
This paper is included in the Proceedings of the
29th USENIX Security Symposium.

August 12–14, 2020
978-1-939133-17-5

Open access to the Proceedings of the
29th USENIX Security Symposium

is sponsored by USENIX.

SAVIOR: Securing Autonomous Vehicles with
Robust Physical Invariants

Raul Quinonez, University of Texas at Dallas; Jairo Giraldo, University of Utah;
Luis Salazar, University of California, Santa Cruz; Erick Bauman, University of Texas

at Dallas; Alvaro Cardenas, University of California, Santa Cruz; Zhiqiang Lin,
Ohio State University

https://www.usenix.org/conference/usenixsecurity20/presentation/quinonez

SAVIOR: Securing Autonomous Vehicles with Robust Physical Invariants

Raul Quinonez
UT Dallas

Jairo Giraldo
University of Utah

Luis Salazar
UC Santa Cruz

Erick Bauman
UT Dallas

111111111 Alvaro Cardenas 111111 Zhiqiang Lin11111111
some11UC Santa Cruz add Ohio State University

Abstract
Autonomous Vehicles (AVs), including aerial, sea, and ground
vehicles, assess their environment with a variety of sensors
and actuators that allow them to perform specific tasks such
as navigating a route, hovering, or avoiding collisions. So far,
AVs tend to trust the information provided by their sensors to
make navigation decisions without data validation or verifica-
tion, and therefore, attackers can exploit these limitations by
feeding erroneous sensor data with the intention of disrupting
or taking control of the system. In this paper we introduce
SAVIOR: an architecture for securing autonomous vehicles
with robust physical invariants. We implement and validate
our proposal on two popular open-source controllers for aerial
and ground vehicles, and demonstrate its effectiveness.

1 Introduction

Autonomous Vehicles (AVs) including aerial, ground, and
sea vehicles are becoming an integral part of our life [1].
Unmanned aerial vehicles are projected to have an 11.2 billion
dollar global market by 2020 [2] with applications ranging
from agricultural management to aerial mapping and freight
transportation [3]. Currently, most AVs trust sensor data to
make navigation and other control decisions. In addition, they
trust that the control command given to actuators is executed
faithfully. While trusting sensor and actuator data without any
form of validation has proven to be an effective trade-off in
current market solutions, it is not a sustainable practice as
AVs become more pervasive and sensor attacks continue to
mature in their sophistication.
There are two main threats to AV sensors: GPS spoofing

and transduction attacks. GPS spoofing attacks have occurred
in real-world systems. For example, several instances of GPS
spoofing attacks affecting the navigation of more than 24 ves-
sels in the Black Sea have been reported [4] (experts believe
these GPS attacks are anti-drone measures), and while there is
debate on whether a foreign nation spoofed a military-grade
GPS to capture a U.S. Unmanned Aerial Vehicle [5], launch-

ing the same AV takeover attack in commercial GPS systems
is quite straightforward [6–9].
Another notable attack against AVs are transduction at-

tacks [10], which often inject out-of-band signal to sensors or
actuators [11]. Sensors are transducers that translate a physi-
cal signal into an electrical one, but these sensors sometimes
have couplings between the property they want to measure
and the analog signal that can be manipulated by the attacker.
For example, sound waves can affect accelerometers andmake
them report incorrect movement values [12], and radio waves
can trick pacemakers into disabling pacing shocks [13]. These
attacks have been shown to be effective on AVs by using
sound to affect gyroscopes [14], lasers to affect camera sen-
sors in drones [15], lasers to affect lidar sensors in cars [16],
and intentional electromagnetic interference to manipulate
actuators in drones [17].
Classical security mechanisms such as software security,

memory protection, authentication, or cryptography are not
enough to protect these cyber-physical systems as transduc-
tion attacks represent a new class of attacks that are not ef-
fectively handled by classical software security [10]. In order
to identify these new attacks, there is growing interest in
Physics-Based Attack Detection (PBAD) [18].

PBAD consists of two steps: the first step is performed off-
line and extracts physical invariants of the system to create a
model that captures the expected correlations between sensors
(also known as sensor fusion), and between actuators and
sensors (i.e., between the inputs and the outputs to the system).
The second step is an online anomaly detection algorithm that
compares predictions with observed states and raises an alarm
when the accumulated discrepancy between predicted and
observed states exceeds a threshold.

PBAD has been explored in water control systems [19, 20],
state estimation in the power grid [21, 22], chemical pro-
cesses [23, 24], autonomous vehicles [25], and a variety of
other cyber-physical systems [18]. However, one of the key
weaknesses of PBAD is that it is vulnerable to stealthy at-
tacks [26]. A fundamental reason for the existence of stealthy
attacks is that any control of a physical system would not

USENIX Association 29th USENIX Security Symposium 895

need sensors if we knew exactly the physical evolution of
the process given the control commands (this is called open-
loop control). Meanwhile, almost all control algorithms run in
“closed-loop” because model uncertainties and perturbations
prevent us from knowing exactly the evolution of a physical
process. This uncertainty allows malicious users to create
attacks that behave seemingly like the physical process un-
der control, but create a small deviation that over time can
be catastrophic. Unfortunately, none of the prior efforts on
autonomous vehicles have considered stealthy attacks [25].
Therefore, in this paper we design a new system consider-

ing the robustness of PBAD for AVs against stealthy attacks.
In particular we design and evaluate the system against so-
phisticated attackers that can craft worst-case impacts to the
system while remaining undetected. In addition, we provide
a detailed study of how to implement and evaluate PBAD
as a fundamental component for a future security reference
monitor for aerial and ground vehicles. We argue that in or-
der to study the role of PBAD for AVs, we need to consider
three aspects: (1) algorithms for attack detection, (2) adver-
sary models that include powerful stealthy attackers, and (3)
an implementation that shows minimal performance overhead
in real-hardware. Correspondingly, we provide contributions
in each of these aspects:

1. We provide a detailed study of which physical models are
optimal for capturing the behavior of aerial and ground
vehicles, and which statistical anomaly detection algo-
rithm works best to detect attacks. Our results show that
our algorithms outperform state-of-the-art PBAD tools
for AVs (e.g., [25]) by (a) detecting more attacks, (b)
detecting attacks faster, and (c) having less false alarms
than previous proposals.

2. We study in detail stealthy attacks against AVs by show-
ing that PBAD tools are never perfect (if we knew the
exact behavior of a drone, we would not need sensors),
and show how an attacker can leverage this imperfection
to launch stealthy attacks. To our best knowledge, no
previous work on drones has considered stealthy attacks
and we argue in this paper how previous proposals are
insecure against PBAD attacks (the attacker can crash
a drone without being detected) while our methods are
more resilient to this strong type of attacker.

3. We provide a detailed implementation of our system in
two popular open-source projects for autonomous vehi-
cles (PX4 and ROS). We also show our implementation
in real hardware (Intel Aero drone and Traxxas Ford
Fiesta ST Rally Car), showing minimal performance
impact. Our source code is openly available at https:
//github.com/Cyphysecurity/SAVIOR.git.

We call our general framework SAVIOR: Securing Au-
tonomous Vehicles wIth rObust physical invaRiants. Our SAV-
IOR framework consists of the following key insights: (1) use

𝑦

𝑥

𝑧

Pitch

Roll

Yaw

3 1

2 4

2

4

1

3

𝑧
Yaw

4 2

a) Aerial vehicle movement

b) Ground vehicle movement

Fig. 1: All vehicles are free to rotate in three dimensions:
yaw, pitch, and roll. Ground vehicles can only control their
yaw, but IMUs can report pitch and roll if the vehicle is on an
inclined plane.

well-known physical invariants, (2) learn the parameters of
these invariants via system identification, (3) use change de-
tection algorithms to keep track of historical anomalies, and
(4) evaluate PBAD with stealthy attacks in order to find the
worst-case performance of our defenses.

2 Background and Motivation

AVs use a variety of sensors ranging from cameras to GPS
and Inertial Measurement Units (IMU). An IMU is a standard
component in AVs and includes accelerometers, gyroscopes,
and magnetometers. Accelerometers measure the accelera-
tion of a vehicle, gyroscopes measure the angular velocity
of a vehicle, and magnetometers act like a compass for the
vehicle. A typical configuration includes one accelerometer,
one gyroscope, and one magnetometer per axis of the vehicle.
The three axes are pitch (rotating a vehicle upwards or down-
wards), roll (rotating the vehicle sideways), and yaw (rotating
the orientation of the vehicle). Examples of these axes for a
quadcopter and a ground vehicle are shown in Fig. 1.

2.1 Threat Model
We assume an adversary that can inject false signals in one
of the sensors (or actuators) used by AVs. For example, in
addition to IMUs, AVs typically use other sensors like GPS
receivers for location information, RADARs, LiDARs or ul-
trasonic sensors to detect nearby obstacles, and cameras. Un-
fortunately, all of these sensors are vulnerable to transduc-
tion attacks including IMU [12, 14, 27], RADAR [28], Li-
DAR [16,29,30], ultrasonic [28], and camera [15,28,29] sen-

896 29th USENIX Security Symposium USENIX Association

sor measurements. In addition, GPS signals can be spoofed
to hijack vehicles [7–9,31]. The threat model in our paper is
similar to the threat model in all of these previous research
efforts.
It is important to note that while GPS and transduction

attacks started mostly as denial of service attacks (e.g., [14]),
the ability of the attacker to launch these kinds of attacks
is improving. Not only can these attacks be launched from
longer distances [11], but recent research has shown how GPS
spoofing and transduction attacks can achieve a high level of
accuracy in the way the attackers can manipulate the sensor
signal [11] and GPS takeovers [9].

The level of access for successfully launching these attacks
is diverse. It can range from physically placing an actuator
next to a sensor, to flying an attack drone near to the target
drone to launch these attacks. For example, a ground vehicle
in front of the target vehicle can spoof LiDAR signals caus-
ing the vehicle to perceive nonexisting obstacles or ignore
existing ones [16].
The end result of these attacks is that the sensor signal

y is replaced with an attacked signal ya. In this paper we
consider a variety of attacks, including bias attacks, where
ya = y+bias or stealthy attacks, where ya is selected so that
the signal causes damage to the system, but the attack is not
detected by a PBAD algorithm.
While the main motivation for our work is the growing

sophistication of transduction attacks, our defenses simply
assume a signal injection attack, which can also be done
through software attacks (malware). The implementation of
PBAD against software-based attacks needs to be done as part
of a trusted computing base, for example in the kernel of the
operating system (assuming the attacker does not have access
to it) or at the firmware-layer (again, assuming the attacker
cannot change the firmware).
We consider as out of scope attacks that can inject signals

to all sensors and actuators. Our attack-detection mechanisms
needs to have at least one sensor/actuator combination that
can reveal the anomalies injected by the adversary. Fully char-
acterizing the attack detectability of PBAD to signal injection
attacks is an active research area [32] and it depends on the
nature of the system under consideration and where to capture
the sensor and actuator signals, the physical properties of the
system, etc.

2.2 Linear Physical Invariants

To detect transduction (or even software) attacks to these
sensors (and actuators) there is a growing body of literature
on PBAD [18]. PBAD algorithms have two parts: the first
part builds a model of the physical invariants of the system
and can be done offline. In the second part, an online tool
monitors predicted and observed measurements to see if they
fit our expectation on the correlations between sensors, and the
correlations between sensors and actuators. In this subsection

we briefly explain how the first part of PBAD (extracting
physical invariants) was done in previous work.
It is possible to represent physical processes in a compact

form using matrices and vectors (i.e., a linear system) that
indicate the relationship between the control inputs and the
system variables. For example, if you have a vehicle with an
initial speed of v0 m/s, the position p1 after 0.1 sec is dictated
by the initial position p0 plus the change caused by the ini-
tial velocity after 0.1 sec, i.e., p1 = p0+0.1v0. Similarly, if
the vehicle has an initial acceleration a0 m/s2, the velocity
v1 evolves according to v1 = v0 + 0.1a0 by assuming zero
friction and aerodynamic drag. Finally, suppose that only the
position can be measured at each time instant. These simple
systems can be generalized using matrices as follows: Let

xk = [pk,vk]�, uk = ak, A=

�
1 0.1
0 1

�
, B=

�
0
0.1

�
.

Since only the position is measured, we define the sensor
readings yk =Cxk, whereC = [1,0] such that

xk+1 = Axk+Buk, and yk =Cxk. (1)

Equation (1) is known as a Linear Dynamical State-space
(LDS) system and is widely used in system dynamics and con-
trol. Matrices A,B,C are the system matrices and are unique
for each physical process.

Choi et al. [25] recently proposed the use of linear equations
to describe the physical invariants of the vehicles. Linear state-
space models (like the ones used in their work) are one of
the most popular models in control systems because they can
capture the dynamics of a wide range of systems and avoid the
expensive detailed nonlinear models. However, quadcopters,
rovers, and other vehicles have well-known nonlinear physical
invariants [33–35]. With a more accurate model of the system,
we can expect better attack detection and fewer false alarms
in PBAD systems. In the next section we show the general
equations describing the physical invariants of any quadcopter,
and ground vehicles, but similar equations exist for other AVs
such as hexacopters.

3 Designing PBAD for AVs

Fig. 2 gives an overview of how we design our PBAD for AVs.
Our design consists of three main components: 1) an offline
stage where we learn the parameters of the physical invariants
of the AV, 2) an online stage where we use the model we
learned offline to predict sensor measurements and compare
them to observations (and raise an alert if there is a persistent
anomaly), and 3) a definition of stealthy adversaries to help us
evaluate the security of our algorithms against sophisticated
signal injection attacks.
The pre-processing stage in Fig. 2 uses a data-fusion al-

gorithm that combines the gyroscope readings of angular
velocities with the accelerometer or magnetometer measure-
ments to calculate the intrinsic bias of the gyroscope and then

USENIX Association 29th USENIX Security Symposium 897

IMU
GPS

Pre-
processing 𝑢(𝑘)

Y 𝑘

Inputs:
Dataset

Output:
(𝑢, Y)

IDS
EKF

Anomaly
detection

(𝐼𝑥, 𝐼𝑦, 𝐼𝑧,𝑚, 𝑙,𝑑, 𝑏)
Y (𝑘)

ො𝑥(𝑘)

Offline

Online

෤

෤

Fig. 2: Our first step is to pre-process sensor data to obtain the
states x̃ needed in our nonlinear equations. We then collect
a dataset of inputs to drone rotors (u) and outputs (observed
states Ỹ) to learn the parameters of our nonlinear model. Dur-
ing runtime, we use the model learned to make a prediction
using the Extended Kalman Filter (EKF) and compare it to
the observed state. We then run an anomaly detection test to
see if the differences between what we observe and what we
expect is statistically significant over time.

generate accurate roll, pitch, and yaw angle readings. The al-
gorithm is based on a simple linear Kalman filter that exploits
geometric properties of the accelerometer and magnetometer.
In this section we describe why our specific methods

achieve better results than previous work. In particular, (1)
we use nonlinear physical invariants, which capture better the
model of the system, and (2) we use a better online statis-
tic to keep track of anomalies and raise alerts if necessary.
In particular we use a CUSUM statistic, which is based on
optimal change detection theory (instead of using fixed time
windows), and which allow us to detect attacks faster, and
more accurately than previous work.

3.1 Nonlinear Physical Invariants

Choi et al. used linear equations to describe the physical in-
variants of the vehicles; however, quadcopters, rovers, and
other vehicles have well-known nonlinear physical invari-
ants [33–35]. In our experiments, we show why considering
linear invariants leads to PBAD systems that are insecure be-
cause stealthy attackers can take advantage of this incorrect
assumption (linear vs. nonlinear) to launch attacks that can
crash the drone or cause other safety problems.

All quadcopters are uniquely defined as having four motors
rotating in opposite directions. Motors one and two rotate
counter clock-wise and motors three and four rotate clock-
wise. These motors receive signals from the flight controller
to execute different maneuvers such as take off, landing, and
route following commands. The quadcopter uses the thrust
created by the propellers to rise in a vertical direction when
all propellers have the same speed. All the other maneuvers

𝑥

𝑧

𝑦

𝑧Lateral view Rear view

Top View

𝑦

𝑧

Rear view

𝑥

𝑦

a)

c) d)

b)

Fig. 3: Movements of a quadcopter: a) yaw rotation is ob-
tained when motors 1 and 2 move faster than 3 and 4; b)
vertical lift when all propellers have the same speed; c) for-
ward movement is caused by pitch rotation; d) movement to
the left caused by the roll rotation.

are possible thanks to the roll (move left or right), pitch (move
forward or backward), and yaw (change orientation), which
correspond to the rotation along the x, y, and z axes respec-
tively. Fig. 1 shows the overall model of the device.
When motors 2 and 4 spin faster than 1 and 3, a tilt along

the y-axis (pitch) is achieved causing a forward movement
(the opposite will cause the drone to fly backwards), and the
velocity of the drone is proportional to the difference between
the speeds of the rear and the front propellers (which is also
proportional to the pitch angle). Similarly, when the propellers
on one side (i.e., 1 and 4) are faster than the other side (2 and
3), a tilt along the x-axis (roll) will cause the drone to fly to
the left. Rotation along the z-axis (yaw) is achieved when the
rotation speed of diametrically opposing pairs of motors are
increased or decreased, varying the torque in the direction of
rotation of that pair (recall that diametrically opposing mo-
tors in a quadcopter rotate in the opposite direction), causing
the quadcopter to rotate in the opposite direction of the in-
creased torque. The four types of movements are summarized
in Fig. 3.
The physical invariants of a quad-copter model can be

described by 12 nonlinear differential equations that exploit
Newton and Euler equations for the 3D motion of a rigid
body. These equations keep track of position, speed, angles,
and angular speed of the quadcopter.
Six states define the position of the system in the three

dimensional space described by the Cartesian coordinate
(x,y,z), which points to the center of gravity of the quad-
copter. Their time derivative (vx,vy,vz) defines the speed of
the center of gravity relative to the earth. Six states define the
attitude of the system: Euler angles (θ,φ,ψ) represent the roll,
pitch, and yaw angles respectively, and their time derivatives
(ωθ,ωφ,ωψ) describe the rotation speed of the quadcopter.

898 29th USENIX Security Symposium USENIX Association

The dynamics of the quadcopter are given as follows [34,
35]:

φ̇ = ωφ, ẋ= vx
θ̇ = ωθ, ẏ= vy
ψ̇ = ωψ, ż= vz
ω̇φ =

Uφ
Ix + θ̇ψ̇

�
Iy−Iz
Ix

�
, v̇x = Ut

m (cosφsinθcosψ+ sinθsinψ)

ω̇θ = Uθ
Iy + φ̇ψ̇

�
Iz−Ix
Iy

�
, v̇y = Ut

m (cosφsinθsinψ− sinφcosψ)

ω̇ψ =
Uψ
Iz + φ̇θ̇

�
Ix−Iy
Iz

�
, v̇z = Ut

m cosφcosθ−g

(2)

where Ix, Iy, Iz are the moments of inertia, m is the mass of the
quadcopter, and g is the gravity.

To control the device, a flight controller changes the torque
produced by the rotors of the quadcopter.Uφ,Uθ,Uψ are the
torques produced by the rotors and Ut is the thrust force.
The behavior of the quadcopter is controlled by changing
the torques and thrust induced by the rotors velocity. Let Ω2

i
denote the square of the speed of each rotor i= 1, . . . ,4. Then
we have the following relations





Ut = b
�
Ω2

1+Ω2
2+Ω2

3+Ω2
4
�

Uφ = bl
�
Ω2

2−Ω2
4
�

Uθ = bl
�
Ω2

3−Ω2
1
�

Uψ = d
�
Ω2

1+Ω4
2−Ω2

3−Ω2
2
�

(3)

where l is the distance between any rotor and the center of the
drone, b is the thrust factor, and d is the drag factor. Notice
from equation (3) that the thrust, which dictates the vertical
movement, depends on the sum of the velocities of all four
rotors. Similarly, forward and lateral movements come from
the differences between the speed of the rotors that cause
pitch or roll changes, as summarized in Fig. 3.

These equations can be used to model any commercially
available quadcopter. There are parameters of the equations
that will change from drone to drone. In particular the mo-
ments of inertia Ix, Iy, Iz; the mass m; the distance between
any rotor and the center of the drone l; the thrust factor b; and
the drag factor d. Learning the values of these parameters can
be done offline and needs to be done only once per drone.

We can learn all these parameters by using a system identi-
fication tool. A system identification algorithm is a machine
learning tool used by control engineers to find the values of
parameters for their models. In our case we have to learn
the values of Ix, Iy, Iz,m, l,b, and d from a dataset of inputs
(control actions to the rotors of the quadcopter) and outputs
(sensor measurements from IMUs and GPS).

Nonlinear models are also well-known for other AVs. For
example, the dynamics of a four-wheel vehicle are described

v

Fig. 4: Ground vehicle bicycle model.

as follows [36]:

β = tan−1
�

lr
lr+ l f

tan(δ)
�

ẋ= vcos(ψ+β)
ẏ= vsin(ψ+β)

ψ̇ =
v
lr
sin(β)

v̇= a. (4)

This model describes the interaction between the actuators,
which are the steering angle δ and the acceleration a, and the
states/sensors, which are the velocity v, the orientation (i.e.,
yaw angle ψ), and the position x,y, according to Fig. 4.

In the next subsection we will show how to learn the pa-
rameters of these two models.

3.2 Offline Learning of Nonlinear Invariants
There are different learning tools for parameter estimation.
In our case, we use nonlinear-least squares data fitting [37]
which can be summarized as follows: Suppose we have a
dataset with input/output data, U/Y , respectively. We have
prior approximate knowledge about the physical dynamics
of the system in terms of the set of differential equations
F(·) with unknown parameters P = {p1, p2, . . .}. Given the
input/output dataset and the differential equations F(·), our
goal is to find the parameters P that better fit the data. The
optimization problem can be formulated as a least-squares
problem

min
P

T

∑
t=1

(Ht(P ,Ut)−Yt)2

where Ht(P ,Ut) is the estimated output at each sampling in-
stant t for the given parameters P and the input Ut , and it
is obtained from the solution of the differential equations
F(·). The objective is then to find the set of parameters P that
minimize the least square error between the estimated output
Ht(P ,Ut) and the measured output Yt . This is an optimiza-
tion problem that requires algorithms such as the Levenberg-
Marquardt [38] or the interior-reflective Newton method [39].

USENIX Association 29th USENIX Security Symposium 899

ϕ̇ = ω%
Θ̇ = ω'
Ψ̇ = ω)

ω̇* =
𝑈*
𝐼-
+ Θ̇Ψ̇

𝐼/ − 𝐼1
𝐼-

ω̇' =
𝑈2
𝐼/
+ Φ̇Ψ̇

𝐼1 − 𝐼-
𝐼/

ω̇) =
𝑈)
𝐼1
+ Φ̇Θ̇

𝐼- − 𝐼/
𝐼1

𝑥̇ = 𝑣-
𝑦̇ = 𝑣/
𝑧̇ = 𝑣1

𝑣̇- =
𝑈8
𝑚

cosΦ sinΘ cosΨ+ sinΘ sinΨ

𝑣̇/ =
𝑈8
𝑚

cosΦ sinΘ sinΨ− sinΦ cosΨ

𝑣̇1 =
𝑈8
𝑚

cosΦ cosΘ + 𝑔

ΩA
B,ΩB

B

ΩD
B,ΩE

B

Parameter Estimation Block

FX

Pre-Processed Data

Control Command Data

Estimation of
Unknown Parameters

Fig. 5: Parameter estimation block that takes input/output data
and an approximate nonlinear model to estimate unknown
parameters. In this example, the thrust and drag factors are
estimated.

The complexity increases with the number of parameters to
estimate and the number of differential equations.

For example, offline learning for our drone was done once
the flight controller was modified to capture actuator data
(inputs to the system) and sensor data (outputs to the system).
We executed several missions with the drone in order to cap-
ture a dataset of inputs (control signals to the rotors of the
quadcopter) and outputs (sensor values). For instance, in a
quadcopter, we collect sensor and control information when
the drone is taking-off and reaches a specific height, and then
moves forward to a desired location. We run different mis-
sions to collect this dataset. With this dataset, we can learn
the unknown coefficients from Equation (3) using the online
learning mechanism described in Section 3.2. Fig. 5 describes
the parameter estimation block for the quadcopter.
In particular, we use the function nlgreyest from the Sys-

tem Identification Toolbox of Matlab to find the unknown
parameters using the collected data and the nonlinear model.
This function can execute the Levenber-Marquardt or interior-
reflective Newton methods.

The advantage of this methodology with respect to general
machine learning is that we exploit our knowledge about the
physical dynamics of the system to create prediction models.
For instance, learning a neural network of a drone would not
give us a guarantee that the model we have learned is sound
(the learned model can add dynamics that do not exist in a
real drone), and in addition, neural networks are a black box
(they are not a generative model explaining the data like our
differential equations). Therefore, an alert will be uninforma-
tive and it will be difficult to determine the specific event that
caused the alarm. On the other hand, with our approach, we
know beforehand that the AV is subject to specific physical
laws that are summarized in the differential equations, and
then the prediction model is simpler to implement (e.g., by
using the Euler integration method, which is not computation-
ally expensive).

3.3 Online Anomaly Detection
In the previous step, we found the parameters of a set of
nonlinear equations for our AVs using input/output data. Now,
we use this models to generate predictions of the physical
process that can be compared with the pre-processed sensor
readings in order to identify signal injection attacks.

3.3.1 Predicting AV Behavior with EKF

The Kalman filter is an algorithm that uses noisy sensor mea-
surements to estimate unknown variables of physical pro-
cesses (e.g., temperature, velocity, pressure) based on prior
knowledge of the dynamic equations of the process. It has
many applications in robotics, navigation, guidance, and sig-
nal processes and econometrics [40].
With linear systems, the typical way to predict the next

sensor observation is to use the linear Kalman filter (which
is generally referred simply as the Kalman filter, dropping
the “linear” part), but since we are using nonlinear equations,
our prediction needs to be done by the Extended-Kalman
Filter (EKF). The Extended-Kalman Filter is the more general
version of the Kalman filter for systems with more complex
dynamic equations (i.e., nonlinear equations). In this case,
the transition and observation matrices at each iteration k are
defined in terms of the Jacobians (i.e., partial derivatives of
a vector-valued function with respect to each of its variables.
More details about the EKF can be found in Appendix B.

3.3.2 Anomaly Detection with CUSUM

In order to detect the presence of cyber-attacks, we take the
pre-processed sensor readings �Y (k) to generate the prediction
Ŷ (k+1) using the EKF algorithm described above. Then, in
the next iteration we compute the residuals associated to each
sensor as follows

ri(k) = �Yi(k)− Ŷi(k). (5)

If the observations we get from the ith sensor �Yi(k) are sig-
nificantly different from the ones we expect (over a period
of time) then we generate an alert. The question is how to
decide that the deviation is significant, or how long should
we observe the anomaly?

There are several detection strategies that take the residuals
and compute a detection statistic that quantifies the deviation.
For example, Choi et al. [25] used a time-window to keep
track of the anomaly and raise an alert if the residuals during
the time window exceeded a given value. However, in our pre-
vious research [26, 41], we have shown that change detection
algorithms such as the CUSUM or the SPRT will outperform
other attack-detection algorithms that use time windows.

that strategies that keep track of the historical changes of the
residuals without a fixed time window (to prevent the adver-
sary from hiding its attack in between windows of time) have
a better performance, especially for persistent threats [26].

900 29th USENIX Security Symposium USENIX Association

EKF
CUSUM𝑟𝑘 = ෩𝑌𝑘 − ෡𝑌𝑘 Alert

Residual Generation෩𝑌𝑘
෡𝑌𝑘

𝑢𝑘

෩𝑌𝑘− 1

Fig. 6: Anomaly detection: EKF uses our nonlinear model
to verify the consistency of our sensors, and the CUSUM
algorithm keeps a historical record of the anomalies.

For this reason, instead of using fixed time windows, we use
the non-parametric CUSUM statistic, which is described by
the following recurrent equation

Si(k+1) = (Si(k)+ |ri(k)|−bi)
+ (6)

where Si(0) = 0 and bi > 0 is a parameter selected to pre-
vent Si(k) from increasing when there are no attacks. When
Si(tk)> τi, then an alarm associated to sensor i is triggered.
The summary of our detection block is given in Fig. 6.

3.4 Stealthy Attacks
Recall that our attacker can replace a subset of sensor signals
Y with a desired Ya. As a first evaluation of the accuracy
of our anomaly detector, we can launch simple attacks, such
as bias attacks, where the sensor signal is replaced with the
original signal and a fixed bias b: Ya = Y + b. We will use
these attacks to evaluate the accuracy of our classifier and
other baseline approaches; however, we cannot rely only on
this attack, as it may represent an optimistic expectation of
what an adversary may do.

A good security principle for evaluating new algorithms
is to show that the proposal is resilient against a powerful
adversary in order to make sure the new mechanism is se-
cure, even against less sophisticated adversaries. Therefore in
this section we present the worst type of attacks that can be
launched by a sophisticated attacker, in the hopes of guaran-
teeing secure operations to less powerful attackers.

In our previous research [26] we argued that the most pow-
erful adversary against PBAD algorithms is one who launches
stealthy attacks that maximize the damage to the system with-
out being detected. For this reason, we also evaluate the per-
formance of our defense by analyzing how much deviation of
an AV an attack can cause while remaining stealthy.

Let Ya denote the signal injected by the attacker. We want
to maximize the value of that signal, subject to the constraint
of not raising any alarms. Most PBAD algorithms have an
anomaly score S(k) quantifying the historical deviation of the
system with respect to our expectations, and if S(d)> τ then
an alarm is raised. Therefore, the goal of the adversary is to
inject a sequence of false sensor readings Ya(k) to maximize
the deviation caused to the system behavior (e.g., deviate
the AV from its original position or making it crash), while

maintaining S(k) below the alarm threshold:

Ya∗ = argmax
Ya

Y a (7)

Subject to: S(k)≤ τ (8)

For the CUSUM algorithm introduced above, the optimal
attack is given by [26, 42]

Ya∗(k) = Ŷ (k)± (τ+b−S(k)).

Notice how the residuals become r(k) = Ya∗(k)− Ŷ (k) =
±(τ+b−S(k)) and S(k+1) = τ for all k.
This stealthy attack allows us to consider the worst case

scenario of our PBAD system, where an attacker is not de-
tected while it persistently injects the maximum amount of
false information in the system.. If our physical system can
survive this type of attack, then we can say that our PBAD is
secure. However, if a different PBAD cannot keep our system
safe while sustaining this type of attack, then we can say that
the second PBAD system is insecure.
As a consequence, if our defense is good enough to limit

the impact of this powerful attack, then weaker attacks will
be detected or will have less physical damages.
In Section 5 we evaluate our proposed defense and other

alternatives proposed in the literature against stealthy attacks.

4 Implementation

We implemented our approach in two different AVs (aerial
and ground). Despite both vehicles having different invariants,
real-time needs, and specific environments, we show that our
methodology can be applicable to AVs in general. Fig. 7
depicts both AVs; one is an Intel Aero Drone, and the other is
an autonomous car we built following the BARC project [43].

����������
��������

����������
��������

Fig. 7: Intel Aero Ready To Fly Drone and Autonomous Car
built on top of a Traxxas Ford Fiesta ST Rally chassis.

USENIX Association 29th USENIX Security Symposium 901

4.1 Aerial AV
We implemented our first system in Dronecde’s open-source
PX4 autopilot controller due to its versatility, highly modu-
lated architecture, and cross-platform hardware support. Im-
plementing our code in PX4 allowed us to test our prototype
not only on Intel’s Aero Drone, but also on a high-fidelity
simulation called jMAVSim.
We modified the autopilot firmware and created a mod-

ule called reference_monitor (written in C++) that can
be used in simulation and real hardware.On hardware, we
compiled and flashed the firmware into a STM 32-bit ARM
Cortex micro-controller clocked at 180MHz with 256+4KB
of SRAM inside of the drone. On simulation, we use used
PX4 as a flight controller for jMAVSim. We created both
implementations from the latest stable source code (version
1.9.2).

Actuator
module

EKF

Pre-processing

ModulesModulesPX4 modulesPX4 modules vehicle_gps_position

sensors_combined

Reference monitor

IMU
Middleware

Flight stack

GPS

vehicle_magnetometer

actuator_outputs

Fig. 8: We implement our anomaly detection tool right before
the actuation command is sent to the rotors. In this way we
hope our anomaly detection tool will become part of a future
planned security reference monitor, deciding when to allow
proper access to the rotors.

Fig. 8 depicts the overall architecture of the system with
our implementation. Architecturally, the firmware consists of
two layers: the flight stack and the middleware. The flight
stack provides all the control and estimation modules required
for navigating the AV while the middleware provides abstrac-
tions that facilitate interaction with hardware components.
PX4 executes modules in parallel and it allows inter-process
communication following a publish-and-subscribe architec-
ture. We implemented our system in the flight stack layer
since it is responsible for navigation.
We subscribed to three topics: sensor_combined,

vehicle_magnetometer, and vehicle_gps_position that
collectively publish the accelerometer, gyroscope, magne-
tometer, and GPS raw data. Once new raw data is available, it
needs to be processed before it can be used by the estimator.

Accelerometer, gyroscope, and magnetometer data is used to
calculate the roll, pitch, and yaw angles and angular speed
using the pre-processing algorithm described in Appendix
A. GPS coordinates of latitude, longitude, and altitude are
converted to flat-earth position coordinates with respect to the
initial GPS location of the drone [44].
We modified the module in charge of mixing and trans-

lating commands such as take-off, land vehicle, and follow
route. This module is called pwm_out_sim in the simulator
and tap_esc for our drone. We inserted a function call right
before it publishes the computed motor commands for the
entire system. This function call then queries our estimator to
determine whether an attack is occurring. It is here where dis-
crepancies between control signals and pre-processed sensor
information are discovered and the system is alerted. Because
we are mostly worried about external attacks (transduction
attacks or GPS-spoofing attacks), our adversary cannot bypass
our system. If we had to worry about compromised modules
(e.g., a malicious Pwm_out_simor tap_esc), then our system
would need to get the sensor data directly from each sensor,
and more importantly, be the only module allowed to send
actuation data to the rotors. While the pre-processing section
of our implementation runs in parallel with the rest of the
system, the function call to the estimator runs sequentially
and therefore introduces a small amount of overhead to the
entire system.

4.2 Ground AV

Our ground vehicle uses the Robotic Operating System (ROS),
specifically, Kinetic Kame. ROS follows a similar architec-
ture to PX4, where modules run in parallel in a publish-and-
subscribe architecture. This allowed us to implement our
system using the same methodology. Minor changes are re-
lated to the specific topics we subscribe to as well as the
modules interacting with the reference monitor if an attack
has occurred.
Our ROS controller allows for modules to be launched

as their own processes while facilitating communication be-
tween modules using a centralized master node. ROS allows
nodes to be written in different programming languages such
as C++ and Python (our choice) to interact with each other via
designated APIs. We created a program that executes a lane
following algorithm. The vehicle uses the camera to capture
an image of the lane, and then it calculates its offset with
respect to the lane. After this offset is calculated, the vehicle
adjusts the steering angle to maintain the vehicle in the center
of the lane.
Our implementation subscribes to three topics: vel_est,

line_data, and ecu_line_follower/servo. vel_est is
used to estimate the velocity of the vehicle while line_data
and ecu_line_follower/servo provide information re-
garding the position of the line and the servo commands
respectively. The pre-processing stage for the ground vehi-

902 29th USENIX Security Symposium USENIX Association

cle is more simple than the aerial vehicle. As with the aerial
vehicle, once the values have been pre-processed, they are
used in the algorithm to calculate the expected behavior of
the system.

5 Evaluation

In this section we evaluate our implementation on PX4 run-
ning on jMAVSim and on the Intel Drone, and also our ROS
implementation running on the autonomous car. We first show
how our algorithm can detect attacks, and then we compare
our proposal with other approaches proposed in the literature.
In particular, we first compare the classification accuracy of
our proposal when compared to others, and then we compare
the performance of our proposal under stealthy attacks. We
finally measure the overhead of our implementation on the
Intel Drone and the BARC autonomous car.

Flight started

Attack started

att
ac
k

de
via
tio
n

GPS timeout

Desired destination

Actual landing site

Fig. 9: The actual GPS data gathered from the sensor data
(blue) is tampered with by the attacker before being sent to the
autopilot. The autopilot then receives a corrupted set of GPS
coordinates (red) and makes the “necessary” adjustments in
order to return to the established path. The autopilot thinks
that the drone reached the desired location, but it has actually
deviated.

Our attacks were developed as additional software in each
system that hijacked a sensor measurement and spoofed it.
This included MAVLink impersonation to jMAVSim and soft-
ware modules that published false sensor data (in PX4 for the
Intel Drone and ROS for the autonomous car). Let us take a
look at one example of our attack code. For the car, the line
follower algorithm greatly depends on the image published
by the camera on the “/cam/raw” topic since it is the main
source of data for the decision-making process. Given the fact
that there can be multiple nodes publishing the same topic
and that there are no sanity checks in place, Fig. 11 shows
how a malicious node can publish the same camera topic and

0 50 100
0

100

200

P
os

iti
on

 X

0 50 100

-200

-100

0

P
os

iti
on

 Y

0 50 100
Time (sec)

0

10

20

D
et

ec
tio

n
S

ta
tis

tic

0 50 100
Time (sec)

0

10

20

D
et

ec
tio

n
S

ta
tis

tic

Attack

Attack

Attack
detected

Attack
detected

Fig. 10: Detection of the GPS attack in the longitude (X)
and latitude (Y) data. The detection statistic of the CUSUM
immediately increases and triggers an alarm after 0.2s.

replay a chosen image at a higher rate than that of the camera,
overwriting any legitimate image with a malicious one and
compromising the data that would be used by the controller
in order to make the steering decisions.

�������������
���
���
���
����

������������������������������
���
�����������������������������������

�������������������������
��������������������������

Fig. 11: Attack code sample

Fig. 9 shows an example attack on GPS spoofing for a
drone, and Fig. 10 shows how our anomaly detection system
encounters an inconsistency between desired actuation and
direction. Similarly Fig. 12 shows an attack on the camera
of our car (the attack resembles recent attacks that added
stickers to a lane so an autonomous car would end up driving
on the incoming traffic lane [45]). Fig. 13 shows the line
deviation and the CUSUM detection metric. Before the attack,
the detection metric indicates that the system is behaving
correctly. A bias attack of 0.5m is launched after 3.6 s such
that the steering angle tries to compensate the sudden change
in the line distance, causing the vehicle to drift away from the
line. The CUSUM algorithm is able to detect this attack after
0.1 s.

Videos showing our attacks can be found in the following
link:

https://www.youtube.com/watch?v=Ljrbtfo0gvM&
list=PLmicm3IoL28eLU5v1FH3ZOFSn5NlOuQLG

USENIX Association 29th USENIX Security Symposium 903

(a) Actual Camera Feed (b) Malicious Camera Feed

Fig. 12: Visual attack on the car: (a) shows the real image
while (b) shows the injected image.

5.1 Comparison between NLC and LTW
The previous examples show that our system can detect at-
tacks, but the question is now how do we improve on pre-
vious work? Because our proposal uses a Nonlinear Model
for predicting the observations, and a CUSUM algorithm for
anomaly detection, we will refer to our method as the NLC
algorithm. To compare our NLC algorithm, we use Choi et
al.’s [25] algorithm as a baseline. Because they used a Linear
model for predicting observations and a Time-Window algo-
rithm for anomaly detection, we will refer to their method
as the LTW algorithm. In our experiments we use a time
window for LTW of tw= 3 s.

We now perform a series of experiments comparing NLC
and LTW. First, we are going to show how the predictions
from NLC (which uses EKF) are more accurate than the pre-
dictions of LTW (which uses a regular Kalman filter). Then
we compare the detection accuracy of both algorithms in
terms of the probability of detection, the probability of false
alarms, and the time it takes to detect an attack. Finally we
compare both NLC and LTW to sophisticated stealthy attack-
ers, and show how NLC can minimize the negative impact to
the vehicle caused by these stealthy attacks. .

5.1.1 Linear vs. Nonlinear Predictions

In the first experiment we compare how our nonlinear predic-
tion (with the help of EKF) fares in comparison to previous
models that use linear systems, and therefore, linear predic-
tions with the help of the (linear) Kalman filter.

We first have our drone follow trajectory with three differ-
ent desired positions (20,10),(10,−10),(25,−13) at a con-
stant altitude 15 m. Using the (linear) Kalman filter and the

� � � � � � �

��������

����

����

����

�

���

�
�
�
�
�
��
�
��
��
��
�
�
�

��
��
�
�
��
��
�
��
�
�

����������������������
��������������������������

� � � � � � �

��������

�

����

����

����

�
�
�
�
�
��
�
��
�� �������

Fig. 13: Line deviation obtained from the video footage and
anomaly detection metric. After 3.7 s a bias attack is launched
causing the steering control to react leading the vehicle to
drift away from the line and saturating the computed distance
to the line to its maximum value, i.e., 0.2 m.

(nonlinear) EKF, we obtained estimations of the positions x,y
and the roll and pitch angles, as depicted in Fig. 14. Notice
that both predictions are able to filter sensor noise, but due to
the nonlinear dynamics of the quadcopter, the linear Kalman
filter has larger prediction errors. On the other hand, the EKF
is able to accurately predict the system states even when there
are sudden changes in the target position of the drone.

5.1.2 Detection Accuracy

Now we conduct a series of experiments to compare the ac-
curacy of both anomaly detectors, NLC and LTW, in terms
of the false positive rates, true positive rates, and the time to
detect an attack. The first two metrics are classical metrics in
machine learning, but the second one is unique to time-series.
In general we can increase the accuracy of the classifier if we
keep collecting data to make a decision, but the longer we
wait for a decision, the less useful an alert will be; therefore
we need to balance all three metrics.

We start by focusing on the time to detect attacks. We
select fixed detection thresholds for each detector, and then
we launch bias attacks that are injected to the gyroscope of
the drone reading of the pitch angle rate (angular velocity
over the Y axis) and we measure the time it takes to detect
the attacks for different intensities. NLC is able to detect this
type of attack faster than LTW as depicted in Fig. 15 (left).

The reason LTW takes longer to detect attacks is two-fold:
i) large prediction errors from the linear Kalman filter require
large anomaly thresholds to avoid false alarms, and ii) using
a time window that resets after a specific number of samples
causes weaker attacks to take longer to detect or to not be
detected at all. In contrast NLC uses a (nonlinear) EKF with
better accuracy, and the CUSUM algorithm does not have
time windows, so detecting an attack can be done faster.

904 29th USENIX Security Symposium USENIX Association

0 50 100
Time (sec)

-1

0

1

2

R
ol

l A
ng

le
 (r

ad
)

50 100
Time (sec)

-1

0

1

2

P
itc

h
A

ng
le

 (r
ad

)

0 50 100
Time (sec)

-10

0

10

20

30

P
os

iti
on

 X
 (m

)

0 50 100
Time (sec)

-20

-10

0

10

20

P
os

iti
on

 Y
 (m

)

Sensor Data
Linear Estimation

EKF Estimation

Fig. 14: Comparison between the linear and nonlinear predic-
tion for some of the states of the quadcopter during a mission
where both estimators take noisy sensor measurements. No-
tice that the EKF is able to generate an accurate estimation
despite the noise. A linear predictor (similar to the one in [25])
has larger estimation errors.

0 0.1 0.2 0.3 0.4
FPR

0

0.2

0.4

0.6

0.8

1

TP
R

ROC Curve

NLC
LTW

0 0.5 1
Gyroscope Bias Attack

0

0.25

0.5

0.75

1

Ti
m

e
to

 D
et

ec
t

LTW
NLC

Fig. 15: Left: Time to detect an attack for different gyroscope
bias attacks to the drone. Right: ROC curve comparison for
NLC and LTW applied to the drone.

We now compute the ROC curve for NLC and LTW. Fig. 15
(right) illustrates the ROC curve for both anomaly detection
strategies. Clearly, the NLC has a better ROC curve than
LTW. In particular, the NLC is able to detect the attack with a
probability close to 1 while having a false alarm rate (below
2%); on the other hand, when LTC detects almost all the
attacks, the false alarm rate is around 40%.
When we turn our attention to the ground vehicle, we get

similar ROC results, as illustrated in Fig. 16, showing again
that NLC outperforms LTW in a variety of AVs.

5.1.3 Resiliency of NLC and LTW to Stealthy Attacks

We now describe how to launch stealthy attacks in gyroscopes
and in GPS for LTW and NLCs.

� ��� ��� ��� ��� �

���

�

���

���

���

���

�

�
�
�

������������������������

���

���

Fig. 16: ROC curve for both anomaly detection strategies
implemented in the ground vehicle.

� �� �� �� �� �� ��

����������

�

���

���

���

���

���

���

���

���

���

�

�
�

��
�

���
�

��
�

��
��

���

���

��������������
���

���������

���

��������� �����

Fig. 17: A stealthy gyroscope attack is launched after 40
seconds. LTW does not detect the attack, but NLC detects the
attack in less than 0.1 second.

Stealthy attack for LTW. The detection strategy intro-
duced in [25] consists of accumulating the quadratic er-
ror s_erri(k) = |Yi(k) − Ŷi(k)|2, in an anomaly statistic
error_sumi(k+ 1) = error_sumi(k) + s_erri(k). Therefore,
the detection statistic is given by errori(k) = err_sumi(k)/tw,
where window > 0 is the time window and tw is the time
window count that increases at each iteration. When tw >
window, then the detector is reset (i.e., tw= 0 and err_sumi =
0). The stealthy attack is then given by

Ya
i (k) = Ŷi(k)+

�
−err_sumi(k)+ τitw. (9)

Replacing the attack in equation (9), we have that s_erri(k) =
−err_sumi(k)+ τitw and errori(k) = τi, therefore the attack
is never detected.
Stealthy Attack for NLC. Similar to the attack for LTW, we
have that the stealthy attack for NLC is given by

Ya
i (k) = Ŷi(k)−Si(k)+bi± τi. (10)

Replacing this attack in equations (5) and (6) shows that
Si(k) = τi, and the alarm is never triggered.
Fig. 17 illustrates a stealthy attack for the LTW in the

gyroscope after 40 s with τi = 0.3. Note that the attack is
designed such that the anomaly score (detection metric) never

USENIX Association 29th USENIX Security Symposium 905

reaches the threshold and no alarms are triggered. In contrast,
this attack is quickly detected by NLC.
In our next set of experiments, we launch stealthy attacks

for the angular speed associated to the roll angle and for
the GPS reading associated to the X position. The target
position of the drone is (10,10) at a constant altitude of 15 m.
The drone reaches its desired position and after 25 seconds,
the stealthy attack starts causing deviations in the X axis
because the controller is trying to compensate for the false
information. Fig. 18 depicts the sensor attack (top) and the
real position (bottom) for both attacks and for both detectors.
The solid circles indicate the final position of the drone at 50 s.
Notice that the deviation from the desired position is larger
with the LTW than with the NLC making our proposed NLC
significantly more secure than LTW because it manages to
keep the system closer to its desired trajectory under stealthy
attacks.

� �� �� �� �� ��

����������

��

��

�

�

�

�
�
��
�
�
�
�
�
��
��
��
��
�

�
�
���
�
�
�
�
�
��
��
�
��
�

����������������

���������

���������

� �� �� �� �� ��

����������

�

��

��

��

��

�
�
�
��
��
��
��
��
�

�
�
�
���
�
�
��
��
�
�

����������

��������������

��������������

� � ��

��������������

�

�

�

�

�

��

�
�
�
���
�
�
��
��
�
�

��� ��� � ��

��������������

�

�

�

�

�

��

�
�
�
���
�
�
��
��
�
�

��� ��� ��� ���

���

Fig. 18: Stealthy gyroscope and GPS attacks for both detec-
tors, LTW and NLC. The bottom plots illustrate the target
position of the drone and the final position (solid circle) due
to the attack. Clearly, our NLC limits the impact of stealthy
attack.

Now, we study the impact of a stealthy attack in the alti-
tude reading. In this case, the duration of the attack is 20 s.
Notice in Fig. 19 that the stealthy attack with LTW causes
the drone to crash, damaging the drone and possibly injuring
people. Therefore we can argue that previous LTW work is
not secure against stealthy attacks because the attacker can
catastrophically damage the system without detection. On the
other hand, with the NLC the deviation caused by the adver-
sary is small and the drone is able to recover and return to
the desired altitude when the attack finishes. This shows the
importance of considering stealthy attackers in future work
on physical invariants for the cyber-security of drones and
other autonomous vehicles.
Finally, we would like to use a systematic metric like the

ROC curve to compare both NLC and LTW; however, ROC

� � �� �� �� �� �� �� �� �� ��

����������

�

�

��

��

�
���
��
�
�
��
�
�
�
�
��
�
�
�
��
��
�

���

���

� � �� �� �� �� �� �� �� �� ��

����������

�

�

��

�
���
��
�
�
��
�
�

���

���

�����

Fig. 19: Stealthy attack with a duration of 20 s in the alti-
tude signal. With LTW the attack causes the drone to crash;
however, with our NLC, the drone altitude is slowly affected
and when the attack finishes the drone returns to its desired
position.

curves assume a true positive rate, and stealthy attacks are
by definition undetected, so we cannot use ROC curves to
measure the performance of PBAD algorithms to stealthy
attacks. To solve this problem we look at the new performance
metric we previously introduced [26] to compare anomaly
detection strategies against stealthy attacks. The Y axis of
this new metric quantifies the maximum deviation caused by
the stealthy attack during 35 s and the X axis corresponds
to the expected time for false alarms (an adaptation of the
true positive rate that includes the time component, which is
important for classification of time series).
Fig. 20 shows the comparison of NLC and LTW. Clearly,

due to the improved nonlinear model and better detection
strategy, our proposed NLC forces an attacker who wants to
remain stealthy, to launch very small attacks.

5.2 Effects of External Disturbances

Sudden disturbances like wind gusts have an undesired effect
in the anomaly detection strategy that not only can affect the
trajectory of the drone but can also raise false alarms. Signif-
icant wind forces impact air vehicles in two different ways:
i) the drone is pushed from the desired position (translation),
and ii) the drone rotates on any of its axis.
The PID controller on a drone is typically able to com-

pensate for the effects of the wind when the wind velocity
is around less than 5 m/s. Recall that the EKF in our detec-
tion module receives the pre-processed sensor signals and
the control inputs sent to the propellers. Since the controller
tries to compensate for the wind gust, but our model does not
take into account the presence of non-zero disturbances, the
estimation generated by the EKF will not be accurate and our
detection algorithm will raise a false alarm.

906 29th USENIX Security Symposium USENIX Association

� � � � �

���
��
�������

�

�

�

�
�
�
�
��
�
�
��
���
�
��
�
��
�

���

���

Fig. 20: Comparison between the NLC and LTW based on the
performance metric proposed in [26] for the pitch gyroscope
sensor. The maximum deviation consists on the maximum
XYZ deviation after 35 s of the attack. Clearly, due to the
improved nonlinear model and better detection strategy, our
proposed NLC is able to limit the impact of stealthy attacks
when compared to LTW.

During our experiments with the real drone there was not
significant wind, so we could not check the results on real
hardware, instead we look at high-fidelity simulations. In or-
der to test and compare our anomaly detection in the presence
of wind disturbances, we use the Dryden model, which is a
mathematical model of continuous gusts accepted for use by
the United States Department of Defense in certain aircraft
design and simulation applications [46]. The Dryden model
is characterized by power spectral densities of the gust’s three
linear velocity components described by (11). The parameters
σu,σv,σw are the turbulence intensities and Lu,Lv,Lw are the
scale lengths. Particularly, this model can be considered as a
linear filter that converts white noise into colored noise.

Φug(Ω) = σ2
u
2Lu
π

1
1+(LuΩ)2

Φvg(Ω) = σ2
v
2Lv
π

1+12(LvΩ)2

(1+4(LvΩ)2)2

Φwg(Ω) = σ2
w
2Lw

π
1+12(LwΩ)2

(1+4(LwΩ)2)2
, (11)

Fig. 21 (left) illustrates the effect of a sudden increase in
the wind speed that runs North-East between 50 s and 110 s.
The wind change causes oscillations that cause the CUSUM
detection metric associated to the roll angular velocity ωφ to
raise false alarms.
We can solve this problem by relying on wind sensors

also known as anemometers (e.g., Ultrasonic Wind Sensors)
that provide accurate measures of the wind speed and its
direction. There is a wide variety of wind sensors that are
suitable for UAVs, such as the FT205 from FT technologies
or the TriSonica-mini from Anemoment. We can use these

0 50 100 150
Time (s)

-6

-4

-2

0

2

4

 (r
ad

/s
)

0 50 100 150
Time (s)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
M

et
ric

0 50 100 150
Time (s)

-6

-4

-2

0

2

4

 (r
ad

/s
)

Real roll angle velocity
Estimated roll angle velocity

0 50 100 150
Time (s)

0

0.2

0.4

0.6

0.8

1

D
et

ec
tio

n
M

et
ric

False
Alarm

Wind
Gust

Wind
Gust

Fig. 21: Effects of wind in the NLC. Sudden changes in
the weather conditions can cause false alarms and undesired
oscillations of the drone. However by adding wind sensors
(e.g., ultrasonic wind sensors), it is possible to improve the
performance of the controller and avoid false alarms.

measurements to quantify the effects of wind and obtain better
estimations that can decrease the false alarms.
To this end, we need to define a model of the drone dy-

namics with wind disturbance and modifying the dynamics
in equation (2) used by the EKF, to include the disturbance
elements. According to [47], the angular and linear velocities
can be described as:

v̇Wx = v̇x+ 1
mdx,

v̇Wy = v̇y+ 1
mdy,

v̇Wz = v̇z+ 1
mdz,

where dx,dy,dz the wind disturbances that affect the drone
position (translation). Fig. 21 (right) depicts how adding wind
sensors may help to mitigate the effects of the wind in the
drone and avoid false alarms.

5.3 Performance Overhead
In our last evaluation study we look at the performance over-
head introduced by our reference monitor on both aerial and
ground vehicles. Our results show that this increase does not
impose adverse computational overhead to affect the real-time
constrains of each AV.

5.3.1 Aerial Vehicle

The latest stable version of PX4, v1.9.2, compiled for the Intel
Aero drone contains a total of 50 modules, drivers, and system
commands. In terms of size, our additions consist of 6 files
with a total of 920 LOC. The unmodified firmware has a size
of 862.3KB, while the modified version with our additions is

USENIX Association 29th USENIX Security Symposium 907

874.7KB. This represents a 1.43% increase in the size of the
binary firmware.
To measure execution performance, we first must define

what overhead means when running multiple independent
modules in a real-time OS. We cannot measure overhead
from within a module since only the OS itself has a concept
of system load. Also, the calculations done by these modules
are continuous as they are constantly processing new data
and do not have a point at which we can measure how long
they took to finish a task. Instead, we can measure overhead
by calculating the CPU utilization for all modules within
slices of time. Fortunately, the scheduler for PX4 maintains
a system_load_s structure containing data about all tasks. It
uses the hrt_absolute_time() function to obtain an unsigned
64-bit integer containing the number of microseconds(us)
since an arbitrarily selected epoch at boot. This gives over
500,000 years before the integer would overflow, allowing for
a reliable measure of system time.
The system scheduler measures the time between when a

task is resumed and suspended and adds this time to the task’s
total_runtime. Whenever the scheduler does not have a task to
run, this time goes to the idle task. We cannot obtain overhead
directly from this value, however, because this is a measure
of how much CPU time each task has had over its entire life-
time. Longer-running tasks will naturally accumulate more
CPU time. Therefore, we instead view the system at periodic
snapshots, saving total_runtime for each task at each snapshot.
Between two snapshots, we can compare the increase in to-
tal_runtime for each task which provides an accurate measure
for how long each task ran in between those two snapshots.
We then can use this to calculate the percentage of CPU time
that each task used for that time slice. By collecting data from
multiple time slices and averaging the results, we can get the
average overhead for all tasks in the system.

Table 1 sorts the top 13 processes running on hardware by
CPU utilization. These processes amount to about 95.22%
of the CPU resources available. Looking at the top 13 pro-
cesses we can observe that some modules perform system
activities like the idle module which is designed to run when
the system does not have a process to execute and the hp-
work module which executes several high priority threads
that do not own a stack frame. Other modules handle commu-
nication like the mavlink_if0 and mavlink_if1 modules that
allow communication between the firmware and the ground
station via the MAVLink protocol and the logger module
that provides system and topic logging. Logic modules in-
clude: the EKF2 module that implements the vehicles’ own
Extended-Kalman Filter for attitude and position calculations;
the mc_att_control and mc_pos_control modules that pro-
vides attitude and rate control, as well as position and velocity
error; and the commandermodule that manages internal states.
Finally, driver modules that interact with physical devices in-
clude the sensors module that gathers gyroscope, accelerome-
ter and magnetometer data, the gps module that handles the

GPS signal, and the tap_esc module that mixes the actuator
commands into PWM signals for the motors.

Module Armed Hovering RC
Idle 30.1444% 29.4379% 30.6056%

mavlink_if1 16.0183% 15.6195% 15.8956%
EKF2 14.3242% 14.3779% 14.3006%
logger 6.8647% 7.1288% 6.8752%

mc_att_control 5.4349% 5.4007% 5.3425%
reference _monitor 5.3572% 5.4332% 5.5093%

tap_esc 4.4742% 4.4357% 4.4285%
sensors 4.2744% 4.4792% 4.5200%
hpwork 2.5077% 2.4462% 2.4750%

mavlink_if0 2.3323% 2.1384% 2.2667%
mc_pos_control 1.4911% 2.4727% 1.4693%
commander 1.4824% 1.4478% 1.4448%

gps 0.3662% 0.3323% 0.3077%

Table 1: CPU utilization of top 13 modules inside of Intel-
Aero. The drone is tested under three different scenarios:
armed, hovering, and Radio Controlled (RC).

On average, our reference_monitor module in hardware
consumes 5.4332% of the CPU time available. Also, during
our tests with the actual physical device, we did not observe
any input delay or behavioral differences after installing the
modified firmware.

5.3.2 Ground Vehicle

For our implementation of the reference monitor on the
ground vehicle, we added a total of 231 LOC across three
different files. This brings our implementation to 37.3KB of
storage space. Since, our implementation is done in Python
and no binary executable containing the controller is com-
piled, we did not calculate the percent increase with respect to
the size of the controller. We added our module to the Robotic
Operating System (ROS) controller running in the vehicle.
ROS, like PX4, allows for modules to run parallel to each
other. Therefore, our reference monitor also runs in paral-
lel with the rest of the system. We measured the execution
time of our module while the vehicle was executing its "line
following" algorithm. We collected performance data with
respect to the entire system while the vehicle was following
a line utilizing a similar approach as the measurements done
for the aerial vehicle. We collected CPU utilization for each
module, including threads, and average it our with respect to
the rest of the system. Our results indicate that on average,
our reference monitor utilizes 2.2501% CPU resources on the
overall system.

Table 2 states the top 13 processes in the ground vehicle re-
lated to the execution of the line following algorithm. System
nodes include rosout, rosmaster, and roslaunch that handle
logging information, initial set up communication between

908 29th USENIX Security Symposium USENIX Association

Module Line Following CA
lidar_collision_avoidance 12.6886% 13.0694%

elp_cam_bridge 11.0179% 15.6009%
process_line 10.3861% 11.7353%

image_processing 6.0726% 7.8523%
reference_monitor 2.5192% 1.9809%

arduino_node 2.4150% 2.5133%
line_follower 1.0097% 1.0488%

low_level_controller 0.7948% 0.4503%
perot_demo 0.6990% 0.6589%
roslaunch 0.4541% 0.2678%
rplidarNode 0.3074% 0.3020%
rosmaster 0.2973% 0.1569%
rosout 0.0658% 0.0250%

Table 2: CPU utilization of top 13 modules inside of the
ground vehicle. The vehicle is tested under 2 different scenar-
ios: line following and Collision Avoidance (CA).

nodes, and the launching of several nodes simultaneously. The
first node to interact with our system is the elp_cam_bridge
node which receives raw camera information and makes it
available to the system in pixels. The image_processing node
receives this camera information, processes it, and publishes
the image in terms of bytes. The process_line node takes
this information and produces the position with respect to
x and y as well as the angle of the current line. This infor-
mation is fed to the line_follower node that produces the
appropriate servo command. The node perot_demo then takes
this information and outputs ECU commands. Finally, the
low_level_controller publishes the corresponding PWM sig-
nal to the actuators. Our reference_monitor node runs in par-
allel with the rest of the system and publishes an attack flag
when an anomaly has been detected. This attack flag alerts
the system that an attack has been detected.

6 Conclusion and Future Work

In this paper we have presented SAVIOR, a general framework
for protecting autonomous vehicles from signal injection at-
tacks. The key elements of our proposal are the following: (1)
use of well-known physical invariants, (2) the use of offline
system identification, (3) the use of CUSUM algorithms, and
(4) evaluating the effectiveness of the anomaly detection tool
with stealthy attacks that attempt to maximize the damage to
the system.
The main point of (1) is that if the physical models of

the system under control are known, there is no need to use
suboptimal generic linear models or to use neural networks
or other black-box machine learning tools that do not explain
the physics of the system. The main point of (2) is that we
do not need to develop the nonlinear equations of the system
from first principles, the parameters of these equations can be

learned via system identification. The main point of (3) is that
we have seen systematically how change detection algorithms
such as CUSUM or the SPRT perform better than other ways
to keep track of a historical anomaly [26, 41]. Finally, the
main point of (4) is that we can always detect attacks that
are random enough, but if an attacker attempts to bypass our
system, then by looking at the worst case stealthy attacks,
we can identify the lower bound of the performance of our
system (i.e., identify how the physical system would behave
if the attacker bypasses anomaly detection and injects false
data).

In future work we plan to develop SAVIOR into a reference
monitor that not only detects attacks, but can take action once
an attack is detected, in order to protect the safety of the AV
and the people around it.

Acknowledgements

We thank the anonymous reviewers for their insightful com-
ments. This work was partially supported by National Sci-
ence Foundation (NSF) Awards 1834215, 1834216, 1929410,
1931573 and the Air Force Office of Scientific Research under
award number FA9550-17-1-0135.

References
[1] G. Seetharaman, A. Lakhotia, and E. P. Blasch, “Unmanned vehicles

come of age: The darpa grand challenge,” Computer, vol. 39, no. 12,
pp. 26–29, 2006.

[2] F. Schroth, “Gartner predicts ~3 million drones to
be shipped in 2017,” https://dronelife.com/2017/02/10/
gartner-predicts-3-million-drones-shipped-2017/, 2017.

[3] D. Jenkins and B. Vasigh, The economic impact of unmanned aircraft
systems integration in the United States. Association for Unmanned
Vehicle Systems International (AUVSI), 2013.

[4] E. Weise, “Mysterious gps glitch telling ships
they’re parked at airport may be anti-drone measure,”
https://www.usatoday.com/story/tech/news/2017/09/26/
gps-spoofing-makes-ships-russian-waters-think-theyre-land/
703476001/, 2017.

[5] A. Rawnsley, “Iran’s alleged drone hack: Tough, but possible,” https:
//www.wired.com/2011/12/iran-drone-hack-gps/, 2011.

[6] A. J. Kerns, D. P. Shepard, J. A. Bhatti, and T. E. Humphreys, “Un-
manned aircraft capture and control via gps spoofing,” Journal of Field
Robotics, vol. 31, no. 4, pp. 617–636, 2014.

[7] T. E. Humphreys, B. M. Ledvina, M. L. Psiaki, B. W. O’Hanlon,
and P. M. Kintner, “Assessing the spoofing threat: Development of
a portable gps civilian spoofer,” in Radionavigation Laboratory Con-
ference Proceedings, 2008.

[8] N. O. Tippenhauer, C. Pöpper, K. B. Rasmussen, and S. Capkun, “On
the requirements for successful gps spoofing attacks,” in Conference
on Computer and Communications Security (CCS). ACM, 2011, pp.
75–86.

[9] J. Noh, Y. Kwon, Y. Son, H. Shin, D. Kim, J. Choi, and Y. Kim, “Tractor
beam: Safe-hijacking of consumer drones with adaptive gps spoofing,”
ACM Transactions on Privacy and Security (TOPS), vol. 22, no. 2,
p. 12, 2019.

USENIX Association 29th USENIX Security Symposium 909

[10] K. Fu and W. Xu, “Risks of trusting the physics of sensors,” Communi-
cations of the ACM, vol. 61, no. 2, pp. 20–23, 2018.

[11] I. Giechaskiel and K. B. Rasmussen, “Sok: Taxonomy and challenges
of out-of-band signal injection attacks and defenses,” arXiv preprint
arXiv:1901.06935, 2019.

[12] T. Trippel, O. Weisse, W. Xu, P. Honeyman, and K. Fu, “Walnut: Wag-
ing doubt on the integrity of mems accelerometers with acoustic in-
jection attacks,” in European Symposium on Security and Privacy
(EuroS&P). IEEE, 2017, pp. 3–18.

[13] D. F. Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu,
Y. Kim, and W. Xu, “Ghost talk: Mitigating emi signal injection attacks
against analog sensors,” in Symposium on Security and Privacy (S&P).
IEEE, 2013, pp. 145–159.

[14] Y. M. Son, H. C. Shin, D. K. Kim, Y. S. Park, J. H. Noh, K. B. Choi, J. W.
Choi, and Y. D. Kim, “Rocking drones with intentional sound noise
on gyroscopic sensors,” in USENIX Security Symposium (USENIX
Security). USENIX Association, 2015.

[15] D. Davidson, H. Wu, R. Jellinek, T. Ristenpart, and V. Singh, “Con-
trolling UAVs with sensor input spoofing attacks,” in Workshop on
Offensive Technologies (WOOT). USENIX Association, 2016, pp.
221–231.

[16] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen,
K. Fu, and Z. M. Mao, “Adversarial Sensor Attack on LiDAR-based
Perception in Autonomous Driving,” in Conference on Computer and
Communications Security (CCS), 2019.

[17] J. Selvaraj, G. Y. Dayanıklı, N. P. Gaunkar, D. Ware, R. M. Gerdes,
M. Mina et al., “Electromagnetic induction attacks against embed-
ded systems,” in Asia Conference on Computer and Communications
Security (AsiaCCS). ACM, 2018, pp. 499–510.

[18] J. Giraldo, D. Urbina, A. Cardenas, J. Valente, M. Faisal, J. Ruths, N. O.
Tippenhauer, H. Sandberg, and R. Candell, “A survey of physics-based
attack detection in cyber-physical systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 4, p. 76, 2018.

[19] D. Hadžiosmanović, R. Sommer, E. Zambon, and P. H. Hartel,
“Through the eye of the PLC: semantic security monitoring for indus-
trial processes,” in Annual Computer Security Applications Conference
(ACSAC). ACM, 2014, pp. 126–135.

[20] C. M. Ahmed, C. Murguia, and J. Ruths, “Model-based attack detection
scheme for smart water distribution networks,” in Asia Conference on
Computer and Communications Security (AsiaCCS). ACM, 2017, pp.
101–113.

[21] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against
state estimation in electric power grids,” in Conference on Computer
and Communications Security (CCS). ACM, 2009, pp. 21–32.

[22] S. Etigowni, D. J. Tian, G. Hernandez, S. Zonouz, and K. Butler, “Cpac:
securing critical infrastructure with cyber-physical access control,” in
Annual Computer Security Applications Conference (ACSAC). ACM,
2016, pp. 139–152.

[23] W. Aoudi, M. Iturbe, and M. Almgren, “Truth will out: Departure-
based process-level detection of stealthy attacks on control systems,” in
Conference on Computer and Communications Security (CCS). ACM,
2018, pp. 817–831.

[24] A. A. Cardenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and
S. Sastry, “Attacks against process control systems: risk assessment,
detection, and response,” in Asia Conference on Computer and Com-
munications Security (AsiaCCS), 2011, pp. 355–366.

[25] H. Choi, W.-C. Lee, Y. Aafer, F. Fei, Z. Tu, X. Zhang, D. Xu, and
X. Xinyan, “Detecting attacks against robotic vehicles: A control in-
variant approach,” in Conference on Computer and Communications
Security (CCS). ACM, 2018, pp. 801–816.

[26] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, N. O. Tippenhauer, J. Va-
lente, M. Faisal, J. Ruths, R. Candell, and H. Sandberg, “Limiting the
impact of stealthy attacks on industrial control systems,” in Conference
on Computer and Communications Security (CCS). ACM, 2016, pp.
1092–1105.

[27] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: fabricating
implicit control over actuation systems by spoofing inertial sensors,” in
USENIX Security Symposium (USENIX Security). USENIX Associa-
tion, 2018, pp. 1545–1562.

[28] C. Yan, W. Xu, and J. Liu, “Can you trust autonomous vehicles: Con-
tactless attacks against sensors of self-driving vehicle,” DEF CON,
vol. 24, 2016.

[29] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks on auto-
mated vehicles sensors: Experiments on camera and lidar,” Black Hat
Europe 11, 2015.

[30] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversar-
ial optical channel exploits against lidars for automotive applications,”
in International Conference on Cryptographic Hardware and Embed-
ded Systems (CHES). Springer, 2017, pp. 445–467.

[31] K. C. Zeng, S. Liu, Y. Shu, D. Wang, H. Li, Y. Dou, G. Wang, and
Y. Yang, “All your GPS are belong to us: Towards stealthy manipulation
of road navigation systems,” in USENIX Security Symposium (USENIX
Security). USENIX Association, 2018, pp. 1527–1544.

[32] J. Giraldo, D. Urbina, A. A. Cardenas, and N. O. Tippenhauer, “Hide
and seek: An architecture for improving attack-visibility in industrial
control systems,” in International Conference on Applied Cryptography
and Network Security (ACNS). Springer, 2019, pp. 175–195.

[33] T. D. Gillespie, Fundamentals of Vehicle Dynamics. Society of Auto-
motive Engineers, Inc., 1997.

[34] A. Chovancová, T. Fico, L. Chovanec, and P. Hubinsk, “Mathemat-
ical modelling and parameter identification of quadrotor (a survey),”
Procedia Engineering, vol. 96, pp. 172–181, 2014.

[35] T. Luukkonen, “Modelling and control of quadcopter,” Independent
research project in applied mathematics, Espoo, vol. 22, 2011.

[36] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and
dynamic vehicle models for autonomous driving control design,” in
Intelligent Vehicles Symposium (IV). IEEE, 2015, pp. 1094–1099.

[37] I. Griva, S. G. Nash, and A. Sofer, Linear and nonlinear optimization.
Siam, 2009, vol. 108.

[38] J. J. Moré, “The levenberg-marquardt algorithm: implementation and
theory,” in Numerical analysis. Springer, 1978, pp. 105–116.

[39] T. F. Coleman and Y. Li, “An interior trust region approach for nonlinear
minimization subject to bounds,” SIAM Journal on optimization, vol. 6,
no. 2, pp. 418–445, 1996.

[40] L. Xie, D. Popa, and F. L. Lewis, Optimal and robust estimation: with
an introduction to stochastic control theory. CRC press, 2007.

[41] A. A. Cárdenas, S. Radosavac, and J. S. Baras, “Evaluation of detec-
tion algorithms for mac layer misbehavior: Theory and experiments,”
IEEE/ACM Transactions on Networking (ToN), vol. 17, no. 2, pp. 605–
617, 2009.

[42] C. Murguia and J. Ruths, “Cusum and chi-squared attack detection of
compromised sensors,” in Conference on Control Applications (CCA).
IEEE, 2016, pp. 474–480.

[43] J. Gonzales, F. Zhang, K. Li, and F. Borrelli, “Autonomous drifting with
onboard sensors,” in International Symposium on Advanced Vehicle
Control (AVEC), 2016, p. 133.

[44] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft control and
simulation: dynamics, controls design, and autonomous systems. John
Wiley & Sons, 2015.

[45] Tencent Keen Security Lab, “Experimental security research of tesla
autopilot,” White Paper, 2019.

910 29th USENIX Security Symposium USENIX Association

[46] “Flying qualities in piloted aircraft,” Department of Defense Handbook.
MIL-HDBK-1797B, 2012.

[47] C. Wang, B. Song, P. Huang, and C. Tang, “Trajectory tracking control
for quadrotor robot subject to payload variation and wind gust distur-
bance,” Journal of Intelligent & Robotic Systems, vol. 83, no. 2, pp.
315–333, 2016.

[48] S. Romaniuk and Z. Gosiewski, “Kalman filter realization for orienta-
tion and position estimation on dedicated processor,” acta mechanica
et automatica, vol. 8, no. 2, pp. 88–94, 2014.

[49] M. J. Caruso, “Applications of magnetic sensors for low cost compass
systems,” in Position Location and Navigation Symposium (PLANS).
IEEE, 2000, pp. 177–184.

Appendices

A Sensor Pre-Processing

IMUs used in vehicles are composed of a 3-axis accelerome-
ter, 3-axis gyroscope, and 3-axis magnetometer that can be
combined to calculate the vehicle attitude (roll φ, pitch θ, yaw
ψ angles) and attitude rates (φ̇, θ̇, ψ̇). Also, most AVs have
GPS receivers to collect information about the spacial posi-
tion of the drone (x,y,z). Before using this data, there are
several challenges that arise when using IMU information:
i) the IMU does not provide direct information about the at-
titude of the drone, ii) the accelerometer is very noisy, iii)
gyroscopes have an intrinsic bias that causes a drift in the
angles calculation, and iv) the GPS captures latitude, longi-
tude, and altitude information, but we need to compute the
x, y, z position in meters with respect to an initial location.
In order to overcome these issues, it is necessary to design a
pre-processing stage that takes all sensor readings and returns
new and usable readings of the system states.
First, we can define ax,ay,az as the 3-axis accelerome-

ter measurements; ωx,ωy,ωz as the angular velocity mea-
sured by the 3-axis gyroscope; mx,my,mz as the mag-
netometer readings; and Glat ,Glon,Galt as the GPS posi-
tion. All of them form the vector of raw sensor readings
Y = [aX ,ay,az,ωx,ωy,ωz,mx,my,mz,Glat ,Glon,Galt]

�. With
Y , the pre-processing stage computes a new output �Y =
[φ,θ,ψ, φ̇, θ̇, ψ̇,x,y,z] with the information necessary to gen-
erate predictions of the system states. The pre-processing
stage uses a data-fusion algorithm that combines the gyro-
scope readings of angular velocities with the accelerometer
or magnetometer measurements to calculate the intrinsic bias
of the gyroscope and then generate accurate roll, pitch, and
yaw angle readings. The algorithm is based on a simple linear
Kalman filter that exploits some geometric properties of the
accelerometer and magnetometer.
On the other hand, the pre-processing takes the GPS read-

ings that correspond to the geodetic latitude, longitude, and
altitude and converts them to flat Earth position (x,y,z) that
can be used to determine the position of the drone in meters
with respect to its initial location. We choose a simple ap-
proach that is precise for changes up to hundreds of meters,

which considers the ellipsoid planet model known as WGS84.
Details about the conversion algorithm can be found in [44].
Bias Correction
In order to correct the bias of the gyroscope, we use
a data-fusion procedure that combines the accelerome-
ter/magnetometer with the gyroscope readings to obtain accu-
rate angle measurements [48]. This methodology exploits the
fact that the accelerometer and magnetometer are affected by
the gravitational field of the Earth such that any inclination of
the accelerometer (pitch or roll) will be reflected on each of its
measurements. Similarly, the magnetometer acts as a compass
and is affected by the direction and inclination of the drone.
We then perform two main steps: 1) compute a noisy angle
approximation using the accelerometer (or magnetometer for
the yaw angle), and 2) using the angular velocity measured
by the gyroscope and the angle approximation obtained in
step 1, estimate the gyroscope bias and correct the gyroscope
measurement in order to compute an accurate angle.

The first step uses geometrical properties of the accelerom-
eter as follows:

φa,t =− tan−1


 ay,t�

a2x,t +a2z,t


 , θa,t = tan−1


 ax,t�

a2y,t +a2z,t




(12)

where θa,t ,φa,t are roll and pitch computed from the ac-
celerometer readings.
For the second step, we will describe the procedure intro-

duced in [48] to obtain only the roll angle φ, but the same steps
can be applied for θ and ψ. We need to describe the dynamic
equation that describes the evolution over time of φ with re-
spect to the angular velocity measured by the gyroscope ωx
as follows:

φt+1 = φt +dt(ωx,t −ωb
x,t)

ωb
x,t = ωb

x,t−1, (13)

where ωb
x,t is the gyroscope bias and dt is the sampling period.

With the dynamic representation in (13), we can use a Kalman
Filter to estimate both unknown variables (i.e., unknown be-
cause they are not directly measured), the angle φt , and the
bias ωx,t . Kalman filter is a mean squared error minimizer that
is used to estimate unknown variables from available sensor
readings. Its form is as follows:

xt+1 = Axt+But+Kt(zt−Hxt)

where H = [1 0], zt = φa,t, xt = [φt,ωb
x,t]

�, ut = ωx,t ,

A=

�
1 −dt
0 1

�
,B=

�
dt
0

�
,

and the Kalman gain Kt is updated recursively according to
Appendix B.

USENIX Association 29th USENIX Security Symposium 911

The same procedure can be applied to estimate the pitch
angle θ. Then, with φ,θ, we can compute the yaw angle from
the magnetometer readings ψmag,t according to Caruso et
al. [49]

Hx = mx,t cos(θ)+my,t sin(θ)cos(φ)+mz,t cos(φ)sin(θ)
Hy = my,t cos(φ)−mz,t sin(φ)

ψmag,t = tan−1
�−Hy

Hx

�
, (14)

and then apply the same Kalman filter procedure described
above with ut = ωz,t and zt = ψmag,t .

B Extended Kalman Filter Implementation

General Description. The Kalman filter algorithm is de-
scribed in Fig. 22. At each instant k, the algorithm receives uk,
which is the vector of control commands, x̂k, which is a vec-
tor that contain the predicted states obtained in the previous
iteration, and the sensor readings yk.

Prediction
Predicted state estimate

Predicted covariance estimate

Correction
Kalman gain

State correction

Updated covariance estimate

!𝑥#$%
& = 𝑓 !𝑥#,𝑢#

𝑃#
& = 𝐹#𝑃#&%𝐹#$%

⊺ + 𝑄

𝐾# = 𝑃#
&𝐻#

⊺ [𝐻#𝑃#
&𝐻# + 𝑉]&%

!𝑥#$% = !𝑥#$%
& + 𝐾# 𝑦# − ℎ(!𝑥#

&)

𝑃# = [𝐼 − 𝐾#𝐻#]𝑃#
&

Initial
estimates

For !𝑥;
&, 𝑃;

&

Fig. 22: General scheme of the Kalman filter algorithm.

The algorithm can be divided into two main routines: pre-
diction, and correction. The first routine takes the last esti-
mation x̂k and the current input uk and generates a prediction
x̂−k+1. However, this prediction has to be further corrected us-
ing the sensor data. Similarly, the covariance matrix of the
estimation error P−

k (i.e., the error between the real states xk
and the estimated states x̂k) is predicted using the process
covariance matrix Q and the state transition matrix Fk, which
will be defined later. The second routine takes the previous
predictions x̂−k ,P

−
k , the observation matrix Hk, and the covari-

ance of the sensor noiseV , and computes the Kalman gain Kk.
Therefore, the state prediction is corrected using the sensor
readings and the covariance matrix is updated. The output of
the algorithm is then x̂k+1 and Pk, which will feed the next
iteration of the algorithm. There are several variations of the
Kalman filter algorithm for linear and nonlinear systems – the
main difference lies in the derivation of the transition matrix
Fk and the observation matrix Hk.
Suppose there is a physical process with a set of states or

variables xk ∈ Rn that evolve over time, where k = 1,2, . . .

represent the kth sampling instant (i.e., the kth iteration of the
algorithm) with a sampling period Δt . For example, xk may
represent position and velocity of a vehicle or temperature,
pressure, and water level in a tank. The control input uk ∈Rm

corresponds to the commands sent by the controller in order to
achieve a specific goal based on the sensor measurements yk ∈
Rp. For instance, open a valve when the level of water is low,
or increase the acceleration in a car to reach a desired velocity.
The behavior of the process is approximately defined by a
function f (xk,uk), which depends on the current states and the
control commands. In general, f (xk,uk) can be defined using
the laws of physics, or mechanical or electrical equations;
however for complex systems, the function f (xk,uk) is only
an approximation due to uncertainties and assumptions (e.g.,
in certain conditions, friction of a wheel can be neglected or
approximated).

In general, the main goal of the Kalman filter is to minimize
the error between the real set of states xk and the estimation
x̂k. Thus, we can define the estimation error as ek = xk− x̂k.
Due to the different sources of noise (e.g., sensor noise or
external disturbances), ek is also noisy, and that amount of
noise can be quantified in terms of a covariance matrix Pk.

The Kalman filter algorithm is summarized in Fig. 22 and
it can be divided into two main routines: prediction, and cor-
rection. The first routine takes the last estimation x̂k and the
current input uk and generates a prediction x̂−k+1. However,
this prediction must be further corrected using the sensor data.
Similarly, the covariance matrix of the estimation error P−

k is
predicted using the process covariance matrix Q and the state
transition matrix Fk, which will be defined later. The second
routine takes the previous predictions x̂−k ,P

−
k and computes

the Kalman gain Kk. Therefore, the state prediction is cor-
rected using the sensor readings and the covariance matrix
is updated. The output of the algorithm is then x̂k+1 and Pk,
which will feed the next iteration of the algorithm.

For the extended Kalman Filter, the transition and obser-
vation matrices at each iteration k are defined in terms of the
Jacobians (i.e., partial derivatives of a vector-valued function
with respect to each of its variables)

Fk =
∂ f
∂x

����
x̂k,uk

, Hk =
∂h
∂x

����
x̂−k

.

Notice that the transition matrix Fk corresponds to the Jaco-
bian of f evaluated in x̂k,uk, while the observation matrix is
computed by the Jacobian of h evaluated in x̂−k . In general,
EKF is a suboptimal algorithm due to the fact that the predic-
tion of the covariance matrix Pk is only an approximation of
the real one. This is because there are not analytical expres-
sions to compute covariance matrices for nonlinear dynamic
systems, and it is necessary to use Jacobians to compute that
approximation.

912 29th USENIX Security Symposium USENIX Association

