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Abstract—We consider a problem of guessing, wherein an
adversary is interested in knowing the value of the realization of
a discrete random variable X on observing another correlated
random variable Y . The adversary can make multiple (say, k)
guesses. The adversary’s guessing strategy is assumed to minimize
α-loss, a class of tunable loss functions parameterized by α. It has
been shown before that this loss function captures well known loss
functions including the exponential loss (α = 1/2), the log-loss
(α = 1) and the 0-1 loss (α = ∞). We completely characterize
the optimal adversarial strategy and the resulting expected α-
loss, thereby recovering known results for α = ∞. We define
an information leakage measure from the k-guesses setup and
derive a condition under which the leakage is unchanged from
a single guess.

I. INTRODUCTION

The classical guessing problem involves an adversary in-
terested in finding the value of a realization of a discrete
random variable X by asking a series of questions in an
adaptive manner until an affirmative answer is received. A
commonly used performance metric for the guessing prob-
lem is the expected number of guesses required until X is
guessed correctly, or more generally a moment of this number.
Massey [1] established a lower bound on the expected number
of guesses in terms of the entropy of X . Later, Arikan [2]
investigated the problem of bounding the moments of the
number of guesses in terms of the Rényi entropy [3] of X .
Further connections between Rényi entropy and guessing are
explored in [4]–[7].

We study the guessing problem where an adversary makes
a fixed number of guesses. Such a setting finds applications
in several practical scenarios. For example, an adversary is
allowed several guesses to login with a password before
getting locked-out. We consider a setup where an adversary
is interested in guessing the unknown value of a random
variable X on observing another correlated random variable Y ,
where X and Y are jointly distributed according to PXY over
the finite support X × Y . Since the adversary makes a fixed
number of guesses k, we focus on evaluating the adversary’s
success using loss functions that in turn can measure the
information leaked by Y about X . To this end, we model
the adversary’s strategy using α-loss, a class of tunable loss
functions parameterized by α ∈ (0,∞] [8], [9]. This class
captures the well-known exponential loss (α = 1/2) [10],
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log-loss (α = 1) [11]–[13], and the 0-1 loss (α = ∞) [12],
[14]. The adversary then seeks to find the optimal (possibly
randomized) guessing strategy that minimizes the expected α-
loss over k guesses.

Devising guessing strategies with the quest to optimize
certain performance metrics of an adversary has several appli-
cations in information theory and related fields; this includes
sequential decoding [2], guessing codewords [15], botnet
attacks [5], [7], to name a few. In [5], the authors consider
a guessing problem with a fixed number of guesses allowing
for randomized guessing strategies (similar to our setting) and
analyze the exponential behaviour of the probability of success
in guessing the sequences. A closely related work is that of
maximal leakage [16] which captures the information leaked
when an adversary maximizes its probability of correctly
guessing (equivalent to minimizing 0-1 loss) an unknown
function of X; they further generalize this notion to k-guesses,
and they show the resulting leakage measure is unchanged.

Our main contributions are as follows:

• We completely characterize the minimal expected α-loss
for k guesses (Theorem 1), thereby recovering known
results for α = ∞ [16]. To the best of our knowledge,
such a result even for log-loss (α = 1) under multiple
guesses was not explored earlier. We derive a technique
for transforming the optimization problem over the prob-
ability simplex associated with multiple random variables
to that of with a single random variable using tools drawn
from duality in linear programming, which may be of
independent interest (Lemma 2).

• We define a measure of information leakage for k guesses
of an adversary motivated by α-leakage [8, Definition 5]
and show that it does not change with the number of
guesses for a class of probability distributions PXY
(Theorem 2).

II. BACKGROUND AND PROBLEM DEFINITION

We first review α-loss and then define the minimal expected
α-loss for k guesses. Later, we define a measure of information
leakage based on this.

Definition 1 (α-loss [8], [9]). For α ∈ (0, 1) ∪ (1,∞), the
α-loss is a function defined from [0, 1] to R+ as

`α(p) :=
α

α− 1

(
1− p

α−1
α

)
. (1)
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It is defined by continuous extension for α = 1 and α = ∞,
respectively, and is given by

`1(p) = log
1

p
, `∞(p) = 1− p. (2)

Notice that `α(p) is decreasing in p.

Definition 2 (Minimal expected α-loss for k guesses). Con-
sider random variables (X,Y ) ∼ PXY and an adversary that
makes k guesses X̂[1:k] = X̂1, X̂2, . . . , X̂k on observing Y

such that X−Y −X̂[1:k] is a Markov chain. Let PX̂[1:k]|Y be a
strategy for estimating X from Y in k guesses. For α ∈ (0,∞],
the minimal expected α-loss for k guesses is defined as

ME(k)α (PXY )

:= min
PX̂[1:k]|Y

∑
x,y

PXY (x, y)`α

(
P

(
k⋃
i=1

(X̂i = x|Y = y)

))
.

(3)

We interpret P
(

k⋃
i=1

(X̂i = x)|Y = y

)
as the probability of

correctly estimating X = x given Y = y in k guesses. An
adversary seeks to find the optimal guessing strategy in (3).
Note that the optimization problem in (3) was solved for a
special case of k = 1 by Liao et al. [8, Lemma 1]. Notice that

ME(k)α (PXY ) =
∑
y

PY (y)ME(k)α (PX|Y=y), (4)

where we have slightly abused the notation in the R.H.S. of
(4). Hence, in view of (4), in order to solve the optimization
problem in (3), it suffices to solve for a case where Y = ∅,
i.e.,

ME(k)α (PX) := min
PX̂[1:k]

∑
x

PX(x)`α

(
P

(
k⋃
i=1

(X̂i = x)

))
.

(5)
Also, in the sequel, it suffices to consider the optimization
problem in (5) only for the case where k < n, where PX
is supported on X = {x1, x2, . . . , xn} because if k ≥ n,
we have ME(k)α (PX) = 0, since a strategy P ∗

X̂[1:k]
such that

P ∗
X̂[1:n]

(x1, x2, . . . , xn) = 1 is optimal.

Motivated by α-leakage [8, Definition 5] which captures
how much information an adversary can learn about a random
variable X from a correlated random variable Y when a single
guess is allowed, we define a leakage measure which captures
the information an adversary can learn when k guesses are
allowed. This definition is also related to maximal leakage
under k guesses [16].

Definition 3 (α-leakage with k guesses). Given a joint distri-
bution PXY and k estimators X̂1, X̂2, . . . , X̂k with the same

support as X , the α-leakage from X to Y with k guesses is
defined as

L(k)
α (X → Y ) ,

α

α− 1
log

max
PX̂[1:k]|Y

E

P( k⋃
i=1

(X̂i = X)|Y
)α−1

α


max
PX̂[1:k]

E

P( k⋃
i=1

(X̂i = X)

)α−1
α

 , (6)

for α ∈ (0, 1) ∪ (1,∞).

III. MAIN RESULTS

Theorem 1 (Minimal expected α-loss for k guesses). Con-
sider a PX supported on X = {x1, x2, . . . , xn} such that
p1 ≥ p2 ≥ · · · ≥ pn, where pi := PX(xi), for i ∈ [1 : n].
Then the minimal expected α-loss for k guesses is given by

ME(k)α (PX) =
α

α− 1

n∑
i=s∗

pi

1−

(
(k − s∗ + 1)pαi∑n

j=s∗ p
α
j

)α−1
α

 ,

(7)

where

s∗ = min

{
r ∈ {1, 2, . . . , k} : (k − r + 1)pαr∑n

i=r p
α
i

≤ 1

}
. (8)

Remark 1. It can be inferred from Theorem 1 that in the
optimal guessing strategy, the adversary guesses the s∗ most
likely outcomes, and uses an updated tilted distribution on the
rest of the outcomes (see also (28)). For the special case when
k = 2 and s∗ = 1, this optimal strategy is exactly the same
as that of a seemingly different guessing problem considered
in [17, Section II-B].

Remark 2. Notice that whenever s∗ = 1 in (8), the expression
in (7) simplifies to

α

α− 1

(
1− k

α−1
α exp

(
1− α
α

Hα(X)

))
, (9)

where Hα(X) = 1
1−α log (

∑n
i=1 p

α
i ) is the Rényi entropy of

order α [3]. Also, note that for the special case of k = 1, we
always have s∗ = 1, thereby recovering [8, Lemma 1].

Corollary 1 (Minimal expected log-loss {α = 1} for k
guesses). Under the notations of Theorem 1, the minimal
expected log-loss for k guesses is given by

ME(k)1 (PX) = H(X)−Hs∗

(
p1, p2, . . . , ps∗−1,

n∑
i=s∗

pi

)

−

(
n∑

i=s∗

pi

)
log (k − s∗ + 1), (10)

where s∗ = min
{
r ∈ {1, 2, . . . , k} : (k−r+1)pr∑n

i=r pi
≤ 1
}

and

Hs∗(q1, q2, . . . , qs∗) :=
∑s∗

i=1 qi log
1
qi

is the entropy function.
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Corollary 2 (Minimal expected 0-1 loss {α = ∞} for k
guesses). Under the notations of Theorem 1, the minimal
expected 0-1 loss for k guesses is given by

ME(k)∞ (PX) = 1−
k∑
i=1

pi

= 1− max
a1,a2,...,ak:
al 6=am,l 6=m

k∑
i=1

PX(ai). (11)

The following theorem shows the robustness of α-leakage
to the number of guesses for a class of probability distributions
PXY . Let P (α)

X|Y=y denote the tilted distribution of PX|Y=y ,

i.e., P (α)
X|Y (x|y) =

PX|Y (x|y)α∑
x PX|Y (x|y)α .

Theorem 2 (Robustness of α-leakage to number of guesses).
Consider a PXY such that P (α)

X|Y (x|y) ≤
1
k , for all x, y and

P
(α)
X (x) ≤ 1

k , for all x. Then

L(k)
α = L(1)

α . (12)

The proofs of Theorems 1 and 2 are given in the following
section.

IV. PROOFS OF MAIN RESULTS

We begin with the following lemmas which will be useful
in the proof of Theorem 1. It is intuitive to expect that an
optimal strategy, P ∗

X̂[1:k]
, puts zero weight on ordered tuples

(a1, a2, . . . , ak) (denoted as a[1:k] in the sequel) whenever
ai = aj for some i 6= j, since there is no advantage in guessing
the same estimate more than once. The following lemma based
on the monotonicity of the α-loss formalizes this.

Lemma 1. If P ∗
X̂[1:k]

is an optimal strategy for the optimization
problem in (5), then

P ∗
X̂[1:k]

(a[1:k]) = 0, for all a[1:k] s.t. ai = aj , for some i 6= j.

The proof of Lemma 1 is deferred to Appendix A.

Remark 3. An important consequence of Lemma 1 is that, if
P ∗
X̂[1:k]

is an optimal strategy for the optimization problem in
(5), then we have∑

x

P∗

(
k⋃
i=1

(X̂i = x)

)
= k, (13)

where the probability P∗ is taken with respect to an optimal
strategy P ∗

X̂[1:k]
. Hence, it suffices to consider the optimization

in (5) over all the strategies PX̂[1:k]
satisfying (13).

Let X = {x1, x2, . . . , xn} be the support of PX . A vector
(t1, t2, . . . , tn) such that

∑n
i=1 ti = k is said to be admissible

if there exists a strategy PX̂[1:k]
satisfying

ti = P

 k⋃
j=1

(X̂j = xi)

 , for all i ∈ [1 : n]. (14)

Equivalently, (14) can be written as the following system of
linear equations.

ti =
∑

a[1:k]:
k⋃
j=1

(aj=xi)

PX̂[1:k]
(a[1:k]), for all i ∈ [1 : n]. (15)

In general, in order to determine whether a vector
(t1, t2, . . . , tn) is admissible or not, we need to solve a linear
programming problem (LPP) with number of variables and
constraints that are polynomial in the support size of PX ,
i.e, n. Nonetheless, the following lemma based on Farkas’
lemma [18, Proposition 6.4.3] completely characterizes the
necessary and sufficient conditions for the admissibility of a
vector (t1, t2, . . . , tn).

Lemma 2. A vector (t1, t2, . . . , tn) such that
n∑
i=1

ti = k is

admissible if and only if 0 ≤ ti ≤ 1, for all i ∈ [1 : n].

The proof of Lemma 2 is deferred to Appendix B. We are
now ready to prove Theorem 1.

Proof of Theorem 1. From the definition of the minimal ex-
pected α-loss for k guesses in (5), we have

ME(k)α (PX)

= min
PX̂[1:k]

α

α− 1

 n∑
i=1

pi

1− P

(
k⋃

j=1

(X̂j = xi)

)α−1
α


(16)

= min
PX̂[1:k]

α

α− 1

 n∑
i=1

pi

1− P

(
k⋃

j=1

(X̂j = xi)

)α−1
α


s.t.

n∑
i=1

P

 k⋃
j=1

(X̂j = xi)

 = k (17)

= min
t1,...,tn

α

α− 1

[
n∑
i=1

pi(1− t
α−1
α

i )

]

s.t.
n∑
i=1

ti = k,

0 ≤ ti ≤ 1, i ∈ [1 : n], (18)

where (17) follows from Lemma 1 and Remark 3, and (18)

follows from the change of variable ti = P

(
k⋃
j=1

(X̂j = xi)

)
and Lemma 2. Consider the Lagrangian

L =
α

α− 1

[
n∑
i=1

pi(1− t
α−1
α

i )

]
+ λ

(
n∑
i=1

ti − k

)

+
n∑
i=1

µi(ti − 1) (19)
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The Karush-Kuhn-Tucker (KKT) conditions [19, Chap-
ter 5.5.3] are given by

(Stationarity):
∂L
∂ti

= 0, i ∈ [1 : n],

i.e., ti =
(

pi
λ+ µi

)α
, i ∈ [1 : n], (20)

(Primal feasibility):
n∑
i=1

ti = k, 0 ≤ ti ≤ 1, i ∈ [1 : n], (21)

(Dual feasibility): µi ≥ 0, i ∈ [1 : n], (22)
(Complementary slackness): µi(ti − 1) = 0, i ∈ [1 : n].

(23)

Notice that for α > 1, t
α−1
α is a concave function of t, meaning

the overall objective function in (18) is convex. For α < 1,
t
α−1
α is a convex function of t, but since α

α−1 is negative,
the overall function is again convex. Thus (18) amounts to a
convex optimization problem. Now since KKT conditions are
necessary and sufficient conditions for optimality in a convex
optimization problem, it suffices to find values of ti, i ∈ [1 :
n], λ, µi, i ∈ [1 : n] satisfying (20)–(23) in order to solve the
optimization problem (18).

First we simplify the KKT conditions (20)–(23) in the
following manner.

• For i such that
(
pi
λ

)α ≤ 1, we take µi = 0 and ti =(
pi
λ

)α
.

• For i such that
(
pi
λ

)α
> 1, we take µi = pi − λ and

ti = 1. Notice that for such i, we have µi > 0, since
pi > λ.

This is equivalent to choosing ti = min
{(

pi
λ

)α
, 1
}

and µi =
0 or µi = pi−λ depending on whether ti =

(
pi
λ

)α
or ti = 1,

respectively, for each i ∈ [1 : n]. Notice that this choice is
consistent with the KKT conditions (20)–(23) except for that λ
has to be chosen appropriately satisfying

∑n
i=1 ti = k also. In

effect, we have essentially reduced the KKT conditions (20)–
(23) to the following equations by eliminating µi’s:

ti = min
{(pi

λ

)α
, 1
}
, i ∈ [1 : n], (24)

n∑
i=1

ti = k. (25)

We solve the equations (24) and (25) by considering the
following k mutually exclusive and exhaustive cases (clarified
later) based on PX .

Case 1
(

pα1∑n
i=1 p

α
i
≤ 1

k

)
:

Consider the choice

λ =

(∑n
i=1 p

α
i

k

) 1
α

, ti =
kpαi∑n
j=1 p

α
j

, i ∈ [1 : n]. (26)

This choice satisfies (24) and (25) since kpα1∑n
i=1 p

α
i
≤ 1 and

p1 ≥ p2 · · · ≥ pn.

Case ‘s’ (2 ≤ s ≤ k)
(

(k−s+2)pαs−1∑n
i=s−1 p

α
i

> 1,
(k−s+1)pαs∑n

i=s p
α
i
≤ 1
)

:
Consider the choice

λ =

( ∑n
i=s p

α
i

k − s+ 1

) 1
α

, (27)

ti = 1, i ∈ [1 : s− 1], ti =
(k − s+ 1)pαi∑n

j=s p
α
j

, i ∈ [s : n]. (28)

This choice satisfies (24)

• for i ∈ [1 : s − 1] because (k−s+2)pαs−1∑n
i=s−1 p

α
i

> 1 and p1 ≥
p2 ≥ · · · ≥ ps−1, and

• for i ∈ [s : n] because (k−s+1)pαs∑n
i=s p

α
i
≤ 1 and ps ≥ ps+1 ≥

· · · ≥ pn.
Also, this choice clearly satisfies (25). Finally, notice that the
condition for Case ‘s’, 2 ≤ s ≤ n, can be written as

(k − i+ 1)pαi
n∑
j=i

pαj

> 1, for i ∈ [1 : s− 1],
(k − s+ 1)pαs

n∑
i=s

pαi

≤ 1

(29)

since (k−s+2)pαs−1
n∑

i=s−1

pαi

> 1 and p1 ≥ p2 ≥ · · · ≥ ps−1. This

proves that the cases considered above are mutually exclusive
and exhaustive, and together with the case-wise analysis gives
the expression for the minimal expected α-loss for k guesses
as presented in Theorem 1.

The proof of Corollary 1 follows by taking limit α → 1
using L’Hôpital’s rule in the result of Theorem 1 and rear-
ranging the terms. The proof of Corollary 2 follows by taking
limit α→∞ in Theorem 1.

Proof of Theorem 2. From the definition of α-leakage with k
guesses in (6), we have

L(k)
α (X → Y )

=
α

α− 1
log

max
PX̂[1:k]|Y

E

P( k⋃
i=1

(X̂i = X)|Y
)α−1

α


max
PX̂[1:k]

E

P( k⋃
i=1

(X̂i = X)

)α−1
α

 (30)

=
α

α− 1
log

k
α−1
α exp (1−αα HA

α (X|Y ))

k
α−1
α exp (1−αα Hα(X))

(31)

=
α

α− 1
log

exp (1−αα HA
α (X|Y ))

exp (1−αα Hα(X))
(32)

= L(1)
α , (33)

where (31) follows from Theorem 1, in particular from the
case when s∗ = 1 since P

(α)
X|Y (x|y) ≤

1
k , for all x, y

and P
(α)
X (x) ≤ 1

k , for all x, and HA
α (X|Y ) in (31) is the

Arimoto conditional entropy [20] defined as HA
α (X|Y ) =

α
1−α log

∑
y

(∑
x
PXY (x, y)

α

) 1
α

.
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V. CONCLUSION

There are many questions to be further studied. For example,
analogously to maximal leakage [16] and maximal α-leakage
[8], we can define a maximal version of α-leakage with k
guesses. As shown in [16], for α =∞, this quantity does not
change with k; it would be interesting to understand whether
this is also true for other α.

APPENDIX A
PROOF OF LEMMA 1

Let X = {x1, x2, . . . , xn} and PX(xi) = pi, for i ∈ [1 : n].
Consider a[1:k] such that ai = aj for some i 6= j. There exists
a b[1:k] such that for each i ∈ [1 : k], we have ai = bj for
some j and br 6= aj for some r and any j. Consider

α

α− 1

 n∑
i=1

pi

1− P∗

(
k⋃

j=1

(X̂j = xi)

)α−1
α

. (34)

Let A and B denote the sets of all multiset permutations of
a[1:k] and b[1:k], respectively, when a[1:k] and b[1:k] are treated
as multisets. Let qa1,a2,...,ak :=

∑
r[1:k]∈A PX̂[1:k]

(r[1:k]) and
qb1,b2,...,bk :=

∑
r[1:k]∈B PX̂[1:k]

(r[1:k]). Each term out of the
n terms in (34) will either contain both qa[1:k] and qb[1:k]
(say, type 1), contain just qb[1:k] alone (say, type 2), or does
not contain both (say, type 3). We now construct a new
strategy PX̂[1:k]

by incorporating the value of qa[1:k] into
qb[1:k] making the value of new qa[1:k] equal to zero. Now
the values of the terms of type 2 strictly decrease as the
α-loss function is strictly decreasing in its argument while
retaining the values of the terms of types 1 and 3. This leads
to a contradiction since P ∗X[1:k]

is assumed to be an optimal
strategy. So, PX̂[1:k]

(a[1:k]) = 0. Repeating the same argument
as above for all such a[1:k] s.t. ai = aj , for some i 6= j
completes the proof.

APPENDIX B
PROOF OF LEMMA 2

‘Only if’ part: Suppose a vector (t1, t2, . . . , tn) is admissible.
Then there exists PX̂[1:k]

satisfying (15). Using (14), since ti
is probability of a certain event, we have

0 ≤ ti ≤ 1, for i ∈ [1 : n].

‘If’ part: Suppose 0 ≤ ti ≤ 1, for i ∈ [1 : n]. Summing up all
the equations in (15) over i ∈ [1 : n] and using

∑n
i=1 ti = k,

we get

PX̂[1:k]
(a[1:k]) = 0, for all a[1:k] s.t. ai = aj , for some i 6= j.

With this, (15) can be written in the form of system of linear
equation only in terms of non-negative variables of the form

qi1,i2,...,ik :=
∑
σ∈Sn

PX̂[1:k]
(xiσ(1) , xiσ(2) , . . . , xiσ(n)

), (35)

where i1, i2, . . . , ik are all distinct and belong to [1 : n]. Here
the sum is computed over all the permutations σ of the set

{1, 2, . . . , n}. The set of all such permutations is denoted by
Sn. With this, the system of equations in (15) can be written
in the form AQ = b, Q ≥ 0. Here A is a n ×

(
n
k

)
-matrix,

where the rows are indexed by i ∈ [1 : n] and columns are
indexed by (i1, i2, . . . , ik), where i1, i2, . . . , ik are all distinct
and belong to [1 : n]. In particular, in the column indexed by
(i1, i2, . . . , ik), the entry of A corresponding to ithj row is 1, for
j ∈ [1 : k]. All the remaining entries of the matrix A are zeros.
Q is

(
n
k

)
-length vector of variables of the form qi1,i2,...,ik .

b is an n-length vector with bi = ti. We are interested in
the feasibility of the system AQ = b, Q ≥ 0. We use the
Farkas’ lemma [18, Proposition 6.4.3] in linear programming
for checking this. It states that the system AQ = b has a non-
negative solution if and only if every y ∈ Rn with y>A ≥ 0
also implies y>b ≥ 0. For our problem, y>A ≥ 0 is equivalent
to

k∑
j=1

yij ≥ 0, for all distinct i1, i2, . . . , ik ∈ [1 : n]. (36)

Without loss of generality, let us assume that yi ≤ yi+1, i ∈
[1 : n− 1]. Then (36) is equivalent to

k∑
i=1

yi ≥ 0. (37)

Now consider
n∑
i=1

yiti

=

k∑
i=1

yiti + yk+1tk+1 +

n∑
i=k+2

yiti (38)

=
k∑
i=1

yi +
k∑
i=1

yi(ti − 1) + yk+1tk+1 +
n∑

i=k+2

yiti (39)

≥
k∑
i=1

yi + yk+1

k∑
i=1

(ti − 1) + yk+1tk+1 +
n∑

i=k+2

yiti (40)

≥
k∑
i=1

yi + yk+1

k∑
i=1

(ti − 1) + yk+1tk+1 + yk+1

n∑
i=k+2

ti

(41)

=

k∑
i=1

yi + yk+1

(
n∑
i=1

ti − k

)
(42)

=

k∑
i=1

yi (43)

≥ 0, (44)

where (40) follows because yi ≤ yk+1 and ti − 1 ≤ 0, for
i ∈ [1 : k], (41) follows because yi ≥ yk+1, for i ∈ [k+2 : n],
and (43) follows because

∑n
i=1 ti = k, (44) follows from (37).

Now using the Farkas’ lemma, AQ = b, has a non-negative
solution, i.e., the vector (t1, t2, . . . , tn) is admissible.
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and guessing moments via Rényi measures,” IEEE Transactions on
Information Theory, vol. 64, no. 6, pp. 4323–4346, 2018.

[5] S. Salamatian, W. Huleihel, A. Beirami, A. Cohen, and M. Médard,
“Why botnets work: Distributed brute-force attacks need no synchro-
nization,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 9, pp. 2288–2299, 2019.

[6] M. M. Christiansen and K. R. Duffy, “Guesswork, large deviations, and
Shannon entropy,” IEEE Transactions on Information Theory, vol. 59,
no. 2, pp. 796–802, 2013.

[7] N. Merhav and A. Cohen, “Universal randomized guessing with appli-
cation to asynchronous decentralized brute–force attacks,” IEEE Trans-
actions on Information Theory, vol. 66, no. 1, pp. 114–129, 2020.

[8] J. Liao, O. Kosut, L. Sankar, and F. P. Calmon, “Tunable measures for
information leakage and applications to privacy-utility tradeoffs,” IEEE
Transactions on Information Theory, vol. 65, no. 12, pp. 8043–8066,
2019.

[9] T. Sypherd, M. Diaz, L. Sankar, and P. Kairouz, “A tunable loss
function for binary classification,” in IEEE International Symposium on
Information Theory, 2019, pp. 2479–2483.

[10] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of Computer
and System Sciences, vol. 55, no. 1, pp. 119 – 139, 1997.

[11] N. Merhav and M. Feder, “Universal prediction,” IEEE Transactions on
Information Theory, vol. 44, no. 6, pp. 2124–2147, 1998.

[12] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “On surrogate loss
functions and f-divergences,” The Annals of Statistics, vol. 37, no. 2,
pp. 876–904, 2009.

[13] T. A. Courtade and R. D. Wesel, “Multiterminal source coding with an
entropy-based distortion measure,” in IEEE International Symposium on
Information Theory, 2011, pp. 2040–2044.

[14] P. L. Bartlett, M. I. Jordan, and J. D. Mcauliffe, “Convexity, classifica-
tion, and risk bounds,” Journal of the American Statistical Association,
vol. 101, no. 473, pp. 138–156, 2006.

[15] C. E. Pfister and W. G. Sullivan, “Renyi entropy, guesswork moments,
and large deviations,” IEEE Transactions on Information Theory, vol. 50,
no. 11, pp. 2794–2800, 2004.

[16] I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to
information leakage,” IEEE Transactions on Information Theory, vol. 66,
no. 3, pp. 1625–1657, 2020.

[17] W. Huleihel, S. Salamatian, and M. Médard, “Guessing with limited
memory,” in 2017 IEEE International Symposium on Information The-
ory, 2017, pp. 2253–2257.

[18] J. Matousek and B. Gartner, Understanding and Using Linear Program-
ming. Springer, 2007.

[19] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[20] S. Arimoto, “Information measures and capacity of order α for discrete
memoryless channels,” Topics in information theory, 1977.

2007
Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 06:51:03 UTC from IEEE Xplore.  Restrictions apply. 


