IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) | 978-1-6654-0443-3/21/$31.00 ©2021 IEEE | DOI: 10.1109/INFOCOMWKSHPS51825.2021.9484546

IEEE INFOCOM WKSHPS: CNERT 2021: Computer and Networking Experimental Research using Testbeds

Support for Differentiated Airtime
in Wireless Networks

Daniel J. Kulenkamp
CIDSE, Arizona State University
Tempe, AZ, USA
dkulenkalasu.edu

Abstract—Future wireless networks must be able to support
Quality of Service (QoS) requirements of emerging 5G and other
next-generation applications. REACT is a distributed resource
allocation protocol can be used to negotiate airtime among nodes
in a wireless network. In this paper, REACT is extended to
support QoS airtime. Experimentation on the w-iLab.t wireless
testbed in an ad hoc setting shows that these extensions allow
REACT to converge on allocations where any node requesting
the higher class of airtime receives its allocation, while nodes
requesting the lower class are allocated remaining airtime fairly.

Index Terms—IEEE 802.11 wireless networks, Quality of
Service, QoS, airtime, distributed protocols

I. INTRODUCTION

In the modern world, wireless networks are everywhere
and are used by billions of people. According to the Cisco
Annual Internet Report for 2018 to 2023, the 5.1 billion mobile
subscribers in 2018 are predicted to grow to approximately
5.7 billion by 2023 [1]. With the emergence of 5G, new
applications that require Quality of Service (QoS) support
are possible including ultra reliable, low latency applications,
such as autonomous vehicles, or high capacity applications
such as virtual reality. Wireless local area network (WLAN5)
are envisioned as an offloading solution for 5G networks,
where the 5G infrastructure is unavailable or overloaded [2].
However, this means that WLANs also need to support QoS
at a level comparable to 5G.

One mechanism for achieving QoS support in WLANSs is
airtime allocation. Airtime is the amount of time the channel
is sensed busy due to frame transmissions [3]. In order to
provide QoS support in a wireless setting, we need to ensure
that devices that want a higher airtime allocation than others
get it, if possible. To provide guarantees on metrics such as
delay, airtime allocations need to be consistent and unaffected
by other transmitting devices.

The most common channel access method for WLANs
today is the Wi-Fi standard, or IEEE 802.11 [4]. Its main
mechanism is the distributed coordination function (DCF), a
carrier sense multiple access protocol with collision avoidance
(CSMA/CA). The IEEE 802.11e amendment introduced traf-
fic prioritization in the enhanced distributed channel access
(EDCA) protocol using access categories (ACs) for different
traffic classes [5]. Each class has its own contention window
values, allowing for higher priority traffic to be transmitted

978-1-6654- 0443 3/21/$31.00 ©2021 |EEE

Violet R. Syrotiuk
CIDSE, Arizona State University
Tempe, AZ, USA
syrotiuk@asu.edu

in the network before lower priority traffic. The QoS support
provided by IEEE 801.11e is still limited, as there are no
guarantees on delay, jitter, throughput, or other metrics.

Neither IEEE 802.11 nor IEEE 802.11e allocates airtime to
individual nodes. A distributed resource allocation protocol,
REACT, can be used for this purpose [6]. REACT negotiates
an airtime allocation among neighboring nodes, where nodes
concurrently demand and offer airtime. If nodes demand more
airtime than is available, the remaining available airtime is
divided equally among the nodes for fairness. Once REACT
has converged on an allocation for a node, the allocation
must be realized. The original work on REACT proposed a
scheduled MAC protocol where the allocation corresponded to
slot assignments, implemented in simulation [6]. Later work
used a contention-based method, tuning the contention window
using an algorithm based on renewal theory (RENEW [3]), and
with a control theoretic approach (SALT [7]). Through ex-
perimentation on a testbed with these two tuning approaches,
REACT has lower delay and jitter statistics than IEEE 802.11,
with only a relatively small reduction in throughput [7].

We propose an extension to REACT, REACTq.s, which
extends the original algorithm to support two different classes
of airtime, QoS airtime and best effort (BE) airtime. Using the
same concept of demanding and offering airtime, REACTq,s
allows nodes to request and receive QoS airtime, which is pri-
oritized by the algorithm. The remaining airtime is distributed
among the remaining BE nodes as in the original algorithm.
Since REACT was originally designed, implemented, and
evaluated in an ad hoc wireless network setting, we study
REACTos in an ad hoc setting as well.

The contribution of this work is threefold. First, the REACT
algorithm is extended to support differentiated traffic. Sec-
ondly, REACT(s is implemented and also updated to allow
for dynamically changing demands, where prior work focused
on static demands. Finally, to improve the performance of the
tuning, a traffic shaping mechanism using Linux traffic control
(tc) is introduced to prevent nodes from obtaining higher
airtime than they are allocated. We demonstrate that the new
algorithm can successfully allocate differentiated airtime for
nodes requesting a higher priority of service, while equally
sharing remaining airtime among BE nodes.

The rest of this paper is organized as follows. We first
present the QoS extensions to REACT in §II. In §IIT we

Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 12:58:54 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM WKSHPS: CNERT 2021: Computer and Networking Experimental Research using Testbeds

describe the experimental setup used to evaluate REACT.s
using the w-iLab.t testbed, as well as the experiments that were
run, presenting the results in §IV. Our plans for next steps for
REACT, including application to infrastructure networks, are
found in §V, and finally in §VI we present our conclusions.

II. SUPPORTING AIRTIME DIFFERENTIATION IN REACT

We first present the REACT,s algorithm, and then describe
its implementation architecture.

A. REACTg,s Algorithm

As mentioned in §I, REACT negotiates the airtime alloca-
tions for nodes in a wireless network. The idea behind QoS
support in REACTq.s is to provide two classes of airtime
which nodes can request. This allows some nodes to receive
a higher airtime allocation for their applications. In an ad
hoc setting, each node runs both an auctioneer and a bidder
algorithm, which maintains the list of offers and claims,
respectively, for the node and its adjacent auctions (neighbors).

We define two traffic classes: QoS and BE. In the QoS
class, a node is guaranteed its allocation if available, while
the BE class offers no guarantees on how much airtime a node
receives. In this work, all traffic from a node is treated as a
single flow. Therefore, each node is considered either a QoS
node or a BE node, and must select whether it is requesting
QoS airtime or BE airtime. We now present the bidder and
auctioneer algorithms that form REACT,s.

Algorithm 1 presents the REACTq,s bidder. Each bidder ¢
maintains three sets: Bf) is the set of BE offers, Q? is the set
of QoS offers, and «; is the set of auctions bidder ¢ has joined.
Additionally, the bidder keeps track of two variables, ¢; and
b; which are its QoS and BE demands or claims, respectively.
Initially, all sets are empty and demands are O.

Though the bidder keeps track of a QoS and a BE demand,
only one is allowed to be positive at a time. When the
bidder receives a new offer from auctioneer j, it updates
its sets accordingly. The main function for the bidder is
UPDATECLAIM (lines 16-26). If g; is positive, this means the
demand is a QoS demand. The node must check whether it
has received QoS offers from each of its neighboring nodes,
and that the offer is at least as large as the demand. If any
of the offers from neighboring nodes is not as large as the
demand, it sets b; to the QoS demand ¢;, and sets ¢; to O.
After it checks all neighboring offers, it sets QoS claim to g;
and BE claim to b;. If g; is not positive, then it sets QoS claim
to 0 and sets BE claim to be the minimum of all offers in BY
and b;. Finally, it sends the tuple (QoS claim, BE claim) to all
auctions in «;.

Algorithm 2 presents the REACTq,s auctioneer. Similar to
the bidder, the auctioneer maintains three sets: BjC is the set
of BE claims, Qjc is the set of QoS claims, and §; is the set of
bidders at auction j. It maintains one variable c;, the capacity
of its resource, which is the airtime to auction at that node.

The main part of this algorithm is the function UPDATEOF-
FER (lines 18-47). In this function, two sets are maintained:
R is the set of all satisfied QoS bidders, and C' is the set

Algorithm 1 REACT Bidder for node i.

upon initialization do
a; 0 > set of neighboring auctions of bidder ¢
BP «+ 0, Q9 «+ 0 > set of BE, QoS offers
qi < 0,b; <0 > QoS, BE demand for bidder ¢

1:
2
3
4
5. upon receiving a new demand magnitude (g;,b;) do
6
7
8
9

UpdateClaim()
: upon receiving offer (z;,y;) from auctioneer j do
QY] « =5
. BPljl+vy;
10 UpdateClaim()
11: upon bidder ¢ joining auction j do
12: a; —oa;Ujg
13: UpdateClaim()
14: upon bidder ¢ leaving auction j do
15: Q; — O \j
16: procedure UPDATECLAIM()

17: if g; > 0 then > either g; or b; is positive

18: for offer € Q9 do

19: if offer < ¢; then

20: b; < q;

21: qi <0

22: QoS claim < gq;

23: BE claim < b;

24: else

25: QoS claim <+ 0

26 BE claim < min({offers[j] : j € B®}, b;)
27: send (QoS claim, BE claim) to all auctions in «;

of all satisfied BE bidders. As the algorithm works through
claims, it adds bidders to these sets accordingly. The variable
Aj is the remaining airtime that has not been allocated and is
initially set to the capacity of auction j, c¢;. The boolean flag
done keeps track of when the algorithm has terminated.

Lines 23-25 check if all bidders have been satisfied or
constrained by this auction; a bidder is constrained by an
auction ¢ if it cannot increase its claim based on a higher
offer from a different auction j. Then, BE offer is set to the
remaining airtime plus the maximum claim in Bjc, to ensure
that a bidder can increase its claim if it is no longer constrained
by an adjacent auction. Lines 26-46 are where QoS claims are
satisfied and whether BE claims need to be constrained.

REACT s first attempts to satisfy each of the QoS bidders,
subtracting out their claims from the pool of available airtime
(lines 28-37). If the claim is less than the remaining airtime,
we can satisfy this request and move the bidder to the set R
(lines 30-32). We set done to False, because we may need
to update the BE offer with the new available airtime. If we
cannot satisfy the claim (line 34), we instead move the bidder
to the BE auction, and remove it from the QoS auction (lines
35-37), again setting done to False. This allows a QoS node
to still receive some airtime, rather than having wait until the
next round of REACT messages are exchanged.

Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 12:58:54 UTC from |IEEE Xplore. Restrictions apply.

IEEE INFOCOM WKSHPS: CNERT 2021: Computer and Networking Experimental Research using Testbeds

Algorithm 2 REACT Auction for node j.

1: upon initialization do
2: Bj 0
3 BJC «— (), QJC «— 0

> set of bidders at auction j
> set of BE, QoS claims at j
4 cj+0 > capacity of resource j
5: upon receiving a new capacity of ¢; do
6: UpdateOffer()

7: upon receiving claim from bidder 7 do
8 if claim is QoS claim then
9: QJC — QJC U claim
10: else
11: Bjc — Bjc U claim
12: UpdateOffer()

13: upon bidder ¢ joining auction j do
14: Bj B Ui

15: upon bidder ¢ leaving auction j do
16: ﬁj — B]' \Z

17: UpdateOffer()

18: procedure UPDATEOFFER()
19: C+ 0, R+ 0 > setof satisfied BE, QoS bidders

20: Aj ¢y

21: done < False

22: while (done = False) do > all bidders are satisfied
23: if (RUC = ;) then

24: done < True

25: BE offer < A; + max({claims[i] : i € BJC})
26: else

27: done <+ True

28: for ¢ € {Qf \ R} do

29: QoS offers[q] < A;

30: if claims[q] <= QoS offer then

31: R+ RUgq

32: A; «— A; — claims][q]

33: done < False

34: else > move bidder to BE auction
35: BY « Bf Uq

36: Q5 + Q5 \q

37: done <— False

38: if |[B'\ C| > 0 then

39: BE oﬁer:Aj/|BjC\C’|

40: else

41: BE offer = A;

42: for b € {Bf \ C} do

43: if (claims[b] < BE offer then

44: C+CUb

45 A; — A; — claims|b]

46: done +— False

47: send (QoS offers, BE offer) to all bidders in Q5 UBY’

In line 38, we check if there are still unsatisfied bidders, and
if so, we divide the remaining airtime up among them; else,
we set it to the available airtime as all claims are satisfied.
Finally, for each remaining unsatisfied bidder, if its claim is

less than the BE offer, we can satisfy that bidder, subtract its
claim from the remaining available airtime, and set done to
False to ensure we iterate again to update the offers. Once
all bidders are satisfied or constrained, we send the set of QoS
offers and the BE offer to all bidders in QJC U B7C

Figure 1 gives an example of the operation of REACTs.
In this case, node 4 is a QoS node and is demanding 50% QoS
airtime. The other nodes are demanding 100% BE airtime. We
see that node 4 receives its QoS request, but the rest end up
claiming less than their request. Nodes 2 and 3 are constrained
due to node 4’s request, because the auction at node 3 only
has 50% of its airtime left over to offer as BE airtime. It splits
it evenly between the remaining nodes at its auction (nodes 2
and 3), leaving each to claim half. Node 1 claims more airtime
because node 2 offers 50%. Node 2 can offer 50% because
after nodes 2 and 3 claim 25% each, it has 50% left over. No
auction here is aware of all four nodes due to the line topology;
the algorithm relies on indirect information from neighboring
auctions to determine allocations.

Node 1
b,: 100%
s,:50%

Node 2

b, 100%
S,! 25%

Node 3
b,: 100%
33: 25%

Figure 1: Example of REACTqg,s on a line topology: b
gives node t’s initial BE demand; ¢; is node t’s initial
QoS demand; s; gives node t’s ultimate airtime allocation.
White backgrounds represent BE nodes, gray represent QoS
nodes. Double edged circles represent nodes whose airtime is
constrained. The dotted lines represent bidirectional links.

B. REACTy,s Architecture

Figure 2 shows the architecture of the REACTq,s imple-
mentation. REACTqos communicates directly with the driver
functions, the SALT contention window tuner, and the traffic
shaper (here, a token bucket filter or TBF). The TBF operates
on data traffic before it enters the queue (TX-Q-DATA), so
REACTqes can use the shaper to control the rate at which the
node sends traffic. The traffic shaper uses a node’s allocation,
along with the channel rate (which is set equally on all nodes
for the experiment) to estimate the rate of traffic. REACTq.s
control messages bypass the shaper, using a separate TX-
Q-CTL queue that goes directly to the driver. Additionally,
REACTqos interacts directly with the driver to receive control
messages and packet statistics, which it uses to conduct the
auction as well as to tune the contention window. It passes the
claim for its node to the CW estimation module, which sets
the CW parameters in the driver.

We use Linux tc as our TBF, to restrict the load of a
node to be no greater than that of its allocated airtime as
a percentage of the total channel capacity. For example, if a
node is allocated an airtime of 25%, and the channel rate is
6 Mbps, then its traffic shaper is set to 1.5 Mbps.

Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 12:58:54 UTC from |IEEE Xplore. Restrictions apply.

claim ow DATA
i estimation | MGMT — — .
raffic ™Q-CTL A 1 cTL
shaping :[D claim,| | 1
offer I [ph_m“] l o
From 1 Y
application TX-Q-DATA € HW |

'_’ o _,mj_) Driver TX/RX functions

To application I

Figure 2: Architecture of REACTq.s implementation.

III. EXPERIMENTS AND W-ILAB.T ENVIRONMENT

Experiments are conducted on the w.iLab-t testbed in Zwi-
jnaarde, Belgium [8]. ZOTAC type nodes (equipped with
Atheros cards using the ath9k driver) are used for the exper-
iments. The SALT tuner requires two kernel extensions: one
to tune the CW and another to enable setting the CW to a
value other than a power of two. REACTq,s is implemented
in Python 3 on an Ubuntu 16.04 OS.

As in past work, in REACTqes we only allow each node
to offer 80% of the airtime. This is done to ensure that its
control messages (which are enqueued in a separate priority
queue; TX-Q-CTL in Figure 2) are received without being
impacted by the data load on the nodes.

An importable module allows REACT to run from a script.
This allows new demands to be enqueued at any time to trigger
the REACTqes auction. The auction adjusts its demand for
the node and sends out new messages to adjacent auctions,
accordingly.

Two sets of experiments are conducted, each on a different
ad hoc topology: a line consisting of four nodes, and a
complete topology of four nodes as Figures 3 and 4 show,
respectively. We select the complete topology to demonstrate
REACT s behavior when all nodes are aware of each other,
and the line topology to demonstrate behavior with the pres-
ence of the exposed node problem [9]. In the figures, black
lines represent bidirectional links and red arrows represent
flow paths. In the complete topology flows run in a circular
fashion, while flows are run between the outer nodes and their
adjacent neighbor in the line topology. Flows were generated
between nodes using MGEN!. Packets were generated using a
Poisson distribution, had a fixed size of 1024 bytes, and were
sent using UDP. The flow rates were set to 6 Mbps.

We run a set of four experiments to demonstrate the perfor-
mance of REACT s, as well as to demonstrate the behavior
under a dynamic load scenario. Each experiment is run twice,
once under each topology. Experiment 1 is conducted to
show performance of IEEE 802.11, with REACT disabled.
Experiment 2 shows the implementation of REACT without
QoS extensions enabled. Experiment 3 shows REACTqos
running, with one of the four nodes requesting airtime from
the QoS class. Finally experiment 4 combines both REACT gqs
and dynamic demands, with events and their times listed in
Table 1.

Uhttps://www.nrl.navy. mil/itd/ncs/products/mgen

Figure 3: Complete topology of four nodes with flow paths.

Figure 4: Line topology of four nodes with flow paths.

IV. RESULTS AND DISCUSSION

Beginning with experiment 1, we see that in the complete
topology IEEE 802.11 performs quite well (Figure 5a). Each
node is allocated about 25% of the airtime for the entire
experiment run. For the line topology in Figure 5b, however,
IEEE 802.11 has much more variable performance.

e
B30 e b el et 1 o A i M i

o SRR R e

Eom

S

o]) e

(b) 802.11 line topology

airtime v, Tima

(a) 802.11 complete topology

airtime v, Tima
rede 1 sode 2 ned 3 e s

(c) REACT complete topology (d) REACT line topology

Figure 5: Experiment 1 and 2: 802.11 v. original REACT
in complete and line topology. For (c) and (d), each node
is requesting 100% of the offered airtime (because 80% is
offered, this results in about a 20% allocation per node).

Experiment 2 provides an insight into how REACT per-
forms. From Figures 5c and 5d we see that REACT converges
on a much tighter airtime allocation, i.e., the means of the
airtime of the four nodes are much closer. The airtime each
node receives in REACT is less than under IEEE 802.11
(partially due to 80% of the airtime being allocated), but this
much more consistent allocation is an improvement.

To compare between the two approaches, we analyze the
variance; however, to account for the period of time that
REACT takes to converge, we only compute the variance

Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 12:58:54 UTC from IEEE Xplore. Restrictions apply.

IEEE INFOCOM WKSHPS: CNERT 2021: Computer and Networking Experimental Research using Testbeds

Airtime vs. Time

node2 —— node3 —— node 4

—— node 1

0 2‘0 4‘0 6‘0 BIO 160

Time
Figure 6: Experiment 3: REACTq,s in complete topology.
Node 4 is requesting 50% QoS airtime, and the rest 100%
(again, 80% is offered, so node 4 receives 40%).

for the time after REACT has converged (at second 3 for
the complete topology; at second 10 for the line). For the
complete topology, the variances for the nodes range from
0.017% to 0.471% for 802.11, while for REACT they range
from 0.016% to 0.024%. For the line topology, variances for
802.11 range from 0.3% to 0.877%, while for REACT they
range from 0.012% to 0.02%. There is some improvement
in the complete topology, but with the line topology the
improvement is much more apparent, as can be seen when
comparing between Figure 5b and Figure 5d.

In Experiment 3, node 4 requests 50% of the offered
airtime, which translates to 40% of the actual airtime. With
the complete topology (Figure 6), node 4 receives about 40%
airtime, while the remaining three nodes receive about 13%
each. The airtimes for the line topology are more complicated
to understand (Figure 7), however, this is the same scenario
presented in Figure 1. As before, node 4 requests half of
the offered airtime, which it correctly receives. Node 1 also
received half of the offered airtime, since it is only constrained
by the auction at node 2. Nodes 2 and 3 are constrained
by multiple auctions, which results in them receiving less
airtime than either node 1 or node 4. This can be seen
in Figure 7, where nodes 1 and 4 receive half the offered
airtime (40%) and nodes 2 and 3 receive a quarter (20%).
Additionally, REACTq,s takes four seconds to converge in the
complete topology, and 8 seconds for the line topology. The
line topology takes longer to converge because information
has to travel two hops in the worst case, where a complete
topology is by definition fully connected and information has
to travel at most one hop.

Finally, for Experiment 4, Figures 8 and 9 show node 1
requesting 50% QoS airtime, with remaining nodes adjusting
their demands dynamically according to the events in Table I.
Note that node 1 has a consistent allocation throughout the
experiment and is not affected by the demand changes at
other nodes. In the complete topology, even when nodes 2
and 3 adjust their demands at seconds 120 and 180, the sum
of the three BE demands is higher than 50% of the airtime

Airtime vs. Time

—— node 1 node2 —— node3 —— node4

0 2‘0 4‘0 6‘0 8‘0 160

Time
Figure 7: Experiment 3: REACTq,s in line topology. As in
Figure 6, node 4 is requesting 50% QoS airtime, with the
remaining nodes requesting 100% BE (with 80% offered).

Table I: Events for Experiments 4

[Time (s) [Node [Demand | QoS |

0 node 1 50% Yes
0 node 2 10% No
0 node 3 10% No
0 node 4 100% No
60 node 2 20% No
60 node 3 20% No
120 node 2 50% No
180 node 2 80% No
180 node 3 50% No

split three ways. Therefore the airtime remains equally split
between the three nodes, so no change is reflected in the figure.
In contrast, in the line topology, we see that when node 2
increases its demand to 50% of the airtime at second 120, it
is allocated more of the airtime, since there are fewer nodes
competing for the airtime at node 2. Later at second 180,
nodes 2 and 3 increase their demands further — they are both
constrained the neighboring auctions and have to split the
airtime. Though REACTq.s took twice as long to converge
initially in the line topology (20s vs. 9s in the complete
topology), re-convergence times for both topologies averaged
only four seconds.

V. NEXT STEPS FOR REACT

REACTqos is a first step to a more complete solution
to realize airtime allocations and provide QoS support in a
wireless network. However, there is much that could be done
to further the work presented here.

First, this implementation of REACTq,s impacts the delay
and jitter performance. Prior work shows that REACT sacri-
fices a small amount of throughput in order to achieve superior
delay and jitter [7]. Due to the traffic shaper used (the tbf
module from Linux t c?), this implementation has worse delay
and jitter. Our focus in this paper is to achieve varied airtime
allocations; we leave it to future work to improve the tuning
algorithm to not sacrifice delay or jitter.

Zhttps://www.man7.org/linux/man-pages/man8/tc-tbf.8.html

Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 12:58:54 UTC from |IEEE Xplore. Restrictions apply.

IEEE INFOCOM WKSHPS: CNERT 2021: Computer and Networking Experimental Research using Testbeds

Airtime vs. Time

0.6

node2 —— node3 —— node 4

—— node 1

0.5

0.4 4

Airtime (%)

0.0 T T T T T
0 50 100 150 200 250
Time

Figure 8: Experiment 4: REACT(q,s in complete topology,
dynamic and varied demands according to Table I.

Airtime vs. Time

0.8

— node 1 node2 —— node3 —— node4

0.7

0.6

0.5

0.4

Airtime (%)

0.3

0.2
W
0.1
0.0 T

0 50 100 150 200 250
Time

Figure 9: Experiment 4: REACT s in line topology, dynamic
and varied demands according to Table 1.

Another improvement that could be made is to implement
an admission control scheme for the QoS requests. Currently,
the algorithm “downgrades” nodes from a QoS request to
a BE request if the request cannot be satisfied. An explicit
mechanism for denying a request to ensure QoS nodes do not
overwhelm the network may be preferable.

REACTq.s was implemented and evaluated in an ad hoc
wireless network scenario. We believe that the algorithm could
help improve the performance of WLANS in a managed access
point (AP) scenario. In this case, one REACT auction could
be run per-AP, with clients only running the bidder portion
of REACT. The AP would then have full knowledge of its
network and could make decisions in a centralized manner.
Furthermore, if APs were in the same collision domain, a
REACT auction could be run between entire AP-subnets, over
a wired connection, to negotiate airtime between APs.

The use of REACTq,s in an AP scenario suggests the use
of Software-Defined Networking (SDN) in a wireless network.
There has been much previous work on SDN and network
slicing in the wireless domain, such as the EmMPOWER system
[10], [11]. But much of this work (including EmPOWER)
operates higher in the network stack and still depends on
IEEE 802.11 for the lower level MAC protocol. It may be
possible to use the more precise airtime realization mechanism

of REACTqs to give nodes a precise allocation determined
by a centralized controller. Furthermore, conducting slicing in
the uplink direction is not a solved problem, which REACT s
has the potential to improve.

VI. CONCLUSIONS

In this work we proposed REACT s, a distributed protocol
to allocate airtime with QoS support. This allows nodes to
request a higher class of airtime which, if available at adjacent
auctions, guarantees the node a higher airtime allocation.
Through experimentation on the w-iLab.t testbed we have
shown that this mechanism is successful at achieving varied
allocations. This extension, combined with traffic shaping and
dynamic demands, allow us to tune the airtime nodes receive
and opens the door to improved QoS support in wireless
networks.

ACKNOWLEDGEMENTS

This research was supported in part by the U.S. National
Science Foundation (NSF) NeTS Award 1813451.

REFERENCES
[1] Cisco, “Cisco annual internet report (2018-
2023),” March 2020. [Online]. Available:

https://www.cisco.com/c/en/us/solutions/collateral/executive-
perspectives/annual-internet-report/white-paper-c11-741490.html

[2] 1. Elgendi, K. S. Munasinghe, and A. Jamalipour, “Traffic offloading for
Sg: L-lte or wi-fi,” in 2017 IEEE Conference on Computer Communi-
cations Workshops (INFOCOM WKSHPS), 2017, pp. 748-753.

[3] D. Garlisi, F. Giuliano, A. L. Valvo, J. Lutz, V. R. Syrotiuk, and
I. Tinnirello, “Making WiFi Work in Multi-hop Topologies: Automatic
Negotiation and Allocation of Airtime,” in 2015 IEEE 35th International
Conference on Distributed Computing Systems Workshops. Columbus,
OH, USA: IEEE, Jun. 2015, pp. 48-55.

[4] “IEEE Std 802.11™-2016, IEEE Standard for Information technol-
ogy—Telecommunications and information exchange between sys-
tems—Local and metropolitan area networks—Specific require-
ments—Part 11: Wireless LAN Medium Access Control,” p. 3534, 2016.

[5] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification. Amendment 7: Medium Access Control (MAC)
Quality of Service (QoS), ANSI/IEEE Std 802.11e, LAN/MAN Stan-
dards Commit- tee of the IEEE Computer Society Std., 2005.

[6] J. Lutz, C. J. Colbourn, and V. R. Syrotiuk, “ATLAS: Adaptive
Topology- and Load-Aware Scheduling,” IEEE Transactions on Mobile
Computing, vol. 13, no. 10, pp. 2255-2268, Oct. 2014.

[71 M.J. Mellott, D. Gatrlisi, C. J. Colbourn, V. R. Syrotiuk, and I. Tinnirello,
“Realizing airtime allocations in multi-hop wi-fi networks: A stability
and convergence study with testbed evaluation,” Computer communica-
tions, vol. 145, pp. 273-283, 2019.

[8] S. Bouckaert, P. Van Wesemael, J. Vanhie-Van Gerwen, B. Jooris,
L. Hollevoet, S. Pollin, I. Moerman, and P. Demeester, “Distributed
Spectrum Sensing in a Cognitive Networking Testbed,” in Towards a
Service-Based Internet, W. Abramowicz, I. M. Llorente, M. Surridge,
A. Zisman, and J. Vayssiere, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, vol. 6994, pp. 325-326, series Title: Lecture Notes
in Computer Science.

[9] J. Mvulla, Y. Kim, and E.-C. Park, “Probe/PreAck: A Joint Solution for
Mitigating Hidden and Exposed Node Problems and Enhancing Spatial
Reuse in Dense WLANSs,” IEEE Access, vol. 6, pp. 55 171-55 185, 2018.

[10] E. Coronado, R. Riggio, J. Villalon, and A. Garrido, “Lasagna: Pro-
gramming Abstractions for End-to-End Slicing in Software-Defined
WLANS,” in 2018 IEEE 19th International Symposium on A World
of Wireless, Mobile and Multimedia Networks” (WoWMoM). Chania,
Greece: IEEE, Jun. 2018, pp. 14-15.

[11] E. Coronado, S. N. Khan, and R. Riggio, “5G-EmPOWER : A Software-
Defined Networking Platform for 5G Radio Access Networks,” IEEE
Transactions on Network and Service Management, vol. 16, no. 2, pp.
715-728, Jun. 2019.

Authorized licensed use limited to: ASU Library. Downloaded on September 30,2021 at 12:58:54 UTC from |IEEE Xplore. Restrictions apply.

		2021-07-16T06:00:44-0400
	Preflight Ticket Signature

