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Abstract— Older adults who age in place face many health
problems and need to be taken care of. Fall is a serious
problem among elderly people. In this paper, we present
the design and implementation of collaborative fall detection
using a wearable device and a companion robot. First, we
developed a wearable device by integrating a camera, an
accelerometer and a microphone. Second, a companion robot
communicates with the wearable device to conduct collaborative
fall detection. The robot is also able to contact caregivers in case
of emergency. The collaborative fall detection method consists
of motion data based preliminary detection on the wearable
device and video-based final detection on the companion robot.
Both convolutional neural network (CNN) and long short-term
memory (LSTM) are used for video-based fall detection. The ex-
perimental results show that the overall accuracy of video-based
algorithm is 84%. We also investigated the relation between
the accuracy and the number of image frames. Our method
improves the accuracy of fall detection while maximizing the
battery life of the wearable device. In addition, our method
significantly increases the sensing range of the companion robot.

I. MOTIVATION

In recent years, we have witnessed a steady growth of
older adult population who are above the age of 65 [1].
This can be attributed to the fact that the baby boomer
generation finally reached this age group while people’s life
expectancy has increased in recent decades. Older adults face
many health problems and have to find assistance from the
younger generation or professional caregivers. Particularly,
fall has become a serious problem among older adults [2],
which usually results in injuries, and sometimes even deaths.
Due to financial reasons, it is not realistic to have a personal
health practitioner to monitor the state of those facing health
problems. Although many research efforts have been devoted
to fall detection, accurately detecting a fall and providing
medical care in real time is still very challenging.
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Fig. 1: The concept of collaborative activity monitoring using
a wearable device and a companion robot.

In recent years, companion robots are coming to our
homes which may provide a great opportunity to address the
fall detection problem [3]. Companion robots can not only
provide basic functions such as news, playing music, chat-
ting, but also offer medical consultation and ask caregivers
for help when older adults have an emergency. However,
using cameras on the robot or in the home environment
to monitor older adult activities is intrusive and may cause
significant privacy concerns. Therefore we need to develop
a new way for the robot to collect data to understand
older adults behaviors and their surroundings. We propose
that a wearable multi-sensor device could alleviate privacy
concerns of users since the captured images are not of the
user but of the surroundings [4]. In an independent living
environment, this method can maximize privacy protection.
In addition, when the wearable camera is integrated with
other sensors such as a microphone and an accelerometer,
the wearable device could collect more data that be useful
for the robot to expand its sensing capability in understanding
the behavior of the older adults.

Therefore, the objective of this paper is to propose, de-
velop and test a collaborative activity monitoring system
(CAMS) that combines a wearable device with a companion
robot for elderly care. The current focus of activity moni-
toring is on fall detection. Fig. 1 illustrates the concept of
collaborative activity monitoring in which the robot works
closely with the wearable device to understand the behavior
of the older adults. In emergency situations, such as a fall, the
robot will notify the healthcare providers or family caregivers
through a Cloud based management system.



This paper has three major contributions. First, it proposed
and developed a collaborative strategy between a wearable
device and a companion robot to understand human activities
which minimizes the privacy intrusion while allowing the
robot to maximize its sensing range. Second, a compact
wearable activity monitoring unit (WAMU) is designed and
implemented, which collects multi-modal data regarding the
wearer and the environment, conducts preliminary fall detec-
tion based on motion data in a power-efficient way. Third,
we developed, implemented and tested the vision-based fall
detection algorithm by leveraging deep neural networks on
the companion robot.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III presents the overall
design of the CAMS. Section IV describes the design of the
WAMU, the companion robot and the software. Section V
presents the experimental setup, design and results. Section
VI concludes our work and discusses the future work.

II. RELATED WORK

A significant amount of work has been done recently in
the field of fall detection using wearable devices. Several
projects are based on a single sensor. Bourke et al. [5]
used accelerometer to get data and develop a simple rule
to classify an event as a fall by using a threshold which is
derived by taking the magnitude of the three signals from
each tri-axial accelerometer data. Torti et al. [6] focused on
the implementation of recurrent neural networks (RNNs) ar-
chitectures of microcontroller units (MCU) for fall detection
with tri-axial accelerometers. Shojaei et al. [7] demonstrated
a vision-based detection method using LSTM to verify a
fall with 3D joint skeleton features. However, using a single
sensor to collect data has limited information and usually
results in many false positives.

Multiple wearable sensors were also used for fall detec-
tion, which usually offers higher accuracy. Hussain et al.
[8] presented a system which includes a gyroscope and an
accelerometer to minimize false positives in fall detection.
Mao et al. [9] proposed a fall monitoring system in which a
portable sensor collects the data with a 3-axis accelerometer,
a 3-axis gyroscope and a 3-axis magnetometer then sends
it to the mobile phone for further fall detection decisions.
Ozcan et al. [4] developed a fall detection system using a
wearable device equipped with cameras and accelerometers.
They detected falls by analyzing the video and accelerometer
data captured by a smartphone. As the smartphone needs to
be attached to the waist with belt, it is not human-friendly
for older adults. In addition, the camera and accelerometer
are independent and can not communicate with each other,
which may lead to unnecessary waste of energy due to
the heavy computation on video data. Shahiduzzaman et
al. [11] designed a Smart Helmet integrated with wearable
cameras, accelerometers and gyroscope sensors, which is not
convenient to the older adults living in home. They provided
a fall detection algorithm that processes both accelerometer
and video data on the Smart Helmet.

Other researchers explored the use of both wearable
sensors and environmental sensors for fall detection. For
example, Martinez et al. [12] proposed a multimodal fall
detection system which consists of wearable sensors, ambient
sensors and vision sensors. They combined LSTM with CNN
to detect a fall from raw data (sensor data and video data)
in real-time. However, fall detection based on environmental
vision sensors causes significant privacy concerns.

Companion robots have been used to support elderly
care in homes or care institutions [13]. Many companion
robots have been developed for elderly care, including the
Aibo [14] robot and Paro [15] robot. Equipped with various
functions such as speech recognition, object recognition,
and dialogue management, companion robots could be an
avatar representing caregivers or social companions [3] [16]
that improve the quality of life for older adults through
companionship and social interaction. A companion robot
can offer proactive assistance when emergency occurs. They
could provide safety assistance including confirming a fall
and sending notifications. Do et al. [3] developed a fall
detection system based on sound events on a companion
robot. It could recognize various falling sounds. After a fall
is detected, the robot could connect to a remote caregiver
for assistance. However, the shortcoming with the method is
that the robot may not be able to hear the sound when the
older adult is far from the robot.

III. OVERALL DESIGN OF COLLABORATIVE ACTIVITY
MONITORING SYSTEM (CAMS)

As shown in Fig. 2, the CAMS consists of a WAMU, a
companion robot, and a healthcare management system.

The WAMU measures the acceleration of the user motion
to determine if a fall is occurring. A positive result triggers
the capture of a sequence of images that are then sent
via WiFi to the companion robot. The companion robot
processes the images to further confirm or reject the fall. If
confirmed, the robot begins its emergency protocol, engaging
the user to determine if the caregivers should be notified.
The audio is recognized through the Google Speech API,
while the Rasa [17] module provides basic skills for older
adults to use, such as weather, news, quotes, jokes, music,
photo-taking, and wiki information. The WAMU and the
companion robot are also in constant communication so that
the user can still take advantage of the capabilities of the
robot.

The design requirements of the WAMU are as follows:
1) The WAMU should collect motion of the wearer and

the video and audio data of the surrounding environment of
the wearer.

2) The wearable device should be lightweight and er-
gonomic for older adults and rechargeable with a reasonable
battery life for daily use.

3) The WAMU should be able to communicate with the
companion robot within the range of a typical home, which
allows the wearable device and the robot to collaboratively
understand the user’s daily activities.



Fig. 2: The overall design of the CAMS.

Fig. 3: The design of the Wearable Activity Monitoring Unit
(WAMU).

IV. HARDWARE AND SOFTWARE DESIGN

A. Wearable Activity Monitoring Unit

Fig. 3 shows the design of the WAMU which has three
parts: the circuit board, battery and housing.

1) Circuit Board: As shown in Fig. 3, the board consists
of an ESP32 development board kit, a 3-axis accelerometer,
and a digital MEMS microphone. ESP32-CAM is a small
embedded computing module that incorporates an ESP32S
chip, an OV2640 CMOS image sensor, and an external 4MB
PSRAM. This module is chosen for its compactness, the
amount of available pins for use, and many other func-
tionalities. Since the WAMU is worn by older adults for
a sustained period of time, a lightweight design with a small

form factor is desired. The general purpose IO pins allow
multiple peripheral devices to be connected to the ESP32-
CAM. The chip also integrates WiFi 802.11b/g/n allowing
the board to connect to a server which runs on the companion
robot. Finally with the extension of the memory capacity,
large blocks of data such as images and audio can be acquired
and stored on the board for preprocessing and transmission.
The ADXL345 digital accelerometer is adopted as the motion
sensor, which is a small, ultra-low power, 3-axis accelerom-
eter with a high resolution of 13-bit measurements up to
16g. The sensitivity and resolution are sufficient for detecting
falls. I2C communication protocol is used for the ADXL345
to talk to the ESP32-CAM at a rate of 800 Hz. Finally, the
audio input device is an INMP441 omnidirectional MEMS
microphone. This chip is fitted with the necessary features to
provide a high-performance, low-power, digital-output using
the industry-standard I2S protocol.

2) Battery: As shown in Fig. 3, the battery fitted to the
circuit board is a lithium-ion polymer battery which provides
a thin, lightweight design with a capacity of 2500 mAh. The
output of the battery ranges from 4.7V at full charge to 3.7V.
This voltage output is not compatible with the ESP32-CAM
that requires a supply voltage of around 5V. To accommodate
it, a voltage booster is used to increase the voltage to 5V.
Along with the booster, the board is also equipped with a
charging circuit that takes a USB-C connection and charges
the battery at a max rate of 1000 mA.

It is necessary to have an estimate of the battery life.
The component that has a considerable amount of power
draw is the ESP32-CAM which has a maximum of 240
mA current consumption when transmitting data. The other
components have very small power consumption. Therefore
only the ESP32-CAM is considered in estimating the battery
life. We assume 15 false positives will occur every hour. The
average amount of current draw would be around 82.5 mA
which results in a battery life of 30 hours and is sufficient



Fig. 4: The overview of the WAMU housing.

Fig. 5: A person wearing the wearable activity monitoring
unit (WAMU).

for supporting daily use.
3) WAMU Housing: Many methods to house the wearable

device hardware were investigated. Some of the designs
include a solid frame necklace, a headset mount, and various
corded necklace designs. After hands-on experimentation and
rapid prototyping, the corded necklace proved to be the most
adaptable and user friendly. The chosen design houses all
electrical components in one case as shown in Fig. 4. The
case has both front and back parts. On the housing there
is a cut out for the camera lens (front) and charging port
(bottom). During the prototyping phase, the housing can be
opened and closed easily. A flexible cord is used to suspend
the device around the user’s neck. Compared to a solid frame,
the cord allows the device to fit on any user. Fig.5 shows a
person wearing the WAMU along with the inside, front and
back view of the WAMU.

B. Companion Robot

Fig. 6 shows the ASCC Companion Robot [16] developed
in our lab. It consists of three main parts: the head, the body
and the power base. The robot head is comprised of a vision
system with an Intel Realsense RGB-D camera, an auditory
system with four microphones for speech recognition and
sound localization, and a touch screen which is connected to
an ARM-based board running Android OS and used for user
interfacing. An Intel NUC with a Core i5 processor is hosted
in the robot body, which facilitates speech recognition, video-
based fall detection and other skills, as well as the capability

Fig. 6: The prototype of the ASCC companion robot.

Fig. 7: The software flowchart of the proposed system.

to communicate with caregivers or family members when the
older adult is in emergency situations.

C. Software

1) Software Flowchart: The flow chart of software is
shown in Fig. 7. It can be divided into two parts: the wearable
device part and the robot part. In the wearable device part,
acceleration data are collected by the 3-axis accelerometer
and the data are processed locally on the device. If the
magnitude of the 3-axis acceleration vector is greater than
the threshold, it is declared as a potential fall event and the
camera function will be triggered. As a result, a sequence
of images during falling are captured and sent to the robot.
On the robot, after verifying the fall, an alarm will be sent
to the caregivers or family members. Besides, the robot will
communicate with the older adult through natural language.
It will ask the older adult “are you ok?” and wait for older
adults’ responses to make further decisions.

2) Data Communication: The WAMU is connected to the
robot using TCP/IP sockets. In order to save energy, the wifi
turns on only when a possible fall event is detected. Then the
image data are sent to the robot. After receiving the response



from the robot, if it needs to respond to the robot by audio,
the microphone data will be collected and sent through this
connection. After that, the connection will be closed and the
wifi will turn off.

3) Fall Detection Algorithms: Fall detection is imple-
mented in two steps. The first step is a preliminary classifier
that runs on the WAMU using the accelerometer data. The
second step runs on the robot which receives a sequence
of images from the WAMU and classifies them through
recurrent neural network (RNN). The RNN-based classifier
provides more accurate classification and reduces possible
false positive results.

For the accelerometer-based preliminary fall detection
a simple power-efficient algorithm is used, in which we
compare the magnitude of the 3-axis acceleration vector
against a predefined threshold for detecting a fall. According
to [5], we set the threshold to 3g, which is sufficient to
detect the falls. For the video-based algorithm, RNN is a
type of artificial neural networks which consists of nodes
from a directed graph along a temporal distance. Compared
with convolutional neural network (CNN), the RNN model is
influenced by previous features, which provides its memory
of previous action and the ability to classify actions which
involve consecutive image frames. We built an architecture
for video classification based on both CNN and e long short-
term memory (LSTM). We use the Resnet152 as the CNN
for extracting features for each frame and compressing the
frame from an image to a vector. The last fully-connected
classification layer is deleted and therefore the result is a
processed and compressed vector that contains the features
of the original image and can be analyzed by the following
RNN.

The LSTM is an artificial RNN architecture [18]. As
shown in Fig. 8, compared with traditional RNN archi-
tectures, the LSTM architecture is more complicated. The
RNN concatenates past state and current state and controls
the outputs through the tanh function. The LSTM contains
additional input and output. Thus, instead of only having
memory of state at the most recent moment like the RNN,
the LSTM has long time memory. After getting the processed
feature vector through Resnet, an LSTM with three hidden
layers analyses the vector and derives the classification result.

4) Alarm Management: As falls may result in serious
injuries among the elderly [19], timely intervention by
caregivers can play a vital role. We chose an open source
mobile APP Telegram [20] to be the communication channel
between the companion robot and the caregivers. With the
mobile device, caregivers or family members can receive
telegram messages when older adults are in trouble (e.g. fall
or asking for help). The message type can be text, image or
audio, which could provide abundant information for further
decisions.

V. EXPERIMENTAL EVALUATION

A. Test setup

We implemented the fall detection system using the pro-
posed WAMU and the existing companion robot. The ESP32-

Fig. 8: The modules of LSTM and RNN.

Fig. 9: The smart home testbed and the testing scenario.

CAM board has a 2-core 160MHz CPU and 520KB SRAM
plus 4MB PSRAM. The resolution of the captured images
is 640 by 640 and the frame rate is between 15 and 60 fps.
Meanwhile, the accelerometer-based fall detection algorithm
runs on the board, and the accelerometer data has a sampling
frequency of 400Hz. The robot runs on a 4-core Intel i5 CPU
with 8G memory and the OS is Ubuntu 16.04. As shown in
Fig. 5 and Fig. 9, in order to collect data and validate the
algorithms, we set up a mattress in our smart home testbed.
Human subjects participating in the experiment fell onto the
mattress. Before the test, IRB approval was obtained from
our university.

B. Experiment and Results

The wearable camera captures images and sends to the
robot when it detects abnormal acceleration data. The fall
detection program on the robot first compresses every image
into a vector. The RNN then receives a sequence of input
vectors representing each frame. A long short-term memory
(LSTM) network is used to train the RNN model. In order to
test the effectiveness of the RNN-based fall detection system,



Fig. 10: A sample sequence of 10 consecutive images col-
lected during a fall.

as Fig. 5 shows, we collected data from 4 male volunteers
aged between 24 and 31. They were asked to complete
each action in Table I. Each video represents an action and
consists of 10 frames, as shown in Fig. 10. The wearable
device captures the image of the environment instead of the
user which helps reduce privacy concern. Six actions are
listed for classification, as shown in Table I below. Hence,
a total of 600 sets of experimental data were collected, with
100 sets for each action. We divided the dataset, which has
a total of 6000 images, into three parts: training dataset,
validation dataset, and test dataset, with the ratio of 3:1:1.
In order to determine the suitable number of frames for fall
detection, we compared the accuracy of fall detection using
different numbers of frames.

TABLE I: The Dataset.

Action Samples Number of Frames
Walk 100 1000
Sit down 100 1000
Fall forward 100 1000
Fall backward 100 1000
Fall left 100 1000
Fall right 100 1000
Total 600 6000

TABLE II: Confusion Matrix of Detection using Resnet +
RNN

Real Classes
Backward Forward Left Right Sit down Walk

Pr
ed

ic
te

d
C

la
ss

es Backward 0.9434 0.0138 0.0446 0.0235 0.0290 0.0032
Forward 0.0081 0.8489 0.0250 0.0451 0.0159 0.0021
Left 0.0232 0.0277 0.7902 0.1294 0.0654 0.0284
Right 0.0182 0.0723 0.1027 0.7373 0.0813 0.0221
Sit down 0.0020 0.0255 0.0232 0.0147 0.7935 0.000
Walk 0.0051 0.0117 0.0143 0.0500 0.0150 0.9442

The confusion matrix of our proposed approach on testing
dataset is shown in Table II. The overall accuracy is 84%,
as Fig. 11 shows, and it is obtained at 53th epoch. As
shown in the table, the accuracy of some classes reaches
94%, including falling backward and walking. However, the
accuracy of falling left, falling right, and sitting down is not
as good as that of other classes.

Fig. 11: Accuracy of Resnet+RNN with respect to the
number of image frames used.

From Fig. 11, we find that using 10 frames the accuracy of
fall detection is 84%. When the frame number is less than 5,
the accuracy is too low to verify a fall. The accuracy of using
7 frames is very close to the accuracy of using 10 frames. But
with 7 frames, we can save 3 frames which leads to lower
power consumption in communication and computation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the design and implementation
of a collaborative activity monitoring system (CAMS) based
on a wearable device and a companion robot. We use
fall detection as a case study to evaluate the CAMS. The
collaborative fall detection method consists of two steps:
accelerometer-based fall detection on the WAMU and video-
based fall confirmation or rejection on the companion robot.
Accelerometer-based detection algorithm is energy-efficient,
which extends the battery life of the wearable device. The
video-based algorithm combines CNN and LSTM. The ex-
perimental results show that the overall accuracy of fall
detection using the video-based algorithm is 84%, while
for some classes of activities the accuracy reaches 94%,
including falling backward and walking. We also analyzed
the accuracy of fall detection using different numbers of
image frames, which achieves a tradeoff between accuracy
and power consumption. Apparently, the results we reported
here are still preliminary but promising. We need further im-
prove the whole system, particularly in the following aspects:
1) Energy consumption. We will conduct a more thorough
investigation of the power consumption on the WAMU and
optimize both hardware and software to further reduce the
power consumption. 2) Fall detection. We will collect more
data from more realistic falls and study the impact of various
factors on fall detection accuracy, including the speed of
falling, the location of falling, etc. 3) WAMU design. We
will further improve the ergonomics of the WAMU to make
it more human-friendly.
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