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Abstract—The minimum mean-square error (MMSE) achiev-
able by optimal estimation of a random variable S given another
random variable T is of much interest in a variety of statistical
contexts. Motivated by a growing interest in auditing machine
learning models for unintended information leakage, we propose
a neural network-based estimator of this MMSE. We derive a
lower bound for the MMSE based on the proposed estimator and
the Barron constant associated with the conditional expectation
of S given T . Since the latter is typically unknown in practice,
we derive a general bound for the Barron constant that produces
order optimal estimates for canonical distribution models.

I. INTRODUCTION

The minimum mean-square error (MMSE) achievable by
optimal estimation of a random variable given another one
plays a pivotal role in classical statistics and information
theory (see, e.g., [1]). More recently, the MMSE has been
proposed as an average measure of information leakage in
[2], [3], among others. Furthermore, it is closely related to
probability of error, which has been used in the context of
privacy as a proxy for information leakage in [4]–[6] and
references therein.

The success of contemporary machine learning models
comes in part from their massive complexity. However, this
complexity comes at a cost in terms of interpretability and
explainability, which is crucial for privacy and fairness consid-
erations. As a result, there is a growing interest in developing
tools and techniques to audit machine learning models for
unwanted information leakage (e.g., [7], [8]). Indeed, there
is a growing literature on data-driven methods for estimating
different information leakage measures [9]–[11].

Consider two random variables S and T . In this work, we
propose a neural network-based estimator for the MMSE in
estimating S given T . In machine learning terms, this estimator
is the minimum empirical loss attained by a two-layer neural
network under the squared loss function. Using classical large
deviations results and a theorem by Barron [12] regarding
the universal approximation capabilities of two-layer neural
networks, we derive a lower bound for the MMSE based on
the proposed estimator and the Barron constant associated
with the conditional expectation of S given T . Since the
latter is typically unknown in practice, we derive a general
bound for the Barron constant that produces order optimal
estimates for canonical distribution models. In particular, it
provides order optimal estimates in situations where additive
Gaussian post-processing is used. By the relation between
MMSE and probability of error, our main results also translate
into provable data-driven lower bounds for probability of error.

This paper is organized as follows. In Section II we in-
troduce our proposed estimator, discuss about the relevance
of MMSE as a measure of information leakage, and review
Barron’s theorem. We derive a lower bound for the MMSE
upon the proposed estimator and the Barron constant in
Section III. In Section IV we derive a general bound for the
Barron constant which yields order optimal estimates in some
settings described in Section V. We provide some concluding
remarks in Section VI.

II. PROBLEM SETTING AND PRELIMINARIES

A. Minimum Mean Square Error

Given real random variables S and T , the minimum mean
square error (MMSE) in estimating S given T is defined as

mmse(S|T ) := inf
h meas.

E
[
(S − h(T ))2

]
, (1)

where the infimum is taken over all (Borel) measurable
functions h : R → R. Indeed, the infimum is attained by
the conditional expectation of S given T , i.e.,

mmse(S|T ) = E
[
(S − η(T ))2

]
, (2)

where η(T )
a.s.
= E [S|T ]. Observe that if S a.s.

= h0(T ) for
some function h0 : R → R, then mmse(S|T ) = 0; also, if
S and T are independent, then the MMSE is maximal and
mmse(S|T ) = E

[
(S − E[S])2

]
.

B. Neural Network-based MMSE Estimator

Let Hk be the hypothesis class associated with a two-layer
neural network of size k with activation function hyperbolic
tangent1 (tanh). More specifically, Hk is the set of all func-
tions h : R→ R of the form

h(x) = c0 +
k∑
j=1

cj tanh(ajx+ bj), (3)

where aj , bj , cj ∈ R. In this work, we propose the following
neural network-based estimator for the MMSE in (1). Given
a sample Sn = {(S1, T1), . . . , (Sn, Tn)}, we define

mmsek,n(S|T ) := inf
h∈Hk

1

n

n∑
i=1

(Si − h(Ti))
2. (4)

Observe that, optimization matters aside, mmsek,n(S|T ) can
be computed using the sample Sn and a device capable of
implementing a two-layer neural network of size k.

1This activation function is taken for concreteness; the results that follow
hold for more general activation functions.
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Our goal is to provide (probabilistic) bounds of the form

mmsek,n(S|T )−mmse(S|T ) ≤ εk,n, (5)

where εk,n is a positive number depending on the neural
network size k and the sample size n. It is important to remark
that our motivation to study one-sided bounds as presented in
(5) comes from model auditing in machine learning, where
mmsek,n(S|T )−εk,n serves as a lower bound for mmse(S|T )
– a measure of average information leakage from S to T .

C. MMSE as a Measure of Information Leakage

We now present two natural interpretations of the MMSE
in terms of privacy in machine learning.

Let H be the hypothesis class of all measurable functions
h : R→ R and let `2 : H×R2 → R be the squared loss, i.e.,

`2(h, (t, s)) = (s− h(t))2. (6)

Recall the definition of the MMSE given in (1). It is immediate
to verify that

mmse(S|T ) = inf
h∈H

L(h), (7)

where L(h) = E [`2(h, (T, S))] is the expected loss of h. Thus,
the MMSE could be interpreted as the minimum expected
loss over the (maximal) hypothesis class of all measurable
functions. In the context of privacy, it corresponds to the
expected loss of an adversary interested in inferring S from T
that is capable of implementing any (measurable) function,
i.e., the expected loss of the strongest adversary in terms
of model capacity. Thus, the one-sided bound in (5) implies
that mmsek,n(S|T ) − εk,n is a lower bound for the expected
loss of such adversary. This is particularly relevant in the
context of model auditing, where an auditor could evaluate
mmsek,n(S|T )− εk,n in a data driven manner and use it as a
sanity check for potential unintended information leakage.

We also note that MMSE could serve as a lower bound
for probability of error in the context of binary classification.
Namely, if S ∈ {±1}, then

Perror(S|T ) := inf
h meas.

E
[
1S 6=h(T )

]
(8)

≥ inf
h meas.

E
[

1

4
(S − h(T ))2

]
(9)

=
1

4
mmse(S|T ). (10)

Thus, the one-sided bound in (5) provides a (data-driven) lower
bound for the probability of error of S given T .

D. Barron’s Theorem

We end this section with a fundamental result by Barron
[12] that establishes, in a quantitative manner, the universal
approximation capabilities of two-layer neural networks.

For a distribution P and α ≥ 1, the (P, α)-norm of a
measurable function f : R→ R is given by

‖f‖P,α :=

(∫
R
|f(x)|αdP (x)

)1/α

. (11)

Also, recall that for a function f : R → C, its Fourier
transform, say f̂ : R→ C, is defined as

f̂(ω) :=
1√
2π

∫
R
f(x)e−iωxdx. (12)

The following proposition, due to Barron [12], establishes in
a quantitative manner the universal approximating capabilities
of two-layer neural networks. For K ⊆ R, the diameter of K
is defined as

dia(K) = sup
x,y∈K

|x− y|. (13)

Proposition 1 (Proposition 1, [12]). Let k ≥ 1 and P a
probability distribution supported over a compact set K ⊆ R.
If h : R→ R is a smooth function2, then there exists hk ∈ Hk
such that

‖h− hk‖P,2 ≤
dia(K)Ch√

k
, (14)

where Ch is the so-called Barron constant of h defined as

Ch =
1√
2π

∫
R
|ω||ĥ(ω)|dω. (15)

Furthermore, the coefficients in (3) may be restricted to satisfy
c0 = h(0) and

∑k
i=1 |ci| ≤ dia(K)Ch.

III. 2-LAYER NEURAL NETWORK-BASED MMSE
ESTIMATION

For the remainder of this paper, we focus on a classification
setting where S is a binary attribute with S ∈ {±1}. The
next theorem establishes, under mild conditions, a quantitative
version of the desired bound (5).

Theorem 1. Let f± : R → R be the conditional density of
T given S = ±1. Assume that (a) the support of f− and f+
are contained in a compact set K ⊂ R and (b) the function
f−/f+ extends smoothly to an open set containing K. For all
k, n ∈ N, if δ > 0, then, with probability at least 1− δ,

mmsek,n(S|T )−mmse(S|T ) ≤ C0

√
log(1/δ)

2n
+
C1

k
+
C2√
k
,

(16)
where C0, C1, C2 are constants independent of k and n.

Moreover, if η : R → R is any smooth function such that
η(t) = E[S|T = t] for all t ∈ K, then C0 ≤ (2+dia(K)Cη)2,
C1 ≤ (dia(K)Cη)2 and C2 ≤ 4dia(K)Cη where Cη is the
Barron constant of η.

Proof. For ease of notation, let

∆k,n := mmsek,n(S|T )−mmse(S|T ). (17)

As established in (7), mmse(S|T ) can be expressed in terms
of the expected loss L associated with the squared loss `2.
Indeed, it is the minimum of L over the setH of all measurable
functions. Similarly, observe that mmsek,n(S|T ), as defined

2Barron’s theorem holds in greater generality. However, for the purpose of
this paper the present formulation suffices. We refer the reader to [12] for
further details.
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in (4), can be expressed in terms of the empirical loss LSn
associated with `2. Indeed, we have that

mmsek,n(S|T ) = inf
h∈Hk

LSn(h), (18)

where Hk is the of all functions of the form (3) and

LSn(h) :=
1

n

n∑
i=1

`2(h, (Ti, Si)). (19)

Therefore, we can write ∆k,n as

∆k,n = inf
h∈Hk

LSn(h)− inf
h∈H

L(h). (20)

Recall that the infimum defining the MMSE is attained by
the conditional expectation. In particular, we have that

inf
h∈H

L(h) = L(h∗), (21)

where h∗ is the conditional expectation of S given T , i.e.,
h∗(T )

a.s
= E[S|T ]. Observe that, for every t ∈ K,

h∗(t) = E(S | T = t) =
λf+(t)− λf−(t)

λf+(t) + λf−(t)
, (22)

where λ = P(S = 1) and λ = P(S = −1). By assumptions (a)
and (b), there exists an integrable smooth function η : R→ R
that extends h∗, i.e, η(t) = h∗(t) for all t ∈ K. Since η = h∗

over K, which contains the support of the distribution of T ,

L(h∗) = E[(S − h∗(T ))2] = E[(S − η(T ))2] = L(η). (23)

In particular, we have that

∆k,n = inf
h∈Hk

LSn(h)− L(η). (24)

Barron’s theorem (Prop. 1) implies that there exists ηk ∈ Hk
such that

‖ηk − η‖PT ,2 ≤
dia(K)Cη√

k
, (25)

with PT the distribution of T . Moreover, if we let

ηk(t) = c0 +
k∑
i=1

ciσ(ait+ bi), (26)

the coefficients c0, . . . , ck can be taken such that c0 = η(0) and∑
i |ci| ≤ dia(K)Cη . Observe that (22) implies that |η(t)| ≤ 1

for all t ∈ K. In particular, ‖η‖PT ,2 ≤ 1 and, by our choice
for the coefficients in (26),

‖ηk‖∞ := sup
t∈R
|ηk(t)| ≤ 1 + dia(K)Cη. (27)

Continuing with (24), observe that

∆k,n ≤ LSn(ηk)− L(ηk) + L(ηk)− L(η). (28)

Observe that (S− ηk(T ))2 ≤ (1 + ‖ηk‖∞)2. By the bound in
(27), a routine application of Hoeffding’s inequality implies
that, with probability at least 1− δ,

LSn(ηk)− L(ηk) ≤ (2 + dia(K)Cη)2
√

log(1/δ)

2n
. (29)

Under the squared loss `2, it could be proved that for any two
functions h1, h2 : R→ R,

|L(h2)−L(h1)| ≤ ‖h2− h1‖(2 + 2‖h1|+ ‖h2− h1‖), (30)

where the norms are (PT , 2)-norms. Therefore, by plugging
(25) in (30), we obtain that

|L(ηk)− L(η)| ≤ dia(K)Cη√
k

(
4 +

dia(K)Cη√
k

)
. (31)

By plugging (29) and (31) in (28), the theorem follows.

Although the conditions of the previous theorem might seem
restrictive, they could be easily guaranteed by adding a small-
variance noise to T and then truncating the result. Indeed, if
γ > 0 and Z ∼ N (0, 1) is independent of (S, T ), then (S, T ′)
satisfy the hypotheses of the previous theorem with T ′ being
the truncation of T +γZ to the interval [−r, r] for any r > 0.

The assumptions of Theorem 1 guarantee the existence of a
function η as in the second part of the statement. Nonetheless,
to the best of the authors’ knowledge, it is unknown how to
find the function η that produces the smallest Cη and thus the
sharpest bound (16).

While the right hand side of (16) decreases when k
increases, note that mmsek,n(S|T ) also decreases when k
increases. In fact, if k ≥ 2n, then a two-layer neural
network with k neurons can memorize the entire sample
Sn, leading to a trivial lower bound for mmse(S|T ) as
mmsek,n(S|T ) = 0. Furthermore, the optimization minimiza-
tion defining mmsek,n(S|T ) becomes harder as k increases.
Overall, this reveals that finding the k that produces the best
bound in (16) is a non-trivial task.

IV. A GENERAL BOUND FOR THE BARRON CONSTANT

Theorem 1 establishes a bound for the difference between
mmsek,n(S|T ) and mmse(S|T ) that depends on the neural
network size k, the sample size n and the Barron constant
Cη of (a smooth extension of) the conditional expectation of
S given T . Providing estimates for the latter quantity might
be a challenging task for two reasons: (i) the conditional
expectation of S given T depends on the distribution of S and
T , which is typically unavailable in practice; (ii) the Barron
constant Cη is defined in terms of the Fourier transform of
η, which makes its computation unfeasible in most cases. The
next theorem alleviates the second issue by providing a general
upper bound for Cη based on the L1-norms of η′, η′′ and η′′′.

Theorem 2. Let η : R → R be a differentiable function. If
Cη exists and η(j) ∈ L1(R) for j = 1, 2, 3, then

Cη ≤
2
√

2√
π

(
1 + log

(√
‖η′‖1‖η′′′‖1
‖η′′‖1

))
‖η′′‖1. (32)

Proof. For ease of notation, let κ := η′. As pointed out by
Barron [12], if Cη exists then

Cη :=
1√
2π

∫
R
|κ̂(ω)|dω, (33)
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Indeed, up to technical details, (33) follows from the formula
ĥ′(ω) = iωĥ(ω). For 0 < λ1 < λ2, we split the integral in
(33) into three parts:

I :=

∫ λ1

−λ1

|κ̂(ω)|dω, (34)

II :=

(∫ λ2

λ1

+

∫ −λ1

−λ2

)
|κ̂(ω)|dω, (35)

III :=

(∫ ∞
λ2

+

∫ −λ2

−∞

)
|κ̂(ω)|dω. (36)

First, observe that

I ≤ 2‖κ̂‖∞λ1 ≤ 2‖κ‖1λ1, (37)

where we applied the inequality ‖ĥ‖∞ ≤ ‖h‖1. Also, since
ĥ′(ω) = iωĥ(ω) whenever h, h′ ∈ L1(R), we have that

II ≤

(∫ λ2

λ1

+

∫ −λ1

−λ2

)
1

|ω|
|κ̂′(ω)|dω (38)

= 2‖κ̂′‖∞ log

(
λ2
λ1

)
(39)

≤ 2‖κ′‖1 log

(
λ2
λ1

)
. (40)

Similarly, since ĥ′′(ω) = (iω)2ĥ(ω) whenever h, h′′ ∈ L1(R),

III ≤

(∫ ∞
λ2

+

∫ −λ2

−∞

)
1

ω2

∣∣κ̂′′(ω)
∣∣dω ≤ 2

‖κ′′‖1
λ2

. (41)

By plugging (37), (40) and (41) in (33), we obtain that

Cη ≤
√

2

π

(
‖κ‖1λ1 + ‖κ′‖1 log

(
λ2
λ1

)
+
‖κ′′‖1
λ2

)
. (42)

By taking λ1 = ‖κ′‖1
‖κ‖1 and λ2 = ‖κ′′‖1

‖κ′‖1 , the result follows.

In the following, for ease of notation, we let κ = η′. With
this notation, the previous theorem shows that Cη can be
controlled by the L1-norms of κ, κ′ and κ′′. Specifically, we
have that

Cη ≤
2
√

2√
π

(
1 + log

(√
‖κ‖1‖κ′′‖1
‖κ′‖1

))
‖κ′‖1. (43)

The following lemma provides some useful expressions for κ
and its first two derivatives. Recall that if f± : R→ R is the
conditional density of T given S = ±1 and λ = P(S = 1),
then the conditional expectation of S given T is given by3

η(t) =
λf+(t)− λ̄f−(t)

λf+(t) + λ̄f−(t)
, (44)

where λ := 1− λ = P(S = −1).

3More precisely, η is a smooth extension of the conditional expectation of
S given T . In this sense, we abuse of the notation an use f± to denote a
suitable extension of the conditional density of T given S = ±1.

Lemma 1. If η is defined as in (44) and κ = η′, then

κ = 2
g′+g− − g+g′−
(g+ + g−)2

, (45)

κ′ = 2
g′′+g− − g+g′′−
(g+ + g−)2

− 2κ
g′+ + g′−
g+ + g−

, (46)

κ′′ = 2
g′′′+ g− + g′′+g

′
− − g′+g′′− − g+g′′′−

(g+ + g−)2
(47)

− 2κ
g′′+ + g′′−
g+ + g−

− 3κ′
g′+ + g′−
g+ + g−

, (48)

where g+ = λf+ and g− = λ̄f−.

Proof. Equation (45) follows easily from the equalities κ = η′

and η =
g+ − g−
g+ + g−

. By the quotient rule
(
p

q

)′
=
p′

q
− p

q

q′

q
,

(46) follows easily from (45). Using similar arguments, (47)
follows from (46).

V. BARRON CONSTANT UNDER ADDITIVE GAUSSIAN
POST-PROCESSING

Despite the explicit upper bound for Cη given in Theorem 2
and the expressions for the derivatives of η in Lemma 1, it is
still challenging to obtain numerical upper bounds in practice
as in most applications the conditional density of T given S
is unknown. Nonetheless, in this section we show that if the
variable T is post-processed by adding Gaussian noise, then
it is possible to give an upper bound for Cη using only the
strength of the noise and mild information about the support
of T given S. Furthermore, we show that such a bound is
order optimal in some canonical distribution models.

Such a post-processing situation can arise when a data
curator needs to release T in order to achieve some utility,
but cannot do so due to privacy concerns. In this situation, a
common practice is to produce a sanitized version T which is
apt to be released. A common mechanism to attain this goal
is the so-called additive Gaussian mechanism which produce
a sanitized variable Tσ given by

Tσ = T + σZ, (49)

where σ > 0 and Z is a standard Gaussian r.v. independent of
T . If f± denotes the conditional density of T given S = ±1,
then the conditional density of Tσ given S = ±1 is given by

fσ± = f± ∗Kσ, (50)

where ∗ denotes the convolution operator and, for every t ∈ R,

Kσ(t) =
1√

2πσ2
e−t

2/2σ2

. (51)

We are interested in finding upper bounds for Cησ where ησ

is the conditional expectation of S given Tσ , i.e.,

ησ :=
λfσ+ − λ̄fσ−
λfσ+ + λ̄fσ−

. (52)

To gain some intuition about the behavior of the Barron
constant under the effect of additive Gaussian post-processing,

1026
Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 07:09:29 UTC from IEEE Xplore.  Restrictions apply. 



in the next proposition we compute Cησ in the extreme case
where T = µS for some µ > 0.

Proposition 2. Let µ, σ > 0. If T = µS, then Cησ =
µ

σ2
.

Proof. A direct computation shows that

η(t) =
e−(t−µ)

2/2σ2 − e−(t+µ)2/2σ2

e−(t−µ)2/2σ2 + e−(t+µ)2/2σ2 = tanh

(
µt

σ2

)
. (53)

Recall that ĥ′(ω) = iωĥ(ω) and thus

Cη =
1√
2π

∫
R
|η̂′(ω)|dω. (54)

Observe that η′(t) =
µ

σ2
sech(µt)2. Using contour integration,

it can be verified that

ŝech2(ω) =

√
π

2
ω csch

(π
2
ω
)
, (55)

which is non-negative for all ω ∈ R. By applying the Fourier
inversion formula to (54), we have that Cη =

µ

σ2
sech2(0).

The next theorem provides an upper bound for Cησ under
the assumption that the support of T is bounded. Its proof
relies on careful estimates of ησ and its derivatives. We refer
the interested reader to the full version of this paper [13].

Theorem 3. Let f± be the conditional density of T given S.
If Supp(f±) ⊂ [−r, r] for some r > 0, then, for every σ > 0,

Cησ ≤ A+B
r2M0

σ4

[
1 + log

(
r2M0(M2 + rM1 + r2)

σ8

)]
,

(56)
where A,B are numeric constants and

Mp :=

∫
R
|t|p

λfσ+(t)

λfσ+(t) + λ̄fσ−(t)

λ̄fσ−(t)

λfσ+(t) + λ̄fσ−(t)
dt. (57)

Furthermore, if σ ≥ 4
√

10er2M0, then

Cησ ≤ B
r2M0

σ4

[
1 + log

(
M2

r2M0
+

M1

rM0
+ 1

)]
. (58)

Note that the bound in the previous theorem only require
knowledge of the moment-like quantities Mp, as defined in
(57). As we show below, in some situations Mp = O(σ2(1+p))
as σ →∞. Therefore, in the large noise regime (σ � 1),

Cησ ≤ O
(

log(σ)

σ2

)
. (59)

In view of Proposition 2, we conclude that the previous bound
is order optimal (up to logarithmic factors).

Below we also show that in some situations Mp = O(1) as
σ → 0+. Therefore, in the small noise regime (σ � 1),

Cησ ≤ O
(

log(1/σ)

σ4

)
. (60)

It is unclear at the moment if this bound is order optimal.
Nonetheless, it is worth to remark that this bound is by
no means trivial. Observe that, as σ → 0+, ησ converges

pointwise to η which in principle might have an unbounded
Barron constant.

We end this section providing an upper bound for the
moment-like quantities Mp in the case where the supports of
f± are well-separated by some margin.

Proposition 3. Let Mp be the quantities defined in (57). If
there exist r > 0 and γ ∈ (0, r) such that Supp(f+) ⊂ [γ, r]
and Supp(f−) ⊂ [−r,−γ], then, for every σ > 0,

M0 ≤ 2r +
σ2

2γ

λ2 + λ̄2

λλ̄
e−2γr/σ

2

, (61)

M1 ≤ 2r2 +

[
σ4

(2γ)2
+
rσ2

2γ

]
λ2 + λ̄2

λλ̄
e−2γr/σ

2

, (62)

M2 ≤ 2r3 +

[
2σ6

(2γ)3
+

2rσ4

(2γ)2
+
r2σ2

2γ

]
λ2 + λ̄2

λλ̄
e−2γr/σ

2

.

(63)

In particular, Mp = O(σ2(1+p)) as σ → ∞ and Mp = O(1)
as σ → 0+.

The proof of the previous proposition relies on explicit
estimates of fσ±. We refer the interested reader to the full
version of this paper [13].

Observe that the leading term of Mp captures the parameters
r, γ and λ in a natural way. More specifically, the leading term
of Mp increases when the support r increases, the margin
γ decreases and the data imbalance |λ − 1/2| increases. As
such, Proposition 3 captures natural intuitions in a quantitative
manner.

VI. CONCLUSION

In this paper, we proposed a neural network-based estimator
for the MMSE in estimating a random variable S given another
random variable T . Motivated by model auditing in machine
learning, we derived a lower bound for the sought MMSE
based on the proposed estimator and the Barron constant of
the conditional expectation of S given T . Finding meaningful
estimates for the Barron constant might be a challenging task
since: (i) the conditional expectation of S given T is rarely
available in practice, and (ii) it is defined in terms of the
Fourier transform of this conditional expectation. To alleviate
the second issue, we provided a general upper bound for the
Barron constant based on the L1-norm of the conditional ex-
pectation and its derivatives. Furthermore, we showed that one
can circumvent the first issue in applications where additive
Gaussian post-processing is used. In such applications, our
bounds for the Barron constant are indeed order optimal.
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