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Entanglement underpins a variety of quantum-enhanced communication, sensing, and computing
capabilities. Entanglement-assisted communication (EACOMM) leverages entanglement preshared by
communicating parties to boost the rate of classical information transmission. Pioneering theory works
showed that EACOMM can enable a communication rate well beyond the ultimate classical capacity of
optical communications, but an experimental demonstration of any EACOMM advantage remains elusive.
In this Letter we report the implementation of EACOMM surpassing the classical capacity over lossy and
noisy bosonic channels. We construct a high-efficiency entanglement source and a phase-conjugate
quantum receiver to reap the benefit of preshared entanglement, despite entanglement being broken by
channel loss and noise. We show that EACOMM beats the Holevo-Schumacher-Westmoreland capacity of
classical communication by up to 16.3%, when both protocols are subject to the same power constraint at
the transmitter. As a practical performance benchmark, we implement a classical communication protocol
with the identical characteristics for the encoded signal, showing that EACOMM can reduce the bit-error
rate by up to 69% over the same bosonic channel. Our work opens a route to provable quantum advantages
in a wide range of quantum information processing tasks.
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Introduction.—Entanglement is the cornerstone for a
wide range of quantum information processing applications
including quantum-secured communication [1], quantum-
enhanced sensing [2], and quantum computing [3]. In
addition, entanglement preshared by communicating
parties can increase the reliable transmission rate of
classical information, a paradigm known as entanglement-
assisted (EA) communication (EACOMM) [4–11]. The
pioneering work by Bennett, Shor, Smolin, and Thapliyal
[5] showed that the channel capacity with EA surpasses the
ultimate classical capacity without EA, i.e., the Holevo-
Schumacher-Westmoreland (HSW) capacity [12–14].
Surprisingly, for lossy and noisy bosonic channels, which
are ubiquitous in optical and microwave communications,
photonic sensing, and one-way quantum computing [15],
the ratio between the EA capacity and the HSW capacity
can diverge. Notably, the EA-capacity advantage persists
even when a lossy and noisy channel breaks the initial
preshared entanglement.
This seminal EA-capacity result, albeit encouraging,

does not elucidate an EACOMM protocol to reap the
promised advantage. In this regard, superdense coding is a
well-studied EACOMM scenario that leverages stronger-
than-classical correlations between entangled photons to
encode more than one classical bit of information on each
transmitted photon [16,17]. However, EACOMM experi-
ments [18–25] based on the polarization, temporal, and

path degrees of freedom have dismissed the phase corre-
lations embedded in entangled bosonic modes, thereby
making them unable to beat the HSW capacity
(Supplemental Material [26]). Studies of EACOMM pro-
tocols over bosonic channels encompassed continuous-
variable superdense coding [31–33] and mode permutation
or selection encoding [11,34–36]. Unfortunately, the for-
mer failed to surpass the HSW capacity due to poor
performance in the presence of channel loss and noise
[37–40], whereas the latter requires large-volume quantum
memories that are not yet available. Recently, Shi et al. [41]
formulated a theoretical framework to devise the optimal
entangled state and encoding format suitable for loss and
noise resilient EACOMM. That theory work also proposed
practical quantum receiver structures to enable an
EACOMM rate superior to the HSW capacity.
In this Letter, we report an EACOMM experiment over

lossy and noisy bosonic channels at communication rates
up to 16.3%!4.1% above the HSW capacity. In contrast to
many superdense coding protocols that resort to the
probabilistic arrival of single photons at the receiver due
to channel loss, our EACOMM protocol harnesses the
phase correlations between entangled bosonic modes so
that all transmitted bits are decoded. A low-gain quantum
phase-conjugate receiver (PCR) is constructed to extract
phase correlations while reducing the impact of noise
power. Apart from benchmarking against the ultimate
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HSW capacity, we show that EACOMM achieves error
probabilities up to 69% lower than what a practical classical
communication (CCOMM) system can afford. Our work
achieves a provable quantum advantage and would create
new opportunities for entanglement-enhanced quantum
information processing.
Protocol.—The schematic for the implemented

EACOMM protocol is sketched in Fig. 1. Key components
include (1) an entanglement source; (2) two low-loss
entanglement distribution channels connecting the source
to Alice and Bob; (3) phase encoding on Alice’s share of
the entanglement, i.e., the signal; and (4) a PCR that Bob
operates to perform a joint measurement on the received
signal from a lossy and noisy channel and Bob’s share of
the entanglement, i.e., the idler.
Prior to transmitting one bit of classical information, the

entanglement source emits M independent and identi-
cally distributed two-mode squeezed vacuum (TMSV)
signal-idler mode pairs, described by annihilation operators
fâðkÞS ; âðkÞI gMk¼1, and sends the signal modes to Alice and
the idler modes to Bob through two low-loss, noise-
less entanglement-distribution channels. The mean
photon number of a signal or an idler mode is
hâ†ðkÞS âðkÞS i ¼ hâ†ðkÞI âðkÞI i ¼ NS. To encode a classical bit
b ∈ f0; 1g, Alice applies binary phase-shift keying on
all M signal modes, yielding encoded signal modes
fâ0ðkÞS ¼ ð−1ÞbâðkÞS gMk¼1 that are subsequently transmitted
to Bob through a bosonic thermal-loss channel [42], Lκ;NB ,
characterized by its transmissivity κ and its noise’s
per-mode average photon number NB. The noise photons
are effectively introduced by thermal background
modes fâðkÞB gMk¼1, each with a mean photon number of
hâ†ðkÞB âðkÞB i ¼ NB=ð1 − κÞ. The mode evolution relation in
the Heisenberg picture gives Bob’s received signal modes

fâðkÞR ¼
ffiffiffi
κ

p
â0ðkÞS þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − κ

p
âðkÞB gMk¼1 that contain NB thermal

noise photons per mode on average. Both the employed
TMSV state and phase encoding have been proven opti-
mum for EACOMM [41].
To decode the classical bit, Bob uses a PCR to perform a

joint measurement on the received signal modes fâðkÞR gMk¼1

and idler modes fâðkÞI gMk¼1 from the entanglement source
[43]. In the PCR, phase-conjugate modes, âðkÞC , of the
received signal are obtained in a parametric process with
gain G, viz. fâðkÞC ¼

ffiffiffiffi
G

p
âðkÞv þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G − 1

p
â†ðkÞR gMk¼1, where

fâðkÞv gMk¼1 are vacuum-state modes. The phase-
conjugate modes then interfere with the idler modes on a
balanced beam splitter, leading to the modes fĉðkÞX ¼
ðâðkÞC þ âðkÞI Þ=

ffiffiffi
2

p
gMk¼1 and fĉðkÞY ¼ ðâðkÞI − âðkÞC Þ=

ffiffiffi
2

p
gMk¼1

at the two output ports. Photon counting at each output
port measures M modes simultaneously, so the two
detectors generate two jointly Gaussian variables NX, NY
in the asymptotic limit of M ≫ 1. The difference photon
number, defined as N ≡ NX − NY , is dependent on
the phase-insensitive cross correlations fhâ†ðkÞC âðkÞI igMk¼1,
which stem from the phase-sensitive cross correlations
fhâðkÞS âðkÞI igMk¼1 of the TMSV states. The decoded classical
bit b̃ is set to 0 (1) when N ≥ 0 (N < 0). The bit-error rate
(BER) of EACOMM using TMSV states and the PCR can
be analytically derived as [41]

Pe ¼
1

2
erfc

0

@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MηDκIκNSðNS þ 1Þ

NBð1þ 2δηþ 2ηDκINSÞ

s 1

A; ð1Þ

in the NB ≫ 1, M ≫ 1 limit (see Supplemental Material
[26] for the full formula), where ηD is the effective
detection efficiency, κI is the idler’s overall efficiency
including the source and entanglement-distribution effi-
ciencies, and δη models deviation of the BS transmissivity
from 50%.
With equal probability of Alice sending 0s and 1s, the

BER then determines the mutual information between
Alice and Bob, obtained by transmitting M modes, as

IðA;BÞ ¼ 1þ Pe log2ðPeÞ þ ð1 − PeÞ log2ð1 − PeÞ: ð2Þ

Without EA, the HSW capacity per mode, subject to the
same mean photon-number constraint NS, has been derived
as [44]

CðLκ;NBÞ ¼ gðκNS þ NBÞ − gðNBÞ; ð3Þ

where gðNÞ ¼ ðN þ 1Þ log2ðN þ 1Þ − N log2ðNÞ is the
von Neumann entropy of a thermal state with mean photon
number N. Demonstrating IðA;BÞ > MCðLκ;NBÞ will
prove that EACOMM surpasses the ultimate classical
capacity.

FIG. 1. Schematic of the EACOMM protocol. An entanglement
source distributes two-mode squeezed vacuum signal-idler pairs
fâðkÞS ; âðkÞI g to Alice and Bob. Alice phase encodes on âðkÞS and

transmits the encoded modes â0ðkÞS to Bob through a lossy and

noisy channel. Bob produces âðkÞC by phase conjugating the

received modes âðkÞR . âðkÞC and âðkÞI interfere on a balanced beam
splitter (BS), whose outputs undergo photon counting by photo-
detectorsD1 andD2 to derive the difference photon number, from
which Alice’s encoded classical bit is inferred. See text for details
of the evolution of the mode operators.
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Experimental setup.—The experimental diagram for
EACOMM is depicted in Fig. 2(a). The entanglement
source comprises a periodically poled lithium niobate
(PPLN) crystal pumped by a 780-nm laser to produce
broadband spontaneous parametric down conversion pho-
tons centered at 1560 nm. In the experiment, we pick the
signal and idler modes to situate, respectively, around
1590 nm and 1530 nm. Because of energy conservation
in down conversion, the signal and idler form entangled
mode pairs each described by a TMSV state. A dichroic
mirror separates the signal and idler modes. The signal and
idler are subsequently coupled into single-mode fibers
through two collimators. A flat-top optical filter is then
applied on the signal to carve out a 16-nm band centered on
1590 nm, corresponding to an optical bandwidth of
W ∼ 2 THz. The signal photons are distributed to Alice
while the idler photons are sent to Bob through two
entanglement distribution channels consisting of low-loss
single-mode fibers. The overall efficiency κI for the idler
distribution and storage is measured to be 96%.
To encode a classical bit b at Alice’s transmitter, an

electro-optic modulator driven by a BER tester imparts a T-
second-long phase shift of bπ on M ¼ WT signal modes.
The phase-modulated signal modes are sent to Bob through
an optical fiber link. An L-band amplified spontaneous
emission (ASE) source, filtered to a 16-nm band centered
on 1590 nm, serves as the thermal light source due to its
second-order coherence property [45] and multimode
photon statistics [46]. The ASE light is combined with
the encoded signal on a fiber coupler. We construct a free-
space air gap to fine tune the relative delay between the
signal and idler photons so that they arrive simultaneously
at the PCR.
At Bob’s terminal, we couple the signal photons from

fiber to free spacevia a collimator. The signal is then sent to a
second PPLN crystal pumped by a 780-nm laser to generate
the phase-conjugate modes at the idler wavelength of

1530 nm via a difference-frequency generation process with
gainG ¼ 1þ 0.257 × 10−3. The output of the PPLN crystal
is coupled back to optical fiber via a collimator. Two
cascaded bandpass filters then reject the signal photons at
1590 nm, and the remaining phase-conjugate photons are
coupled back to free space. The phase-conjugate photons
interfere with the idler photons on a 50∶50 beam splitter
whose δη ∼ 10−3. The photons at the two output ports of the
beam splitter are diverted to a balanced detector with an
effective detection efficiency of ηD ¼ 95%, which includes
the 99% quantum efficiency of the photodiodes and the
interference visibility of 98%. Note that the measurement is
not based on either coincidence counting or Hong-Ou-
Mandel interference because at the receiver the noise
photons are more than 8 orders of magnitude brighter than
the photons originating from the source. The output elec-
trical signal from the detector is directed to the BER tester.
Demonstrating quantum advantages.—We first demon-

strate that EACOMM over lossy and noisy channels
can achieve a rate higher than any CCOMM protocol
without EA can afford, thereby proving EACOMM’s
quantum advantage. In the experiment, the power of the
transmitted signal is fixed at PS ¼ 195 pW so that
NS ¼ PS=ℏω0W ¼ 7.8 × 10−4, where ℏ is the reduced
Planck constant, and ω0 is the frequency of the signal
photons. In measuring the BERs, NB is tuned from 104 to
105 by increasing the output power of the ASE source. The
corresponding mutual information given by Eq. (2) is
plotted alongside the HSW capacity and the EA capacity
(Supplemental Material [26]) in Fig. 3, showing exper-
imental EACOMM’s advantages at NB > 5 × 104. As we
see, the theory (blue curve) agrees well with the exper-
imental results (blue dots); the disadvantage at low NB is
due to effects from additional loss in the receiver
(Supplemental Material [26]). This result indicates that
the EACOMM’s advantage becomes even more pro-
nounced over a more noisy channel.
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FIG. 2. Experimental diagrams for (a) EACOMM and (b) CCOMM. AG, air gap; ASE, amplified spontaneous emission; Attn,
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Given the optical bandwidthW and the source brightness
NS, the HSW capacity sets an ultimate limit for the
communication rate without EA. In practice, however,
approaching the classical capacity would require the
optimal encoding and the optimum joint-detection receiver
for that encoding, which are beyond the reach of current
technology. To experimentally assess how practical
CCOMM without EA performs, we implement a protocol
based on broadband light and multimode encoding and
measurements, as illustrated in Fig. 2(b). Broadband light
was previously utilized by floodlight quantum key distri-
bution to boost secret-key rates [47–49]. The CCOMM
protocol’s encoded signal shares the same characteristics,
including the power, encoding rate, and format as that in the
EACOMM protocol (Supplemental Material [26]). In the
CCOMM experiment, ASE light is filtered to 16-nm
bandwidth and then split into two arms that differ sub-
stantially in their optical powers. The weak output arm with
a per-mode mean photon number NS ≪ 1 serves as the
signal and is distributed to Alice, whereas the strong output
arm with a per-mode mean photon number NR ≫ 1
becomes a broadband reference and is sent to Bob.
From Alice’s perspective, her received quantum states
are identical to her share of the entangled state in
EACOMM. As such, we make use of the same phase-
modulation scheme to encode classical bits that EACOMM
does. At Bob’s terminal, the received signal and the

reference interfere on a 50∶50 fiber coupler, whose two
outputs are measured by a balanced detector that produces a
difference photocurrent. Like the EACOMM experiment, a
phase-locking servo loop is implemented to ensure stable
BER measurements. Given NR ≫ 1 and NB ≫ NS, the
error rate of the broadband light homodyne detection
approaches that for homodyne detection of coherent states
(Supplemental Material [26])

Pe ¼
1

2
erfc

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MκκFNS

NB þ 1=2

s #
; ð4Þ

where κF ¼ 0.87 is a fitting parameter accounting for
experimental nonidealities including imperfect dispersion
matching between the signal and the reference and detector
balancing.
The performance of EACOMM is compared with that of

CCOMM under three parameter settings. First, the BERs of
the CCOMM protocol under different amounts of channel
background thermal noise are measured. The correspond-
ing information rates are plotted in Fig. 3, showing good
agreement with the theoretical model. EACOMM enjoys an
up to 126% information-rate advantage over the CCOMM
protocol. We then measure the BERs of the EACOMM and
CCOMM protocols at different number of modes per
encoding, i.e., the encoding rate, and plot the experimental
data in Fig. 4(a), showing a substantial BER advantage for
EACOMM over CCOMM. Figure 4(b) plots the BER
data vs source brightness NS. EACOMM demonstrates a
reduced BER at all NS levels, with the largest BER
reduction of 40% measured at NS ¼ 7.8 × 10−4.
Discussion.—EACOMM uses preshared entanglement

to improve the rates of transferring classical information,
instead of quantum bits [50]. While the current experiment
emulates bright background noise injection at the telecom-
munication wavelength, our model also applies to distrib-
uting the preshared entanglement at optical wavelengths
[51] and then wavelength converting [52] the signal
photons to support EACOMM in the microwave [53] or
covert communication in the long-wave infrared region
[54]. In a future dynamic operational environment, entan-
glement, as a quantum resource, will be preloaded into
local quantum memories when reliable entanglement dis-
tribution channels are available and will be subsequently
retrieved, on demand, to boost the communication rate
when only lossy and noisy channels are accessible.
Quantum illumination (QI) [55] uses entanglement over

lossy and noisy bosonic channels to detect the presence of a
target [56–60] or to defeat a passive eavesdropper [61–63].
Were QI secure communication to use an optical amplifier
in its entanglement sharing, it would break the entangle-
ment before sending the encoded signal and thus forfeit the
benefit of EACOMM. Also, the optical parametric ampli-
fier receiver used in the previous QI experiments introduces
additional loss on the idler beam such that EACOMM’s
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stringent requirements on the efficiency of the quantum
receiver cannot be satisfied. The PCR, in contrast, first
generates a bright phase-conjugate beam so that any
additional loss has minimal effect on the receiver perfor-
mance. Hence, the PCR is able to attain a large EACOMM
advantage sufficient to outperform the classical capacity.
Notably, the EACOMM advantage can be extended and
generalized to a scenario without a phase reference [64] and
a quantum network with multiaccess channels [65]. In
state-of-the-art optical communication systems, the PCR
can be implemented in silicon photonics chips by leverag-
ing the four-wave mixing process in silicon or silicon
nitride.
Although we have demonstrated EACOMM’s surpass-

ing the HSW capacity, the PCR does not saturate the EA
capacity. A recent study proposed a quantum-receiver
structure based on single-photon-level sum-frequency gen-
eration [66] and multimode interference to achieve the
log2ðNSÞ scaling of EACOMM [67], thereby pointing to a

promising route toward realizing a larger EACOMM
advantage over CCOMM.
Conclusions.—We have developed an efficient entan-

glement source and quantum receiver to demonstrate
EACOMM beyond the classical capacity. Our work
demonstrates the power of preshared entanglement in
enhancing the rate of transmitting classical information
over lossy and noisy bosonic channels. This result would
pave a new avenue toward utilizing entanglement to
achieve a provable quantum advantage in applications
involving substantial loss and noise, such as low proba-
bility of intercept [54,68], covert sensing [69], and
noninvasive imaging [70].
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