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Abstract. The Last Millennium Reanalysis (LMR) utilizes
an ensemble methodology to assimilate paleoclimate data for
the production of annually resolved climate field reconstruc-
tions of the Common Era. Two key elements are the focus
of this work: the set of assimilated proxy records and the
forward models that map climate variables to proxy mea-
surements. Results based on an updated proxy database and
seasonal regression-based forward models are compared to
the LMR prototype, which was based on a smaller set of
proxy records and simpler proxy models formulated as uni-
variate linear regressions against annual temperature. Val-
idation against various instrumental-era gridded analyses
shows that the new reconstructions of surface air temper-
ature and 500 hPa geopotential height are significantly im-
proved (from 10 % to more than 100 %), while improvements
in reconstruction of the Palmer Drought Severity Index are
more modest. Additional experiments designed to isolate the
sources of improvement reveal the importance of the updated
proxy records, including coral records for improving tropical
reconstructions, and tree-ring density records for tempera-
ture reconstructions, particularly in high northern latitudes.
Proxy forward models that account for seasonal responses,
and dependence on both temperature and moisture for tree-
ring width, also contribute to improvements in reconstructed
thermodynamic and hydroclimate variables in midlatitudes.
The variability of temperature at multidecadal to centennial
scales is also shown to be sensitive to the set of assimilated

proxies, especially to the inclusion of primarily moisture-
sensitive tree-ring-width records.

1 Introduction

Reconstructions of Earth’s past climate, particularly covering
periods prior to instrumental data sets, are key to understand-
ing the causes of natural climate variability. For example, un-
derstanding natural variability provides the basis for improv-
ing predictions of climate variability in the coming decades.
Information on past climates has traditionally been derived
either from climate proxy data (e.g., tree rings, ice cores) or
from Earth system model simulations, and synthesizing in-
formation from these two sources is one of the challenges of
paleoclimate science. Paleoclimate data assimilation (PDA)
has emerged as a powerful framework for such synthesis be-
cause it provides the optimal combination of climate sig-
nals recorded by proxies as constrained by the dynamics of
Earth system models. PDA-generated climate field recon-
structions have been used to investigate climate variability
prior to the instrumental era (Goosse et al., 2006, 2010; Wid-
mann et al., 2010; Bhend et al., 2012; Steiger et al., 2014;
Matsikaris et al., 2015; Franke et al., 2017; Okazaki and
Yoshimura, 2017; Steiger et al., 2018). Within this general
PDA framework, a flexible PDA system is being developed
for the Last Millennium Reanalysis (LMR) project for the
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production of annually resolved reconstructions of the Com-
mon Era. Hakim et al. (2016) describe a prototype configu-
ration of the LMR and show results in good agreement with
previous reconstructions of Northern Hemisphere mean near-
surface air temperature. Detailed comparisons with several
gridded instrumental temperature data products revealed sig-
nificant skill over tropical regions but less skillful reconstruc-
tions over Northern Hemisphere continental areas, where a
large proportion of proxy data are located.

As with any data assimilation system, two of three im-
portant components impacting the quality of the resulting
analyses are the set of assimilated observations (here, proxy
records) and the forward models that map variables from
climate model output to proxy measurements (“proxy sys-
tem models”; hereafter, PSMs). The third component is the
model providing the prior state, although it is not the fo-
cus of this work. Hakim et al. (2016) assimilated proxy
records from the first compilation of the PAGES 2k Consor-
tium (PAGES 2k Consortium, 2013) and modeled the prox-
ies through univariate linear regressions calibrated against
annually averaged instrumental temperature data. Here, we
examine the impact on LMR reconstructions of improve-
ments to these two key components: (1) an updated and ex-
panded proxy database, primarily composed of records from
PAGES 2k Consortium (2017), and assessment of the addi-
tional records described in Anderson et al. (2019); (2) more
realistic PSMs in which seasonality and, for tree-ring-width
proxies, temperature and moisture sensitivity are taken into
account. Motivation for expanding the proxy database de-
rives from evidence that climate reconstructions are gener-
ally sensitive to the set of proxy records used as input (e.g.,
Wang et al., 2015), while the introduction of more sophisti-
cated PSMs is motivated in part by the fact that comprehen-
sive reconstructions of temperature and hydroclimate vari-
ables depend on properly treating temperature-sensitive and
moisture-sensitive tree-ring proxies (e.g., Steiger and Smer-
don, 2017).

The focus of improvements in PSMs here is on regression-
based (i.e., statistical) forward models, in contrast to recent
efforts focusing on process-based PSMs (see, e.g., Breiten-
moser et al., 2014; Dee et al., 2016; Acevedo et al., 2017).
Our objective is to establish baseline skill of PDA reconstruc-
tions using statistical PSMs to serve as a benchmark for eval-
uating possible improvements associated with process-based
PSMs (e.g., Dee et al., 2016). Here, we develop a hierar-
chy of statistical PSMs to identify aspects that contribute in-
creased skill to reconstructed temperature and hydroclimate
states compared to the prototype LMR.

The remainder of the paper is organized as follows. Sec-
tion 2 outlines the LMR PDA-based framework and de-
scribes the proxy database and PSMs. Reconstructions based
on this configuration are presented in Sect. 3, with compar-
isons to the prototype described in Hakim et al. (2016). Sec-
tion 4 explores the contributions to improvements in the new
reconstructions. A concluding summary is given in Sect. 5.
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2 Methods

Paleoclimate data assimilation has three main components:
proxy records, providing an indirect record of past climatic
conditions; climate models, providing prior estimates of the
climate; and proxy system models, providing the connection
between the model prior and the proxy values. The method
for each component is now described.

2.1 Data assimilation framework

LMR employs ensemble data assimilation (DA) to blend in-
formation from proxies and climate model data. DA is per-
formed using a variant of the ensemble Kalman filter, which
for our application appears to perform well compared to al-
ternative PDA methods such as particle filters (Liu et al.,
2017). The update equation is given by

Xaq =Xp +K[y_ye]~ (D

Here, x} is the prior state vector, which contains the cli-
mate variables to be reconstructed, averaged over an appro-
priate timescale (here, annual), and x, is the posterior state
vector (i.e., the reanalysis, or reconstruction). The state vec-
tor may include scalars, such as climate indices, and/or grid-
point data for spatial fields. Vector y contains the assimilated
proxy data (i.e., observations), and y, is a vector containing
estimates of the proxies derived from the prior by

Ye = H(xp), 2

where H is the forward model mapping the prior x; to proxy
space (i.e., the PSM; see Sect. 2.4). The innovation, [y-y.],
is the new information from the proxies not already contained
in the prior. This new information is weighted against the
prior through the Kalman gain matrix:

K =BHT[HBHT + R] ", 3)

where B is the prior covariance matrix, R is the error covari-
ance matrix for the proxy data, and H is the linearization of
‘H about the mean value of the prior. Here, Eq. (1) is solved
using the ensemble square-root filter (EnSRF) approach of
Whitaker and Hamill (2002), in which the ensemble mean
and perturbations about the ensemble mean are solved sep-
arately. Moreover, R is taken as a diagonal matrix (uncor-
related observation errors) where the diagonal elements rep-
resent the error variance for each assimilated proxy record;
details on how these are estimated are provided in Sect. 2.4.
This allows for serial processing of observations, in which
observations are assimilated one at a time. This greatly sim-
plifies the implementation of covariance localization, which
is used to control sampling error in the prior covariance. So-
lutions for the ensemble mean, X, and perturbations, x’,, for
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the single kth proxy y, are obtained from

Wioc © COV(Xp, ye,k)
var(ye k) + Rk

—1
R
X,=xp—|1+ Tk
var(Ye k) + Ry
Wioc © COV(Xp, Ye k)
— (¥'e,k) 4b
var(ye k) + Ry e ()

Xg=Xp+

(Vk = Yex) (4a)

where Y. x is the prior estimate of the proxy from Eq. (2), Ry
is the diagonal element of R corresponding to proxy yi, and
cov() and var() represent the covariance and variance func-
tions, respectively. The ensemble of updated states is then
recovered by combining the posterior ensemble mean and
perturbations:

Xg=X,+x',. 5)

Covariance localization, given by a Schur product denoted
by o in Eq. (4b) (i.e., element-wise multiplication), is a
distance-weighted filter wjoc on the prior covariance matrix
(see, e.g., Hamill et al., 2001). Sections 4.2 and S5 in the
Supplement provide more details on localization.

We also use an “appended state vector” approach that
avoids the need to recompute Eq. (2) after each proxy is as-
similated. The y. proxy estimates from each record are ap-
pended to the state vector x:

X1]

XN
=1l ©)
Ve

L yd
where the x1...xy elements contain the ensemble grid-point
data from model variables included in the state (e.g., tem-
perature, precipitation), with N the sum of the number of
variables multiplied by the number of grid points, and the
yé. .. yf are the ensemble proxy estimates for each of the P
proxy records considered. Each of the x;...xy and y!...yF
elements are of dimensions 1 X Neps, Where Nepg is the speci-
fied size of the ensemble. Hence, xj, is a matrix of dimension
(N 4+ P) X Neps. With such an appended state, the y. elements
in Eq. (6) are updated through Eq. (4b) as any other state
variables, eliminating the need to re-evaluate y, with Eq. (2)
once the state has been updated. This simplification is par-
ticularly attractive in the context of LMR updates discussed
herein as it enables a straightforward implementation of sea-
sonal PSMs (i.e., forward models more accurately represent-
ing the seasonal responses of individual proxy records) as
discussed in Sect. 2.4. In our implementation for the recon-
struction of annually averaged states, the data assimilation
procedure follows this general algorithm.
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1. The proxy estimates (y,) are precalculated using Eq. (2)
with either annually or seasonally averaged model data
as input (i.e., the xj in Eq. 2).

2. A sample ensemble of annually averaged model states is
randomly drawn from a pre-existing simulation to form
the main part of the prior state vector (i.e., the xj...xy
elements in Eq. 6).

3. The precalculated yg. . yf proxy estimates are added
on to form the appended state as shown in Eq. (6). This
appended state becomes the xj in Eq. (1), which is de-
composed into an ensemble mean (X¥j) and perturba-
tions about the mean (x’;) as shown in Eq. (4b).

4. Proxies forming the y vector are then serially processed,
with the updated state, including the proxy estimates,
obtained from Eq. (4b). The reanalysis is completed for
1 year once all proxies have been assimilated.

We note here that with a configuration involving seasonal
PSMs without the use of an appended state, the vector x has
to include states with sufficient temporal resolution to allow
the calculation of the updated seasonal y; ..y proxy esti-
mates. In this scenario, an additional step to the ones listed
above is required, involving Eq. (2) using the appropriate sea-
sonally averaged updated states as input. With proxies char-
acterized by a wide range of seasonal responses, this require-
ment would impose an x; composed of monthly data which
would greatly increase the computational cost of the reanal-
ysis. Reanalysis results would also likely be adversely af-
fected by the larger noise level characterizing data at shorter
(i.e., monthly) timescales through its impact on ensemble es-
timates of prior covariances (see, e.g., Tardif et al., 2015).

As in Hakim et al. (2016), an “offline” DA approach is
used, where the prior ensemble is formed by random draws
of time-averaged states from a pre-existing millennium-long
model simulation, with the same randomly drawn ensemble
members used for every year in the reconstruction of a given
reanalysis realization (see Sect. 2.3 below). We note that in
the limit of no proxy information, this approach leads to a
posterior that reverts to the prior ensemble (see Eq. 1), which
randomly samples the model climate and therefore has no
skill over the model climatology. This is in contrast to on-
line DA (e.g., Matsikaris et al., 2015; Perkins and Hakim,
2017), where a numerical model is used to dynamically fore-
cast the evolution of climate states from the latest proxy-
informed analysis to the following year, when new proxy
observations are assimilated. The “offline” approach, intro-
duced by Oke et al. (2002) and Evensen (2003), and used
in an ocean DA system by Oke et al. (2005), offers sev-
eral practical advantages, particularly from a computational
cost perspective (Oke et al., 2007). Its use is further justi-
fied when model forecasts have limited skill over timescales
corresponding to the time interval between updates, as is the
case here with global climate models and proxies assimilated
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Figure 1. Locations (a, ¢) and temporal (b, d) distributions of proxy records available for assimilation (proxies for which linear PSMs
calibrated with GISTEMP version 4 are available). Panels (a, b) are used in the prototype version, (¢, d) LMR proxy database updated to

PAGES 2k Consortium (2017) proxies.

on an annual basis. This scenario is further supported by the
PDA results of Matsikaris et al. (2015), who show similar
performance is achieved with online and offline approaches.
From a cost—benefit perspective, the high cost of running en-
sembles of comprehensive global climate model simulations
does not appear justified. However, ongoing research sug-
gests cost-effective online PDA may be achieved by using
simplified climate models (Perkins and Hakim, 2017).

2.2 Climate proxies

Our proxy database is updated to the latest PAGES 2k col-
lection (PAGES 2k Consortium, 2017, hereafter PAGES2k-
2017). This data set represents the community standard in
global proxy observations covering the Common Era (CE)
and serves as the core source of proxy information used
in our updated reanalysis. PAGES2k-2017 proxies were
screened to retain temperature-sensitive records, extensively
quality controlled, and described by more metadata com-
pared to previous collections. The additional records as-
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sembled by Anderson et al. (2019)!, consisting in large
part of the tree-ring-width records from Breitenmoser et al.
(2014) (hereafter B14), are considered as a potential en-
hancement to proxy information used in our paleoreanalyses
(see Sect. 4.3).

As in the LMR prototype (Hakim et al., 2016, hereafter
H16), only records with sub-annual to annual resolutions are
considered; sub-annual records are averaged to annual. Fig-
ure 1 compares the PAGES 2k Consortium (2013) (hereafter
PAGES2k-2013) data set used in H16 and the PAGES2k-
2017 update. Only records for which a PSM can be estab-
lished are shown in Fig. 1, defined by proxy records with at
least 25 years of (non-contiguous) overlap with calibration
data (see Sect. 2.4). Compared to the proxies assimilated in
H16, PAGES2k-2017 data provide enhanced spatial coverage
in the tropics with additional coral §'80 and Sr/Ca records.

'An exception is the use of the Palmyra coral record from Cobb
et al. (2003) rather than the Emile-Geay et al. (2013) update, as
described in Anderson et al. (2019).

www.clim-past.net/15/1251/2019/



R. Tardif et al.: Updated Last Millennium Reanalysis

Additional tree-ring wood-density records from Europe and
western North America are also included. The temporal dis-
tribution of the total number of records remains similar, ex-
cept for significant increases in the number of tree-ring-width
and coral proxies during 1800-2000 CE and tree-ring wood-
density records during 1500-2000 CE.

2.3 Climate model prior information

For all reconstruction experiments reported in this paper,
the prior state vector is formed with data from the Cou-
pled Model Intercomparison Project phase 5 (CMIP5) (Tay-
lor et al., 2012) Last Millennium simulation from the Com-
munity Climate System Model version 4 (CCSM4) cou-
pled atmosphere—ocean—sea-ice model. The simulation cov-
ers years 850 to 1850 CE and includes incoming solar vari-
ability and variable greenhouse gases, as well as stratospheric
aerosols from volcanic eruptions known to have occurred
during the simulation period (see Landrum et al., 2013). The
same “offline” DA methodology as in H16 is used, where
the prior ensemble is a random sample of model states, with
the same sample used for all years of the reconstruction.
The sampled states are deviations (i.e., anomalies) from the
temporal mean taken over the entire length of the simula-
tion. Therefore, the prior ensemble mean does not contain
time-specific information about climate events (e.g., a vol-
canic eruption) or trends characterizing specific periods (e.g.,
20th century warming). Consequently, all trends and tem-
poral structure in reconstructed fields result from informa-
tion provided by the proxies. Finally, the spatial resolution of
prior state variables is reduced from 0.95° x 1.25° of the Last
Millennium simulation to a 4.3° x 5.7° Gaussian grid as in
H16.

All reconstruction experiments are composed of 51 Monte
Carlo assimilation realizations, each using a different ran-
domly chosen 100-member ensemble and 75 % of available
proxy records for assimilation. This Monte Carlo sampling
over subsets of prior states and proxy records is designed
to incorporate uncertainties in covariance estimates derived
from model states and uncertainties associated with proxy er-
ror estimates. Moreover, we have found that averaging over
ensembles from Monte Carlo realizations leads to more accu-
rate results. This is likely the result of averaging over random
errors introduced into the reanalysis from a few randomly
chosen proxy records with underestimated observation er-
rors. Little sensitivity to the use of 75 % of the proxies for
each realization has been found (not shown), while 100 mem-
bers have been chosen to maintain consistency with H16. In
the following, climate reanalyses are taken as the mean over
the 100-member DA ensembles and 51 Monte Carlo realiza-
tions (i.e., a 5100-member “grand ensemble’).

www.clim-past.net/15/1251/2019/
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2.4 Proxy modeling

A critical component of PDA is the mapping of prior climate
state variables (e.g., temperature, precipitation from a cli-
mate model) to the assimilated proxies (e.g., tree-ring width).
This is expressed mathematically by Eq. (2), Sect. 2.1, where
the operator H (i.e., the forward model) ideally represents
the complete set of processes associated with proxy values,
i.e., a comprehensive physically based PSM. This remains
a major challenge as the information archive is often com-
plex, involving physical, biological and chemical processes
(Evans et al., 2013). Despite recent progress in the develop-
ment and use of process-based PSMs (e.g., Dee et al., 2015,
2016; Goosse, 2016; Steiger et al., 2017; Acevedo et al.,
2017), the focus here is on statistical PSMs, which offer dis-
tinct advantages: (1) ease of implementation and flexibility
with respect to forward modeling of multiple proxies, regard-
less of archive types, measurements, units, etc.; (2) observa-
tion error statistics for each assimilated record are well de-
fined from the regression (see below); and (3) regressions
are formulated on the basis of deviations from the mean over
a reference period (e.g., 1951-1980) of the driving climate
variable(s), therefore avoiding issues with absolute calibra-
tion where climate model bias is problematic, particularly
for PSMs having threshold transitions (see, e.g., Dee et al.,
2016). Statistical PSMs also have distinct disadvantages:
(1) PSMs cannot be calibrated without sufficient overlap with
calibration data (a threshold of at least 25 overlapping data
is imposed); (2) the accuracy of the models depends on the
limitations of the calibration data sets (e.g., less reliable anal-
ysis over the Southern Ocean and over high-latitude conti-
nental areas due to a lack of observations); (3) possible lack
of stationarity of the derived relationships established with
instrumental-era data; and (4) lack of representation of non-
linear and/or multivariate influences when PSMs are formu-
lated as linear univariate models. Despite these limitations,
statistical PSMs provide advantageous capabilities within the
context of the LMR and moreover define a baseline to mea-
sure future progress with the development of process-based
PSMs.

Here, univariate and bivariate statistical PSMs are consid-
ered:

Vi = Bok + B X1 + e, @)
and
Vi = Bok + Bu X1 + BuX2 + ek, 8

where y; are annualized observations from the kth proxy
time series, X1/, X»’ are anomalies, with respect to the mean
over a reference period, of key climate variables (e.g., near-
surface air temperature and precipitation) from calibration
instrumental-era data sets, Sy is the intercept, and 81, B, are
the slopes with respect to the X;” and X, independent vari-
ables, respectively, and € is a Gaussian random variable with
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zero mean and variance o2. The overbar in Egs. (7) and (8)
denotes time averages over annual periods, as in H16, or over
appropriate seasonal intervals for the seasonal PSMs. Cal-
ibration data concurrent with available proxy observations
are taken at the grid point nearest the proxy location and the
appropriate least-squares solution determines regression pa-
rameters (8o, B1, B2, o). In this version of LMR, PSM config-
uration is the same for each proxy category (e.g., univariate
for all coral §'80, bivariate for all tree-ring-width records).

With the framework described above, the regression-
based approach measures the diagonal elements in matrix
R through the variance of regression residuals, i.e., Ry =
o?. This is a key parameter in PDA as it determines the
extent to which the information provided by the proxy is
weighted against prior information in the resulting reanal-
ysis. This method provides a sound basis through which as-
similated proxy records influence the reanalysis depending
on the strength of their relationship to the dependent climate
variables. For example, a record with a poor fit to calibration
data will be characterized by larger residuals, hence larger
observation error variance, and less weight in the reanalysis
relative to a record that has a stronger correlation with cli-
mate variables. We note that modestly different results are
obtained with different observational calibration data sets
(see H16).

The calibration data sets used in this study are the NASA
Goddard Institute for Space Studies (GISS) Surface Tem-
perature Analysis (GISTEMP) (Hansen et al., 2010) ver-
sion 4 for temperature and the gridded precipitation data set
from the Global Precipitation Climatology Centre (GPCC)
(Schneider et al., 2014) version 6 as the source of monthly
information on moisture input over land surfaces. The use of
precipitation instead of the more traditional Palmer Drought
Severity Index (PDSI) to account for moisture is described in
more detail in Sect. S4 of the Supplement.

2.4.1 Seasonality

Here, we take advantage of the availability of expert infor-
mation about the seasonal response to temperature for each
proxy record included in the PAGES2k-2017 metadata. This
information is not available in PAGES2k-2013, hence lead-
ing to the use of PSMs calibrated on annual averages for all
records in H16. Seasonality information is provided for each
record as a numerical representation of a sequence of con-
secutive months (e.g., JJA as [6,7,8]). Seasonal PSMs are de-
rived by using this sequence as the averaging period defining
X" and X,/ in Egs. (7) and (8).

Precise information on proxy seasonality is, however, not
available for all records in the updated LMR proxy database.
The proxies from Anderson et al. (2019), for example, have
not been subjected to extensive community-wide screening
and vetting as with the PAGES2k-2017 proxies. In particular,
seasonality information for the large number of additional
tree-ring records from B14 has been encoded using a sim-
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ple latitudinal dependence which does not attempt to repre-
sent possible record-by-record diversity (see Anderson et al.,
2019). This lack of expert-informed seasonality motivates
an objective alternative to the metadata seasonality informa-
tion for calibrating tree-ring-width (TRW) forward models.
We consider several potential seasonal periods, perform a re-
gression over each possible season and identify the linear re-
lationship providing the best fit to proxy values, as defined
by the maximum value of the adjusted R?, a goodness-of-fit
measure defined as (Goldberger, 1964, p. 217)

1—R*)(N-1)
Rfdj=1—|:—( N_zw_l ] )

Here, R? is the variance explained by the linear model, N
is the sample size, and M is the number of predictors in
the model. The adjusted R? penalizes complexity (i.e., the
number of predictors) of the model in such a way that val-
ues characterizing a more complex model will increase only
if the additional predictors improve the fit more than would
be expected by chance. Test periods considered include, in
addition to the seasonal response in the proxy metadata (if
available), the calendar year, boreal summer (JJA) and bo-
real winter (DJF), and extended spring and fall growing sea-
sons (MAMIIJA, JJASON for NH trees; SONDJF, DIFMAM
for SH trees) to account for ecosystem-dependent variations
in tree growth shifted toward the earlier or later parts of the
warm season (see, e.g., Sano et al., 2009; D’ Arrigo et al.,
2005). With this test set of seasonal responses, the dominant
sensitivity of some TRW chronologies to winter tempera-
ture (D’ Arrigo et al., 2012) is included, as well as the win-
ter and spring precipitation sensitivities characterizing some
tree species (see, e.g., Stahle et al., 2009; Touchan et al.,
2003). The latter point is germane to the calibration of sea-
sonal TRW models using precipitation as a predictor (see the
next section).

2.4.2 Tree-ring-width sensitivity to temperature and
moisture

Proxy number is strongly dominated by TRW records in
the LMR proxy database, particularly with the addition of
chronologies from B14. Furthermore, these records have not
been screened on temperature, which opens the opportunity
to measure moisture sensitivity through the regression frame-
work. The addition of an explanatory variable increases the
potential for overfitting, and our framework is designed to
measure that using the 25 % of proxies withheld from assim-
ilation, for which we can measure reconstruction errors and
compare results with proxies that were assimilated (see dis-
cussion of proxy verification results in Sect. 3).

Two methods are considered, both adding a dependence to
moisture input (as represented here with precipitation). The
first maintains the univariate approach (Eq. 7) but consid-
ers linear PSMs calibrated against either temperature or pre-
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cipitation. For each TRW record, distinct regressions with
either variable are established and the model providing the
best fit to proxy data is selected. Following a common prac-
tice in dendroclimatology, this approach determines whether
the record is predominantly temperature or moisture limited
(see, e.g., St. George, 2014). Similar univariate “temperature
or moisture” models (abbreviated as “TorM” hereafter) are
successfully used in Steiger et al. (2018). The second method
consists of simultaneously factoring both temperature and
moisture sensitivities through the bivariate relationship ex-
pressed in Eq. (8).

Seasonal univariate TorM and bivariate TRW models are
considered, with distinct sets of models calibrated using
proxy seasonality either from the proxy metadata or objec-
tively derived during calibration. This selection has impor-
tant implications for the representation of the proxy seasonal
response to moisture in particular. For the proxy metadata,
seasonality for moisture is assumed to be identical to temper-
ature, as this is the only information available, whereas the
objective approach allows for independent encoding of sea-
sonal responses to temperature and moisture. For TorM mod-
els, the objective seasonality for univariate moisture models
is independent of temperature as it is determined solely from
the fit to precipitation data. For bivariate PSMs, all possible
combinations of seasonal responses specified independently
for temperature and moisture are considered, and the com-
bination providing the best fit is selected. With such flexi-
bility, TRW models with objectively derived seasonality are
expected to provide a more realistic representation of the sig-
nificant variability in seasonal responses to moisture charac-
terizing TRW records (see, e.g., St. George et al., 2010). We
note that this approach is similar to the methodology used to
calibrate the VS-Lite model (Tolwinski-Ward et al., 2011),
in that grid cell temperature and precipitation data are used
to determine site-specific growth seasons and seasonally de-
pendent temperature and moisture growth parameters.

An examination of PSM characteristics, summarized here,
with more detail provided in Appendix A, confirms that prox-
ies are represented more accurately by seasonal models, par-
ticularly for tree-ring wood-density and width records (see
Table A1). Moreover, more accurate fits to TRW data are
obtained when proxy seasonal responses are determined ob-
jectively during model calibration. Finally, the addition of
moisture input as a climate driver in TRW modeling proves
most beneficial when implemented in bivariate models (see
Table A2). These findings serve as the basis for defining a
PDA configuration used for the reconstruction described in
the next section.

3 The updated reanalysis

We present a comparison between the updated reanalysis de-
scribed by the method in the previous section with the LMR
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prototype described in H162. Specifically, the updated re-
analysis consists of proxy records from the PAGES2k-2017
collection, using objectively derived seasonal PSMs, with a
bivariate formulation for all TRW proxies and univariate for
all other proxy types. Covariance localization is applied with
a 25000km cut-off radius (see Sect. 4.2 for more details).
In the next section, we identify the sources of improvement
that contribute to the increase in skill of the updated recon-
struction. Results are evaluated against various 20th century
instrumental data and reanalyses, as well as verification per-
formed in proxy space, using the Pearson correlation coef-
ficient and the coefficient of efficiency (CE) (Nash and Sut-
cliffe, 1970). These skill scores are complementary since cor-
relation measures signal timing, while CE, based on mean
square error with climatology as a reference, is sensitive to
bias and errors in signal amplitude.

Figure 2a shows a comparison of reconstructed global-
mean temperature (GMT) between the prototype and updated
reanalyses over the entire Common Era. Similar features are
observed in the ensemble mean from both reanalyses, namely
the cooling trend over most of the Common Era, followed
by the industrial-era warming. Superimposed on these main
trends, significant multidecadal to multicentennial variability
characterizes both reanalyses, including a cool period prior
to the industrial warming, consistent with the Little Ice Age
(LIA). Differences also exist between the reanalyses, most
noticeably the absence in the updated LMR of the relatively
warm period during 870-1000 CE, representing the Medieval
Climate Anomaly (MCA). Also, warmer conditions prevail
in the prototype during the second half of the 15th century,
while cooler conditions occur during the early part of the
instrumental period in the prototype compared to the up-
dated reanalysis. We note, however, that verification against
instrumental-era temperature analyses (discussed later in the
section) provides evidence that the prototype reanalysis is too
cold during that period.

Ensembles provide access to useful diagnostics regarding
reconstruction uncertainty. It can be shown mathematically
that the assimilation of observations monotonically reduces
the variance of the posterior ensemble compared to the prior.
The ratio of ensemble variance of the posterior (reanalysis)
to the prior is a measure of the information provided by the
assimilated proxies. Figure 2b shows the temporal evolution
of 1 — var[x,]/var[x;], so that a value of 0 indicates no in-
fluence from proxies, and 1 implies that all error has been
removed. In the early part of the Common Era, when few
proxy data are available, variance decreases of only 10 %-—
15 % occur in the prototype compared to 15 %—20 % for the
updated reanalysis. The influence of proxies gradually in-
creases after 450 CE, at similar rates in both reanalyses. The

2We use the experiment included in Fig. 12 of H16, with PSMs
calibrated using GISTEMP. Moreover, we use this configuration to
generate a reconstruction of the PDSI, which was not included in
Hl6.

Clim. Past, 15, 1251-1273, 2019



1258

(a)

R. Tardif et al.: Updated Last Millennium Reanalysis

Global mean temperature

0.8
0.6
0.4
0.2
0.04,
-0.2 d
-0.4
-0.6
-0.8

— Prototype — Updated 5-95 % percentiles

Temperature anomaly (K)

5-95 % percentiles

1.0 b)

Posterior vs. prior ensemble variance

== Prototype
== Updated

0.0

1.00{%)

NH mean temperature

= LMR (prototype)
= LMR (updated)

— MBH1999

0.4 Mj2003

0.50
0.25
0.00

-0.25 VAVAV Y

-0.50

Temperature anomaly (K)

-0.75

RMO02005
MSH2005

Ju07cvm
MaoO8eivf

—— MaO09regm
--- PS2004

-V
-

-1.00
o 500

1000 2000

Year CE

Figure 2. Comparison of the LMR global-mean 2 m air temperature (GMT) (a) grand ensemble mean (solid lines) and 5th—95th percentile
range (shading) from the prototype (blue) and updated (red) reanalyses over the Common Era and (b) 1 minus the mean (across Monte Carlo
realizations) ratio of the posterior and prior GMT ensemble variance. (¢) Comparison of the LMR Northern Hemisphere 2 m air temperature
grand ensemble mean (solid lines) and 5th—95th percentile range (shading) from the prototype and updated reanalyses with reconstructions
from other authors; MBH1999: Mann et al. (1999), MJ2003: Mann and Jones (2003), RMO2005: Rutherford et al. (2005), MSH2005:
Moberg et al. (2005), JuO7cvm: Juckes et al. (2007), MaO8eivf: Mann et al. (2008), Ma09regm: Mann et al. (2009), PS2004: Pollack and
Smerdon (2004). All series in panel (c) represent anomalies (Kelvin, K) from the 1900-1980 mean and have been smoothed with a 30-year
low-pass Butterworth filter. The light gray shading in panels (a) and (b) indicates the verification period discussed in Fig. 3.

reductions in variance are roughly similar in both reanaly-
ses until 1700 CE, corresponding to the period with a signifi-
cantly larger number of proxies in the updated database (see
Fig. 1). The largest reduction, 68 % in the prototype com-
pared to 78 % in the updated reanalysis, is found during the
20th century when the most proxies are available, which un-
derscores the importance of the expanded proxy database in
LMR.

To gain further perspective on our results, we compare the
reconstructed Northern Hemisphere average 2 m air tempera-
ture from the prototype and updated reanalyses with other re-
constructions quoted in the Intergovernmental Panel on Cli-
mate Change Fourth and Fifth Assessment Reports (IPCC
AR4 and ARS5) (Fig. 2c). Here, we restrict the comparison to
reconstructions covering the entire hemisphere and having a
temporal coverage extending to at least 1980. A 30-year low-
pass Butterworth filter is applied on all results to highlight
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variability at the lower frequencies. The comparison shows
that most reconstructions from other studies are within the
bounds of the LMR ensemble most of the time, indicating
a general agreement between the different products, at least
within the bounds of uncertainty as defined from LMR. As
with GMT, periods with the largest differences correspond to
the MCA (870-1000 CE), the late 15th and early 16th cen-
turies, and the latter part of the 19th century. First, the re-
constructed colder temperatures during the medieval period
are in contrast with the prototype LMR and other reconstruc-
tions. However, this period is one where the various recon-
structions exhibit significant disagreement. This sensitivity
to the proxy network and reconstruction method underscores
the inherent ambiguities in defining this feature, as discussed
in Diaz et al. (2011). With respect to LMR, differences be-
tween the update and prototype are primarily rooted in the
change from PAGES 2k Consortium (2013) to the more re-
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cent PAGES 2k Consortium (2017) proxy data. A distinctly
warmer medieval period is not a prominent feature of the new
collection, as indicated by the global temperature compos-
ites presented in PAGES 2k Consortium (2017). Second, the
colder temperatures in the updated reanalysis during the late
15th and early 16th centuries are in better agreement with
the majority of reconstructions in other studies, with respect
to both the magnitude and trend of temperature anomalies.
The LMR prototype appears as a warm outlier for this 100-
year period. In contrast, the prototype LMR appears as a cold
outlier during the latter part of the 19th and early 20th cen-
turies. During that period, the updated reanalysis is in bet-
ter agreement with results from other authors, in particular
with the borehole temperature reconstruction by Pollack and
Smerdon (2004).

GMT verification results of the LMR ensemble mean
against various instrumental temperature products are shown
in Fig. 3a and b for the prototype and updated reanalyses,
respectively. Noticeably higher verification scores character-
ize the updated LMR, including a 9 % increase in CE rela-
tive to the average of observation-based temperature analyses
(“consensus”), and an increase in CE in the verification of the
detrended GMT (over 1880-2000 CE) from 0.32 in the pro-
totype to 0.59 in the updated reanalysis (see Table 1). Spatial
verification is provided by comparing the LMR gridded 2 m
air temperature field against the Berkeley Earth instrumental-
era temperature analysis (Rohde et al., 2013) (Fig. 4). Berke-
ley Earth is chosen as the verification reference, as it is not
used to calibrate the PSMs, and provides the most complete
spatial coverage compared to other instrumental products.
The updated temperature reconstruction is largely improved
compared to the prototype over large areas, including the
tropical Pacific, northern Atlantic, western North America,
northern Europe, central Asia and Oceania, and over portions
of the Pacific sector of the Southern Ocean. The improve-
ment is reflected in both correlation and CE scores, indicating
improved timing and amplitude in reconstructed temperature
variability. Exceptions are found over parts of the southern
Atlantic and Indian oceans, although the decrease in skill is
generally more modest compared to the magnitude of im-
provements elsewhere.

Next, we verify a climate variable away from the sur-
face, the 500 hPa geopotential height field, against the corre-
sponding field from NOAA’s 20th century reanalysis (20CR-
v2; Compo et al., 2011) (Fig. 5). Once again, we find the
largest improvements over extratropical continental loca-
tions and over the Arctic. We note similar improvements
are found over the Northern Hemisphere midlatitudes when
verified against the ERA-20C reanalysis (Poli et al., 2016)
(not shown); however, over the Northern Hemisphere, high-
latitude verification against ERA-20C is worse, which under-
scores significant differences between 20th century reanaly-
ses in these data-sparse regions.

Table 1 summarizes the verification results discussed
above through globally averaged verification scores. The ta-
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ble also includes verification results of reconstructed PDSI,
not discussed above. A more detailed analysis for this vari-
able is reserved for Sect. 4.3, where the role of additional
proxy records is discussed. Improvements in the updated re-
analyses are evident for all reconstructed variables, particu-
larly with respect to the CE score, which is sensitive to bias
and amplitude in interannual variability. These skill improve-
ments suggest significant positive impact from the updated
tropical coral proxies and tree-ring proxies at higher lati-
tudes. Furthermore, we anticipate that generalizing PSMs to
accounting for seasonality and moisture sensitivity for TRW
proxies also contributes to the improvements.

We consider now an independent evaluation of the recon-
structions in proxy space using proxies withheld from as-
similation. Proxy time series estimated (forward modeled)
from the posterior (i.e., the reconstructions) are compared
to the actual proxy observations and various skill metrics
are evaluated. Verification of proxy estimates obtained from
the uninformed climate model prior serves as a reference for
comparison. Specifically, we use the change in CE between
the posterior proxy estimates and estimates obtained from
the prior, ACE = (CEosterior — CEprior). Values are compiled
from all proxy records withheld from assimilation, and the
following summary scores are considered: the fraction of all
proxy records which are characterized by a positive ACE
(i.e., proxy records more accurately represented in the poste-
rior than in the prior) and the median of the ACE distribution
compiled over all proxy time series. These provide global
summary measures of how reanalyses skill differs from the
prior. An additional discriminating factor on the quality of
the reanalysis is “ensemble calibration”, as defined by Mur-
phy (1988):

ECR = LN( %)’
= N—1Z;v"_x”

—1
1 N
[ﬁ D @i+ a,%,,,)] : (10)
n=1

where the numerator is the mean square error (MSE) of the
analysis ensemble mean with respect to verification data v
(i.e., the proxies), and the denominator is the innovation vari-
ance: the sum of the analysis ensemble variance o and the
error variance avz characterizing the verification data. Here,
we apply Eq. (10) to proxy time series so the error variance

o2 corresponds to the Ry terms in Eq. (4b). The ensemble

v
calibration ratio (ECR) expresses the degree to which the
ensemble predicts the distribution of observations. A well-
calibrated ensemble exhibits an approximate agreement be-
tween the ensemble variance and the ensemble-mean MSE,
i.e., ECR = 1.0, while an overdispersive ensemble has vari-
ance larger than the ensemble-mean MSE (ECR < 1.0), and
an underdispersive ensemble is diagnosed when its variance
is smaller than the ensemble-mean MSE (ECR > 1.0). Proxy

verification results are shown in Table 2 over different pe-
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Figure 3. Comparison of LMR global-mean 2 m air temperature (GMT) (a) prototype and (b) updated reanalyses, against instrumental-
era analyses (GISTEMP: NASA GISS surface temperature (Hansen et al., 2010); HadCRUT4: Hadley Center/Climate Research Unit at
the University of East Anglia temperature data set version 4 (Morice et al., 2012); BE: Berkeley Earth surface temperature (Rohde et al.,
2013); NOAAGlobalTemp:NOAA merged land—ocean surface temperature version 3.5.4 (Smith et al., 2008); 20CR-v2: NOAA 20th century
reanalysis version 2 (Compo et al., 2011); ERA-20C: ECMWF reanalysis of the 20th century (Poli et al., 2016); consensus: average of all
but LMR). The gray bands show the LMR 5th—95th percentile range. Verification correlation () and coefficient of efficiency (CE) values are
shown at the bottom of each panel for the original and detrended time series.

Table 1. Summary of instrumental-era verification results for the prototype and updated reanalyses. Verification scores shown are r and CE
for the annual GMT and detrended GMT verified against the consensus of instrumental-era analyses, the global mean of grid point r and
CE characterizing the spatially reconstructed temperature, 500 hPa geopotential height (Z500) and Palmer Drought Severity Index (PDSI).
LMR spatial temperature is verified against the Berkeley Earth analysis (Rohde et al., 2013), Z500 is verified against the 20CR-v2 reanalysis
(Compo et al., 2011), and PDSI is verified against the Dai (2011) analysis.

Annual GMT ‘ Detrended GMT ‘ Spatial temperature ‘ Spatial Z500 ‘ Spatial PDSI

Reanalysis

r CE ‘ r CE ‘ r CE ‘ r CE ‘ r CE
Prototype ~ 0.91 0.79 | 0.71 0.32 | 0.47 0.10 | 0.41  0.07 | 0.05 —0.03
Updated 0.93 0.86 | 0.77 0.59 | 0.52 022 | 045 0.18 | 0.09 0.00

riods of the Common Era. Significantly reduced skill char-
acterizes the earliest period of the Common Era, followed
by a continuous increase over time in all verification metrics
considered, for both LMR reanalyses. We also note that re-
analysis ensembles are generally well calibrated throughout
the Common Era, indicating that respective uncertainties re-
main consistent with mean errors (i.e., reliable ensembles).
Although verification data are not identical between proto-
type and updated reanalyses, we also note that the increase
in skill is more pronounced in the updated reanalysis, partic-
ularly from 1000 CE onward. These results provide further
evidence of a more skillful updated LMR. In the following
section, we systematically evaluate improvements from vari-
ous sources.
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4 Sources of improvement

In this section, we identify the sources of reanalysis improve-
ment. Results from multiple reconstruction experiments are
presented, designed to quantify the impact of PSM formula-
tion, the role of covariance localization and the assimilation
of additional proxies.

4.1 Proxy system models

The different PSM configurations described in Sect. 2.4
are used in a series of reconstruction experiments using
PAGES2k-2017 proxies exclusively. We note that these
records have well-defined seasonal metadata.

The impact of seasonal PSMs is first considered with three
experiments performed using univariate temperature regres-
sion models for (1) annual-mean calibration; (2) seasonal-
ity defined by expert metadata; and (3) objectively deter-
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Instrumental-era verification for temperature
LMR vs. Berkeley Earth
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Figure 4. Verification of LMR 2 m air temperature against the Berkeley Earth instrumental-era analysis over the 1880-2000 period. Shown
are time series correlation (a, ¢, ) and CE (b, d, f) for (a, b) the prototype and (c, d) the updated reanalysis. Differences in correlations and
CE between the two experiments are shown in panels (e) and (f), respectively. Gray shading indicates regions with insufficient valid data for
meaningful verification statistics.

Table 2. Verification of LMR prototype and updated reanalyses against independent (withheld from assimilation) proxies. Skill scores shown
are the median of distributions for r, the fraction of proxy records characterized by a positive ACE (%+CE) and the median of the ACE
distribution, where ACE is the difference in the CE between the posterior (reanalysis) and the prior. The median of the ensemble calibration
ratio (ECR) distribution is also shown. Statistics are compiled over 51 Monte Carlo realizations and cover different time periods, including
the 1880-2000 PSM calibration period.

Verification period (years of Common Era) Prototype Updated reanalysis

r %+CE ACE ECR r %+CE ACE ECR
1-499 0.00 56.0 0.00 0.78 0.03 559 0.00 0.96
500-999 0.08 62.1 0.01 1.00 0.13 653 0.02 1.00
1000-1499 0.11 63.0 0.01 1.10 0.16 673 0.05 1.06
1500-1879 0.14 64.1 0.02 1.06 0.28 72,7 0.10  1.02
18802000 0.23 726  0.03 097 0.40 827 0.13 0.89

mined seasonality. Performance is again measured by cor-
relation and CE scores with verification against the Berke-
ley Earth analysis. Relative to reconstructions with annual-
mean PSMs (Fig. 6a and b), the reconstructions with sea-
sonal PSMs (Fig. 6¢—f) show improvements in both mea-
sures over nearly the entire globe (Fig. 6g—j). Results show
a larger improvement for CE (Fig. 6h and j) compared to
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correlation (Fig. 6g and i), reflecting improvement in both
the amplitude of temperature variability and bias. Notewor-
thy improvements are found in regions with large numbers of
tree-ring proxies, such as the western United States, the re-
gion around and including Alaska, northern Canada and the
western Arctic Ocean, over Scandinavia and the Norwegian
Sea, central Asia and over the southern Pacific west of the
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Figure 5. As in Fig. 4 except for the verification of LMR 500 hPa geopotential height anomalies against the 20CR-v2 reanalysis.

Antarctic Peninsula (see Fig. 6h). Comparing the differences
of correlations and CE in Fig. 6i and j to those shown in
Fig. 6g and h reveals that PSMs with objectively derived sea-
sonality contribute positively to skill for the aforementioned
regions, especially where tree-ring-width records are most
abundant (e.g., North America and Asia).

We turn now to the impact of moisture on seasonal TRW
PSMs on the reconstructions. Since objectively defined sea-
sonality performs best (i.e., Fig. 6e and f), reconstructions
generated with univariate PSMs are used as the reference for
measuring skill improvements for modeling TRW records as
univariate in either temperature or moisture (abbreviated as
“TorM”) (Fig. 7c and d) and for bivariate “temperature and
moisture” PSMs (Fig. 7e and f). Improvement over univari-
ate PSMs is apparent for the bivariate approach compared
with the univariate “TorM” approach (cf. Fig. 7g, h with i, j,
respectively). In the bivariate approach, regions such as west-
ern North America and central Asia, where most of the TRW
records are found, improve the most in CE, but also over
Australia, likely in response to the improved modeling of
TRW records in New Zealand and Tasmania. Improvements
are also noticeable, through teleconnections with proxy loca-
tions in the central Atlantic and southern Indian oceans, and
over the eastern North Pacific Ocean. A decrease in skill is
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present over the midlatitude Pacific Ocean, but this is smaller
in magnitude compared with skill enhancements elsewhere.

Verification of GMT for reconstructions using seasonal
PSMs (Table 3) yields a similar interpretation to the spa-
tial verification results. Compared to the consensus of
instrumental-era products, we find that the 20th century trend
in GMT is overestimated with the PAGES2k-2017 proxy data
set if univariate PSMs are used. This is particularly the case
with annual PSMs. Better agreement is obtained when sea-
sonal bivariate PSMs are used to model TRW proxies. The
representation of GMT interannual variability as measured
by verification of the detrended GMT is also improved with
seasonal PSMs, particularly for the CE metric. Similar to
spatial verification results, PSMs with objectively derived
seasonality and bivariate TRW modeling have GMT recon-
structions with consistently higher skill scores.

We recognize that the previous evaluation relies on com-
parisons with observation-based products covering the same
time period as the data used to calibrate the statistical
PSMs. To test the sensitivity of the results to the calibra-
tion period, we conduct additional independent instrumental-
era calibration—validation experiments where PSMs are cal-
ibrated over a subset of the instrumental-era period and re-
constructions are evaluated with data not used in calibration.
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Table 3. Summary of instrumental-era verification results for reconstruction experiments performed with various PSM configurations. Veri-
fication scores shown are the trend over the 20th century (in K/100 years), r and CE for the annual GMT and detrended GMT verified against
the consensus of instrumental-era analyses. The GMT trend in the consensus of instrumental-era analyses is 0.56 K/100 years.

GMT trend Annual GMT  Detrended GMT

PSM configuration

r CE r CE
Prototype 0.61 091 0.79 0.71 0.32
Univariate — temperature (annual) 0.85 0.93 0.61 0.74 0.39
Univariate — temperature (seasonal meta.) 0.72 0.93 0.77 0.73 0.43
Univariate — temperature (seasonal obj.) 0.72  0.93 0.80 0.75 0.51
Univariate — temperature or moisture (TRW) (seasonal meta.) 0.71 0.92 0.78 0.72 0.44
Univariate — temperature or moisture (TRW) (seasonal obj.) 0.74 0.93 0.77 0.74 0.48
Bivariate — temperature and moisture (TRW) (seasonal meta.) 0.62 0.93 0.84 0.76 0.50
Bivariate — temperature and moisture (TRW) (seasonal obj.) 0.60 0.93 0.86 0.77 0.54

Results from these experiments, described in Sect. S3 in the
Supplement, confirm the main results and conclusions drawn
here on the superiority of seasonal PSMs relative to those cal-
ibrated with annual averages and the use of bivariate models
for TRW proxies.

We now examine results from an evaluation performed
in proxy space using proxies withheld from assimilation as
in Sect. 3. Results for both the PSM calibration and pre-
calibration periods are shown in Table 4. Differences among
the various experiments suggest the superiority of the sea-
sonal (with objective seasonality) PSMs as skill scores con-
sistently rank among the highest among all experiments
for both calibration and pre-calibration periods. The recon-
struction using univariate annual PSMs shows the weakest
verification statistics, confirming the verification based on
instrumental-era analyses. Finally, use of bivariate seasonal
PSMs for TRW records is also suggested from proxy valida-
tion results, as larger correlations and ACE are obtained with
this configuration.

4.2 Covariance localization

One approach to managing sampling error in ensemble data
assimilation is through spatial covariance localization. Local-
ization is applied to minimize the adverse impact of spurious
covariances at large distances from a proxy location, which
results from sample error in finite ensembles (Hamill et al.,
2001). If localization is not applied, spurious covariances al-
low proxies to affect remote locations, which adversely af-
fects the quality of the analysis. On the other hand, too-
short localization length scales reduce the useful information
that can be derived from the proxies. Therefore, a balance is
sought between minimizing sampling noise versus retaining
useful proxy information.

We use the Gaspari—Cohn (Gaspari and Cohn, 1999) fifth-
order polynomial with a specified cut-off radius for the local-
ization function (wyec in Eq. 4b). See Sect. S5 for information
on the characteristics of wjoc.. A series of reconstructions is
performed with a wide range of localization length scales.
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As with previous experiments, 51 Monte Carlo realizations
are carried out, each with 100 ensemble members assimilat-
ing 75 % of proxy records. Results from the instrumental-era
verification scores previously described are summarized in
Table 5. We observe that the GMT trend is underestimated
and verification scores are significantly reduced when “too-
small” localization radii are used, indicating the information
on temperature provided by some proxy records is not prop-
erly incorporated in the reanalysis. In contrast, the trend is
overestimated and verification scores are generally reduced
without covariance localization. This is particularly the case
for the CE score for the detrended GMT, sensitive to the am-
plitude in interannual variability. This skill measure is max-
imized for localization radii within the 15000 to 25000 km
range. A localization radius at the upper end of this range
(25000 km) is preferable, as results from the other verifica-
tion scores suggest that a skillful reconstruction is obtained
with this covariance localization configuration. See Fig. S4
for an example where the 25 000 km localization function is
applied to a proxy record located in California, United States.
We note that the optimal localization radius depends on a
number of factors, such as ensemble size, the observation
network and observation error characteristics.

4.3 Proxy data sets

Here, we explore the impact of adding the large number of
proxies from Anderson et al. (2019) (hereafter A19), which
include the tree-ring-width chronologies from Breitenmoser
etal. (2014) (hereafter B14), not strictly screened for climate
sensitivity in contrast to the PAGES2k collection. Duplicate
records between data sets are identified (based on correla-
tion between co-located records and cross-referencing meta-
data) and eliminated. Priority is given to records found in
the PAGES2k collection (see A19 for more details). Fig-
ure 8 shows the spatial and temporal distributions of the
B14 records, which reveals enhanced coverage over eastern
North America, southern Europe, boreal Eurasia and south-
ern South America. Other additions, totaling 94 records,

Clim. Past, 15, 1251-1273, 2019



1264

R. Tardif et al.: Updated Last Millennium Reanalysis

Table 4. Verification of LMR reconstructions against independent (withheld from assimilation) proxies for experiments using various PSM
configurations. Skill scores shown are the median of distributions for r, the fraction of proxy records characterized by a positive ACE
(%+CE) and the median of the ACE distribution. Statistics are compiled over 51 Monte Carlo realizations for two distinct periods: 1880-

2000 (PSM calibration period) and 0—1879 (pre-calibration period).

PSM configuration 1880-2000 1-1879

r  %+CE ACE r %+CE ACE
Univariate - temperature (annual) 0.28 752  0.05 0.17 66.0 0.03
Univariate — temperature (seasonal meta.) 0.32 78.7  0.06 0.21 69.6 0.04
Univariate — temperature (seasonal obj.) 0.34 80.6  0.09 0.21 694  0.06
Univariate — temperature or moisture (TRW) (seasonal meta.)  0.30 76.1 0.06 0.19 67.7 0.04
Univariate — temperature or moisture (TRW) (seasonal obj.) 0.33 77.6  0.08 0.19 66.3 0.04
Bivariate — temperature and moisture (TRW) (seasonal meta.)  0.32 779  0.07 0.20 68.1 0.04
Bivariate — temperature and moisture (TRW) (seasonal obj.) 0.36 78.9  0.11 0.22 66.0 0.06

Table 5. The 20th century trend of GMT, r and CE, for the annual and detrended GMTs, as well as the global mean of the spatial (i.e.,
grid point) r and CE of reconstructed temperature verified against the consensus of instrumental-era analyses for reconstruction experiments
performed with covariance localization using various localization cut-off radii (LR). Verification statistics for an experiment without covari-
ance localization are also shown for comparison. Results from the prototype are shown for reference. The GMT trend in the consensus of

instrumental-era analyses is 0.56 K/100 years.

LR LR Lr LR LR LR No Prototype

5000km  10000km 15000km 25000km 35000km 45000km localization (no localization)

Trend (K/100 years) 0.17 0.31 0.40 0.49 0.51 0.56 0.60 0.61
Annual GMT r 0.92 0.93 0.93 0.93 0.93 0.93 0.93 091
Annual GMT CE 0.46 0.71 0.82 0.86 0.87 0.87 0.86 0.79
Detrended GMT r 0.74 0.77 0.77 0.77 0.77 0.76 0.77 0.71
Detrended GMT CE 0.35 0.53 0.59 0.59 0.58 0.56 0.54 0.32
Mean spatial r 0.36 0.46 0.50 0.52 0.52 0.53 0.53 0.47
Mean spatial CE 0.11 0.17 0.19 0.22 0.21 0.21 0.20 0.10

provide additional records in the tropics (23 coral records)
and an enhanced number of ice core records concentrated
over Greenland and the eastern Canadian Arctic (37 records)
and Antarctica (26 records in West Antarctica and Dron-
ning Maud Land). A few lower-latitude ice core records
(six records) are also added in the Peruvian Andes and
Tibetan Plateau, along with two higher-latitude lake core
records. From a temporal perspective, the addition of the B14
tree-ring-width records contributes a notable number of addi-
tional proxies back to 1000 CE, more than double the number
of records available for assimilation from 1500 CE onward,
up to a 4-fold increase during the 19th and 20th centuries.
In order to measure the impact with the best configura-
tion, the reconstruction experiments reported in this section
are carried out using seasonal PSMs with objectively derived
seasonality for all records, with a bivariate formulation on
temperature and precipitation for all TRW proxies and uni-
variate on temperature for all other proxies. The baseline re-
construction uses the PAGES2k-2017 proxies (as in Sect. 3),
which we compare to results first obtained with the addition
of the B14 TRW records and finally with the further addition
of the coral, ice and lake core records from A19 (i.e., the full
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proxy database). Other trial reconstructions performed with
the vastly expanded proxy network, not reported here, show
that a well-calibrated GMT ensemble is obtained with a co-
variance localization cut-off radius of 25000 km. Next, we
compare reconstruction results from this configuration to the
baseline reanalysis.

Differences in correlation and CE associated with the ad-
dition of the B14 collection over the PAGES2k-2017 prox-
ies show skill improvements in temperature reconstructions
over the continental United States and Mexico, Europe and
the southern edge of the Tibetan Plateau (see Fig. 9g and
h). Through the influence of significant spatial covariances
with the added records, assimilation of the additional TRW
records also leads to improved temperature skill over remote
areas of the midlatitude Pacific and northern Atlantic oceans.
The addition of records described in A19 has minimal addi-
tional impact overall, with the exception of modest increases
in correlation and CE over Greenland (see Fig. 9i and j).

Hydroclimate verification is defined by a comparison of
the reconstructed PDSI with the Dai (2011) product. We note
here that the reconstruction is not directly related to the PDSI
product used for verification, as TRW forward models were
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Instrumental-era verification for temperature
LMR vs. Berkeley Earth

(a) (b)

r, Expl: annual, mean=0.55

CE, Expl: annual, mean=0.14
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(Exp2-Exp1) r difference, mean=-0.01
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Figure 6. Verification of LMR temperature anomalies against the
Berkeley Earth instrumental-era analysis, for experiments using
PAGES2k-2017 proxies and univariate PSMs, with contrasting sea-
sonalities. Shown are time series r and CE for (a, b) experiment 1:
annual, (¢, d) experiment 2: seasonality from the proxy metadata
and (e, f) experiment 3: objectively derived seasonality. Differences
in skill metrics are also shown (g, h) between experiments 2 and 1,
and (i, j) between experiments 3 and 1.

calibrated on precipitation and not on PDSI as in Steiger et al.
(2018). A comparison of the reconstructed PDSI between the
prototype>, the updated reanalysis of Sect. 3 and a recon-
struction carried out with the B14 TRW records and the addi-
tional coral, ice and lake core records (i.e., the full database)
is shown in Fig. 10. The PDSI is slightly improved in the up-
dated reanalysis compared to the prototype (Fig. 10g and h).
Enhanced skill is noticeable over western North America and
over eastern Europe and Asia to a lesser degree. Decreased
skill is found over the central plains of North America and
along a narrow band along the Siberian Taiga. The impact
of adding the Anderson et al. (2019) records is mostly found

3The LMR prototype configuration has been used to reconstruct
PDSI, a variable not included in H16, for the purpose of this com-
parison.
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Instrumental-era verification for temperature
LMR vs. Berkeley Earth

(a) (b)
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Figure 7. As in Fig. 6 but comparing experiments performed us-
ing PAGES2k-2017 proxies with different PSM configurations for
tree-ring-width proxies. (a, b) Experiment 1: univariate on temper-
ature for all proxies, (¢, d) experiment 2: univariate with respect to
temperature or moisture for TRWs and (e, f) experiment 3: bivari-
ate on temperature and moisture for tree-ring widths. Differences
in skill metrics are shown (g, h) between experiments 2 and 1, and
(i, j) between experiments 3 and 1. All reconstructions are based on
objectively derived seasonal PSMs.

over the eastern part of the United States and over western
Europe (Fig. 10i and j). Finally, we note that this impact is
due entirely to the B14 TRW records, as the additional coral,
ice and lake core records from A19 do not significantly af-
fect the PDSI reconstruction skill (from results of additional
reconstruction experiments carried out to isolate this impact;
not shown).

Examining the differences between reconstructions over
the entire Common Era (Fig. 11), we see a significantly mod-
ified Northern Hemisphere temperature (NHMT) resulting
from the assimilation of the additional proxies. A generally
warmer NHMT is obtained throughout the Common Era but
most significantly during the LIA, worsening the agreement
with reconstructions from other studies shown in Fig. 2. A
noticeable loss of variability is observed, confirmed by com-
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Figure 8. Locations (a) and temporal distributions (b) of the additional proxies from Anderson et al. (2019) considered for assimilation,
including the tree-ring chronologies from Breitenmoser et al. (2014). As in Fig. 1, only records available for assimilation (proxies for which

regression-based PSMs can be calibrated) are shown.

Table 6. As in Table 4 but statistics compiled for tree-ring wood-density (MXD) proxies only, and for experiments using the PAGES2k-
2017 proxies only, PAGES2k-2017 with the addition of all proxies from A19 (all proxies) and PAGES2k-2017 plus only a subset of A19
records obtained after removing all but 188 TRW records from B14 (B14 subset). See text for selection details. Skill scores are the median
of r distributions, the fraction of proxy records characterized by a positive ACE (%+CE) and the median of ACE distributions. Statistics
are compiled over the 51 Monte Carlo realizations for the following periods: 1880-2000 (PSM calibration period) and 1600-1879 (pre-
calibration period with a significant number of MXD records and covering a significant portion of the Little Ice Age).

PSM configuration 1880-2000 1600-1879

r %+CE ACE r  %+CE ACE
PAGES2k-2017 0.62 932 037 0.58 914  0.39
All proxies 0.43 88.0 0.18 0.46 954  0.26
B14 subset 0.56 925 0.30 0.53 93.8 0.34

paring spectra from both experiments (Fig. 11c). This loss
of variability in the reconstruction using all proxies occurs at
nearly all scales, underlining an adverse impact from assim-
ilating B14 tree-ring-width proxies.

We now turn to verification in proxy space, which is the
only source available prior to the instrumental period. Proxy
estimates from reanalyses (estimated using the appropriate
PSM) are compared directly to proxy observations. Here, re-
analysis skill is assessed using independent (the 25 % with-
held from assimilation) proxies. We further restrict our anal-
ysis to verification against tree-ring wood-density proxies,
as they are among the most reliable recorders of tempera-
ture in our database, as evidenced by the generally better
fits to calibration temperature data obtained when calibrat-
ing the univariate PSMs. Also, these proxies provide good
temporal coverage of the latter portion of the LIA into the
industrial period, as shown in Fig. 1. The results, presented
in Table 6, show distinctly larger skill scores for the experi-
ment using PAGES2k-2017 proxies only compared to when
all proxies are assimilated. Improved skill is observed for
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both periods of interest. Results from a third reconstruction
experiment are also presented, where only a small fraction of
B14 records are assimilated (B14 subset experiment in Ta-
ble 6). A total of 188 records (out of the 2156 available)
have been selected on the basis of their strong relationship
to calibration temperature and precipitation data as deter-
mined from the correlation coefficient characterizing bivari-
ate PSMs. Records with a calibration correlation above 0.6
are found to be located for the most part over the United
States. Proxy verification results indicate an increase in skill
in the representation of tree-ring wood-density proxies, as in-
dicated by skill metric values only slightly lower than in the
PAGES2k-2017 experiment. Spatial verification of tempera-
ture and PDSI (not shown) also suggests that some of the skill
enhancements shown in Fig. 10i and j are retained even when
this small fraction of the B14 records is considered. This sug-
gests that the issues with the assimilation of the B14 records
identified above can possibly be mitigated while maintaining
some of the skill they provide toward enhanced temperature
and hydroclimate reconstructions in local regions. Optimal
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Instrumental-era verification for temperature
LMR vs. Berkeley Earth
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Figure 9. As in Fig. 6 but comparing experiments performed with
different proxy networks: (a) r and (b) CE for experiment 1: PAGES
2k Consortium (2017) proxies only, (¢, d) experiment 2: with the ad-
dition of tree-ring chronologies from Breitenmoser et al. (2014) and
(e, ) experiment 3: with all proxies in the updated LMR database.
The differences in correlation and CE between experiments 2 and 1
are shown in panels (g, h), respectively, and between experiments 3
and 2 in panels (i, j). Notice the latter is different from Fig. 6, where
differences between experiments 3 and 1 are shown.

selection of these records requires further careful attention
and could serve as the basis for future efforts.

5 Concluding summary

A paleoclimate reanalysis of the Common Era has been de-
veloped using an updated data assimilation framework. Re-
sults show significant improvement over the prototype Last
Millennium Reanalysis presented in Hakim et al. (2016). An
updated proxy database and implementation of PSMs with
improved realism are shown to be key contributors to the en-
hanced reanalysis. The main upgrade to the proxy database
consists of a change from the community standard of PAGES
2k Consortium (2013) to the more recent PAGES 2k Consor-
tium (2017) data set, while the records described in Anderson
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Instrumental-era verification for PDSI
LMR vs. Dai et al.
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Figure 10. Similar to Fig. 9 but comparing PDSI reconstructions
against the Dai (2011) analysis for experiments performed with dif-
ferent proxy networks: (a) correlation and (b) CE for experiment 1:
prototype reanalysis from H16, experiment 2: PAGES 2k Consor-
tium (2017) proxies, (e, f) experiment 3: with further the addition
of tree-ring chronologies from Breitenmoser et al. (2014) and the
coral, ice and lake core records from Anderson et al. (2019) (i.e.,
the full proxy database). The differences in correlation and CE be-
tween experiments 2 and 1 are shown in panels (g, h), respectively,
and between experiments 3 and 2 in panels (i, j).

et al. (2019) remain available for possible future enhance-
ments to the proxy information used in the reanalysis. More-
over, new methods to map state variables to observations ex-
tend the prototype’s linear univariate models calibrated on
annual-mean temperature in two key aspects: accounting for
seasonal dependencies of individual proxy records and the
modeling of tree-ring-width proxies using temperature and
moisture as predictors. The encoding of proxy seasonality in-
formation within PSMs has also been refined by objectively
determining the characteristic seasonal response of individ-
ual records and by decoupling the seasonality for temperature
and precipitation sensitivity for tree-ring width.

Climate field reconstructions from a series of assimilation
experiments carried out with various proxy and PSM con-
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Figure 11. (a) Northern Hemisphere temperature (NHMT) grand
ensemble mean (solid lines) and 5th—95th percentile range (shad-
ing) from experiments performed with PAGES2k-2017 proxies (in
blue) and with the addition of proxies from Anderson et al. (2019)
(in red). (b) Spectra of NHMT grand ensemble mean from both
experiments (solid lines), along with the X2 95 % highest density
regions (shading).

figurations have been compared to available instrumental-
era observation-based analyses, revealing notable improve-
ments not only in the reconstructed global-mean temperature
in general but also in reconstructed spatial fields. More skill-
ful tropical Pacific temperatures are obtained primarily due
to the updated set of coral records in the PAGES 2k Con-
sortium (2017) collection. Improved temperature reconstruc-
tions over continental extratropical regions are the result of
the newly implemented seasonal PSMs, combined with the
forward modeling of tree-ring-width chronologies using a bi-
variate temperature—moisture formulation. Improvements are
reflected not only in temperature reconstructions but also in
500 hPa geopotential height and to some extent in hydrocli-
mate variables such as the PDSI. Lastly, the introduction of
the large collection of Breitenmoser et al. (2014) tree-ring-
width chronologies, not screened for temperature sensitivity,
appears to provide local skill enhancements in hydroclimate
variables (e.g., PDSI over the eastern United States). How-
ever, this is achieved at the expense of accuracy in the re-
construction of important features of pre-industrial climate
such as the colder temperatures during the Little Ice Age.
However, the generally positive impact of a simple ad hoc
screening of the Breitenmoser et al. (2014) suggests that fur-
ther improvements may be possible with a careful selection
of tree-ring chronologies.
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Results presented here, based upon regression PSMs, may
serve as a reference for future efforts designed to assess
the value of more comprehensive process-based PSMs in
paleoclimate data assimilation research. Finally, we note
that the version of the PDA system described here cor-
responds to the configuration used in the production re-
lease of the NOAA Last Millennium Reanalysis, avail-
able at https://atmos.washington.edu/~hakim/Imr/ (last ac-
cess: 30 June 2019).

Code availability. The code used in the production of reanalyses
is publicly available at https://github.com/modons/LMR (Hakim,
2019a)

Data availability. The output from the reanalysis and the required
input data are available from https://atmos.washington.edu/~hakim/
Imr/ (Hakim, 2019b).
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Appendix A: Proxy system model characteristics

Features introduced in the updated LMR proxy modeling ca-
pabilities include a representation of the seasonal response to
climate drivers characterizing individual proxy records (i.e.,
proxy seasonality), as well as PSMs that include precipita-
tion and temperature as driving variables for modeling TRW
records.

The first approach is to use univariate PSMs calibrated
against temperature data, with proxy seasonality either de-
fined from the available proxy metadata or derived objec-
tively using the method described in Sect. 2.4.1. PSM perfor-
mance is compared using the Bayesian information criterion
(BIC), defined as (Schwarz, 1978)

BIC = —2 In(L) + k In(n), (A1)

where L is the maximized value of the likelihood function
of the model, n is the sample size and k is the number of
estimated parameters in the model. We note that the second
term in Eq. (A1) represents a penalty for models with a larger
number of explanatory variables, i.e., a more complex model.
This feature is particularly useful when comparing univariate
and bivariate models. Here, we use the difference in BIC val-
ues between two models, ABIC = (BIC;; — BIC,¢¢), to de-
termine the relative accuracy of model M over a reference.
The model with the lowest BIC is preferred (i.e., a better fit
to the data); hence, a negative ABIC indicates the superior-
ity of the test model over its reference. Here, the seasonal
PSMs are tested against the univariate PSMs calibrated with
annually averaged temperatures as the reference. Significant
evidence of the superiority of the test model over its refer-
ence is obtained when ABIC < —2.0.

Table Al presents a summary of ABIC results for records
in each proxy category considered in LMR. The advantage of
seasonal PSMs is particularly significant for tree-ring wood-
density chronologies, a proxy known for its strong seasonal
response (Briffa et al., 2004). Seasonal PSMs also provide
improved fits to tree-ring-width data, although to a lesser
extent compared to density records. As indicated by the
larger negative ABIC values, models based on objectively
derived seasonal responses lead to more accurate descrip-
tions of proxy data compared to those calibrated using meta-
data seasonality, even for tree-ring chronologies within the
community-curated PAGES2k-2017 data set. These results
suggest that the objectively derived seasonality information
is noticeably different than in the metadata, particularly for
tree-ring records in the Breitenmoser et al. (2014) (i.e., B14)
data set, but also for those in PAGES 2k Consortium (2017)
(i.e., PAGES2k-2017). More details on this aspect are pro-
vided in the Supplement. The use of objectively defined sea-
sonality improves upon the simple latitude-dependent rela-
tionship described in Anderson et al. (2019), more consis-
tent with records from the PAGES2k-2017 data set. Apart
from lake sediment records, which are also more accurately
modeled with seasonal PSMs, Table A1 shows that PSMs for
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other proxy types are not as sensitive to seasonality. In fact,
the majority of the (tropical) coral records included in the
current database have metadata seasonality defined as annual
already, as do the high-latitude ice core records. Note that
some of these records originate from the collection described
by Anderson et al. (2019), where seasonal metadata informa-
tion is generally not available. As a result, these records are
assumed to be annual.

In addition to seasonal models, other improvements in-
volve the development of PSMs that add precipitation as an
input variable for the modeling of TRW proxies as outlined
in Sect. 2.4.2. One approach consists of selecting the uni-
variate models, either calibrated on temperature or moisture
input, which best describe the proxy data. This “tempera-
ture or moisture” selection (abbreviated as “TorM”) is per-
formed on individual TRW records, and the resulting pro-
portion of TRW proxies identified as temperature-sensitive
is 56.4 % versus 43.6 % for moisture when metadata season-
ality information is considered. This is compared to 36.8 %
temperature-sensitive versus 63.2 % moisture-sensitive trees
when seasonal responses are determined objectively. The
latter option, leading to a larger proportion of moisture-
sensitive records, is in better agreement with a comparable
characterization performed by Steiger et al. (2018) on a sim-
ilar set of TRW records.

A second approach consists of bivariate PSM formula-
tion, where TRW depends on both temperature and precip-
itation (see Eq. 8). The ABIC results characterizing the uni-
variate “TorM” and bivariate PSMs against their univariate
temperature-only counterparts (as the reference) are summa-
rized in Table A2. The negative mean ABIC values confirm
the advantage of including moisture in TRW linear models.
The evidence is more pronounced for the B14 records, per-
haps not surprisingly given the larger proportion of moisture-
sensitive records included in this data set. Nonetheless, the
prevalent reduction in BIC for models of PAGES2k-2017
trees suggests a non-negligible response to moisture despite
the screening of records for temperature. The mean posi-
tive ABIC characterizing the bivariate models calibrated us-
ing metadata seasonality confirms that the assumption of
identical seasonal responses for temperature and moisture
is problematic for modeling tree-ring growth, at least with
these more complex models. On the other hand, allowing
distinct representations of temperature and moisture seasonal
responses in bivariate PSMs, as enabled by the goodness-of-
fit objective determination of these responses, leads to signif-
icantly more accurate TRW modeling compared to univariate
temperature PSMs.
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Table A1. Mean differences in Bayesian information criterion (ABIC) corresponding to PSMs for records within the proxy categories
considered in LMR, between models calibrated using proxy seasonal responses from the metadata or derived objectively during calibration,
with respect to the reference of annual seasonality. Calibration data set: GISTEMP v4.

Proxy types Number of records ~ Seasonal (metadata)  Seasonal (objective)
Tree-ring width (PAGES2k-2017) 347 —1.34 —4.84
Tree-ring width (Breitenmoser et al., 2014) 2156 —-1.72 —5.24
Tree-ring wood density 59 —23.28 NA
Coral 8180 75 +0.02 NA
Coral Sr/Ca 30 —0.01 NA
Coral rates 11 +0.03 NA
Ice core 5130 89 +0.02 NA
Ice core D 12 0.00 NA
Ice core accumulation 3 0.00 NA
Ice core melt 1 0.00 NA
Lake core varve 7 —0.52 NA
Lake core misc. 2 —-2.32 NA
Bivalve 5180 1 0.00 NA
Tree-ring §'80 1 +11.81 NA

NA: not available.

Table A2. Mean differences in Bayesian information criterion (ABIC) for tree-ring-width univariate “temperature or moisture” and bivariate
PSMs, calibrated using metadata seasonality or derived objectively during calibration, against their respective univariate temperature-only
PSMs as reference. Calibration data sets: GISTEMP v4 and GPCC v6.

PSM formulation Seasonal (metadata) Seasonal (objective)

PAGES 2k trees  Breitenmoser trees PAGES 2k trees  Breitenmoser trees
Univariate — temperature or moisture —0.86 —1.41 —2.59 —6.65
Bivariate +2.63 +1.73 —2.35 —6.88
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Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/cp-15-1251-2019-supplement.
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