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Accurate simulation of surfaces and interfaces of ten FCC
metals and steel using Lennard–Jones potentials
Krishan Kanhaiya 1, Seonghan Kim 2, Wonpil Im 2 and Hendrik Heinz 1✉

The earlier integration of validated Lennard–Jones (LJ) potentials for 8 fcc metals into materials and biomolecular force fields has
advanced multiple research fields, for example, metal–electrolyte interfaces, recognition of biomolecules, colloidal assembly of
metal nanostructures, alloys, and catalysis. Here we introduce 12-6 and 9-6 LJ parameters for classical all-atom simulations of 10
further fcc metals (Ac, Ca (α), Ce (γ), Es (β), Fe (γ), Ir, Rh, Sr (α), Th (α), Yb (β)) and stainless steel. The parameters reproduce lattice
constants, surface energies, water interfacial energies, and interactions with (bio)organic molecules in 0.1 to 5% agreement with
experiment, as well as qualitative mechanical properties under standard conditions. Deviations are reduced up to a factor of one
hundred in comparison to earlier Lennard–Jones parameters, embedded atom models, and density functional theory. We also
explain a quantitative correlation between atomization energies from experiments and surface energies that supports parameter
development. The models are computationally very efficient and applicable to an exponential space of alloys. Compatibility with a
wide range of force fields such as the Interface force field (IFF), AMBER, CHARMM, COMPASS, CVFF, DREIDING, OPLS-AA, and PCFF
enables reliable simulations of nanostructures up to millions of atoms and microsecond time scales. User-friendly model building
and input generation are available in the CHARMM-GUI Nanomaterial Modeler. As a limitation, deviations in mechanical properties
vary and are comparable to DFT methods. We discuss the incorporation of reactivity and features of the electronic structure to
expand the range of applications and further increase the accuracy.
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INTRODUCTION
Metals and alloys have been historically used in jewelry,
accessories, load-bearing structures, and electrical circuitry.
Advances in synthesis, characterization, and modeling in recent
decades have enabled the exploration of metal nanostructures in
catalysts, electrode materials, sensors, therapeutics, and electric
circuits1–4. Examples include surfactant-directed growth and
assembly of metal nanostructures5–9, electrocatalysts in water
splitting and fuel cells3,10 binding of ligands, peptides, and
proteins in sensors11,12, interactions of metal nanoparticle-based
therapeutics with cells, synthesis of multidimensional metal
nanostructures13 and remediation of the environment from toxic
and radioactive metal species14. Interactions of metal nanoparti-
cles with electrolytes, biomolecules, surfactants, and organic
species play an important role and are often hard to quantify in
experiments. Imaging the synthesis, material function, and
tracking of nanoparticles at a sub-micrometer scale is difficult,
and the location of ions, small molecules, and organic matter
remain typically elusive in the time domain during assembly and
surface reactions. The interpretation of experimental data,
guidance in alloy composition, surface–surfactant combinations,
and prediction of nanoscale behavior for specific applications can
be significantly enhanced by simulations.
The earlier introduction of interpretable Lennard–Jones para-

meters for 8 face-centered cubic (fcc) elemental metals15, Ag, Al,
Au, Cu, Ni, Pb, Pd, and Pt, has led to interesting insights and
applications (Supplementary Figs. 1–3). The models accurately
predict interactions of metal surfaces with solvents16, electrolytes,
and recognition mechanisms of organic molecules (Supplemen-
tary Fig. 1a)17–20. The reliability is better than or equal to density
functional calculations (DFT) calculations, including dispersion-

corrected density functionals. The dynamics of complex interfaces
can be studied in unprecedented accuracy due to many orders of
magnitude lower computational cost, including quantitative
predictions of crystal growth (Supplementary Fig. 1b, c)21–23,
ligand exchange, and sensitive catalytic processes (Supplementary
Fig. 1d)24,25. Specific examples include electrode properties in
complex electrolytes (Supplementary Fig. 1e)26, the dynamics of
nanoparticles at oil/water interfaces (Supplementary Fig. 1f)27,
mechanical properties of metal–polymer nanocomposites (Sup-
plementary Fig. 1g)28, wettability of Pt surfaces as a function of
curvature (Supplementary Fig. 1h), diffusion of nano-cars on metal
surfaces (Supplementary Fig. S1i)29, strain fields and defects in
core-shell nanoparticles (Supplementary Fig. 1j)30, and properties
of alloys (Supplementary Fig. 1k)31. The models can be extended
to bcc metal structures and incorporate polarization by external
electric fields on the fly using extensions with virtual electrons
(Supplementary Fig. 1l and Supplementary Fig. 3m)16,32. More
details and examples can be found in Supplementary Figs. 1–3.
Specific correlations with experimental data include structural
data (X-ray diffraction patterns, TEM, AFM, STM), spectroscopy (UV,
IR, SFG, Raman, NMR, XPS), binding constants, defect energies,
observations by QCM, DSC, I/V curves, voltammetry, and turnover
frequencies in catalysis (Supplementary Figs. 1–3). Overall, the
models have explained a wide range of experimental data for
metals, electrolyte, and organic interfaces, and can be used for
quantitative predictions.
In this paper, we introduce and validate Lennard–Jones (LJ)

parameters for ten further fcc metals in the periodic table and for
stainless steel, including Ac, Ca (α), Ce (γ), Es (β), Fe (γ), Ir, Rh, Sr (α),
Th (α), and Yb (β). Consistent LJ parameters for these additional
metals expand the space of accessible alloy compositions
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exponentially31, including high entropy alloys and metallic
glasses33,34. Among the metals covered here, prior LJ parameters
were only available for iron and have large errors (Supplementary
Table 1). Iron, which forms a bcc crystal under ambient conditions,
assumes an fcc structure at high temperature and in austenitic
steels. Embedded atom models (EAMs) are available for 7 out of
the 10 metals34, and density functional theory (DFT) calculations
are possible for all metals with some limitations for the heaviest
elements (Ac, Es, Th, Yb).
Simulations of metal nanostructures to-date have been mainly

carried out using quantum-mechanical methods, LJ parameters,
embedded atom models, and specialized potentials. In the
following, we summarize advantages and limitations. (1)
Quantum-mechanical methods include tight binding and DFT,
which can be applied up to ~103 atoms. Unique information
includes the localization of electrons on atoms and relationships
to a broad range of physical properties. For example, atomic
positions, electron density maps, band structure, bulk properties,
and chemical reactions can be studied without limitations on
chemical composition. Restrictions include the small system size,
limited dynamics (few picoseconds), problems with reliability, and
high computational expense35–37. Deviations of computed lattice
parameters, surface energies, and mechanical properties from
experimental data can be high and range from 2 to 100%. The
uncertainties arise from assumptions in exchange-correlation
functionals, fit parameters for nonbonded interactions, and
relativistic effects by d and f electrons. In particular, metal surface
energies often deviate by 50% from experimental data using
common density functionals in DFT calculations, and errors in
excess of 100% are known for the adsorption energies of rare
gases and other molecules36–38. The errors can be reduced to the
10–50% range by dispersion-corrected functionals (Grimme D3,
optPBE, Scheffler), however, significant uncertainties remain36,37,39.
Another question from a user perspective is: which density
functional should one choose? Many available options yield
divergent results for well-known experimental data, and tradeoffs
for one property versus another are common36,37,40. Overall,
predictions of surface, interfacial, and mechanical properties are
approximate and require validation by experimental data. DFT
data are therefore only of qualitative use to inform force fields,
e.g., the Interface force field (IFF)15,16,41, and EAMs34.
(2) Lennard–Jones (LJ) potentials can be used for up to ~108

atoms and dynamic processes beyond microseconds, and are
computationally about 108 times less expensive than quantum-
mechanical methods42. LJ parameters match lattice parameters in
<0.1% deviation from experiment and surface and interfacial
energies in <5% deviation from the experiment, which is one
order of magnitude more accurate than DFT and EAMs. LJ models
are compatible with numerous force fields designed for biomo-
lecules and organic species that include LJ potentials44–50.
Mechanical properties deviate similar to quantum methods (about
25%), in some cases less (0%) or more (100%) depending on the
Poisson ratio of the metal (quantitative fit when 0.36–0.37). LJ
parameters are simple, with 2 parameters per metal, and have a
clear physical interpretation. They can be extended for features of
the electronic structure to improve mechanical properties, capture
image potentials of adsorbed ions and external electric fields on
the fly16,32, and be integrated into modeling of chemical reactions.
(3) Embedded atom models (EAM) and modified embedded

atom models (MEAM) are useful for metallic structures up to ~105

atoms and simulation times of nanoseconds, excluding aqueous
and organic interfaces34,51,52. The computational expense of EAMs
is ~105 times lower compared to DFT and ~103 times higher than
that of LJ potentials. The reliability of computed structural,
thermal, and mechanical properties can be excellent with 0.1 to
5% error relative to experiments, clearly better than with DFT
methods34. Surface energies are computed too low by up to 50%,
i.e., up to ten times larger error compared to LJ potentials and

experimental data30,34,52. Mechanical properties can be excellent
with ~5% deviation and better than LJ potentials34, while
deviations up to 40% from experiments are also found depending
on the EAM30,52. On balance, lattice parameters, surface proper-
ties, and mechanical properties are of better reliability than tight
binding quantum-mechanical methods34. Shortcomings include
the difficulty to simulate electrolyte, organic, and biomolecular
interfaces due to lack of compatibility with existing bonded force
fields and high errors in surface energies53. EAM potentials also
need refitting for alloys due to 20 to 40 fit parameters per metal
with low or no interpretability34.
(4) Some specialized potentials for metal-aqueous and

metal–organic interfaces have been proposed54–56. The accuracy
and utility is typically lower than for LJ potentials at a similar
computational cost. For example, GoIP-CHARMM56 requires atom
positions to be fixed and the validation of lattice parameters,
surface energies, and interfacial energies is challenging. The
number of fit parameters tends to be high and specific interaction
parameters with other species need to be derived for every metal,
as well as for every individual (hkl) surface of a metal. In
comparison, LJ parameters function in high accuracy using
standard combination rules and need only 2 parameters per
metal including all interfaces.
In summary, LJ parameters have significant advantages over

other models and can be used in conjunction with QM and EAMs
when helpful. In the following, we describe the LJ functional
forms, parameters, validation, and example applications to
aqueous interfaces, iron alloys, and surface reactions. The paper
ends with a discussion and computational methods. The
Supplementary Information contains complete details of compu-
tational methods (Supplementary Methods), further discussion
(Supplementary Notes 1–7), as well as a Supplementary Dataset
including unit cells and surface models of all metals, as well as
force field files and run scripts for simulations.

RESULTS
Functional form and interpretation of the LJ parameters
Lennard–Jones potentials are often used in the 12-6 and 9-6 forms
and with other combinations of exponents41,57,58. For example,
the force fields AMBER47, CHARMM45, CVFF43, DREIDING48, and
OPLS-AA46 use a 12-6 LJ potential:

E ¼ ε0
σ

r

� �12
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σ

r
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r12
� B
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The force fields COMPASS49, CFF, and PCFF employ a 9-6 LJ
potential44:

E ¼ ε0 2
σ

r
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�3

σ

r

� �6� �
: (2)

In Eqs. (1) and (2), σ represents the equilibrium non-bond
distance between two atoms of the same type and ε0 the energy
at the equilibrium distance. In systems with multiple atom types,
such as alloys and metal–electrolyte interfaces, the parameters ε0,ij
and σij represent non-bond energies between different atom
types i and j and are obtained by combination rules.
Accordingly, every homoatomic fcc metal is described by two

parameters σ (formerly called r0
15) and ε0. σ represents the density

and ε0 the surface energy under standard conditions, respectively.
The density is a structural quantity and the surface energy an
energy quantity, which together capture the basic function of a
Hamiltonian to reproduce structures and energies at a given
reference state41,53. LJ models, and force fields more broadly, do
not cover a temperature range of several thousand Kelvin or
extreme pressures without adjustments. Therefore, a reference
state is important, for which we use a temperature of 298.15 K and
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a pressure of 101.325 kPa (contrary to 0 K in DFT databases)15,41.
This reference state is also used in thermochemical tables,
thermodynamic tables, and in IFF41. We discourage the common
use of cohesive energies to calibrate ε0 for solids and liquids with
high boiling points, which can cause up to hundredfold errors in
surface and interfacial properties, in favor of surface energies at
298.15 K. Cohesive energies imply a phase transition to metal
vapor at the boiling point (up to 4000 K) and usually create a
conflict in the reference state, making them unsuitable for model
validation (Supplementary Note 1). Key properties of a Hamilto-
nian, i. e., lattice parameters and surface energy at a well-defined
temperature and pressure, enable the consistent definition and
validation of force fields (as well as of density functionals and
EAMs)41.
We thus used experimental data for the density59 and the

surface energy60–62 under standard conditions to assign σ and ε0
for each metal to maximize interpretability, reliability, and
compatibility15. The LJ models yield surface energies of other
crystal faces in agreement with experimental data, reproduce the
monolayer hydration energy with water within ~5%16, as well as
interactions with electrolytes and adsorption of organic molecules
without further fit parameters (5–10% error depending on the
quality of the non-metal parameters)17–19,21,22,63. Mechanical
properties are approximate due to the simplicity of the two-
parameter model, which leads to a constant ratio of the elastic
constants C12/C44= 1. The performance ranges from excellent to
poor depending on the proximity of the Poisson ratio of the metal
to the ideal Poisson ratio of the LJ potentials (~0.36 for 12-6 LJ
potentials and ~0.37 for 9-6 LJ potentials).

Integration of the LJ parameters into other force fields
The two parameters σ and ε0 can be imported into any force field
that uses an LJ potential using standard combination rules. No
change in LJ parameters is required since our validation focuses
on the properties of the elemental fcc metals15. Therefore, the
same density and the same surface energy are obtained
upon incorporation into any other force field regardless of
combination rules.
Physically justified, standard combination rules such as in

AMBER, CHARMM, OPLS-AA, CVFF, DREIDING, or PCFF perform well
to derive non-bond interactions ε0,ij and σij between different
atom types i and j without the addition of further parameters. In
this manner, a wide range of existing parameters for inorganic,
organic, and biological compounds can be used to simulate metal-
hybrid materials and interfaces. The major factor that determines
the accuracy for combined systems is the quality of the
parameters for the other (non-metal) species, i.e., to which extent
they follow the same validation of structures and energies near
the reference state as in IFF (298.15 K and 101.3 kPa). Excellent
accuracy for metal–water, metal–organic, and other interfaces has
been previously shown16,41,64–66. By analogy, biomolecular force
fields rely on identical combination rules to simulate the hydration
of ions and proteins using distinct atom types in water, ions, and
proteins.
In this paper, we used default combination rules for CVFF (12-6

LJ potential) and PCFF (9-6 LJ potential) and standard water
models (Supplementary Note 2).

LJ parameters for FCC metals
The newly developed 12-6 and 9-6 LJ parameters are listed in
Table 1. The metals are represented by charge-neutral atoms with
repulsive and dispersive van-der-Waals interactions following Eqs.
(1) and (2), respectively. Lattice parameters and densities from
X-ray data59, as well as surface energies of the low energy (111)
surfaces60–62, were employed to assign the parameters σ and ε0 at
298 K and 101.3 kPa (Fig. 1a, b). The two parameters have only a
small interdependence which reflects the physically distinct roles.

The values were optimized by a least-squares fit and include only
significant digits necessary to achieve computational results well
within the experimental uncertainty. The difference between 12-6
and 9-6 LJ parameters for a given metal is characterized by an
average increase in the values for σ by ~1.7% and an average
decrease in the values for ε0 by ~18% towards the 9-6 LJ potential.
The differences reflect weaker repulsion and stronger attraction in
the 9-6 LJ potential relative to the 12-6 LJ potential (Table 1)15,67.
Further validation included water interfacial energies and
mechanical properties (Fig. 1a–e). The interpretation is straightfor-
ward: geometry (σ) and surface energy (ε0) of the metals
determine the interaction with other compounds and are
incorporated in the highest possible accuracy41,67. Atomistic
models of variously shaped metal nanostructures and input files
for simulations can be built using any suitable programs, e.g.,
Materials Studio, LAMMPS, CHARMM and GROMACS tools.
Specifically, the Nanomaterial Modeler module in CHARMM-GUI
allows to build customized (hkl) models and interfaces of metals,
and the generation of simulation input in various file formats
(Supplementary Fig. 4 and Supplementary Note 3)68,69.
The models can be applied in a temperature range of 298 K ±

200 K for the highest accuracy, and very good results outside this
window such as melting points have also been reported70.
Modifications of the LJ parameters for significantly different
temperatures and pressures can be made by adjustment of σ and
ε0 (Supplementary Note 4).

Lattice parameters
The lattice parameters and density, respectively, were computed
by molecular dynamics simulations in the NPT ensemble for
systems of more than 1.8 nm side length (Fig. 1a and Supple-
mentary Methods). Computed lattice parameters typically agree
with experimental data with less than 0.05% deviation (Table 2).
Excellent agreement is expected as the two parameters σ and ε0
were fitted to the density of each metal. The deviations under
0.05% are a factor 10 smaller compared to DFT calculations and
comparable to EAMs. As a result of the minor deviations in lattice
parameters Δa, deviations in densities Δρ under standard

Table 1. 12-6 and 9-6 Lennard–Jones parameters for 10 fcc metals,
including non-bond diameters σ and well depths ε0, as well as
constants A and B (in case of 12-6 LJ parameters).

Metal 12-6
LJ σ
(Å)a

12-6 LJ ε0
(kcal
mol−1)a

12-6 LJ A (kcal
mol−1 Å12)a

12-6 LJ B
(kcal
mol−1

Å6)a

9-6 LJ
σ (Å)b

9-6 LJ ε0
(kcal
mol−1)b

Ac 3.843 6.51 67,550,000 41,940 3.907 5.40

Ca (α) 4.025 3.36 60,750,000 28,570 4.088 2.80

Ce (γ) 3.734 6.38 46,870,000 34,590 3.797 5.28

Es (β) 4.133 2.88 71,540,000 28,710 4.195 2.39

Ir 2.785 9.20 2,003,000 8586 2.836 7.48

Fe (γ)c 2.590 6.00 546,700 3620 2.645 4.79

Rh 2.757 7.84 1,512,000 6886 2.807 6.38

Sr (α) 4.379 3.40 169,000,000 47,950 4.445 2.85

Th (α) 3.683 8.47 52,760,000 42,280 3.746 7.01

Yb (β) 3.942 2.71 38,160,000 20,340 4.001 2.24

aUsing the 12-6 Lennard–Jones potential according to Eq. (1), including the
force fields AMBER, CHARMM, CVFF, DREIDING, and OPLS-AA.
bUsing the 9-6 Lennard–Jones potential according to Eq. (2), including the
force fields CFF, PCFF, and COMPASS.
cParameters are given for fcc γ-Fe in stainless steel alloys and can be used
for bcc α-Fe. In the simulation of bcc α-Fe, atomic positions should be fixed
to prevent a transition into fcc γ-Fe.
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conditions are typically <0.1% (Δρ ~ [1 − (1 − Δa/a)3]). Iron
features a slightly higher deviation up to 0.5% in lattice
parameters due to a different reference state (derived at 1189 K
for fcc γ-iron and then used at 298 K for bcc α-iron and fcc steel
alloys).

Surface energy
The key advantages of the LJ models are accurate surface and
interfacial energies. (111) surface energies are fitted to experi-
mental data within the experimental uncertainty of ±1–±5% (Figs.
1b, 2a, and Table 3). Experimental data for surface energies in high
quality are available from Tyson and Miller60, Keene61, and Mills62.
The data are further backed by a correlation with well-known
atomization energies (Fig. 1d, e)59. Surface energies and surface
free energies are equal within the experimental uncertainty since
entropy contributions to the surface free energies are less than
−0.01 J m−2 (Supplementary Methods)15. Alternative models such
as EAM potentials34,51,52 and density functionals35,71 perform
typically poorly for surface energies and have deviations up to
~50% (Table 3). Calculations using density functionals are also
more difficult for heavy elements such as Ac, Ce, and Es (Table 3).
Discrepancies in surface energies directly and proportionally affect
the analysis of adsorption of molecules, assembly, and stability of
nanostructures, as well as catalytic processes on surfaces21,25,36–38.
Computed adsorption energies of simple molecules such as noble

Fig. 1 Calculation of the physical properties in molecular dynamics simulation. a Illustration of the calculation of lattice parameters and
mechanical properties of the metals using a cubic 6 × 6 × 6 supercell of Rh (side length 2.282 nm, 864 atoms). The direction of normal strain
(blue arrows) and shear strain (green arrows) for the calculation of mechanical properties is indicated. Solid blue arrows = tension, dashed
blue arrows = compression. b Illustration of the calculation of the (111) surface energy. (100), (111), and (110) cleavage planes can be
generated perpendicular to the vertical axis using the model in a and using equivalent orthorhombic supercells (Supplementary Dataset and
refs. 41,96). Two boxes with unified and separate surfaces were used, along with the corresponding average energies EU and ES. c Setup for the
calculation of the (111) metal–water interfacial energy. Three boxes containing a metal–water interface (ESL), pure water (EL), and pure metal
(ES) were used. d Linear relationship between surface energy and atomization energy. The (111) surface energy is proportional to the
atomization energy normalized per (111) surface area for all fcc metals. The relationship was used to estimate the unknown surface energies
for Es, Yb, Ac, Ce, and Th (red data points). e Derivation of the relation in d. Atomization of a layer of atoms from the bulk (process 1) and
removal of a layer of surface atoms (process 2) are thermodynamically equivalent. Process 1 describes atomization. The equivalent process 2
creates a new surface of energy γ, plus it disconnects all bonds between neighbor atoms in the detached atomic layer. These additional
contributions lead to an atomization energy per surface area that is several times higher than the surface energy (see x axis versus y axis in d).

Table 2. Lattice parameters for (5 × a)3 fcc supercells according to X-
ray diffraction data from experiments and molecular dynamics
simulations at 298 K and atmospheric pressure in the NPT ensemble
(in Å).

Metal Expta 12-6 LJ 9-6 LJ

Ac 26.555 26.559 26.543

Ca (α) 27.942 27.947 27.953

Ce (γ) 25.805 25.805 25.796

Es (β) 28.750 28.768 28.747

Fe (γ) (1189 K)b 18.197 18.161 18.300

Ir 19.196 19.203 19.199

Rh 19.016 19.016 19.014

Sr (α) 30.420 30.423 30.421

Th (α) 25.421 25.423 25.424

Yb (β) 27.424 27.431 27.425

Std dev to expt (excl γ-Fe) ±0.001 ±0.003 ±0.004

aRef. 59.
bLattice parameters for γ-iron (fcc) were calculated at 1189 K for a stable fcc
crystal structure98. Computed lattice parameters as a function of
temperature from 0 to 1661 K are given for α-iron (bcc) and γ-iron (fcc)
in Supplementary Table 2.
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Fig. 2 Surface and interfacial properties of the fcc metals. a The (111) surface free energy in experiments, in the simulation with the
LJ models, and according to other computational models such as DFT, tight binding, and EAM. The LJ models achieve the best match.
b Ratio of the (100) surface free energy to the (111) surface free energy using the LJ models. Experiments suggest values between 1.03 and
1.05 consistent with the calculations using the LJ parameters (refs. 73–75). c The (111) metal–water interface tensions computed with the
12-6 LJ models (CVFF, CHARMM) and 9-6 LJ models (PCFF). Flexible SPC and SPC-like water models were used. The upper limit of
the metal–water interface tension according to experimental data and the Young equation is also shown, showing agreement with the
computed data. d, e Example of a Rh (100)–water interface in equilibrium. About 1 water molecule in the first molecular layer is available
per 1 Rh atom in the top atomic layer, and the first molecular layer of water on the surface is strongly bound. f, g Similar trends are seen on
an Rh (111)–water interface in a different geometry. Water molecules are frequently found near epitaxial sites (fcc and hcp) and less often
near top sites on both (111) and (100) surfaces. h, i A Sr (100)–water interface before the reaction to Sr(OH)2 and H2. Due to a larger lattice
constant of Sr compared to Rh, much wider spaces between metal surface atoms are seen, allowing partial water penetration.
Approximately 2 water molecules in the first molecular layer are available per 1 Sr atom in the top atomic layer. The first molecular layer of
water is less structured due to the lower surface energy of Sr compared to Rh, and water molecules exchange faster. j, k Similar trends are
seen on the (111) surfaces in a different geometry.
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gases and organic molecules using DFT models deviate up to
several 100% from experimental data due to compounding of
errors for the metals and for the non-metal molecules36–38. EAMs
cannot be easily used to simulate metal–organic interfaces and
would face similar challenges. In comparison, LJ parameters and
standard combination rules, for example, using IFF, AMBER,
CHARMM, OPLS-AA, or PCFF, reproduce the adsorption of water
and organic molecules within 5–10% of experimental data without
additional fit parameters, and are 108 times less compute-
intensive than DFT calculations16,72.
For the (100) surface, computed surface energies are on average

4.7% or 2.7% higher than for the (111) surface, depending on
whether 12-6 or 9-6 LJ potentials are used, respectively (Table 3
and Fig. 2b). The different ratios reflect intrinsic differences due to
the functional form of the LJ potential. Experimental measure-
ments of the surface energy anisotropy, using information on
nanoparticle shapes and facet stability, suggest 3–5% higher
surface energies for (100) surfaces relative to (111) surfaces73–75.
Both types of LJ potentials reproduce the data in the right range
and suggest that relative energies of (hkl) surfaces mainly result
from changes in surface geometry.
For some heavier metals including Th, Ce, Ac, Yb, and Es,

experimental data for surface energies were not available. We
utilized a relationship between well-known atomization energies
ΔHat and surface energies γ to obtain the missing data76. Surface
energies can be considered a form of cohesive energy related to a
(hkl) surface area (Fig. 1d, e). Division of the known atomization
ΔHat energies for N atoms, i.e., cohesive energies, by the square of
the lattice constant yields a linear correlation with (111) surface
energies for all fcc metals:

For fccmetals: γð111ÞSV � Nð111ÞΔHat

Að111Þ
¼ 2ΔHat

ð ffiffiffi
3

p
=2ÞNAa2

(3)

Hereby, N= 2 metal atoms are found per unit area of a (111)
surface (Að111Þ ¼ ð ffiffiffi

3
p

=2Þa2). The calculation utilizes the atomiza-
tion energy ΔHat in kJ mol−1, the Avogadro constant NA, and the
lattice parameter a. The proportionality constant further depends
on the coordination number and pairwise bond strength of the
atoms in the detached atomic layer (Process 2 in Fig. 1e)76. Using
known surface energies, corresponding atomization energies, and
lattice parameters for (111) surfaces of fcc metals, we obtain:

For fccmetals: γð111ÞSV ¼ 0:178 � 2ΔHat

ð ffiffiffi
3

p
=2ÞNAa2

¼ 0:308 � ΔHat

NAa2
(4)

The linear correlation in Eq. (4) has average deviations under 5%
(Fig. 1d). Using the training curve and known atomization energies
for Th, Ce, Ac, Yb, and Es, we obtained the corresponding surface
free energies with ~5% uncertainty, which have not been available
to-date (red data points in Fig. 1d and entries in Table 3). The
estimation of surface energies from atomization energies and unit
cell geometry can also be helpful for other (hkl) surfaces and
lattice types (bcc, hcp).

Water, electrolyte, and organic interfaces
Experimental data have shown that polar as well as nonpolar
liquids spread on clean metal surfaces with contact angles of 0°77.
Computed metal–water contact angles are 0° for all 18 fcc metals
and agree with experiments. In addition, an upper bound of the
values for the metal–water interface tension γSL can be obtained
from the Young equation:

γSL þ γLV cos θ ¼ γSV (5)

wherein γSV is the metal surface free energy (Table 3), γLV= 73 mJ
m−2 the water surface tension59, and θ the contact angle of water.
The metal–water interface tension γSL is then expected to have a

value between zero and (γSV− γLV), i. e.,

0< γSL < γSV � γLV (6)

Computed interface tensions concur with expectations accord-
ing to Eq. (6) (Fig. 2c and Table 4). We utilized a flexible SPC water
model (CVFF) and a flexible SPC-like water model (PCFF). The use
of a TIP3P water model instead of the flexible SPC model leads to
the same results with a few percent difference. The computed
metal–water interfacial energies are, on average, around 80% of
the theoretical maximum using the 12-6 LJ parameters and ~60%
of the theoretical maximum using the 9-6 LJ parameters. The ratio
also depends on the lattice spacing of the metal. As recently
shown for gold, computed hydration energies for monolayer
coverage match experimental values within ±5% using 12-6 LJ
parameters and standard combination rules16. Attractive polariza-
tion due to image charges on the atomically flat surfaces equals
−0.020 ± 0.02 J m−2 in the presence of bulk water, which equals
~2% of the interface tension16,63,78. Attractive polarization is thus
near-negligible in polar solvents. However, adsorption of ions and
single water molecules in the gas phase, as well as strong electric
fields can add significant attraction16.
The models are thus useful to examine electrolyte interfaces in

high reliability. As an example, we illustrate the structure of water
on Rh surfaces, which have a high interfacial energy of ~2.1 J m−2

and a small lattice parameter (Fig. 2d–g), in comparison to Sr
surfaces with a much lower interfacial energy of ~0.3 J m−2 and a
50% wider lattice parameter (Fig. 2h–k). The packing of water
molecules relative to the metal surface atoms and the attraction to
the metal surface exhibit major differences. The distinct layering of
water molecules is visible on the Rh surfaces (Fig. 2e, g). Sr
surfaces lead to a less regular distribution of water molecules,
which shows more similarity to the bulk structure of water (Fig. 2i,
k). Differential dynamics at the metal–water interface has
implications on surface contact of electrolytes, dissolved mole-
cules and polymers, and surface reactivity.
Energies of adsorption and assembly of organic and biological

molecules at metal surfaces have been shown to agree within
±10% of experimental data53,79,80. Many examples using the
existing LJ models for 8 fcc metals are known (Supplementary

Table 4. The metal–water interface tension γ
f111g
SL , including upper

limits from experimental data and values from the simulation
(in J m−2).

Metal Upper limit of γf111gSL
from expta

γ
f111g
SL , 12-6 LJb,d γ

f111g
SL , 9-6 LJc,d

Ac 1.00 ± 0.05 0.80 ± 0.01 0.65 ± 0.01

Ca (α) 0.42 ± 0.01 0.35 ± 0.01 0.27 ± 0.01

Ce (γ) 1.04 ± 0.05 0.84 ± 0.01 0.68 ± 0.01

Es (β) 0.32 ± 0.03 0.30 ± 0.01 0.23 ± 0.01

Fe (γ)e Est. 2.18 ± 0.1 1.78 ± 0.01 1.69 ± 0.01

Ir 2.97 ± 0.02 2.51 ± 0.01 2.32 ± 0.01

Rh 2.57 ± 0.02 2.16 ± 0.01 2.01 ± 0.01

Sr (α) 0.34 ± 0.01 0.30 ± 0.01 0.26 ± 0.01

Th (α) 1.46 ± 0.05 1.16 ± 0.01 0.97 ± 0.01

Yb (β) 0.34 ± 0.02 0.31 ± 0.01 0.23 ± 0.01

aFrom the Young equation γSL= γSV− γLV (Eq. (6)).
bFlexible SPC water model in CVFF.
cSPC-like water in PCFF.
dFree energies are reported that consist of the computed energy
contribution and an added entropy corrections of +0.06 J m−2 for Ac, Ce,
Fe, Ir, Rh, Th, and +0.04 J m−2 for Ca, Es, Sr, Yb for both 12-6 and 9-6 LJ
values (Fig. 1c and Supplementary Methods).
eValues for a hypothetical fcc structure of iron at room temperature.
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Figs. 1–3). The reliability is up to an order of magnitude higher
than with density functional methods (up to 100% scatter)36–38.
Additional benefits are low computational cost, dynamics up to
microsecond time scales, full electrolyte conditions, and length
scales larger than other all-atom models (EAM). Effects of grain
boundaries, ionic strength, solution pH, dynamics of adsorbed
proteins, polymers, and interactions of metal nanostructures with
cell surfaces can be studied. The models are very well suited for
large-scale computational screening and machine learning. The
remaining minor uncertainties are associated with assumptions in
the force field, such as a residual error in surface energies,
differences using 12-6 LJ versus 9-6 LJ parameters, combination
rules of the LJ parameters, and the quality of the non-metal
parameters.

Mechanical properties
Computed isotropic elastic properties agree qualitatively with
experimental data, including Young’s modulus, bulk modulus,
shear modulus, and Poisson ratio (Fig. 3, Table 5, and Supple-
mentary Tables 3 and 4). The correlation ranges from quantitative
when the Poisson ratio of the metal is close to the ideal Poisson
ratio of LJ potentials of 0.36, to large deviations of 100% when the
Poisson ratio is as small as 0.24–0.26. This trend is the same for all
18 fcc metals, i.e., including the 8 fcc metals reported earlier
(Supplementary Table 5)15. The changes in mechanical properties
as a function of the Poisson ratio, while the fcc crystal structure is
the same, suggest an association with the specific electronic

structure of each metal. The 12-6 LJ potential often fares better
than the 9-6 LJ potential, with average deviations of +11 ± 53% in
Young’s modulus, 87 ± 98% in bulk modulus, +1 ± 47% in shear
modulus, and +35 ± 8% in Poisson ratio relative to experiment
(Table 5). The 9-6 LJ potential yields average errors of −30 ± 34%
in Young’s modulus, +28 ± 68% in bulk modulus, −35 ± 30% in
shear modulus, and +39 ± 9% in Poisson ratio. The scatter with
the 9-6 LJ potential is somewhat lower although it tends to
systematically underestimate elastic moduli by up to −30%. The
calculations were also carried out with different molecular
dynamics codes, including Discover and LAMMPS, and results
are identical within a few percent (Supplementary Table 4).
Overall, mechanical properties are excellent in some cases (Ag, Pd,
Pt)15, good in others (Al, Au, Ca, Cu, Pb, Sr), and otherwise benefit
from refinements. The reliability of the neat 12-6 LJ model is
overall good for mechanical properties (in the 9-6 LJ model,
acceptable), considering the simplicity, computational efficiency,
and compatibility with inorganic and biomolecular force fields.
Experimental reference data have typical uncertainties of ±5%,

which can also be higher at 10–20% for some metals (Table 5 and
Fig. 3). For Ac and Es, reference data were only partially or not
available. These uncertainties in elastic constants C11, C12, C44, and
elastic moduli E, K, G, ν from experiments are clearly higher than
for lattice parameters and surface energies59,81,82. The origins
include: (1) Elastic properties are a function of stress and strain and
usually defined in the limit of zero stress. Experimental techniques
(acoustic, volume compression, etc) can involve non-negligible
applied stresses and strains, similar to notable applied strains in

Fig. 3 Mechanical properties of the fcc metals. Data from the experiment, computation with the LJ models, and DFT are shown (with the
RBPE functional where possible). a Young’s modulus, b bulk modulus, c shear modulus, d Poisson ratios. Deviations of computed values from
experiment are significant and tend to be lower with the 12-6 LJ potential.
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simulations (0.5–1%). (2) The microstructure of the metal crystals
and specimens in experiments can have imperfections and affect
the results. (3) Young’s modulus E can have a strong dependence
on the [hkl] direction due to the discrete atomic structure
(Supplementary Note 5)83. In addition, some random measure-
ment error occurs and these differences explain some deviations.
Fully quantitative comparisons of experiments with simulations
would benefit from complete stress–strain curves and monitoring
all elastic constants (focusing on C11, C12, and C44)

84,85.
Outstanding fits to mechanical properties have been obtained

with recent EAMs that have uncertainties of ~5% in E, K, G, and ν34.
These EAMs, however, use 36 fit parameters per metal compared
to 2 interpretable parameters in the LJ model. Mechanical
properties computed using DFT and other computational
techniques scatter by a comparable amount as the LJ potentials
(Table 5 and Supplementary Tables 3 and 4). Some deviations are
under 5% and some in excess of 100% from the experiment,
including surprising results such as a negative Poisson ratio for Ce
(Table 5 and Supplementary Table 3)86. We re-computed
mechanical data for all 18 fcc metals with the RPBE functional,
which is not feasible for some heavier elements, and utilized the
LDA functional for Ce (Table 5 and Supplementary Tables 3 and 5).
DFT data have notable deviations from experiments and perform
reasonably well with average errors of −28 ± 28% in Young’s
modulus, 0 ± 38% in bulk modulus, +19 ± 24% in shear modulus,
and +2 ± 67% in Poisson ratio relative to experiment.
Deviations of the LJ model in mechanical properties are related

to simplicity. The level of sophistication is sufficient to simulate
crystal structures, surfaces, interfaces with electrolytes and organic
molecules, and interfacial properties of fcc alloys31 in excellent
accuracy, unmatched by common DFT calculations and 108 faster.
The validation of crystal structures and surface energies supports
reasonable estimates for elastic constants, which are the second
derivatives of the energy with respect to coordinates. However,
the reproduction of metal-specific Poisson ratios and anisotropies
of mechanical properties requires the inclusion of more detail of
the electronic structure. For example, the addition of a harmoni-
cally bonded virtual electron to gold atoms previously improved
computed mechanical properties 5–10% closer to experimental
values, in addition to accounting for image potentials and external
electric fields on the fly (Supplementary Fig. 3m)16. The addition of
four negatively charged virtual d electrons in tetrahedral geometry
around a positively charged W nucleus reproduces the structure of
the bcc lattice as well as the specific Poisson ratio and elastic
moduli (Supplementary Fig. 1l)50. Similar order-of-magnitude
improvements are feasible through the representation of virtual
n electrons in water (TIP5P)87, organic compounds (PEO)41, and
virtual π electrons in graphite and aromatic molecules65. Going
forward, a refined representation of metal atoms by combinations
of a positively charged nucleus surrounded by specifically
positioned, harmonically bonded negative point charges can yield
more quantitative mechanical properties, add polarization, and
preserve compatibility. Coverage of all 18 fcc metals in the
periodic table with simple LJ parameters and their evaluation is a
first step towards this goal15.

Iron and steel
Iron occurs as α-Fe with a bcc structure at room temperature59. A
stable fcc phase, γ-Fe (austenite), is formed in a temperature range
from 912 to 1394 °C (Supplementary Fig. 5) and above the eutectic
point of 727 °C in plain carbon steels (0.8 wt% C). The LJ models
are the first validated atomistic models to simulate iron and its
interfaces with electrolytes, oxides, and organic compounds (Table
1). They can also be used to simulate interfaces of bcc iron and fcc
iron alloys with other metals using pairwise charge increments66.
For bcc structures, we recommend fixing the positions of the
metal atoms during molecular dynamics simulations due to

voluntary conversion into an fcc structure, which is the
energetically preferred structure for LJ potentials. In fcc alloys,
all atoms can be mobile as usual. Computed lattice parameters
and surface energies for bcc Fe and fcc Fe show excellent
agreement with experimental data as a function of temperature
(Supplementary Fig. 5 and Supplementary Table 2).
Many structural applications of Fe involve austenitic stainless

steels, which have an fcc structure (γ-Fe) at room temperature,
stabilized by the addition of small amounts of Ni, Mn, and N.
Austenitic steels account for most of the stainless steel production.
For example, type 304 stainless steel with 18% Cr and 8% Ni, as
well as others containing Mn, N, Mo, and Nb, have optimized
resistance to corrosion, pitting, and acid attack. To illustrate the
application of the LJ parameters for iron, we prepared models of
type 304 stainless steel with 18% Cr and 8% Ni content using the
12-6 LJ parameters and computed several properties (Fig. 4a–f).
We also derived and validated new LJ parameters for Cr, which
can be applied to bcc Cr with fixed atoms and to fcc Cr in alloys
with full atom mobility (Supplementary Table 6). The computed
equilibrium density of type 304 stainless steel of 8.0 g cm−3

matches experimental data (Fig. 4a)88 and the computed (111)
surface energy of 2.29 J m−2 is close to experiments which suggest
2.1 ± 0.1 J m−2 (Fig. 4b)60,62. Hereby, we employed a supercell that
displays (111) surfaces along the z-axis. Furthermore, an aqueous
interface was examined by the addition of 600 water molecules,
which is present before superficial oxide formation (Fig. 4c). The
steel–water interfacial tension of ~1.8 J m−2 agrees with expecta-
tions from the experiment (<2.0 J m−2) and is close to the interface
tension of pure Fe (Table 4). The bulk modulus is somewhat
overestimated (Fig. 4a) and similar to that of pure iron (Fig. 3b)89.
For a chemically realistic representation of the alloy, we used
pairwise charge increments between neighbor atoms (Fig. 4d)
that31 account for charge transfer between Fe, Cr, and Ni due to
small differences in electronegativity31,90. Thereby, every atom is
surrounded by 12 nearest neighbors in the bulk fcc-type crystal,
while at the (111) surface the coordination number is reduced to 9
and leads to slightly different atomic charges (Fig. 4e, f). The
impact of the atomic charges on the computed bulk properties of
this particular alloy (Fe–Cr–Ni) can be neglected in the first
approximation as the electronegativities are similar. However, the
differences are likely significant enough to affect the binding of
corrosion inhibitors and the kinetics of surface reactions as even
small differences in activation barriers ΔEa lead to large differences
in reaction kinetics. For example, a difference of only ΔEa=+1 RT
(+0.6 kcal mol−1) can delay corrosion by 2.7 times (~e–ΔEa/RT).
Further details are described in Supplementary Notes 6 and 7.

Simulation of chemical reactions
The earlier parameters for fcc metals have been used to model
chemical reactions and covalent bonding to metal surfaces (Fig.
4g–k). Molecular dynamics simulations can be locally coupled via
QM/MM approaches to study bond breaking and transition states
on metal surfaces (Fig. 4g)80. The region around the reaction
center (darker color) was treated quantum mechanically, shown
for the catalytic conversion of furfuryl alcohol to methylfurane.
Covalent bonding of thiols (-S-R) to metal surfaces and
nanoparticles can be represented by increasing the ε0 values of
sulfur to 0.5 or 1.0 kcal mol−1 using standard combination rules
while all other bonded and nonbonded parameters of the
thiol remain the same (σ ~ 4 Å for S) (Fig. 4h, i)91. Sulfur then
preferentially coordinates epitaxial sites with a bond strength
proportional to the surface energy of the metal, e. g., 10–16 kcal
mol−1 on Pd (111). Specific reactions can also be studied on a
case-by-case basis using knowledge about the reaction mechan-
ism from experiments and ab-initio simulations. For example, the
catalytic activity of a series of differently shaped palladium
nanoparticles in Stille coupling reactions was predicted without
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Fig. 4 Application of the LJ parameters for the simulation of stainless steel and chemical reactions. a–c Models of type 304 stainless steel
(fcc Fe–Cr–Ni with 18 wt% Cr and 8 wt% Ni) and computed bulk properties. Density88, surface energy60,62, and liquid interfacial properties
agree very well with experimental data. The bulk modulus89 is overestimated (using 12-6 LJ parameters). d–f Charge increments represent
charge transfer between nearest-neighbor atoms31. Atomic charges are a function of the coordination number and differ for bulk atoms
(highlighted atoms in a are shown in e) versus surface atoms (highlighted atoms in b are shown in f). The magnitude of pairwise charge
increments depends on differences in atomization energy, ionization energy, and electron affinity. g MD/QM combinations to analyze local
reactions80. The QM region is shown in a darker color. h, i Covalently bound thiols to metal surfaces and nanoparticles can be represented by
an increased LJ well depth for the sulfur atoms91. j Prediction of reaction rates of differently shaped Pd nanoparticles in C-C Stille coupling
using knowledge about the rate-determining step and classical simulation24,25. k Representation of chemisorbed oxygen on aluminum and
nickel surfaces using added bonded parameters based on experimental data92–95.
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the need for quantum-mechanical simulations (Fig. 4j)24,25. A
detachment of Pd atoms from the nanoparticle was the rate-
limiting (slowest) step and the abstraction energy could be
directly calculated using the LJ potential. The exponential average
over the surface atoms in the nanoparticle correlates well with the
catalytic activity observed in the experiment (Fig. 4j). Oxidation
and corrosion mechanisms can be described using models of
partially oxidized surfaces with additional bonded terms, informed
by structures from experiments and IFF parameter estimates
(Fig. 4k)92–95.

DISCUSSION
We introduced 12-6 and 9-6 Lennard–Jones parameters for the
simulation of 10 fcc metals including iron and the interfaces with
electrolytes, organic, and inorganic compounds. Densities, surface
energies, and interface energies are obtained in excellent
agreement with the experiment under ambient conditions, with
average deviations of 0.1%, 3%, <10%, and mechanical properties
in qualitative agreement. The parameters are defined at room
temperature and atmospheric pressure, perform best within 298 ±
200 K, and can be modified for different conditions. The LJ
parameters for fcc metals can be integrated into existing
biomolecular and materials-oriented force fields such as IFF,
AMBER, CHARMM, COMPASS, CVFF, DREIDING, OPLS-AA, and PCFF.
Compatibility using standard combination rules has been
extensively documented and no additional parameters are
needed. We describe some applications, including the structures
and energies of metal–water interfaces, metal–organic interfaces,
the simulation of stainless steel alloys, and chemical reactions.
The Lennard–Jones models for fcc metals perform up to ten

times more accurately than DFT and EAM models for surface and
interfacial properties, and the computational efficiency is orders of
magnitude higher due to using only 2 parameters per metal. High
accuracy and interpretability originate from the relation of σ and
ε0 to the density and surface energy of each metal. The models
perform very well in the computation of quantities not included in
the calibration, for example, the anisotropy of (111) and (100)
surface energies, interfacial properties with electrolytes and
organic molecules, and properties of alloys. Limitations include
mechanical properties, which reach a variable agreement with
experimental data. The agreement is good relative to experiment
for metals with Poisson ratios close to the default Poisson ratio of
LJ models (0.36–0.37), and 12-6 LJ parameters tend to perform
better than 9-6 LJ parameters. Uncertainties in mechanical
properties are comparable to DFT methods, and embedded atom
models with 36 fit parameters per metal perform better34. The LJ
models are the first models for atomistic simulations of some
metals (Ac, Es, Th).
The simplicity of the models allows easy implementation in

molecular dynamics and Monte Carlo simulations. The models
are extensible to alloys using charge increments31, to covalent
surface modification via thiols24,91, and chemical reac-
tions24,25,96. This study of 10 fcc metals, together with the
earlier work for 8 fcc metals15, covers all 18 fcc elemental metals
in the periodic table. The parameters also apply to fcc iron alloys
such as stainless steels with full atom mobility, as well as to bcc
iron and bcc chromium with fixed atoms. The method of
parameterization is suitable for fcc phases of other metals at
relevant temperatures and pressures. Going forward, extensions
of the LJ models with bonded virtual electrons can cover a
broader range of crystal structures (bcc and hcp metals), predict
more accurate mechanical properties and on the fly polarization
with a small increase in computational cost and no loss of
existing attributes16,50.
While the LJ potentials do not explicitly incorporate the

electronic structure, they implicitly incorporate some essential
features of the electronic structure better than current DFT

methods, such as correct surface energies. The simulation of
chemical reactions at interfaces using the LJ parameters is
possible on a case-by-case basis using key information about
reaction steps from experiment and theory, without resorting to
QM simulations24,25,96,97. Simulations of the full electronic
structure during bond formation and bond breaking can be
achieved using QM/MM approaches, or a combination of separate
quantum-mechanical calculations at a local scale with snapshots
taken from molecular dynamics simulations (QM/MD)80.

METHODS
Model building
Model systems of the metals of 1.5–3.0 nm side length were built from
multiple unit cells, assuming crystal structure data obtained by X-ray
diffraction59. Larger models were utilized to compute surface energies and
interfaces with water. The Materials Studio program was used for model
building and visualization.

Simulation protocols
We employed a spherical cutoff at 1.2 nm for the pairwise summation of LJ
interactions. Lattice parameters were computed using the supercell and
molecular dynamics simulation in the NPT ensemble at 298.15 K and
101.3 kPa (Fig. 1a). Surface energies were computed using a set of two
models, bulk models and cleaved models to create a surface, using
molecular dynamics simulation in the NVT ensemble at 298.15 K and
101.3 kPa (Fig. 1b). Solid–water interfacial energies were computed from
the difference in average energies for 3D periodic boxes containing a
metal–water interface, the bulk metal, and bulk water by molecular
dynamics simulation in the NPT ensemble (Fig. 1c). Mechanical properties
were computed using the Discover program and the LAMMPS program,
which yield the same results within a typical difference of 0–3% (Fig. 1a).
The simulation settings in Discover involved a time step of 1 fs, the
summation of pairwise interactions with a spherical cutoff at 1.2 nm, the
summation of electrostatic interactions with Ewald summation in high
accuracy (10−6), temperature control by velocity scaling with a tempera-
ture window of 10 K, and the Parrinello–Rahman barostat in case of the
NPT ensemble. Simulation settings in LAMMPS were equivalent, except for
the PPPM method for electrostatic interactions (10−6 accuracy),
Nose–Hoover chains for temperature control, and Nose–Hoover chains
for pressure control in case of the NPT ensemble. Details of computational
methods including DFT calculations of mechanical properties and a
discussion of entropy contributions to surface and interfacial free energies
are provided in the Supplementary Methods. Atomistic models, force field
files, and input files to reproduce all data are available in the
Supplementary Dataset.
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