysis, is found during the

20th century when the most proxies are available, which un-

derscores the importance of the expanded proxy database in

LMR.

To gain further perspective on our results, we compare the

reconstructed Northern Hemisphere average 2 m air tempera-

ture from the prototype and updated reanalyses with other re-

constructions quoted in the Intergovernmental Panel on Cli-

mate Change Fourth and Fifth Assessment Reports (IPCC

AR4 and AR5) (Fig. 2c). Here, we restrict the comparison to

reconstructions covering the entire hemisphere and having a

temporal coverage extending to at least 1980. A 30-year low-

pass Butterworth filter is applied on all results to highlight

variability at the lower frequencies. The comparison shows

that most reconstructions from other studies are within the

bounds of the LMR ensemble most of the time, indicating

a general agreement between the different products, at least

within the bounds of uncertainty as defined from LMR. As

with GMT, periods with the largest differences correspond to

the MCA (870–1000 CE), the late 15th and early 16th cen-

turies, and the latter part of the 19th century. First, the re-

constructed colder temperatures during the medieval period

are in contrast with the prototype LMR and other reconstruc-

tions. However, this period is one where the various recon-

structions exhibit significant disagreement. This sensitivity

to the proxy network and reconstruction method underscores

the inherent ambiguities in defining this feature, as discussed

in Diaz et al. (2011). With respect to LMR, differences be-

tween the update and prototype are primarily rooted in the

change from PAGES 2k Consortium (2013) to the more re-
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cent PAGES 2k Consortium (2017) proxy data. A distinctly

warmer medieval period is not a prominent feature of the new

collection, as indicated by the global temperature compos-

ites presented in PAGES 2k Consortium (2017). Second, the

colder temperatures in the updated reanalysis during the late

15th and early 16th centuries are in better agreement with

the majority of reconstructions in other studies, with respect

to both the magnitude and trend of temperature anomalies.

The LMR prototype appears as a warm outlier for this 100-

year period. In contrast, the prototype LMR appears as a cold

outlier during the latter part of the 19th and early 20th cen-

turies. During that period, the updated reanalysis is in bet-

ter agreement with results from other authors, in particular

with the borehole temperature reconstruction by Pollack and

Smerdon (2004).

GMT verification results of the LMR ensemble mean

against various instrumental temperature products are shown

in Fig. 3a and b for the prototype and updated reanalyses,

respectively. Noticeably higher verification scores character-

ize the updated LMR, including a 9 % increase in CE rela-

tive to the average of observation-based temperature analyses

(“consensus”), and an increase in CE in the verification of the

detrended GMT (over 1880–2000 CE) from 0.32 in the pro-

totype to 0.59 in the updated reanalysis (see Table 1). Spatial

verification is provided by comparing the LMR gridded 2 m

air temperature field against the Berkeley Earth instrumental-

era temperature analysis (Rohde et al., 2013) (Fig. 4). Berke-

ley Earth is chosen as the verification reference, as it is not

used to calibrate the PSMs, and provides the most complete

spatial coverage compared to other instrumental products.

The updated temperature reconstruction is largely improved

compared to the prototype over large areas, including the

tropical Pacific, northern Atlantic, western North America,

northern Europe, central Asia and Oceania, and over portions

of the Pacific sector of the Southern Ocean. The improve-

ment is reflected in both correlation and CE scores, indicating

improved timing and amplitude in reconstructed temperature

variability. Exceptions are found over parts of the southern

Atlantic and Indian oceans, although the decrease in skill is

generally more modest compared to the magnitude of im-

provements elsewhere.

Next, we verify a climate variable away from the sur-

face, the 500 hPa geopotential height field, against the corre-

sponding field from NOAA’s 20th century reanalysis (20CR-

v2; Compo et al., 2011) (Fig. 5). Once again, we find the

largest improvements over extratropical continental loca-

tions and over the Arctic. We note similar improvements

are found over the Northern Hemisphere midlatitudes when

verified against the ERA-20C reanalysis (Poli et al., 2016)

(not shown); however, over the Northern Hemisphere, high-

latitude verification against ERA-20C is worse, which under-

scores significant differences between 20th century reanaly-

ses in these data-sparse regions.

Table 1 summarizes the verification results discussed

above through globally averaged verification scores. The ta-

ble also includes verification results of reconstructed PDSI,

not discussed above. A more detailed analysis for this vari-

able is reserved for Sect. 4.3, where the role of additional

proxy records is discussed. Improvements in the updated re-

analyses are evident for all reconstructed variables, particu-

larly with respect to the CE score, which is sensitive to bias

and amplitude in interannual variability. These skill improve-

ments suggest significant positive impact from the updated

tropical coral proxies and tree-ring proxies at higher lati-

tudes. Furthermore, we anticipate that generalizing PSMs to

accounting for seasonality and moisture sensitivity for TRW

proxies also contributes to the improvements.

We consider now an independent evaluation of the recon-

structions in proxy space using proxies withheld from as-

similation. Proxy time series estimated (forward modeled)

from the posterior (i.e., the reconstructions) are compared

to the actual proxy observations and various skill metrics

are evaluated. Verification of proxy estimates obtained from

the uninformed climate model prior serves as a reference for

comparison. Specifically, we use the change in CE between

the posterior proxy estimates and estimates obtained from

the prior, 1CE = (CEposterior − CEprior). Values are compiled

from all proxy records withheld from assimilation, and the

following summary scores are considered: the fraction of all

proxy records which are characterized by a positive 1CE

(i.e., proxy records more accurately represented in the poste-

rior than in the prior) and the median of the 1CE distribution

compiled over all proxy time series. These provide global

summary measures of how reanalyses skill differs from the

prior. An additional discriminating factor on the quality of

the reanalysis is “ensemble calibration”, as defined by Mur-

phy (1988):

ECR =

[

1

N − 1

N
∑

n=1

(vn − xn)2

]

[

1

N − 1

N
∑

n=1

(σ 2
x,n + σ 2

v,n)

]−1

, (10)

where the numerator is the mean square error (MSE) of the

analysis ensemble mean with respect to verification data v

(i.e., the proxies), and the denominator is the innovation vari-

ance: the sum of the analysis ensemble variance σ 2
x and the

error variance σ 2
v characterizing the verification data. Here,

we apply Eq. (10) to proxy time series so the error variance

σ 2
v corresponds to the Rk terms in Eq. (4b). The ensemble

calibration ratio (ECR) expresses the degree to which the

ensemble predicts the distribution of observations. A well-

calibrated ensemble exhibits an approximate agreement be-

tween the ensemble variance and the ensemble-mean MSE,

i.e., ECR ≈ 1.0, while an overdispersive ensemble has vari-

ance larger than the ensemble-mean MSE (ECR < 1.0), and

an underdispersive ensemble is diagnosed when its variance

is smaller than the ensemble-mean MSE (ECR > 1.0). Proxy

verification results are shown in Table 2 over different pe-
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Figure 3. Comparison of LMR global-mean 2 m air temperature (GMT) (a) prototype and (b) updated reanalyses, against instrumental-

era analyses (GISTEMP: NASA GISS surface temperature (Hansen et al., 2010); HadCRUT4: Hadley Center/Climate Research Unit at

the University of East Anglia temperature data set version 4 (Morice et al., 2012); BE: Berkeley Earth surface temperature (Rohde et al.,

2013); NOAAGlobalTemp:NOAA merged land–ocean surface temperature version 3.5.4 (Smith et al., 2008); 20CR-v2: NOAA 20th century

reanalysis version 2 (Compo et al., 2011); ERA-20C: ECMWF reanalysis of the 20th century (Poli et al., 2016); consensus: average of all

but LMR). The gray bands show the LMR 5th–95th percentile range. Verification correlation (r) and coefficient of efficiency (CE) values are

shown at the bottom of each panel for the original and detrended time series.

Table 1. Summary of instrumental-era verification results for the prototype and updated reanalyses. Verification scores shown are r and CE

for the annual GMT and detrended GMT verified against the consensus of instrumental-era analyses, the global mean of grid point r and

CE characterizing the spatially reconstructed temperature, 500 hPa geopotential height (Z500) and Palmer Drought Severity Index (PDSI).

LMR spatial temperature is verified against the Berkeley Earth analysis (Rohde et al., 2013), Z500 is verified against the 20CR-v2 reanalysis

(Compo et al., 2011), and PDSI is verified against the Dai (2011) analysis.

Reanalysis
Annual GMT Detrended GMT Spatial temperature Spatial Z500 Spatial PDSI

r CE r CE r CE r CE r CE

Prototype 0.91 0.79 0.71 0.32 0.47 0.10 0.41 0.07 0.05 −0.03

Updated 0.93 0.86 0.77 0.59 0.52 0.22 0.45 0.18 0.09 0.00

riods of the Common Era. Significantly reduced skill char-

acterizes the earliest period of the Common Era, followed

by a continuous increase over time in all verification metrics

considered, for both LMR reanalyses. We also note that re-

analysis ensembles are generally well calibrated throughout

the Common Era, indicating that respective uncertainties re-

main consistent with mean errors (i.e., reliable ensembles).

Although verification data are not identical between proto-

type and updated reanalyses, we also note that the increase

in skill is more pronounced in the updated reanalysis, partic-

ularly from 1000 CE onward. These results provide further

evidence of a more skillful updated LMR. In the following

section, we systematically evaluate improvements from vari-

ous sources.

4 Sources of improvement

In this section, we identify the sources of reanalysis improve-

ment. Results from multiple reconstruction experiments are

presented, designed to quantify the impact of PSM formula-

tion, the role of covariance localization and the assimilation

of additional proxies.

4.1 Proxy system models

The different PSM configurations described in Sect. 2.4

are used in a series of reconstruction experiments using

PAGES2k-2017 proxies exclusively. We note that these

records have well-defined seasonal metadata.

The impact of seasonal PSMs is first considered with three

experiments performed using univariate temperature regres-

sion models for (1) annual-mean calibration; (2) seasonal-

ity defined by expert metadata; and (3) objectively deter-
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Figure 4. Verification of LMR 2 m air temperature against the Berkeley Earth instrumental-era analysis over the 1880–2000 period. Shown

are time series correlation (a, c, e) and CE (b, d, f) for (a, b) the prototype and (c, d) the updated reanalysis. Differences in correlations and

CE between the two experiments are shown in panels (e) and (f), respectively. Gray shading indicates regions with insufficient valid data for

meaningful verification statistics.

Table 2. Verification of LMR prototype and updated reanalyses against independent (withheld from assimilation) proxies. Skill scores shown

are the median of distributions for r , the fraction of proxy records characterized by a positive 1CE (%+CE) and the median of the 1CE

distribution, where 1CE is the difference in the CE between the posterior (reanalysis) and the prior. The median of the ensemble calibration

ratio (ECR) distribution is also shown. Statistics are compiled over 51 Monte Carlo realizations and cover different time periods, including

the 1880–2000 PSM calibration period.

Verification period (years of Common Era)
Prototype Updated reanalysis

r %+CE 1CE ECR r %+CE 1CE ECR

1–499 0.00 56.0 0.00 0.78 0.03 55.9 0.00 0.96

500–999 0.08 62.1 0.01 1.00 0.13 65.3 0.02 1.00

1000–1499 0.11 63.0 0.01 1.10 0.16 67.3 0.05 1.06

1500–1879 0.14 64.1 0.02 1.06 0.28 72.7 0.10 1.02

1880–2000 0.23 72.6 0.03 0.97 0.40 82.7 0.13 0.89

mined seasonality. Performance is again measured by cor-

relation and CE scores with verification against the Berke-

ley Earth analysis. Relative to reconstructions with annual-

mean PSMs (Fig. 6a and b), the reconstructions with sea-

sonal PSMs (Fig. 6c–f) show improvements in both mea-

sures over nearly the entire globe (Fig. 6g–j). Results show

a larger improvement for CE (Fig. 6h and j) compared to

correlation (Fig. 6g and i), reflecting improvement in both

the amplitude of temperature variability and bias. Notewor-

thy improvements are found in regions with large numbers of

tree-ring proxies, such as the western United States, the re-

gion around and including Alaska, northern Canada and the

western Arctic Ocean, over Scandinavia and the Norwegian

Sea, central Asia and over the southern Pacific west of the
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Figure 5. As in Fig. 4 except for the verification of LMR 500 hPa geopotential height anomalies against the 20CR-v2 reanalysis.

Antarctic Peninsula (see Fig. 6h). Comparing the differences

of correlations and CE in Fig. 6i and j to those shown in

Fig. 6g and h reveals that PSMs with objectively derived sea-

sonality contribute positively to skill for the aforementioned

regions, especially where tree-ring-width records are most

abundant (e.g., North America and Asia).

We turn now to the impact of moisture on seasonal TRW

PSMs on the reconstructions. Since objectively defined sea-

sonality performs best (i.e., Fig. 6e and f), reconstructions

generated with univariate PSMs are used as the reference for

measuring skill improvements for modeling TRW records as

univariate in either temperature or moisture (abbreviated as

“TorM”) (Fig. 7c and d) and for bivariate “temperature and

moisture” PSMs (Fig. 7e and f). Improvement over univari-

ate PSMs is apparent for the bivariate approach compared

with the univariate “TorM” approach (cf. Fig. 7g, h with i, j,

respectively). In the bivariate approach, regions such as west-

ern North America and central Asia, where most of the TRW

records are found, improve the most in CE, but also over

Australia, likely in response to the improved modeling of

TRW records in New Zealand and Tasmania. Improvements

are also noticeable, through teleconnections with proxy loca-

tions in the central Atlantic and southern Indian oceans, and

over the eastern North Pacific Ocean. A decrease in skill is

present over the midlatitude Pacific Ocean, but this is smaller

in magnitude compared with skill enhancements elsewhere.

Verification of GMT for reconstructions using seasonal

PSMs (Table 3) yields a similar interpretation to the spa-

tial verification results. Compared to the consensus of

instrumental-era products, we find that the 20th century trend

in GMT is overestimated with the PAGES2k-2017 proxy data

set if univariate PSMs are used. This is particularly the case

with annual PSMs. Better agreement is obtained when sea-

sonal bivariate PSMs are used to model TRW proxies. The

representation of GMT interannual variability as measured

by verification of the detrended GMT is also improved with

seasonal PSMs, particularly for the CE metric. Similar to

spatial verification results, PSMs with objectively derived

seasonality and bivariate TRW modeling have GMT recon-

structions with consistently higher skill scores.

We recognize that the previous evaluation relies on com-

parisons with observation-based products covering the same

time period as the data used to calibrate the statistical

PSMs. To test the sensitivity of the results to the calibra-

tion period, we conduct additional independent instrumental-

era calibration–validation experiments where PSMs are cal-

ibrated over a subset of the instrumental-era period and re-

constructions are evaluated with data not used in calibration.
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Table 3. Summary of instrumental-era verification results for reconstruction experiments performed with various PSM configurations. Veri-

fication scores shown are the trend over the 20th century (in K/100 years), r and CE for the annual GMT and detrended GMT verified against

the consensus of instrumental-era analyses. The GMT trend in the consensus of instrumental-era analyses is 0.56 K/100 years.

PSM configuration
GMT trend Annual GMT Detrended GMT

r CE r CE

Prototype 0.61 0.91 0.79 0.71 0.32

Univariate – temperature (annual) 0.85 0.93 0.61 0.74 0.39

Univariate – temperature (seasonal meta.) 0.72 0.93 0.77 0.73 0.43

Univariate – temperature (seasonal obj.) 0.72 0.93 0.80 0.75 0.51

Univariate – temperature or moisture (TRW) (seasonal meta.) 0.71 0.92 0.78 0.72 0.44

Univariate – temperature or moisture (TRW) (seasonal obj.) 0.74 0.93 0.77 0.74 0.48

Bivariate – temperature and moisture (TRW) (seasonal meta.) 0.62 0.93 0.84 0.76 0.50

Bivariate – temperature and moisture (TRW) (seasonal obj.) 0.60 0.93 0.86 0.77 0.54

Results from these experiments, described in Sect. S3 in the

Supplement, confirm the main results and conclusions drawn

here on the superiority of seasonal PSMs relative to those cal-

ibrated with annual averages and the use of bivariate models

for TRW proxies.

We now examine results from an evaluation performed

in proxy space using proxies withheld from assimilation as

in Sect. 3. Results for both the PSM calibration and pre-

calibration periods are shown in Table 4. Differences among

the various experiments suggest the superiority of the sea-

sonal (with objective seasonality) PSMs as skill scores con-

sistently rank among the highest among all experiments

for both calibration and pre-calibration periods. The recon-

struction using univariate annual PSMs shows the weakest

verification statistics, confirming the verification based on

instrumental-era analyses. Finally, use of bivariate seasonal

PSMs for TRW records is also suggested from proxy valida-

tion results, as larger correlations and 1CE are obtained with

this configuration.

4.2 Covariance localization

One approach to managing sampling error in ensemble data

assimilation is through spatial covariance localization. Local-

ization is applied to minimize the adverse impact of spurious

covariances at large distances from a proxy location, which

results from sample error in finite ensembles (Hamill et al.,

2001). If localization is not applied, spurious covariances al-

low proxies to affect remote locations, which adversely af-

fects the quality of the analysis. On the other hand, too-

short localization length scales reduce the useful information

that can be derived from the proxies. Therefore, a balance is

sought between minimizing sampling noise versus retaining

useful proxy information.

We use the Gaspari–Cohn (Gaspari and Cohn, 1999) fifth-

order polynomial with a specified cut-off radius for the local-

ization function (wloc in Eq. 4b). See Sect. S5 for information

on the characteristics of wloc. A series of reconstructions is

performed with a wide range of localization length scales.

As with previous experiments, 51 Monte Carlo realizations

are carried out, each with 100 ensemble members assimilat-

ing 75 % of proxy records. Results from the instrumental-era

verification scores previously described are summarized in

Table 5. We observe that the GMT trend is underestimated

and verification scores are significantly reduced when “too-

small” localization radii are used, indicating the information

on temperature provided by some proxy records is not prop-

erly incorporated in the reanalysis. In contrast, the trend is

overestimated and verification scores are generally reduced

without covariance localization. This is particularly the case

for the CE score for the detrended GMT, sensitive to the am-

plitude in interannual variability. This skill measure is max-

imized for localization radii within the 15 000 to 25 000 km

range. A localization radius at the upper end of this range

(25 000 km) is preferable, as results from the other verifica-

tion scores suggest that a skillful reconstruction is obtained

with this covariance localization configuration. See Fig. S4

for an example where the 25 000 km localization function is

applied to a proxy record located in California, United States.

We note that the optimal localization radius depends on a

number of factors, such as ensemble size, the observation

network and observation error characteristics.

4.3 Proxy data sets

Here, we explore the impact of adding the large number of

proxies from Anderson et al. (2019) (hereafter A19), which

include the tree-ring-width chronologies from Breitenmoser

et al. (2014) (hereafter B14), not strictly screened for climate

sensitivity in contrast to the PAGES2k collection. Duplicate

records between data sets are identified (based on correla-

tion between co-located records and cross-referencing meta-

data) and eliminated. Priority is given to records found in

the PAGES2k collection (see A19 for more details). Fig-

ure 8 shows the spatial and temporal distributions of the

B14 records, which reveals enhanced coverage over eastern

North America, southern Europe, boreal Eurasia and south-

ern South America. Other additions, totaling 94 records,
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Table 4. Verification of LMR reconstructions against independent (withheld from assimilation) proxies for experiments using various PSM

configurations. Skill scores shown are the median of distributions for r , the fraction of proxy records characterized by a positive 1CE

(%+CE) and the median of the 1CE distribution. Statistics are compiled over 51 Monte Carlo realizations for two distinct periods: 1880–

2000 (PSM calibration period) and 0–1879 (pre-calibration period).

PSM configuration
1880–2000 1–1879

r %+CE 1CE r %+CE 1CE

Univariate - temperature (annual) 0.28 75.2 0.05 0.17 66.0 0.03

Univariate – temperature (seasonal meta.) 0.32 78.7 0.06 0.21 69.6 0.04

Univariate – temperature (seasonal obj.) 0.34 80.6 0.09 0.21 69.4 0.06

Univariate – temperature or moisture (TRW) (seasonal meta.) 0.30 76.1 0.06 0.19 67.7 0.04

Univariate – temperature or moisture (TRW) (seasonal obj.) 0.33 77.6 0.08 0.19 66.3 0.04

Bivariate – temperature and moisture (TRW) (seasonal meta.) 0.32 77.9 0.07 0.20 68.1 0.04

Bivariate – temperature and moisture (TRW) (seasonal obj.) 0.36 78.9 0.11 0.22 66.0 0.06

Table 5. The 20th century trend of GMT, r and CE, for the annual and detrended GMTs, as well as the global mean of the spatial (i.e.,

grid point) r and CE of reconstructed temperature verified against the consensus of instrumental-era analyses for reconstruction experiments

performed with covariance localization using various localization cut-off radii (LR). Verification statistics for an experiment without covari-

ance localization are also shown for comparison. Results from the prototype are shown for reference. The GMT trend in the consensus of

instrumental-era analyses is 0.56 K/100 years.

LR LR LR LR LR LR No Prototype

5000 km 10 000 km 15 000 km 25 000 km 35 000 km 45 000 km localization (no localization)

Trend (K/100 years) 0.17 0.31 0.40 0.49 0.51 0.56 0.60 0.61

Annual GMT r 0.92 0.93 0.93 0.93 0.93 0.93 0.93 0.91

Annual GMT CE 0.46 0.71 0.82 0.86 0.87 0.87 0.86 0.79

Detrended GMT r 0.74 0.77 0.77 0.77 0.77 0.76 0.77 0.71

Detrended GMT CE 0.35 0.53 0.59 0.59 0.58 0.56 0.54 0.32

Mean spatial r 0.36 0.46 0.50 0.52 0.52 0.53 0.53 0.47

Mean spatial CE 0.11 0.17 0.19 0.22 0.21 0.21 0.20 0.10

provide additional records in the tropics (23 coral records)

and an enhanced number of ice core records concentrated

over Greenland and the eastern Canadian Arctic (37 records)

and Antarctica (26 records in West Antarctica and Dron-

ning Maud Land). A few lower-latitude ice core records

(six records) are also added in the Peruvian Andes and

Tibetan Plateau, along with two higher-latitude lake core

records. From a temporal perspective, the addition of the B14

tree-ring-width records contributes a notable number of addi-

tional proxies back to 1000 CE, more than double the number

of records available for assimilation from 1500 CE onward,

up to a 4-fold increase during the 19th and 20th centuries.

In order to measure the impact with the best configura-

tion, the reconstruction experiments reported in this section

are carried out using seasonal PSMs with objectively derived

seasonality for all records, with a bivariate formulation on

temperature and precipitation for all TRW proxies and uni-

variate on temperature for all other proxies. The baseline re-

construction uses the PAGES2k-2017 proxies (as in Sect. 3),

which we compare to results first obtained with the addition

of the B14 TRW records and finally with the further addition

of the coral, ice and lake core records from A19 (i.e., the full

proxy database). Other trial reconstructions performed with

the vastly expanded proxy network, not reported here, show

that a well-calibrated GMT ensemble is obtained with a co-

variance localization cut-off radius of 25 000 km. Next, we

compare reconstruction results from this configuration to the

baseline reanalysis.

Differences in correlation and CE associated with the ad-

dition of the B14 collection over the PAGES2k-2017 prox-

ies show skill improvements in temperature reconstructions

over the continental United States and Mexico, Europe and

the southern edge of the Tibetan Plateau (see Fig. 9g and

h). Through the influence of significant spatial covariances

with the added records, assimilation of the additional TRW

records also leads to improved temperature skill over remote

areas of the midlatitude Pacific and northern Atlantic oceans.

The addition of records described in A19 has minimal addi-

tional impact overall, with the exception of modest increases

in correlation and CE over Greenland (see Fig. 9i and j).

Hydroclimate verification is defined by a comparison of

the reconstructed PDSI with the Dai (2011) product. We note

here that the reconstruction is not directly related to the PDSI

product used for verification, as TRW forward models were
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Figure 6. Verification of LMR temperature anomalies against the

Berkeley Earth instrumental-era analysis, for experiments using

PAGES2k-2017 proxies and univariate PSMs, with contrasting sea-

sonalities. Shown are time series r and CE for (a, b) experiment 1:

annual, (c, d) experiment 2: seasonality from the proxy metadata

and (e, f) experiment 3: objectively derived seasonality. Differences

in skill metrics are also shown (g, h) between experiments 2 and 1,

and (i, j) between experiments 3 and 1.

calibrated on precipitation and not on PDSI as in Steiger et al.

(2018). A comparison of the reconstructed PDSI between the

prototype3, the updated reanalysis of Sect. 3 and a recon-

struction carried out with the B14 TRW records and the addi-

tional coral, ice and lake core records (i.e., the full database)

is shown in Fig. 10. The PDSI is slightly improved in the up-

dated reanalysis compared to the prototype (Fig. 10g and h).

Enhanced skill is noticeable over western North America and

over eastern Europe and Asia to a lesser degree. Decreased

skill is found over the central plains of North America and

along a narrow band along the Siberian Taiga. The impact

of adding the Anderson et al. (2019) records is mostly found

3The LMR prototype configuration has been used to reconstruct

PDSI, a variable not included in H16, for the purpose of this com-

parison.

Figure 7. As in Fig. 6 but comparing experiments performed us-

ing PAGES2k-2017 proxies with different PSM configurations for

tree-ring-width proxies. (a, b) Experiment 1: univariate on temper-

ature for all proxies, (c, d) experiment 2: univariate with respect to

temperature or moisture for TRWs and (e, f) experiment 3: bivari-

ate on temperature and moisture for tree-ring widths. Differences

in skill metrics are shown (g, h) between experiments 2 and 1, and

(i, j) between experiments 3 and 1. All reconstructions are based on

objectively derived seasonal PSMs.

over the eastern part of the United States and over western

Europe (Fig. 10i and j). Finally, we note that this impact is

due entirely to the B14 TRW records, as the additional coral,

ice and lake core records from A19 do not significantly af-

fect the PDSI reconstruction skill (from results of additional

reconstruction experiments carried out to isolate this impact;

not shown).

Examining the differences between reconstructions over

the entire Common Era (Fig. 11), we see a significantly mod-

ified Northern Hemisphere temperature (NHMT) resulting

from the assimilation of the additional proxies. A generally

warmer NHMT is obtained throughout the Common Era but

most significantly during the LIA, worsening the agreement

with reconstructions from other studies shown in Fig. 2. A

noticeable loss of variability is observed, confirmed by com-
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Figure 8. Locations (a) and temporal distributions (b) of the additional proxies from Anderson et al. (2019) considered for assimilation,

including the tree-ring chronologies from Breitenmoser et al. (2014). As in Fig. 1, only records available for assimilation (proxies for which

regression-based PSMs can be calibrated) are shown.

Table 6. As in Table 4 but statistics compiled for tree-ring wood-density (MXD) proxies only, and for experiments using the PAGES2k-

2017 proxies only, PAGES2k-2017 with the addition of all proxies from A19 (all proxies) and PAGES2k-2017 plus only a subset of A19

records obtained after removing all but 188 TRW records from B14 (B14 subset). See text for selection details. Skill scores are the median

of r distributions, the fraction of proxy records characterized by a positive 1CE (%+CE) and the median of 1CE distributions. Statistics

are compiled over the 51 Monte Carlo realizations for the following periods: 1880–2000 (PSM calibration period) and 1600–1879 (pre-

calibration period with a significant number of MXD records and covering a significant portion of the Little Ice Age).

PSM configuration
1880–2000 1600–1879

r %+CE 1CE r %+CE 1CE

PAGES2k-2017 0.62 93.2 0.37 0.58 91.4 0.39

All proxies 0.43 88.0 0.18 0.46 95.4 0.26

B14 subset 0.56 92.5 0.30 0.53 93.8 0.34

paring spectra from both experiments (Fig. 11c). This loss

of variability in the reconstruction using all proxies occurs at

nearly all scales, underlining an adverse impact from assim-

ilating B14 tree-ring-width proxies.

We now turn to verification in proxy space, which is the

only source available prior to the instrumental period. Proxy

estimates from reanalyses (estimated using the appropriate

PSM) are compared directly to proxy observations. Here, re-

analysis skill is assessed using independent (the 25 % with-

held from assimilation) proxies. We further restrict our anal-

ysis to verification against tree-ring wood-density proxies,

as they are among the most reliable recorders of tempera-

ture in our database, as evidenced by the generally better

fits to calibration temperature data obtained when calibrat-

ing the univariate PSMs. Also, these proxies provide good

temporal coverage of the latter portion of the LIA into the

industrial period, as shown in Fig. 1. The results, presented

in Table 6, show distinctly larger skill scores for the experi-

ment using PAGES2k-2017 proxies only compared to when

all proxies are assimilated. Improved skill is observed for

both periods of interest. Results from a third reconstruction

experiment are also presented, where only a small fraction of

B14 records are assimilated (B14 subset experiment in Ta-

ble 6). A total of 188 records (out of the 2156 available)

have been selected on the basis of their strong relationship

to calibration temperature and precipitation data as deter-

mined from the correlation coefficient characterizing bivari-

ate PSMs. Records with a calibration correlation above 0.6

are found to be located for the most part over the United

States. Proxy verification results indicate an increase in skill

in the representation of tree-ring wood-density proxies, as in-

dicated by skill metric values only slightly lower than in the

PAGES2k-2017 experiment. Spatial verification of tempera-

ture and PDSI (not shown) also suggests that some of the skill

enhancements shown in Fig. 10i and j are retained even when

this small fraction of the B14 records is considered. This sug-

gests that the issues with the assimilation of the B14 records

identified above can possibly be mitigated while maintaining

some of the skill they provide toward enhanced temperature

and hydroclimate reconstructions in local regions. Optimal
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Figure 9. As in Fig. 6 but comparing experiments performed with

different proxy networks: (a) r and (b) CE for experiment 1: PAGES

2k Consortium (2017) proxies only, (c, d) experiment 2: with the ad-

dition of tree-ring chronologies from Breitenmoser et al. (2014) and

(e, f) experiment 3: with all proxies in the updated LMR database.

The differences in correlation and CE between experiments 2 and 1

are shown in panels (g, h), respectively, and between experiments 3

and 2 in panels (i, j). Notice the latter is different from Fig. 6, where

differences between experiments 3 and 1 are shown.

selection of these records requires further careful attention

and could serve as the basis for future efforts.

5 Concluding summary

A paleoclimate reanalysis of the Common Era has been de-

veloped using an updated data assimilation framework. Re-

sults show significant improvement over the prototype Last

Millennium Reanalysis presented in Hakim et al. (2016). An

updated proxy database and implementation of PSMs with

improved realism are shown to be key contributors to the en-

hanced reanalysis. The main upgrade to the proxy database

consists of a change from the community standard of PAGES

2k Consortium (2013) to the more recent PAGES 2k Consor-

tium (2017) data set, while the records described in Anderson

Figure 10. Similar to Fig. 9 but comparing PDSI reconstructions

against the Dai (2011) analysis for experiments performed with dif-

ferent proxy networks: (a) correlation and (b) CE for experiment 1:

prototype reanalysis from H16, experiment 2: PAGES 2k Consor-

tium (2017) proxies, (e, f) experiment 3: with further the addition

of tree-ring chronologies from Breitenmoser et al. (2014) and the

coral, ice and lake core records from Anderson et al. (2019) (i.e.,

the full proxy database). The differences in correlation and CE be-

tween experiments 2 and 1 are shown in panels (g, h), respectively,

and between experiments 3 and 2 in panels (i, j).

et al. (2019) remain available for possible future enhance-

ments to the proxy information used in the reanalysis. More-

over, new methods to map state variables to observations ex-

tend the prototype’s linear univariate models calibrated on

annual-mean temperature in two key aspects: accounting for

seasonal dependencies of individual proxy records and the

modeling of tree-ring-width proxies using temperature and

moisture as predictors. The encoding of proxy seasonality in-

formation within PSMs has also been refined by objectively

determining the characteristic seasonal response of individ-

ual records and by decoupling the seasonality for temperature

and precipitation sensitivity for tree-ring width.

Climate field reconstructions from a series of assimilation

experiments carried out with various proxy and PSM con-
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Figure 11. (a) Northern Hemisphere temperature (NHMT) grand

ensemble mean (solid lines) and 5th—95th percentile range (shad-

ing) from experiments performed with PAGES2k-2017 proxies (in

blue) and with the addition of proxies from Anderson et al. (2019)

(in red). (b) Spectra of NHMT grand ensemble mean from both

experiments (solid lines), along with the χ2 95 % highest density

regions (shading).

figurations have been compared to available instrumental-

era observation-based analyses, revealing notable improve-

ments not only in the reconstructed global-mean temperature

in general but also in reconstructed spatial fields. More skill-

ful tropical Pacific temperatures are obtained primarily due

to the updated set of coral records in the PAGES 2k Con-

sortium (2017) collection. Improved temperature reconstruc-

tions over continental extratropical regions are the result of

the newly implemented seasonal PSMs, combined with the

forward modeling of tree-ring-width chronologies using a bi-

variate temperature–moisture formulation. Improvements are

reflected not only in temperature reconstructions but also in

500 hPa geopotential height and to some extent in hydrocli-

mate variables such as the PDSI. Lastly, the introduction of

the large collection of Breitenmoser et al. (2014) tree-ring-

width chronologies, not screened for temperature sensitivity,

appears to provide local skill enhancements in hydroclimate

variables (e.g., PDSI over the eastern United States). How-

ever, this is achieved at the expense of accuracy in the re-

construction of important features of pre-industrial climate

such as the colder temperatures during the Little Ice Age.

However, the generally positive impact of a simple ad hoc

screening of the Breitenmoser et al. (2014) suggests that fur-

ther improvements may be possible with a careful selection

of tree-ring chronologies.

Results presented here, based upon regression PSMs, may

serve as a reference for future efforts designed to assess

the value of more comprehensive process-based PSMs in

paleoclimate data assimilation research. Finally, we note

that the version of the PDA system described here cor-

responds to the configuration used in the production re-

lease of the NOAA Last Millennium Reanalysis, avail-

able at https://atmos.washington.edu/~hakim/lmr/ (last ac-

cess: 30 June 2019).

Code availability. The code used in the production of reanalyses

is publicly available at https://github.com/modons/LMR (Hakim,

2019a)

Data availability. The output from the reanalysis and the required

input data are available from https://atmos.washington.edu/~hakim/

lmr/ (Hakim, 2019b).
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Appendix A: Proxy system model characteristics

Features introduced in the updated LMR proxy modeling ca-

pabilities include a representation of the seasonal response to

climate drivers characterizing individual proxy records (i.e.,

proxy seasonality), as well as PSMs that include precipita-

tion and temperature as driving variables for modeling TRW

records.

The first approach is to use univariate PSMs calibrated

against temperature data, with proxy seasonality either de-

fined from the available proxy metadata or derived objec-

tively using the method described in Sect. 2.4.1. PSM perfor-

mance is compared using the Bayesian information criterion

(BIC), defined as (Schwarz, 1978)

BIC = −2 ln(L̂) + k ln(n), (A1)

where L̂ is the maximized value of the likelihood function

of the model, n is the sample size and k is the number of

estimated parameters in the model. We note that the second

term in Eq. (A1) represents a penalty for models with a larger

number of explanatory variables, i.e., a more complex model.

This feature is particularly useful when comparing univariate

and bivariate models. Here, we use the difference in BIC val-

ues between two models, 1BIC = (BICM − BICref), to de-

termine the relative accuracy of model M over a reference.

The model with the lowest BIC is preferred (i.e., a better fit

to the data); hence, a negative 1BIC indicates the superior-

ity of the test model over its reference. Here, the seasonal

PSMs are tested against the univariate PSMs calibrated with

annually averaged temperatures as the reference. Significant

evidence of the superiority of the test model over its refer-

ence is obtained when 1BIC < −2.0.

Table A1 presents a summary of 1BIC results for records

in each proxy category considered in LMR. The advantage of

seasonal PSMs is particularly significant for tree-ring wood-

density chronologies, a proxy known for its strong seasonal

response (Briffa et al., 2004). Seasonal PSMs also provide

improved fits to tree-ring-width data, although to a lesser

extent compared to density records. As indicated by the

larger negative 1BIC values, models based on objectively

derived seasonal responses lead to more accurate descrip-

tions of proxy data compared to those calibrated using meta-

data seasonality, even for tree-ring chronologies within the

community-curated PAGES2k-2017 data set. These results

suggest that the objectively derived seasonality information

is noticeably different than in the metadata, particularly for

tree-ring records in the Breitenmoser et al. (2014) (i.e., B14)

data set, but also for those in PAGES 2k Consortium (2017)

(i.e., PAGES2k-2017). More details on this aspect are pro-

vided in the Supplement. The use of objectively defined sea-

sonality improves upon the simple latitude-dependent rela-

tionship described in Anderson et al. (2019), more consis-

tent with records from the PAGES2k-2017 data set. Apart

from lake sediment records, which are also more accurately

modeled with seasonal PSMs, Table A1 shows that PSMs for

other proxy types are not as sensitive to seasonality. In fact,

the majority of the (tropical) coral records included in the

current database have metadata seasonality defined as annual

already, as do the high-latitude ice core records. Note that

some of these records originate from the collection described

by Anderson et al. (2019), where seasonal metadata informa-

tion is generally not available. As a result, these records are

assumed to be annual.

In addition to seasonal models, other improvements in-

volve the development of PSMs that add precipitation as an

input variable for the modeling of TRW proxies as outlined

in Sect. 2.4.2. One approach consists of selecting the uni-

variate models, either calibrated on temperature or moisture

input, which best describe the proxy data. This “tempera-

ture or moisture” selection (abbreviated as “TorM”) is per-

formed on individual TRW records, and the resulting pro-

portion of TRW proxies identified as temperature-sensitive

is 56.4 % versus 43.6 % for moisture when metadata season-

ality information is considered. This is compared to 36.8 %

temperature-sensitive versus 63.2 % moisture-sensitive trees

when seasonal responses are determined objectively. The

latter option, leading to a larger proportion of moisture-

sensitive records, is in better agreement with a comparable

characterization performed by Steiger et al. (2018) on a sim-

ilar set of TRW records.

A second approach consists of bivariate PSM formula-

tion, where TRW depends on both temperature and precip-

itation (see Eq. 8). The 1BIC results characterizing the uni-

variate “TorM” and bivariate PSMs against their univariate

temperature-only counterparts (as the reference) are summa-

rized in Table A2. The negative mean 1BIC values confirm

the advantage of including moisture in TRW linear models.

The evidence is more pronounced for the B14 records, per-

haps not surprisingly given the larger proportion of moisture-

sensitive records included in this data set. Nonetheless, the

prevalent reduction in BIC for models of PAGES2k-2017

trees suggests a non-negligible response to moisture despite

the screening of records for temperature. The mean posi-

tive 1BIC characterizing the bivariate models calibrated us-

ing metadata seasonality confirms that the assumption of

identical seasonal responses for temperature and moisture

is problematic for modeling tree-ring growth, at least with

these more complex models. On the other hand, allowing

distinct representations of temperature and moisture seasonal

responses in bivariate PSMs, as enabled by the goodness-of-

fit objective determination of these responses, leads to signif-

icantly more accurate TRW modeling compared to univariate

temperature PSMs.
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Table A1. Mean differences in Bayesian information criterion (1BIC) corresponding to PSMs for records within the proxy categories

considered in LMR, between models calibrated using proxy seasonal responses from the metadata or derived objectively during calibration,

with respect to the reference of annual seasonality. Calibration data set: GISTEMP v4.

Proxy types Number of records Seasonal (metadata) Seasonal (objective)

Tree-ring width (PAGES2k-2017) 347 −1.34 −4.84

Tree-ring width (Breitenmoser et al., 2014) 2156 −1.72 −5.24

Tree-ring wood density 59 −23.28 NA

Coral δ18O 75 +0.02 NA

Coral Sr/Ca 30 −0.01 NA

Coral rates 11 +0.03 NA

Ice core δ18O 89 +0.02 NA

Ice core δD 12 0.00 NA

Ice core accumulation 3 0.00 NA

Ice core melt 1 0.00 NA

Lake core varve 7 −0.52 NA

Lake core misc. 2 −2.32 NA

Bivalve δ18O 1 0.00 NA

Tree-ring δ18O 1 +11.81 NA

NA: not available.

Table A2. Mean differences in Bayesian information criterion (1BIC) for tree-ring-width univariate “temperature or moisture” and bivariate

PSMs, calibrated using metadata seasonality or derived objectively during calibration, against their respective univariate temperature-only

PSMs as reference. Calibration data sets: GISTEMP v4 and GPCC v6.

PSM formulation
Seasonal (metadata) Seasonal (objective)

PAGES 2k trees Breitenmoser trees PAGES 2k trees Breitenmoser trees

Univariate – temperature or moisture −0.86 −1.41 −2.59 −6.65

Bivariate +2.63 +1.73 −2.35 −6.88
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Supplement. The supplement related to this article is available

online at: https://doi.org/10.5194/cp-15-1251-2019-supplement.
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